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Growth Rates and Transport Coefficients for the Trapped

Ion/Collisionless Trapped Particle Instability

I. Introduction

Numerical simulation of large Tokamak plasmas indicates the possibility
that high temperatures (in the keV range), low densities and sharp density
gradients can occur near the plasma edge if a poloidal divertor is used.(l)
The low collisionality can lie in a regime where the usual ordering for the
trapped ion mode breaks down, i.e., the "collisionless" regime.(z)

In Section II, the dispersion relations for the trapped ion and collision-
less trapped particle instabilities are presented as derived from a simplified
local model. 1In Section III, the properties of the collisionless trapped
particle instability are discussed. The linear growth rate for the trapped
ion mode under the usual ordering in collisionality is discussed in Section IV.
An expression for the growth rate at lower collisionality is then derived and
an approximate solution to the linear growth rate, valid for all ranges of
collisionality, is obtained.

The effects of temperature gradients, ion Landau damping and non local
approximations on the linear growth of the trapped ion mode are discussed in
Section V. Finally, the difficulties associated with evaluating the diffusion

and conduction coefficients in terms of the linear growth rates are discussed

in Section VI.



II. Dispersion Equation

The dispersion equation for the dissipative trapped ion instability as

derived by Kadomtsev and Pogutse(2’3) is given by:
+ * *
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Equation (1) can either be derived from a local kinetic model(z) or a fluid
model(3’4), neglecting the effects of Landau damping by circulating particles.

The parameters in the above equation are:
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The dispersion relation for the collisionless trapped particle mode is

the same as eqn. (1) in the limit of Vi Ve - 0.
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The growth rate for the trapped ion mode should transform smoothly to the
growth rate for the collisionless trapped particle mode as collisions are de-

creased.

It is important to note that equations (1) and (5) were derived under the

thus, stabilization criteria at low collisionality

(5)

should be examined with this in mind. Recent work by Tang and Adam and Tang,

(6)

Adam and Ross includes higher order terms in W using an orbit model developed

(7)

by Pogutse . The ordering used in this paper, however, is consistent with the

assumption wmj <<lw + i ijl;

results of recent divertor studies which indicates density gradients in the outer
regions of the plasma which are sharp compared with both magnetic field gradients
and temperature gradients. First, some of the properties of the collisionless
trapped particle mode will be discussed using eqn. (5), then the dissipative
trapped ion mode will be examined.

III. Collisionless Trapped Particle Instability

%
Let & = Te/Ti in eqn. (5) and use wmi and w, as the parameters, then:
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Let w = wr + iy and separate the real and imaginary components of the equation.
W and Y should both be real and vy must be positive for growing waves.

Vew -
Euw (Vew-w)

1- v

0 (7)

2 2
Real: wr -y + (l—-E)wmwr +

Imaginary: Zwry + (l—-i)wm Yy =20 (8)

For Y # 0, eqn. (8) gives the solution for wr which can then be substituted

into eqn. (7) to yield a solution for Y.
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The solution given by eqns. (9) and (10) is valid only when Yé >0. If

Yi <0 in equation (10) the correct solution is given by:

Yy=20 (11)
2 2 %
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For equal temperatures and €<<l egns. (9-12) reduce to:

Yz >0: w, = 0 (13)
2 2 *
Yoo= v = e (Vew - u)m) (14)
2
YO <0: Yy =0 (15)
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_ 2
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Figure 1 shows plots of vy and w_as a function of /E_w* for the equal
temperature case given by eqns. (13-16). For /E-w* > W the solution is
aperiodic, i.e., there is no real component to the frequency. For /E-w* < wm,
Y = 0, and the wave is neither damped or growing. The conditions for stabilization
is

w
m

—% 21

Ve W
which is in violation of the assumption made in deriving the dispersion equation
. . — %
in the first place, W << Ve w .
2, .
For unequal temperatures, eqn. (10a) shows that Yy~ is completely symmetric
with respect to ions and electrons. Ions and electrons play equal roles in

contributing to both the growth and stabilizing terms. TFor large temperature

differences» Pogutse (7) argues the mode can be stabilized:
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The mode is therefore unstable in the temperature range>
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For reasonably sharp density gradients, a large temperature difference is
required for stabilization of the mode. The stability conditions are outside
the range of validity of the original dispersion relation since they require
!w2l<< wmz while the opposite assumption was made in the derivation.

Figure 2 shows plots of w, and v from eqns. (9) and (10) for € = .2 and
an/r =1, .1. To show the symmetry in temperature, Yy and w_ are normalized
to w for Te > Ti and w . for Ti > Te. For an/r = 1, the mode is stabilized
for Te and Ti differing by an order of magnitude while for an/r = .1, more
than two orders of magnitude difference in temperature is required for stabili-
zation. TFor current devices § ~ 3 and for larger Tokamaks & ~ 1 is expected.
Stabilization of the mode with unequal temperatures would be difficult even
for modest density gradients.

IV. Dissipative Trapped Ion Instability

Using the same notation as in the previous section, eqn. (1) can be

expanded to give:
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Drop the vif terms where they are added to or subtracted from ve since
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Let £ = 1 in the V& coefficient of the second term. Then eqn (20) reduces to:
2
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(1 ve)w  + 1 (1 -ve /2) Vg W + (1-ve) (1 g)wmw Vig Vef
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Let w wr + iy and separate the real and imaginary components of eqn. (22):
Real: (l—/E)(wi - - a- eIV ¥ + (- VE) (1-E)w w_
= Vg Vep T, [+ - Ew 1 =0 (23)
Imaginary: 2(1—/E)wry + (1—¢E/Z)vefwr + (l—/E)(l—E)me

- V¢ (wo - wm) =0 (24)

The imaginary component can be solved for W in terms of Yy and then substituted

into eqn. (23) to obtain an equation for Y.
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An approximate solution can be obtained from equations (23) and (25)
under two different orderings of terms. A "high collisionality" approximation

with Vo >> vy gives the growth rate in the trapped ion mode. A "low collision-

£

ality" approximation with ve << vy adds a collisional growth term to the growth

f

rate for the collisionless trapped particle instability.

(a) "High Collisionality"

2)

With the usual ordering for the trapped ion mode Vs >> vy, eqn.{25)

reduces to:

W - w
_ o m
W = TC Vel2 (26)

Substitution into eqn. (23) and using (l—/?:/2)2 ~ (1-Ve) gives

(u, - wm)2 - (a-vE)y? - (1-/E/2)v_ v + (-/E/2) 1-B)w_(w -w )
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The last term is small compared to wg since w << wo and ve << 1. The Yz

term is small compared to the second term since Yy << vef'
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The stabilization condition for the mode can be obtained from eqn. (27)

or (28) and is given by:

2
(1)0
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The solution for Y was obtained under the ordering Vef >> v and there-

fore is valid only for:

2 2
~ wO wO
= - <<
¥ vef vif Y
Y << W (30)

When Vv < w_ then vy > w_ and the ordering breaks down. For v <w_ a
ef o o} ef o

different ordering must be used.

(b) "Low Collisionality"

For vef << Y a collisional growth term can be obtained for the "collisionless"

trapped particle instability. Eqn. (25) reduces to:

0 = - (l—g)wm + <wo B wm) vef
r 2 (1-ve) 2y

(31)

Substitution into eqn (23) and rearranging terms gives:
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2 2
(wo_wm) vef

2.—-
e 2 T Ve Ve - AVE)Y, = 0 (32)

(-ve)y® + (1-Ve/2) v_.y -
where Yg is given in eqn (10) and represents the collisionless growth rate.
The ion collision term can be neglected in eqn. (32). The first collision
term decreases Y from Y, as collisions are added while the second collision
term increases Y over Yo as vef is increased. The growth term is dominant

when v__/Y >> w_w_ and w_ << w_ . Under this ordering, eqn. (32) becomes
ef m o m o

A 2
quadratic in vy :

4 2 .2 (wo ) wm)2 Vefz
Y - vy - >~ 4 =0 (33)
(1-ve)
2 _ 2 o o o m” “ef
LT A R A AN Y S) 34

Equation (34) would tend to overestimate the growth of the mode since the
terms dropped in eqn. (32) both decrease the growth slightly. Figure 3 shows
plots of YH/wO and YL/wO vs. \)ef/wO (eqns. (27) and (34)) for € = .2 and
an/r = .001. Also shown is a plot of YH/mO neglecting the ion collision term.
The ion collision term becomes dominant for vef/wo > 5 and completely stabilizes
the mode at \)ef/wO = 8. A smooth fit to the "high" and "low" collisionality

regimes can be made by using

Yo Y
Yoty (35)
T H L

~ 2 .
YT/wO is also shown in Figure 3. Note that the approximation vy = wo/vef’ which

igs often used for the linear growth rate for the trapped ion mode, is

only approximately valid in a very small range of collisionality.
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(c) Numerical Solution of Dispersion Relation

Eqns. (23) and (25) can be solved quite easily numerically to determine

how good the fit for Yp» eqn. (35), actually is. The solution can be expressed

in terms of a normalized growth rate vs. a normalized collision frequency with

the parameters £ = r/R, vi/ve, an/r and & = Te/Ti' Designate B as the

normalizing frequency and define the following dimensionless parameters:

o =_£}—/b/2)wr
B
(1-ve/2) v
T ————
B
N - et oo lif

For equal temperatures eqns. (23) and (25) reduce to:

Q2 -T2 NT - NN, + U-veyy2/s = 0
e e 1 (8]

o N @8 - /8)

2 + N
e

where YO is the collisionless growth rate. If [ is chosen as W, W Oor Y,

(36)

(37)

(38)

(39)

(40)

the expressions wO/B, wm/B and YO/B either reduce to unity or functions of ¢

and an/r. Furthermore,

1/2

N, =(==) N forT =T
i m, e e

=

i

[
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Substituting eqn. (40) into eqn. (39) and expanding leads to a fourth

order equation in I':

2
N, (1-ve) v
st van T b (544t b ° y n ?r?
e N 2 2 e
e N B
e
2
N, (1-v¢) Y, 5 3
+ (1 + 4 — - ) N"T+ N °N,
N 2 2 e e i
e N B
e
2 2
w w (1-ve) vy
o __m 2 _ 77 o ¢ 2 _
( B~ B Ne 2 Ne =0 (41)
B
Dividing through by Ne4 and rearranging yields:
4 3 N 2 N N
T T i r i r i
4(‘1:1—) +8(ﬁ-“) +(5+4‘1\T‘) (—I\—I—') +(l+4ﬁ")(§—)+—N——
e e e e e e e
(1—/e)y02 r r w,ow 2 (l—t/E)Yo2
= 2[4 7 _N_(l-*-ﬁ—)-'-(_ﬁ——_—g—_) +——T—-—] (42)
Ne B e e R

For a given positive value of I‘/Ne = (l—/E/Z)Y/\)ef the left-hand side of

eqn. (42) and the bracketed term on the right-hand side are known positive
quantities and a unique positive value of Ne can then be obtained. T = (F/Ne). Ne
gives the corresponding normalized growth rate.

Figure 4 shows plots of I' v¢ N for the fitted solution, eqn. (35), and the
e

numerical solution of eqn. (42) with B = (l—vEYZ)YO. The fitted solution is as

much as 40% high for intermediate ranges of collisionality but is quite

accurate for high and low collisionality. Figure 5 is essentially the same as
Figure 4 but the normalization parameter is B = w . Here it can be seen that the
magnetic drift frequency, W has little effect on the growth rate for vef > wo,

i.e., the usual collisionality regime for the trapped ion mode. The cases

%
shown in Figures 3-5 are all for w << 2w0= Yew . The behavior of Y near
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w =W is questionable since the original dispersion relation was derived

with the ordering wm << 2w0.

V. Other Factors Affecting the Growth of the Trapped Ion Mode

In deriving the dispersion relation for the trapped ion instability,

(2)

Kadomtsev and Pogutse used a simple Krook collision model and neglected

(8)

temperature gradients and ion Landau damping. Sagdeev and Galeev later
used a Landau collision term for the electrons and found the electron

collisional growth term in good agreement with Kadomtsev and Pogutse. The
ion collision term was neglected in their analysis. Rosenbluth, Ross and

9

Kostomarov

used a Fokker-Planck collision term for both electron and ion

collisions and included temperature gradients in their analysis. A variational

technique was used to obtain the electron collisional growth and ion collisional

damping terms:

w

<

e 0
el 1.95(1+1.41 ne) N
0 ef
Yi Vif 1/2 4.9wo 1/2]—3/2
- -2.54 (1-.57 ni) 9;——) ln(v_ )
o 0 if
Ve w
here I c
w o 1+T /T,
e Ti
* . 2q kTe 1 dn
w = £ _n
e r e B n d
T r
vo_ Y
jf £
d In T,
n. = — !

3j d In n

(43)

(44)
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The electron collisional growth is roughly twice as large as that given
by Kadomtsev and Pogutse for the zero temperature gradient case (n = 0).
However, the ion collision term is a stronger function of Vif so the mode is
stabilized at a lower effective collision frequency (see Figure 6).

Figure 7 shows plots of vy = Ye + Yi vs. vef for equal electron and ion
temperatures and various temperature gradients. As the temperature gradients
increase, the growth rate of the mode increases because of greater electron
collisional growth and decreased ion collisional damping. TFor ng > 1.75
the ion collisional damping changes to growth and cannot stabilize the mode.

There are several limits on the range of applicability of equations (43)
and (44). First, the electron collisional growth rate should be less than
the effective diamagnetic drift frequency, Ye < wo, which is violated at low

collision frequencies, Vv < (1-5) w, - For these low collision frequencies

ef
the mode starts converting to the "collisionless" trapped particle instability
as discussed in Section IV-b. Second, the ion collision term has a singularity
at Vif/wo = 4.9. Vhen the In term in eqn. (44) becomes less than about unity

the approximations made in the derivation become invalid. The ion collision

term is then only valid in the regime.

08}

In (4.9 -2 ) <1
V., ~
if

w

Vig 75 (45)

This restriction is only necessary for sharp ion temperature gradients since

for n; < 1.5 the mode is stabilized in the regime where eqn. (45) is violated.
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Increasing the toroidal mode number, £, leads to larger W, and larger
growth rates for a given effective collision frequency. An upper limit on the

toroidal mode number can be obtained from

wo < wbi (46)
2 kT, 1/2 1/2
w = (- = ) 28) ion bounce frequency
bi m, Roq

which is required for existence of the mode. A more restrictive upper limit

on & occurs when Landau damping by circulating ions is included in the analysis.

(8)

Sagdeev and Galeev found that Landau damping is a strong stabilizing

term near a rational q surface and weakly stabilizing between rational q

surfaces.
Y 2w 3
LD __ 0
5 1.92 (-————~?63 ) (47)
o W, . s
bi
where s(o) = Im(o)—lq]
and m(o) is an integer which makes S(O) smallest. Rosenbluth, Ross and
Kostomarov(g) included temperature gradients and obtained a minimum value for
Landau damping by evaluating s(O) midway between rational q surfaces, i.e.,
s(o) = .5.
" b w3
——= = - 1.73 (1-1.5 n,) ( ) (48)
w 1 w, .
o bi

The zero temperature gradient case agrees well with the results of Sagdeev and
Galeev. Both predict Yip @ 24 while Yo O 22. For ny > 2/3, eqn. (48) predicts that
Landau damping turns to growth and cannot stabilize the mode. This can only

be true if the mode is localized in radius to a region much smaller than the

distance between mode rational surfaces.
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A radially dependent model should be used to better determine the overall

effect of ion Landau damping and whether the modes can be localized between

10-12
mode rational surfaces. The radial equation can be put into the form:( )
-2 d2
K" S5+ Gwle & =0 (49)
dx
K = Z >> 1 (50)
r, .
bi
an;
Arbi =7 trapped ion banana width (51)
(ZmikTi)l/2
pi = ———-——  jon gyroradius (52)
e B

T

Q can be called the radial potential in analogy with the Schrodinger

a1

equation There are contributions to Q from both trapped and untrapped

particles which will be designated QT and QU respectively. For the usual

ordering in the trapped ion mode regime, vef > Yew >> vy, and equal temperatures,
the trapped particle contribution to the radial potential can be reduced to:(lz)
QT =1 - 2 w;‘: - iw\) (53)
VEW ef

where ion collisions, temperature gradients and magnetic drift have been
neglected. 1In a local model which neglects untrapped ion contributions, the
spatial derivative term is neglected since K >> 1 and QT is a smooth function.
Then QT = 0 gives the local dispersion relation.

Jablon, Laval and Pellat(lZ) used a density profile of

_x3.5
n-~n e (54)
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to simplify the radial dependence of QT' Untrapped ions were neglected in

their analysis. The radial equation

2
9 4

9~§ + K2 [x(1+iy) _ & ]®=0 (55)

) X
dx
where KO = K(a)
Y = = Q=2 V . = const
Vef wo(a) ef

was then solved by a WKBJ analysis. A plot of QT vs x is shown in Figure 8;.
For x < X the wave is expected to be spatially damped since Re QT<O' The
boundary condition at x = 0 was then chosen to be $(0) = 0. The most pessimistic
assumption of perfect reflection was made at x = 1 giving (1) = 0. Ross and
Horton(lo)also used a WKBJ analysis and found the lowest radial eigenmode gives
growth rates only slightly less than the electron collisional growth from local
models. The reduction in growth is due to finite banana width corrections for
the trapped ions. For Kz >> 1, the correction term would be expected to be
small since QT is a smooth function of radius.

The circulating particle contribution to the radial potential is given
by Gladd and Ross(ll)as:

w—l—wmi + i \)if
QU = " z { Z2(2) - 2(Vez)

+ 55—, [ 2(1-Ve)+(22-1/2) 2 (2)- (e2°-1/2)Z (Vez) 1} (56)
w, + wTe/Ti *
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d In T,
i

where "y S dInm

) m, 1/2

W
2 =1, Coewr )
1

ky, = -4

q R

Z — Fried & Conte dispersion function

Let XO denote the position of a rational q surface (k"(xo)=0). Plots of
the real and imaginary components of QU near x = are shown in Figures 8b and 8c
for ni = 0 and 1 respectively. Both the real and imaginary components of QU
have resonances at Xt For n; = 0, Im QU is negative for all values of x and
gives Landau damping of the mode by circulating ions. For ni > 2/3, Im%j
is still negative near X, but is positive in the wings of the resonance. Ion
Landau growth can occur where Im QU > 0 but is dominated by the damping in the

( 9)

resonance. 11) Rosenbluth, Rossand Kostomarov evaluated the Landau damping
term midway between rational q surfaces where Im QU > 0 for ni > 2/3 which
explains why they found Landau damping turning to growth for ni > 2/3.

Gladd and Ross(ll)solved the radial equation numerically using eqn. (56)
for QU. The local electron and ion collisional terms of Rosenbluth, Rossand

-X
(9) were used to evaluate QT with a density profile of n ~ noe

Kostomarov
Ormak design parameters were used for the plasma. For n = 0 the trapped ion
instability was found to be stable for all toroidal mode numbers. For n =1,
ion collisional damping was found to stabilize the instability for & < 3 and ion Landau
damping stabilized the mode for £ 2 6. The maximum growth rate occurred for % ~ 3-4 and
was less than half the local value of the growth rate without Landau damping.

(9)

Gladd and Ross also discuss the possibility of using algebraic models

to get a qualitative picture of Landau damping. The spatial derivative is
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replaced by the radial wave number and the radial potential is replaced by an

averaged quantity:

- azkrz + K2Q(x,w) = 0 (57)
x dq
kr ™4 dr

W) = Qn +LQ
Qx,w) = Q QU

QU is averaged over a spatial range corresponding to m-1/2 < ¢q < m*+1/2 and
L<1l represents the weighting of QU with the wave function.

This model predicts stabilization by ion Landau damping for & < 7 in
the Ormak model for akr/K > 1, i.e., when the trapped ion banana width becomes
greater than the spacing between mode rational surfaces. When this happens
the mode cannot be sufficiently localized between mode rational surfaces and
ion Landau damping becomes dominant. The maximum growth occurs for akr/K~.5.
For best simulation of the numerical results, Gladd and Ross found that L
should be an increasing function of the toroidal mode number &. For the Ormak
model

Lz /67

gave the best results where D is the number of mode rational surfaces between
the turning point and the outside of the torus.

The algebraic model discussed above breaks down when akr > K and thus

should not be used to predict stabilization of the trapped ion mode. It does

however give a reasonably good qualitative picture of the effects of ion Landau
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damping for akr/K < 1. Gladd and Ross use another model valid for ak /K > 1
T

which will not be discussed here.

In general the diffusion will be dominated by intermediate values of £ where

max " dq oY
dr bi
gives the maximum growth rate. The maximum growth rate from the radial model is

smaller than the growth rate from linear theory for the same mode number.

VI. Turbulent Diffusion and Conduction Coefficients

From a strong turbulence analysis(l3_15), the diffusion coefficient can

be expressed as:

]
]2
)
N

(59)

=1

where ?>and E; are the growth rate and radial wave number averaged over the

nonlinear spectrum. Ignorance of the spectral distribution makes D, impossible
. . (14) . ,

to evaluate in Eqn. (59). Dupree suggests that at saturation, a single mode

may dominate the diffusion and stabilize all other modes. For a given mode,

the radial wave number is determined by the distance between rational surfaces:

kT oadd (60)
r dr

In Figure 9 the normalized diffusion coefficient for several toroidal mode

numbers is plotted vs. the effective electron collision frequency for equal

temperatures and a typical set of plasma parameters. The results of Rosenbluth,

Ross and Kostomarov were used for the electron and ion collisional growth terms,
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eqns. (43-44), in the trapped ion mode regime. The results of Section IV-b
of this paper were used for the growth rate at lower collision frequencies.

At low collision frequencies, the lowest toroidal mode numbers give the
lowest linear growth rates but the highest diffusion coefficients. At higher
collision frequencies, Vef/wol > 5, the largest growth rate is determined by
the largest allowable toroidal mode number (limited by Landau damping). How-
ever, the largest diffusion coefficient is determined by some intermediate value
of the toroidal mode number, i.e., a toroidal mode number large enough such that
ion collisional damping is negligible (Vef/wo << 10) but small enough such that the
mode is still in the trapped ion mode regime (Vef/wo >> 1). The maximum growth
rate then occurs for Vef/wo_: 5. Since w, = 2w0 s the mode number, which

1
gives the largest diffusion coefficient, is then given by:

<
0]
[}

=%

The diffusion coefficient in the trapped ion mode regime is bounded by

p =z YEY, (61)

which is independent of the toroidal mode number since the electron collisional
growth rate, Yas and krz are both proportional to 22.

A nonlinear analysis of the evolution of the modes is required to determine
which mode will dominate the diffusion if indeed only one mode is responsible

14>

for the diffusion at saturation. For turbulent drift waves, Dupree argues
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that the modes with the largest values of Y/k;2 will dominate the diffusion.

(15)

In a subsequent paper on low frequency instabilities, Dupree cites experi-
mental support of a single dominant mode. He argues that the mode which

requires the largest amplitude at saturation will stabilize the other modes.

It is not necessarily the mode with the largest linear growth rate. However,

the mode which requires the largest amplitude at saturation also yields the largest

16)

diffusion coefficient. Waddell ( argues that the dominant mode for the collision-
less trapped particle instability will be the one with the largest linear growth
rate. Although his analysis seems to apply for a fixed radial wave number, the
diffusion coefficient he finds is is still given by eqn. (59).

Even if there is a single dominant mode at each localized position in the
plasma, the question still arises as to whether there will be a single mode
responsible for the diffusion over the entire region where the trapped ion/
collisionless mode exists. Rather than using a single mode, a safe upper limit
on the diffusion in the trapped ion mode regime would still be given by eqn. (61)
and in the "collisionless" regime by the £ = 1 mode.

(17)

Dobrowolny and Nocentini evaluated the particle and heat fluxes for
the trapped ion mode assuming small amplitude electrostatic fluctuations.

Their analysis admittedly is not valid when the mode becomes strongly turbulent
but does indicate general relationships between particle and heat fluxes during
the early stages of evolution of the mode. The ion and electron heat fluxes
were found to be comparable to the particle flux. This seems to rule out

an enhanced electron or ion thermal conductivity similar to the enhanced ion

thermal conductivity for classical transport.
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