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Abstract

The sensitivity of the Lawson and ignition criteria to plasma density
and temperature profiles is examined and’it is found that peaked profiles
lead to a considerable easing of these criteria, as well as to a significant
increase in the average fusion power density. A space and time dependent
tokamak transport program is then used to investigate'the expected profiles in
a tokamak reactor when the dominant transport mechanism is trapped particle
driven turbulence. It is found that thermally stable profiles exist within a
fairly narrow range of mean density and with mean temperatures of 8 to 15 keV.
The profiles are found, in fact, to be sharply peaked at the center due to alpha
heating and to rapid diffusion near the edge. This is advantageous from the
viewpoint of meeting either the Lawson criterion or the ignition condition in
tokamaks. The equilibria are found to be very sensitive to the size of the
device and to the conditions imposed at the plasma edge. They are also somewhat
sensitive to the fueling profile that is imposed. A detailed comparison
is also made between tokamak plasma equilibrium parameters predicted by often
used global energy balance models and by space dependent calculations. It is
found that the global model results can differ sharply from the space
dependent calculations with regard to mean temperature, mean density, particle
confinement time and fractional burnup. In particular, the fractional burnup
from global calculations can be a factor of 10 too high and this can have an

important detrimental impact on the anticipated tritium inventory and refueling

systems in tokamaks.



I. Introduction

In order to analyze a power producing fusion reactor, it is important
- to consider the spatial profiles of temperature and density in the plasma.

(1)

1 . . . . .
Lawson's criteria for "break-even'" in a driven reactor and the criterion

for plasma ignition both depend upon these spatial profiles. As we will see,
for a given plasma energy content, it becomes easier to 'break-even' or
ignite the plasma as the temperature and density profiles become more peaked.
Furthermore, with a beta limited plasma such as a tokamak, the average fusion
power density is found to increase for more peaked profiles and the maximum
value of the power density occurs at lower average plasma temperatures.

There are many factors that will determine the profile of density and
temperature in a thermallf stable plasma fusion device., First
are the scaling laws; the size of the device and the coefficients for conduction
and convection for both particles and energy. Second the conditions at the
plasma edge will play an important role in the equilibrium which the plasma
will assume. In a tokamak, for example, this might mean the presence of a

(3,4)

limiter, a gas blanketfzgr a divertor. Thirdly, if there is an energy

or density source necessary to maintain equilibrium, the source profile will

effect the plasma equilibrium.

In Section Ila, we will discuss the numerical model used to obtain the

equilibrium profiles and in Section IIb, a global energy balance model used for

comparative calculations is described. The effect that spatial pfofiles have

on Lawson and ignition criteria will be discussed in Section III. In Section IV,

we will discuss the results of detailed calculations of the thermal equilibria
~assumed by a reactor size tokamak plasma. We have assumed in these calculations

that diffusion and conduction losses for particles and energy are dominated by the

presence of turbulence due to trapped particle microinstabilities. We

will discuss how the equilibrium is effected by



machine size, boundary conditions and the shape of a particle source profile.

As we will show, the temperature and den§ity profiles may be much more peaked
than observed in present-day tokamaks and this fact will play a favorable role
in evaluating the feasibility of tokamak reactors. We compare results from
space dependent and global models for tokamak plasmas in Section V and summarize
in the last section.

ITI. Numerical Model of Tokamak Plasmas

a. Space Dependent Model

The tokamak discharge is represented by a set of transport equations for
electrons and ions in cylindrical geometry with spatial dependence admitted
in the radial direction. . These equations are time dependent and thermally
stable solutions are found by examining the approach to equilibrium.

Although it is not certain that the equilibrium profiles attained in this
way are unique, the same equilibrium was found in all cases where different
initial conditions or different time steps were used.

The equations to be solved include ion and electron power balance
equations, the diffusion equation for the ion density, Faradays Law, Ampere's

Law, Ohm's Law, and a charge neutrality equation. They may be written as

follows:
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Te,(i) is the electron (ion) temperature (eV),Be is the poloidal magnetic

field (gauss), ne,(i) is the electron (ion) density (cm_3), Vi is the ion

velocity (em/ms), J is the toroidal current density (amp/cmz), E is the toroidal
electric field (volt/cm), r is the radius (cm), t is time (ms), Xe,(i) is the
electron (ion) thermal diffusivity (cmz/ms), nNC is the neoclassical resistivity
(ohm-cm), D is the diffusion coefficient (cmz/ms), Ubi,(e) is the fraction of

beam energy going to ions (electrons), Uai,(e) is the fraction of alpha energy

going to ions (electrons), and f is the fraction of deuterons(tritons) in the neutral

beam which undergo fusion as they slow down in the target plasma.



g’ PL, and PR represent bremsstrahlung, synchrotron, line and recombination

radiation, respectively (watts), P « is the energy loss due to charge exchange

(watts), and S is the source of cold plasma (cm—3ms—l) due to a cold plasma

¢

source or neutral particle reflux.

5
The neoclassical resistivity nNL is given by( )
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R is the toroidal major radius (cm) and %nA is the coulomb logarithm, fT is
the correction to the resistivity due to particle trapping, and v* is the ratio

of collision frequency to bounce frequency. The differential equations for the
plasma behavior are solved using a Crank-Nicholson method
in which the differential equations are linearized and transformed into an
implicit set of difference equations.(6)

The transport coefficients (D, Xe’ Xi) are treated implicitly and are
assumed to vary in functional form as the plasma changes in collisionality,
The high collisionality regime that is used reflects pseudoclassical scaling( )
and, as the plasma heats, the transport is assumed to be caused by turbulence,
passing successively into regimes dominated by the presence of the trapped

(8) (9)

electron mode,. trapped ion mode and the collisionless trapped particle

(10)

interchange mode. Transport cocfficients based on estimates of the linear

\ 1
growth rates for these modes has been summarized by Dean et al. a1 In the



trapped electron regime, the relationship between Xi and Xe is not known.
Rather than optimistically assuming Xi remains neoclassical in this regime,
we have taken Xi = g Xe where € is the local aspect ratio.

Throughout the calculations, we have fixed the -current profile as
parabolic and ignored magnetic field diffusion. This was permissable because
the ohmic heating term which is dependent on the local current density is
insignificant at the high temperatures attained in ignited tokamaks, and
therefore the thermal equilibrium is not effected by the ohmic heating profile.
Furthermore, the trapped ion mode turbulent transport is the dominant energy
loss mechanism in the outer part of the plasma and this mode is independent
of the poloidal magnetic field.

Although the code is capable of studying magnetic field diffusion, the
time scale for current penetration is very long and furthermore, for high
betaplasmas, equations 5 through 7 do not properly describe this process
since they do not include apoloidal dependance.A proper calculation of the
current profile would involve solution of the MHD equilibrium problem, as
described in references 12 and 13 . By ignoring current diffusion, we are

able to significantly reduce the required computer time.
Heating of the plasma by 3.5 MeV alpha particles produced from
D-T fusion reactions have been included with the assumption
that the energy is deposited in the plasma instantaneously and at the place
of birth of the particles. The profile of alphas within the plasﬁa is obtained
by a solution of a diffusion equation which uses the same transport

coefficients as for theions.



The thermal equilibration term and the D-T fusion terms in the energy
balance equations are evaluated assuming that these processes are classical.
It is conceivable that in a turbulent plasma they may be enhanced. However,

this would not be expected to significantly effect the equilibrium. A more

detailed description of the computer code is given in reference 14.

b. Space Independent, Global Energy Balance Model

A much simpler tokamak program can sometimes be utilized in which the space
dependence is eliminated from equations (1) and (2) and the resulting equations
are solved using Newton's method. The radial dependence is eliminated in the
following manner:

1. TFor the conduction terms:

2 3 9T _ aT
EECRR (102)

- A
with T, = a2/4x(n,T)

2. For the convection terms:
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19 nT
- ;-3;-(ran) +'?; (10b)

2 S
with T, = a /4D(n,T)

3. The equilibration, radiation, fusion and ohmic heating terms are

evaluated assuming parabolic profiles for the density and temperature:

n(r) = 2n (1 - r?/a%)? (10¢)

T(r)

i

2T (1 - r2/a)? (10d)

Equations of this type have been described in our earlier work.(15’16)



IIT. Lawson and Ignition Criteria

.

The basic condition required of a plasma to approximately achieve break-even

(1D

is typically given by the Lawson criteria. A plasma at a local temperature
T(r) composed of electrons at density n(r) and deuterons and tritions at

density n(r)/2, respectively, has an average thermal energy of approximately
35?;7Ef?;7 if all species have the same temperature. Here, k is the

Boltzmann constant and the bar indicates a volumetric average. Such a plasma
will radiate via many processes but for the purpose here, let us assume that
bremsstrahlung radiation is the main loss mechanism. Let us assume further that

the thermal energy, 3nkT, is contained for a characteristic time of T Then

B

3nekT . . .
one must balance PB + —%ﬁ~— against the energy generated in the plasma to maintain
E

energy equilibrium.

Fusion reactions take place at the rate n(r)2<ov(T(r))> and an amount of

energy E is released per fusion reaction. Assuming that this power plus

fus

bremsstrahlung and plasma thermal energy is available for conversion to

electricity at an overall efficiency, 1, the Lawson criteria arises from
the following energy balance:

3nkT
'E

Z<gv> =
+p = n{n av> 3nkT

B 4 fus B T } (1)



For the case of a cylindrical plasma of radius a, the barred quantities are

defined by

¢

1
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we see that ETE is a function only of the mean temperature and the functional
form of the radial dependence of temperature and density. A plot of ETE
versus T is shown in Fig. 1. The parameter § characterizes the sharpness

of the radial profiles and 6 = 0 corresponds to uniform conditions as

assumed in formulating the Lawson criteria. Notice that whereas the minimum

of ETE in the usual Lawson curve (when & = 0) occurs at about 5 x 1013cm_3—s with
T of about 25 keV, for more peaked profiles (§ > 1) ETE is reduced by a

factor of 2 to 5 and the BTE value of 5 x lO13 will occur below 10 keV

mean temperature.



The ignition condition requires the alpha energy generated within the

plasma to balance the total plasma energy losses. This condition may be written

¢

as

Snkl , p o nZ<ov> E /4 (14)
Tg x a

Ea is the energy of the alpha particle produced by each fusion event (3.5 MeV).

The ETE for ignition satisfies the criterion

— A
~ . 3nkT _371¢Z (15)
- A
E o 2w Ea/4 + Cn4Tl/2 f4<gv> Eu/4 + CTl/2f572

This again is a function of mean temperature and the peaking factor §,
and is shown in Fig. 2. Notice that, as with the Lawson criteria, ETE is reduced
by a factor of 2 to 5, thé minimum ETE for ignition moves down from 1.5 x 1014
in the flat profile (8 = 0) case to below 6 x 1013, and an ETE value below
1.5 % lO14 can be found in the 6 to 10 keV temperature range for § > 2.

In a tokamak experiment, the poloidal beta (BG) may be limited by MHD

stability conditions to less than the plasma aspect ratio. The parameter

Be may be written as

— 2~
-10 a S

I I

£Z

NI

By = 4 x 10 . (16)

with I, the toroidal plasma current, expressed in Amperes.

The power density generated by fusion reactions can then be expressed in terms

of 86 as

_ n2<ov> 18 14 B% £2<gv>

4 fus a4$2 (EZ)Z

17)



The power density is a function only of the mean temperature and the peaking
factor, and is shown on Fig. 3. Notice that the power density may be a
factor of 2 to 5 higher in the more peaked cases compared with the

8 = 0 case. Furthermore, the maxima occur at somewhat lower temperatures for
the more peaked profiles. These calculations all serve to indicate that when

profiles are more peaked, the constraints on ignition and power density are

considerably relaxed.

IV. Thermal Equilibria in Tokamaks

As we have seen in the previous section, peaked density and temperature
profiles have a marked effect on the behavior of large fusion plasmas. We have
used the space-time transport code described in Section II to determine the
equilibrium profiles one may expect in large tokamaks. We have also
considered the physical processes which may be expected to play an important
role in determining these profiles.

In the calculations presented here it is assumed that the plasma scaling
is dominated by the presence of trapped particle driven turbulence. The
thermal equilibria are therefore basically a balance of the alpha power
generated in the plasma and the conduction and convection losses. These losses
are largely determined by the value of the diffusion coefficient and the
thermal diffusivity at the plasma edge. The assumption of the presence of
trapped particle dominated turbulence is considered to be a worst case assumption
in that the turbulent transport coefficients are much larger than the
equivalent neoclassical or pseudoclassical coefficients. The use of these
coefficients do, however, lead to thermal equilibrium near the peak of the

power density curves, whereas when transport is classical (or pseudoclassical)



a tokamak will ignite and heat to very high temperatures until synchrotron
radiation balances alpha power§l7%he beta limit on such systems then requires
a very low plasma density and therefore é low fusion power density. 1In all
of the calculations to be presented, we have used an aspect ratio of 3, a
toroidal magnetic field of 40 kG (on axis), and a safety factor q at the
plasma edge of 2.5.

In the first set of calculations, we have tried to model a divertor by
the following boundary conditions. We define characteristic lengths for ion

temperatures, electron temperature and density respectively at the plasma

edge as
Ti
Li = _V—'E— (183.)
i|r=a
Te
Le = TT (18b)
e |[r =a
L = % (18¢)
r = a

At the plasma-divertor boundary, the density equation is approximately given

2
by D(a) E—% = %L- where TD is the time an ion spends in the divertor zone
or D 2
before being collected. Setting E—% X n/LD2 gives LD b VTDD(a) . Estimates indicate
or

this length will be between 5 and 50 cm, depending on the diffusion coefficient and
the time spend by the ion in the divertor zonme, that is, whether a fraction of the ion:
which step into the divertor region mirrorduring a collision time, or whether loss
cone instabilities develop and quickly deflect them into the loss conefls}

»In our calculations, we have conservatively chosen Ln to be 50 cm. The

electron temperature is expected to have a similar characteristic length as the



density, since sheaths are expected té develop at the divertor collector

plates which will serve to repel all but the most energetic electrons and
therefore drop the electron temperature in the divertor zone.(lS) We have
therefore also taken Le = 50 cm. For the ions, there does not appear to be

any mechanism associated with the divertor which degrades their energy

so we have taken Li = 1000 cm. It will be seen, however, that rethermalization
serves to keep the ion temperature close to the electron temperature.

These boundary conditions turn out to be equivalent to assuming low values for
the temperature and density at the plasma edge and lead to peaked profiles. If
smaller values of Le and Ln has been used, the edge density and temperature would have
been lower and the resulting profiles would have been even more peaked.

Figure 4 shows the eﬁuilibrium density and temperature profiles for a
plasma with a minor radius of 5 m. Notice that they are quite peaked which
in turn will cause the fusion power density to be even more sharply peaked
(Figure 5), with 90% of the total power being generated within 15% of the
plasma volume. Table la summarizes the main parameters for three 5 m
minor radius tokamak cases (numbered a, b, and ¢) and for two 4 m tokamaks
(d and e). The peak temperature is typically a factor of 5 or 6 above the
edge value, and the peak density is typically a factor of 50 above the edge
value. The concave behavior exhibited by these profiles is in large part a
result of the diffusion coefficients, which increase rapidly in moving
toward the plasma edge, as seen in Fig. 6. The minimum which occurs at about
r/a = 0.1 represents the region beyond which trapped particle modes become the
dominant transport mechanism. Below a mean density of 5 x lO]'ch_3 in the 5 m

.case and 7 x 1013cm—.3 in the 4 m case, ignition cannot be attained.

Figure 7 indicates the total poloidal beta (due to electrons, ions and

alphas) found for the equilibrium solutions as a function of the mean temperature.



It is known that as the poloidal beta approaches the aspect ratio (assumed
to be 3) it will become difficult to find MHD stable solutions. Therefore,
if the very stringent scaling laws that Qe have chosen are applicable, there
will probably not exist a stable MHD equilibrium for a 4 m minor radius
reactor, whereas a 5 m plasma does possess stable solutions with mean temperatures
of 6 to 7 keV and densities of 4 to 5 x 1013cm_3.

The very high plasma loss rates caused by adverse scaling laws and a
sharp density fall off at the divertor boundary will lead to very short
particle and energy containment times in these systems. As Table 1b indicates,
the particle containment time is typically less than a second. However, the
time required for a particle to move from the centerline to the plasma edge
is 10 to 15 seconds. Since the slowing down time of 3.5 MeV alphas is the
order of 1 second and since most of the alphas are generated in the central
region of the plasma, it is still reasonable to assume that the alpha particles
deposit their energy near the flux surface on which they were produced.

We have considered the effect that maintaining the plasma edge density
at a higher level would have on reactor operation. This might be the case for

(2)

example with the gas blanket concept. As is seen in Fig. 8, as the edge
. . 12 -3 13 -3

density rises from 5 x 107 "em ~ to 4 x 10" cm ~, the plasma loss rate (and

therefore the fueling rate) decreases by a factor of 10. Details of these

calculations are shown in Table 2. If the plasma edge density is kept high

enought to invert the density profile, trapped particle modes and drift wave

like modes may disappear resulting in much reduced energy transport and the system

will then heat up to the synchrotron radiation equilibrium level.



In these calculations, we have assumed that the rapid loss of ions is
balanced by some fueling mechanism, such as injecting pellets,(19> which
serves as a source of cold plasma. We have looked at the effect that varying
the source profile will have on the equilibrium that the plasma will attain.
It is seen that the power produced and the plasma beta are not strongly
dependent on the injection profile. Figure 8 shows three source profiles
ranging from a parabolic to a flat profile. As the fueling profile becomes
more peaked, it is seen that the plasma density will also peak up and will
thereby cause enhanced particle and eﬁergy loss. The enhanced particle loss
rate requires an increased fueling rate, and the energy necessary to heat the
fuel up to the local temperature causes both the peak and the mean temperature
to drop. This lowers BG and the power output. When the plasma source
is peaked towards the edge as seen in Figure 9, a similar effect is noted.
The density profile in the central region of the plasma flattens (but does
not invert). This causes a lower energy outflux which in turn causes the
central region to heat and the mean beta and power density to increase.

V. Comparison of Space Dependent and Space Independent Calculational Models

Global balance tokamak models, similar to the one described in Section II-B,

have been used in many tokamak design studies.(ls’l6’20)

We are therefore
interested in examining the validity of these simplified models. In fact, we
find that the global balance code gives results that are in many important ways
quite different from the space dependent calculations, a not too surprising
result. It was noted in Section II~B, the global balance model assumed parabolic
temperature profiles. This is not consistent with the results of the space

dependent calculations just described. Furthermore, the transport coefficients

in the simple model are evaluated at the mean temperatures and mean density



whereas these transport coefficients should properly be evaluated at the plasma
edge to determine particle and heat flow out of the plasma.

For example, it was found using the’space dependent calculations that the
minimum mean density for ignition of a 4m minor radius tokamak was 7 x lO13
and for a 5m minor radius machine, it was 4 x 1013 cm—3. In contrast, the
minimum density for ignition given by the global balance code for the 4 and

-3 and 2 x 1013cm—3, respectively. This discrepancy

Sm tokamaks were 3 x lOl3cm
is largely due to the fact that the transport coefficients for the global balance
model are evaluated at the mean density instead of the edge density. Near the
edge, the collisionality is such that the transport is dominated by trapped
particle driven turbulence for which D, ~ X ~ T7/2Vn2/n3.

Table 3 contains a éomparison of plasma parameters derived from a global
energy model and a space dependent program for a tokamak with a minor radius
of 5m, an aspect ratio = 3, a toroidal field of 40 kG, a safety factor at the
plasma edge of 2.5, and mean density of 4 x 1014cm_3. In each case, thermally
stable equilibria are found but in the global model, the mean temperature, the
beta value and the plasma energy content are a factor of 2 to 2.5 times higher.
Furthermore, although the energy containment time in the global model is 20%
below the value predicted by the space dependent model, the particle containment
time is nearly a factor of 5 larger. These factors cause the fractional burnup
predicted by the spacial model to be a factor of 10 smaller than in the global calcu-
lations, which means that the amount of tritium tied up in the refueling cycle of
a tokamak may be much larger than heretofore suspected. Clearly, this can have an
important effect on the design of tritium handling systems for near term as well
as full scale power systems.

In sum, the results here shows that space dependent tokamak transport

calculations may give very different, and perhaps more pessimistic, results than



a simplified global energy balance mode. In particular, the particle
containment time and fractional burnup can be much shorter than expected and

the conditions required for ingition can be more stringent.

VI. Conclusions

The spacial profiles that plasmas assume are quite important in evaluating
the performance of these systems as reactors. The relatively peaked density
and temperatures that are seen in many present day experiments would
significantly lower the Lawson and ignition criteria and increase the mean
fusion power density for ingited plasmas.

The equilibria assumed in large tokamaks have been examined for several
cases. These equilibria are seen to depend sensitively on the scaling laws
chosen the physical size‘of the device and the conditions at the the plasma
edge, and to be somewhat dependent on the fueling profile. When the dominant
transport process in a tokamak is trapped particle driven turbulence, thermally
stable equilibria are seen to exist within a fairly narrow range of Be at
mean temperatures close to the peak of the beta limited power density curves.
With these scaling laws, a divertor is found to impose on the plasma a very
peaked density profile. This will cause a rapid loss of particles and energy
from the system which in turn would greatly enhance the problem of fueling and of
collecting the high flux of energy which would appear at the divertor collector
plates. Furthermore, the small particle containment time (less than 1 second)
results in a very low fractional burnup in the system and this will greatly
enhance the tritium recycle rate, the tritium inventory and therefore the tritium
handling problems of reactor systems.

If the divertor could be eliminated and the plasma edge density maintained
at a sufficiently high level, the plasma energy and particle loss rates could
be reduced but this would lead to other difficulties such as providing sufficient
pumping of the vacuum chamber, preventing the plasma from contacting the wall,
and preventing impurity influx which would surely come about from bombardment

by charge exchanged neutrals. If an encrgy source were necessary to drive the



reactor, the equilibria would be expected to be sensitive to the shape of

the energy source.

.

Finally, the sapce dependent plasma calculations have been compared with
predictions of a much simpler energy balance model and it is found that the
space dependent analysis gives much more pessimistic results with respect

to particle containment time, fractional burnup, and ignition conditions.

Acknowledgement

Research supported by the Electric Power Research Institute under EPRI

contract 741220.



10.

11.

12.

13.

14,

15.

16.

17.

References
J. D. Lawson, Proc. Phys. Soc. 70 (1257) 6.
B. Lehnert, Nuc. Fus. 8, (1968) 173.
C. R. Burnett et al., Phys. Fluids 1, (1958), 438.

B. Badger et al., "UWMAK-I, A Wisconsin Toroidal Fusion Reactor Design,"
UWFDM-68, Nuclear Engineering Dept., Univ. of Wisconsin (1973).

R. Hazeltine, F. Hinton, M. Rosenbluth, Phys. Fluids, 16 (1973) 1645.

M. M. Widner, R. A. Dory, Bull. Am. Phys. Soc. 11 (1970) 1418. See also,
Oak Ridge Nat'l. Lab Report ORNL-TM-3498 (1971).

L. Artsimovich, J.E.T.P. Letts. 13 (1971) 70.

B. B. Kadomtsev, O. P. Pogutse, Nuc. Fus. 11 (1971) 67.

B. B. Kadomtsev, 0. P, Pogutse, Sov. Phys. Dokl. 14 (1969) 470.

J. D. Callen, B. Coppi, R. Dagazian, R. Gajewski, D. J. Sigmar, in

Plasma Physics and Controlled Nuclear Fusion, (Proc. Madison Conf.,
June 1971) (IAEA, Vienna, 1972)Vol. II, 451.

S. 0. Dean et al. "Status and Objectives of Tokamak Systems for Fusion
Research," U. S. Atomic Energy Commission, WASH-1295 (1974).

J. D. Callen and R. A. Dory, Phy. Fluids 15, (1972) 1523.

M. S. Chance et al., "Study of Magnetohydrodynamic Modes in Tokamak Con—
figurations with Noncircular Cross Sections," in Plasma Physics and Controlled
Nuclear Fusion 1974 (Proc. 5th Int. Conf. Tokyo, 1974) 1, IAEA Vienna (1974)
463,

R. W. Conn, M. Khelladi, J. Kesner, UWFDM-136, Univ. of Wisconsin, Madison
(1975). Submitted to Nucl. Fusion.

B. Badger et al., "UWMAK-I, A Wisconsin Toroidal Fusion Reactor Design,"
Nucl. Eng. Dept. Report UWFDM-68 (Univ. of Wisconsin, Nov. 1973) Chapter II.
See also, B. Badger et al., "UWMAK-TII, A Conceptual D-T Fueled Helium Cooled

Tokamak Power Reactor Design," Nucl. Eng. Dept. Report UWFDM-112 (Univ. of
Wisconsin, Nov. 1975), Chapter II.

R. W. Conn, J. Kesner, Nuclear Fusion 15, 775 (1975).

M. Ohta, H. Yamato, S. Mori, "Thermal Instability and Control of Fusion
Reactor," in Plasma Physics and Controlled Nuclear Fusion Research (Proc.
4th Int. Conf Madison, 1971) 3, IAFA Vienna (1971) 423.



18. A. T. Mense, G. A, Emmert, J. D. Callen, Nucl. Fusion 15, (1975) 703.

19. S. L. Gralnick, Nucl. Fusion 13 (1973) 703.

20. W. M. Stacey, Jr., Nuclear Fusion 15 (1975) 63.



.1.

Table 1A
a T, T T , n n . n
i max min min max
{m) (keV) (keV) (keV) jcm_3) (cm_3) (cm—3)
a 5 8.5 14.6 2.9 4 x 1013 3.7 x 1012 1.7 x 1014
b 5 10.9 20.3 3.7 5 x 1013 4.7 x 1012 2.2 x lOl4
c 5 13.1 26.0 4.2 6 x 1013 5.5 x 1012 2.75 x 1014
d 4 8.8 15.1 3.5 7 x 1003 1.03 x 10%3 2.5 x 10°
e 4 10.5 19.0 4.0 8 x 1013 1.2 x 1013 3.0 x 1014
Table 1B T
a P r /a T T Fractional Fueling Rate
a P E p
(m) (Mw) * (sec) (sec) Burnup (sec )
a 5 390 40 3.7 1.25 .607 2.3 x 1023
b 5 1090 .40 2.4 .69 747 5.2 x 1023
c 5 2190 40 1.7 48 .847 9.3 x lO23
23
d 4 576 .43 2.4 .91 L7117 2.9 x 10
e 4 1130 45 1.8 .59 .817% 5.0 x 1023

* rp = radius within which 90% of fusion power is generated

1 Aspect ratio is 3, q(a) is 2.5, and BT = 40 kG in all cases.



In all these calculations, a = 5m, n = 5 x lOl

L

e

T. T .

1 min
(keV) (keV)
11.1 2.3
13.4 3.3
25.4 6.9

L,
i

= 50 cm.

Table 2 )

T n

max ma}_(3
(keV) (cm °)
20.9 2.1 x 1014
29.9 1.2 x 1014
58.3 7.15 x lOl

3

3

(cm

5 x 10

A

nmin
=3

12

l013

lO13

3, BT

P T T
a E p
(MW) (sec) (sec)
1080 2.4 .73
877 3.5 2.0
1390 3.9 8.0

= 40 kG, q(a) = 2.5,



Table 3

Tokamak minor radius (m)

Aspect Ratio

Toroidal field on axis (kG)

Safety factor at plasma edge, q(a)
Mean ion density (cm_3)

Mean electron density (cm_3)

Mean alpha density (cm_a)
Mean electron temperature
Mean ion temperature
Electron poloidal beta, R
Total poloidal beta, B

Be

6
Total toroidal beta, B¢

Energy content of plasma (GJ)

Particle containment time (sec)

Energy containment time (sec)

n Tg

Fractional burnup

Total thermal power (17.6 MeV/fusion), (GW)

Average power density in plasma (W/cm3)

- , . -1
Tritium (deuterium) consumption rate (sec )

Particle leakage rate (DH+T+a) (sec'l)

Space-Time
5
3
40
2.5
4 x 1013
4.1 x 1013

3.5 x 10%t

.51

.021

Global Balance

5

3

40
2.5
4.0 x 10
4.2 x 10
1.1 x 10
20.2
16.5

.044

.037
1.5 x 10

5.24 x 1022



Figure Captions

Fig. 1 - Lawson criteria for theenergy containment time necessary to ''break-even"
for a driven reactor, calculated for various density and temperature profiles.
The peakedness of these profiles is characterized by the factor 8.

Fig. 2 - The ignition-criteria for the energy containment time necessary to
"ignite" a plasma, calculated for various density and temperature profiles.

Fig. 3 - The mean fusion power density as a function of mean temperature for
a tokamak-like plasma where a beta limit is imposed. The density and
temperature profiles are allowed to vary and their shape is characterized

by the parameter §.

Fig. 4 - Temperature and density profilei3attained in a 5 m minor radius

tokamak. Below a mean density of 4 x 10 “em™3 no thermally stable ignited
equilibria are found.

Fig. 5 - Ton, electron and alpha density profiles for an ignited, thermally
stable, 5 m minor radius tokamak.

Fig. 6 - Profile of diffusion coefficient for three cases of a stable 5 m minor
radius tokamak.

Fig. 7 - The total poloidal beta vs. mean ion temperature for a 4 and 5 m

minor radius tokamak. The dashed portion of the curve represents the region

in which MHD equilibrium would not be expected to exist. Below the ignition
cutoff, no ignited solutions are found.

Fig. 8 - (a) Equilibrium density profiles for a mean density of 5 x lO13 and

an edge density of 5 x 1012, 2 x 1013 and 4 x 1013 respectively. (b) Convective
loss rate for deutrons and tritons at the plasma edge as a function of the
plasma edge density.

Fig. 9 - Mean poloidal beta as a function of the edge to axis source density.
The source shape varies from being parabolic to being spacially independent.

Fig. 10 - Variation of the mean poloidal beta for sources that are peaked
near to the plasma edge.
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