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Summary

Stability and temperature maxima are
determined for exposed, unccoled lengths of
cryogenically stable composite superconductor-
copper magnet turns. This problem corresponds
for example, to the accidental depression of
the liquid helium level in a TF, OH or VH
fusion reactor magnet which is cooled by pool
boiling, so that the upper turns are above
the liquid helium level and cooled only by
helium vapor. It is shown that a temperature
excursion results in the following final
states as a function of the exposed length %&:
(1) for &< 92 » where l is a critical

length, a stable solution with a high maximum
temperature, TM’ can exist via end cooling,

(2) for 2> .9£c
exist and TM + » and (3) complete recovery
takes place if TM < Ta' The saturation
current TB is defined here as the temperature

unstable conditions would

below which the superconductor can carry the
total transport current. End cooling and
current sharing are the two basic physical
phenomena considered.

Introduction

Pool cooling with liquid helium is
usually suggested for cooling superconducting
Tokamak fusion reactor magnets. To be an
effective method the liquid helium must
maintain good thermal contact with the con=-
ductor. For various reasons a length of
conductor may lose contact with liguid
helium. We have examined the effect this
will have on the stability of the magnet. 1
The analysis that follows is for the UWMAK-II
design, but most of the results are appli-
cable to other cryogenically stable magnets.

A length of conductor may lose contact
with liquid helium bath under a variety of
conditions. For instance the helium level
may drop exposing some of the winding as
illustrated in Fig. l(a), or a vapor lock may
occur in one of the cooling channels. A
pressure increase due to the flow of helium
Gas can possibly depress the helium level in
a poloidal field coil as illustrated in
Fig. 1(b). This last phenomenon is discussed

in more detail elsewhere.z’3
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Fig. 1(b). Top of a poloidal field coil.

When a length of conductor loses contact
with liguid helium the total current can
still be carried in the superconductor at
bath temperature. This is true as long as
heat losses to the conductor are negligible.
In the following sections we study the other
possible steady states of the conductor. Our
major concern is to examine the stability of
these states.

Definition of the Problem

A schematic diagram of an exposed length
of the conductor, £, is shown in Fig. 2. The
rest of the conductor is submerged in liquid
helium.
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Fig. 2. Schematic drawing of the exposed
part of the conductor.
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The conductor is a composite consisting
of many fine superconducting filaments em-
bedded in copper. The cross sectional dimen-
sions of the composite are assumed to be
small compared to the exposed length so that
the temperature gradient across the cross
section can be neglected. This assumption
reduces the problem to one dimension.

The one-dimensional steady state heat
diffusion in the conductor is governed by the
following equations:

dQ Iozp I

- vl (f;) - gs (1)
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Q.-mgﬂ_‘ (2)



where
Q = ratec of heat transfer by conduction
acress A in watts

dis:ance measured along the length
of ‘:he conductor, measured from the
center in cm

I0 = total current carried by conductor
in amperes

p = electrical resistivity of copper
stabilizer in £ cm

I = current carried by copper stabi-
lizer in amperes

A = cross sectional area of copper
stabilizer in cm

q = surface heat flux in W/cm2

S = lateral surface_area cooled per
unit length, cm“/cm

k = thermal conductivity of copper
in W/cm K

T = temperature of conductor at posi-

tion x in °K.

The first term on the right side of Eq. (1)
is the rate of ohmic heating per unit length.
This term includes the ohmic heating due to
the resistance of the copper and the supercon-
ductor. The second term is the rate of
surface cooling per unit length.

The heat diffusion equation is solved
for two cases., Case I is the non-physical
example for a fixed end temperature TE = 4.2 K

while Case II is the real case obtained by
matching heat transferred from the submerged
conductor to the liquid coolant with the
incoming heat from the exposed length after
accounting for local power generated in the
matrix and resistive superconductor fila-
ments. Case I is included because it leads
to an analytical solution. Case II is a good
representation of the real situation, but
requires a numerical solution,

The current in the copper as a function
of temperature is plotted in Fig. 3 for both
cases. We assume that the exposed length of
the conductor is in a low magnetic field. 1In
the real situation, Case II, all the current
is carried by the superconductor for tempera-
tures below a certain limiting value which is
defined as the saturation temperature, Ts'
Above the saturation temperature, but below
the critical temperature, the superconductor
is unable to carry all the current because of
its elevated temperature. For Case II we
assume that the amount of superconductor is
chosen; as in the UWMAK-1I design, so that
the superconductor saturates at 5.2 K. The
critical temperature chosen, 9 K, is that of
NbTi in a low magnetic field.

In general I,, A, S, p and k are speci-

fied. For cryogenically stable conductors the
following equation is satisfied:

(3)
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Fig. 3. Current carried in copper stabi-
lizer vs. temperature of conductor.

The design value of heat flux, 9y is taken

as 0.4 w/cmz, the same value used in the
UWMAK-II design. Furthermore, OFHC copper of

" resistivity p_ = 1078 The

thermal conductivity is determined from the
Wiedmann-Franz law:

icn is used.

where L is the Lorenz number.

(4)

Solution for Case I

This case is described by the following
asgumptions:

1. The end temperature of the exposed
:e;gth, Tgr is held fixed and equal to
.2 K.

2, Surface cooling, gS, in the exposed
region is taken as zero,

3. The supercurrent is taken as Isc = Io
< =
for T Te and Isc 0 for T > Tor

Fig. 3{(a). There is no current sharing.
The temperature Tc = 7K is used for

see

numerical examples.

Let the origin of the x-coordinate be
located at the center of the exposed conduc-
tor. Using Eq. (4) and eliminating the vari-
able x from Eqa. (1) and (2) the following
equation for x| < /2 is obtained,

dgQ 2

: @ =1.% dor ()
o

At the center of the exposed length Q is zero
and the temperature is maximum. Hence, by
integrating Eq. (5) we obtain



2 2 .2
I° L(TM -7%),

2 2 2
Io L(TM -Tc

), T2
where TM is the maximum temperature. Note
that Q is zero for TM< Tc' The rate of heat

transfer at the end of the exposed conductor,
QEND' is a relevant quantity to be determined

and is given by

_ , 2 2
Qunp = I VI (TM =T ) (7)

If we substitute Eg. (6) into Eq. (2) and
integrate assuming k is constant we obtain

a7 T _-T
L. ka [cosl(TE) + ———S——E——] . (8)
1./L M b 2.p 2
M c

Equations (7) and (8) enable us to find QeNp

as a function of the exposed length % by
treating Ty 48 an independent variable. The

results are plotted in Fig. 4 using the
followings

Q
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where, for copper at B = 0 tesla,

8
o 1070 cm

pk/Ty = 2.4 x 1078 wa/x?

t
[ ]

kK = 10 W/cmK (constant)

T = 4.2 K, bath temperature

4

Q = IOTB/E = 6.5 x 107" I_, watts (11)

(12)

The constant lc is of particular importance

since no stable steady state solution exists
for an exposed length % greater than or equal
to lc. For this reason £, is called the

“eritical length."”
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Fig. 4. Stability plot of conduction
heat flux vs. exposed length for TE=4.2K.

In general there are three kinds of
steady state solutions to Eq. (1}.

1. If the conductor were to completely
recover after a transient heat load, we
. wou ave the trivial solution T=4.2 K
everywhere.

2. The conductor may not recover but
instead achieve a stable temperature
profile with a maximum temperature
greater than 4.2 K. This second steady
state solution would correspond to a
situation where there is sufficient
additional end cooling available to
return the conductor to its steady state
whenever it is perturbed by a small heat
load.

3. If an unstable steady state temperature
profile were obtained, this would cor-
respond to a situation where no addi-
tional end cooling is available.

For Tc = 7 K each of the three kinds of

steady state solutions are possible. For an

exposed length less than about .7 lc complete .

recovery to 4.2 K occurs. Between .7 lc and
% a stable and an unstable steady state
solution exist. For &> Ec there are unstable

Note that for T, =T =T

solutions only. B E c

= 4,2 K we obtain

L
Opnp = 9 tan(z M2



and
T
T -___.__E.:.KSR___.

MAX cas (% z/zc)

These two formulas indicate how the end

cooling and the maximum temperature of the

conductor vary with the exposed length. Both
and T approach infinity as £

QEND MAX

approaches Rc. In the UWMAK-II design the
conductor current density IO/A is approxi-
mately 5 x 103 Amp/cm2 for the toroidal field

coils and 2 x 103 Amp/cm2 for the poloidal
field coils. These values yield 40 ¢m and
100 cm respectively for the critical lengths,

Solution for Case II

From Egs. (1), (2), (3) and (4) we

obtain
-Q g_% =1 ZLT [(I__) - _09 (g—)] (13)
o ) 7% g

where 9, = 0.4 w/cmz. Equation (13) is valid

for the submerged conductor as well as the
exposed part. For the submerged part of the
conductor g is determined by the heat trans-~
fer characteristics of liguid helium. For the
exposed part of the conductor q is determined
by the heat transfer characteristics of
helium vapor.

Figure 5 indicates the empirical corre~
lations which are assumed for pool boiling

and free-convection vapor cooling. 4,5 These
correlations are for vertical metal surfaces
and helium at one atmosphere pressure. Two
possible values of the heat transfer flux in
the film boiling region, 4, are considered
ag shown in Fig. 5.

1072 4
1072 107
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Fig. 5. Heat transfer flux vs. temperature
difference between metal surface and 4.2 K
helium. Legend: —- pool boiling and

--~ free-convection vapor cooling.

Equation (13) was solved with p = Po for

each of the two regions separately and the steady

state solutions obtained by requiring that Q

be continuous across the boundary between the _

two regions. The heat transfer rate by
conduction out the end of the exposed length
is determined by solving Eq. (13) for the
submerged conductor. The submerged conductor
is assumed to be infinitely long. Thus, the
total cooling capacity provided by the sub-
merged conductor, for one end of the exposed
length, is found by integrating d4Q/dT from

T = 4.2 K, the temperature at an infinite

distance from the exposed length, to T = TEND’

the temperature at the end of the exposed
length. The results of this integration are
shown in Fig. 6. The two curves correspond
to different assumed values for the heat
transfer flux in the film boiling region.
Each curve rises to maximum value and falls
to zero as the temperature at the end of the
exposed conductor increases. This is due to
the fact that the normal zone of the super-
conductor moves into the submerged part of
the conductor as the end temperature in-
creases, Thus, ohmic heating occurring in
the submerged part of the conductor increases
until Qenp = 0. This mechanism limits the

amount of end cooling that can be provided by
the liquid helium.
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Fig. 6. Heat removed at each end of the
exposed length vs. exposed length as limited
by the boiling characteristics of helium.

The normalized heat removed at the end
of the exposed length is plotted as a func-
tion of the normalized length for Case II in
Fig. 7. The heat removed at the end is
maximum if 2= .92c. If the length of the

exposed part is longer than .920 then the

steady state solution is unstable. A thermal
disturbance for lengths > .92c leads to

higher heat generation which results in a

temperature TM that will continue to rise,

and eventually exceed the maximum heat
removal capability at the ends. As expected
the maximum heat removal at the end occurs at



g < Rc. In Fig. 7, we also show the normal-
ized heat removal at the end for Case I as a
function of the normalized length, for

TC = 4,2, fixed end temperature TE = 4,2 K

and zero surface cooling. In this Case I
example it can be seen that the temperature
goes to infinity at z/zc => 1, This may be

explained physically as follows: the heat
generated in the exposed length requires a
certain temperature difference in order to
transfer heat at the end. Beyond a critical
exposed length the total heat generated
cannot be transferred which results in a
temperature rise to infinity.
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Fig. 7. End heat removal vs. temperature

at the end of the exposed length.
Conclusion

For an exposed cryogenically stable
conductor ‘of length & the following can be
concluded: (1) If a transient heat load is
sufficiently small and diffuse so as not to
raise the maximum temperature of the super-
conductor above its saturation temperature,
TS, the highest temperature below which the

superconductor can carry all the current,

then the temperature of the conductor will
return to the ambient temperature of the
helium. (2) We predict that a cryogenically
stable conductor will not recover from a
transient heat load occurring in a length of
conductor 2 which has lost contact with the
liquid helium if Ty, exceeds T . (3) Moreover,

if that length is greater than a critical
length lc, the maximum temperature can in-

crease indefinitely.
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