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Summary

The magnetic forces developed in a sec-
tored toroid are slightly different from
those found in a uniformly wound toroid of
comparable dimensions. A simple expression
is derived in closed form for the forces
developed in a toroid with a finite number of
segments. Although this is an approximation,
it is shown to be highly accurate. The use
of this result for the precise computation of
constant tension D magnets is discussed.

Introduction

As fusion research and development has
progressed the need for larger and larger
toroidal magnets has increased concurrently.
The necessity for even greater size and
sophistication in toroidal magnets is a
certainty as power producing Tokamaks are
developed. The magnetic forces must be known
preciscly for such machines to keep the
structural costs at a minimum and correctly
predict the behavior of components such as
constant tension D magnets.

The simplest toroidal magnet is a one
layer thin shell of uniformly wound conduc-
tors. If there are N turns each carrying a
current I, then the magnetic field inside the
coil is

B, = uONI/ZﬂR, (1)

6
where R is the distance from the major axis
to the point where B, is measured. Here we

are using SI units with Mg = 4T x 10_7henrys/

meter. The magnetic field pressure is

1 2 .22, 2.2
P-—ZTO—B“UONI/aTTR. (2)

Multiplying this by 2nR/N one can qget the
force per unit length exerted on the conduc-
tor,

- 2,,.
£, = U NI“/4nR. (3)

Note that the only coordinate required is the
major radius of the point on the conductor
where the force is to be observed. Naturally
the force is outward and normal to the
surface.

It must be emphasized that Ea. (3) only
applies to one layer toroids where the cur-
rent is uniformly distributed over the sur-
face; that is, current density is independent
of 6. 1In practice this uniformity is rarely
obtainable or desirable. Sectored magnets
are required to provide access to internal
reactor components. The best design appears
to be the constant tension-constant cross-
section type of "D" sector_introduced by
File, Mills and sheffield.l 1In this paper we

derive an analytic correction for Eqg. (3} to
account for the sectored ccnstruction of
toroids of general shape.

Others have developed similar correc-
tions for the above force on a conductor.
File and Sheffield? utilized the analytic
expression of B inside a set of straight
vertical conductori placed on concentric
circles. Purcell® calculated the maanetic
field numerically to obtain the force. Both
authors used the force obtained to calculate
the shape of constant tension D magnets.

We believe that our correction for
Eq. (3) is simpler than those previously

~obtained, and we present examples to demon-

strate its accuracy. As will be shown later,
we consider the solencidal curvature of a

magnet in addition to its toroidal curvature.
The corrected expression for f2 will then be

used to compute the shapes of a variety of
constant tension D magnets.

Correction for Toroidal Curvature

Let us consider a set of vertical con-
ductors placed in concentric circles as shown
in Fig. 1. There are N conductors on each
circle, with currents going "up" in the inner
ring and "down" in the outer one. Each con-
ductor has a radius c.

We have chosen to define a "“conductor"
as one section of current carrier; hence,
this example represents a magnet with N
sectors. Each sector could have many current
carriers, but since they are closely packed
it is acceptable to treat them as one conduc-
tor.

Fig. 1. Toroidal cross section as viewed
from above.



[{ the conductors were infinitel% %onq,
,

the field in the 0 = 0 plane would be
1 1 1
B (R) = [1+ + ] (4)
0 kR (R/RI)N—l (R2/R)N-1

where k = 2n/uONI.

We are actually interested in the field
at one conductor due to the 2N-1 others. To
get this one must subtract the self field of
that conductor from the total field given in
Eqg. (4).

Let us designate the field as Bel when

1 8 = 0 is turned off.
Likewise Byy indicates that there is no

the current at R = R

current at R = R2,6 = 0. A simple derivation

gives the self fields, then subtracting those
from B, gives the field at one conductor due
tec all the others

BUl(R) BO(R) - 1/kN(R-R1), (3)

By, (R) = By (R) + 1/KN(R-R,). (6)

Here filamentary conductors are acceptable,

c = 0, since it can be shown that fl is

independent of ¢ in this example.

Both terms on the right hand side of
Eq. (5) are sinqular at Rl; however, the

singularities cancel in the subtraction

making B”l continuous at Rl. A similar can-

2 for B02'

algebraic manipulation one gets the following
results

cellation occurs at R With some

_ 1

!
BOZ(RZ) = E}-(R—z (l + l/N + E). (8)

where « 32/[(R2/R1)N - 1]. In most cases
studied ¢ is very small; hence, we neglect
it.

When conductors 1 and 2 carry currents
I and -I respectively, the force per unit
length on each is given as follows

I

fﬂl = 7E§I (1 - L/N), (9)
1

fR,Z ~ m; (1 + 1/N). (10)

In both cases the force is directed awav from
the main field region. A derivation using
energy principles rather than Eq. (4) gives
the same result.

The forces in Eqs. (9) and (10) arise
because N conductors have been arranged in a
toroidal configuration formed by infinitely

lonqg wires. Let us now speculate on what
happens wher: this is replaced by a more
reasonable shape such as that shown in Fig. 2.
Two significant changes take place: the con-
ductor is no longer vertical at all points
studied, and much of it has a substantial
curvature.
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—
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Fig. 2.
D magnet.

Side view of a constant tension

When the angle ¢ is defined as in Fig. 2
it is natural to rewrite fR as follows

. 1
fl * 3kR (1 + 8 cos ¢). (11)

Indeed it can be shown that fy, = I/2kR for a
set of straight wires fanning out from a
central core, ¢ = 0, thus obtaininag an addi-
tional rational for using cos ¢ above.

Further justification is best given in numeri-
cal examples presented later in the paper.

Equation (11) does not account for force
changes caused by the curvature of the con-
ductor, p. These will be derived in the next
section for a solenoid and then added to
Eq. (1).

Correction for Solenoidal Curvature

Now we consider a set of long straight
conductors at a distance X from a uniform

sheet of current as shown in Fig. 3. The con-
ductors have radius c and separations s. The
sheet current forms the return path.

By careful consideration of flux linkages
one can derive the energy attributed to one
meter of one conductor which is stored in
space to the right of x = 0

u I
[¢] X 1
7 5+ 3

en{0.2044 s/c)] (12)

where x/s >> 1. In the limit of very large
values of x/s the logarithmic term becomes
insignificant and Ea. (12) reduces to the
energy stored between two uniform sheets of
current. Here, however, we are primarily
interested in the correction.
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Fig. 3. Cross section of a set of straight
conductors parallel to a uniform conducting
sheet.

The logarithmic term in Eg. (12) repre-
sents field effects near the circular con-
ductors. Even at x = X -8 the field ripple

is 0.25% of the average field between the
sheet and the "wires." This means it is
possible to deform the straight conductors
above into a solenoid and get accurate expres-
sions for the energy. 1In Fig. 3 imagine that
the current. sheet is replaced with the cen-

tral axis of a solenoid and Xy becomes the

radius p. Now the stored enerqy per conduc-
tor becomes
“012 npz
Ec = - [—g— + pen(0.2044 s/c)l. (13)

The force per unit length of conductor is
then

1 HEC UOIZ s
£, = I T [1 + 5]?’2n(0'2044 s/c) ]
(14)

The central axis of the conductor is the
reference length for this expression of force
per unit length.

Since the field distribution that pro-
duces the correction is local to the conduc-
tor, Eq. (14) should be good for noncircular
solenoids. Here p would be the radius of
curvature at one location rather than for all
of the magnet.

General Force Expression

Separate corrections to the force have
now been derived to account for both toroidal
and solenoidal curvatures. It is very in-
teresting and important to see that both cor-
rections depend on local parameters: radii of
curvature, conductor cross section, and
separation. The overall shape of a magnet
appears to have little effect on the force

when compared to the basic local features
noted above.

We assume that the force corrections in
Egs. (11) and (14) can be added to Eg. (3) to
give a general expression of the force on a
toroid. In this case, one has s = 21R/N
which leads to the result:

2
HoNT R, 1.284R

£u =g (1 + Rlcoso+ 5 on L2848y,

UON12 (19
= ~ITR F(R,p,c,$,N)

Equation (15) is applicable to a wide
variety of toroid shapes. Those most commonly
used are the toroid of circular cross section
and the constant tension D magnet. It is
relatively easy to calculate precise values
of fields and forces for the former, so the
"circular" toroid will be used as a test of
Ea. (15). As an application of Eg. (15) we
will calculate the shapes of a variety of
constant tension magnets.

So far our discussion has only utilized
conductors with a circular cross section of
radius c; however, square conductors are
often desirable. If a round conductor is
replaced by a sauare one of width w, the self
inductance of a new magnet is given with the
following substitution:

c => 0.573 w (16}

This is obtained with a simple numerical com-

putation. For square conductors Eq. (16) may
be entered directly into Fq. (15).
Accuracy Tests

The fields and forces were calculated
numerically for a variety of toroids with
circular coils. The subroutine HRHZ, de-
veloped by Ballou,> was used to obtain the
field at one coil due to all the others. The
self force was obtained from an inductance

formula presented by Smythe
UOIZ
fls = TT—TB (an 8{‘/C - 0.75). (17)

Simultaneously the force was calculated using
Ea. (15). These are represented by numerical
and analytic correction factors, Fnu and F

an
that correspond to F in Ea. (15). The results

for two toroids are given in Table 1.

Table I. Numerical and analytic forces
for circular toroids with N = 8 and 18

N=8, c=8.7cm N=18, c=19.6cm

S R b4 F F F "
(m) (m) nu an nu an

0 2.50 0 1.337 1.348 1.154  1.155

/4 2.21  0.71 1.247 1.251 1.111  1.112

/2 1.50  1.00 1.044 1.038 1.018  1.017

an/a 0.79 0.71 0.874 0.869 0.942  0.942

m 0.50 0 0.830 0.819 0.920  0.920

The largest error for 18 sectors is of the
order of 0.1%. 1In the case of 8 sectors the
largest error is 1.3%. It would be very un-



usual to consider a fusion reactor with only
8 coils; this is shown just as an example of
the capahxllty of the theory.

The proportion of R2/R1 = 5 is the same

as that used_in the toroidal field magnet in
the UWMAK-II’/ report; however, the circular
shape is quite different from the UWMAK
designs. The use of a circular toroid for
testing is justifiable because Eq. (15) is
not dependent on the coils being circular.
Circles were chosen only to have the sim-
plicity and accuracy available in the sub-
routine HRHZ. 1In time Eg. (15) will be
checked against other more general computer
codes.

Constant Tension D Magnets

When a normal force/unit length, fy is
applied to a flexible conductor under tension
T, the conductor will take on a radius of
curvature

o= T/fQ. (18)
Equations (3) and (18) have been used to cal=-
culate the shapes of constant tension D mag-
nets. Iquation (15) can now be used to com-
pute these shapes for a sectored toroid. The
radius of curvature is cxpressed as follows:

284R

R 0T n 1. y /(1 +

uI cN
o

L cos ¢} (19)

N

If p is specified as oy at R2, Eq. (19) can

be rewritten as follows

1 1

R 1
ﬁ) - ﬁln ﬁ;]/(l + & cos ¢).

P .
R N
(20)

N
2

== (1 +

Ry

T, I and ¢ have been absorbed in pz/Rz. Once

0,/R,
This indicates that the shape of a constant
tension magnet is independent of the conduc-

tor cross section as long as that cross sec-
tion is not changed within a sector coil.

is selected, p/R is independent of c.

Design Parameters for D Magnets

While a designer needs the exact shape of
of the D magnet which is finally chosen, the
parameters needed to assist one in making the
proper choice of coil can be narrowed to a
small finite number. The following list qgives
these paramecters and the reasons for their
importance. The main paramecters as seen in
Fig. 2 and rcasons for choice are:

1. The number of coils, determined by the
permissible field ripple at the outer edge of
the plasma and the space required between
coils for blanket and shield removal, injec-
tion ports for neutral beam heating, vacuum
ports for diverted particle removal, etc.

2. The radial digstance to the outer leg of
the magnet, 2, determined by the same reasons
afg in item 1.

3. The maximum heiqght, H and the radial

max

position of the point of maximum height, Ry
max

determined by the blanket, shield, and diver-

ter components cenclosed.

4., The radial position of the vertical
inner leq of the magnet, Rl' and the height
at which this inner leg becomes tangent to
the outer curved portion of the D coil, HRl,
determined bv the space needed for ohmic
heating coils, the maximum field for which
the coils must be designed, and the size and
cost of the inner structural cylinder support-
ing the unbalanced radial loading on the
toroidal field magnet.

Equation (20) was substituted into the
differential eguation for curvature and
numerical solutions carried out for selected
values of N and pz/Rz. From the numerical

values of the coordinates of the D shapes the
parameters just described were extracted. A
family of curves is ' plotted in Fig. 4 which
depict the variations in these parameters in
the form of the dimensionless ratios Rl/RZ’

H /R max/R2’ and RH /R
1n the independent varlag{efb/R

for variations
Each of

" the curves shown is for a given value of N,

the number of discrete coils in the toroidal
field magnet. The curves laheled N = « are
for the case where a continuous winding is
assumed over the surface of the D cross sec-
tion toroid.

The choice of oz/R?, the ratio of the

radius of curvature of the perimeter at the
outer end of the horizontal axis of svmmetry
divided by the radial position of this point,
as an independent variable was made for
several reasons, which are: to gain an inde-
pendence of the curves presented from the
finite size of a cross section, and computer
codes used to design D shaped toroidal field
magnets of finite size, where thick-walled
theory with distributed magnetic field loading
is used,® were developed to use initial values
of oz/R2 and can easily be modified to accom-

modate the field perturbations caused by the
finite number of coils.

To illustrate the use of these curves in
a typical design let us assume that the fol-
lowing requirements have been imposed on the
designer: (1) the field at the plasma center
at a radius of 8.12 m must be 3.6 T, (2) the
maximum field of the magnet is limited to
8.5 T, (3) the circumferential distance be-
tween coil centerlines must be 6 m at the
outer end of the horizontal plane of symmetry,
(4) the inside surface of the toroidal field
coil must clear the diverter channel which
extends 12 m above the midplane, and (5) a
choice must be made between 18 and 24 coils in
the toroidal system. The designer is called
upon to make a comparison of the two design
choices.

Solution: First note that
Rl(B.S) = 8.12(3.6) or Rl = 3.44 m. To obtain

the 6 meter spacing, for N = 18, 2nR2/18 =6
or R, = 17.19 m. Rl/R2= 3.44/17.19

= 0,.20. From Fig. 4 followinq the dotted
lines originating at R = 0.2 and usina the
curves labeled N = &ne finds the necessary
parameters. These parameters and the result-
ing dimensions are listed in Table II.

Therefore,



Similarly for N = 24, Rmax = 22,92,
Rl/RZ = 0.15. For the dashed line on Fia. 4
the values are also given in Table II.

Table II
D Shaped Parameters and Dimensions
H R
p2 Ry H Hmax H Hmax Ry

N o w Ry mo  max o x
2 B wl R (m) 2 ()
18 0.719 0.419 7.21 0.634 10.90 0.461 7.92
24 0.870 0.550 12.61 0.744 17.06 0.404 9.26

It is obvious that a magnet with 18
coils will not clear the diverter. The
designer can now proceed with the next itera-
tion on his requirements.

To further improve the utility of this
work to the designer of sectored toroids,
polynomials have been fitted to the data
used to plot the family of curves shown in
Fig. 4. All of the parameters are taken to
vary in the form of a 4th order polynomial
in 02/R2. That is:

4 .
= ]
Pi/Ry = I Aj(py/Ry) (21)
j=0
where P, is one of the four parameters dis-

Table III lists the numerical values
A linear

cussed.
of Aj for the several values of N.

interpolation in the factor 1/N can he used
to determine the values of Aj for other

values of N. A comparison to numerical
values obtained by Purcell® shows agreement
to within 0.8% for both the maximum height
aand its radial position for the given ratio
Rl/RZ and for 16 coils.

s AN
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Fig. 4. Variation in design parameters with
p2/R2 for values of N from 12 to =,

Conclusions

The use of the analytical expression for
the radius of curvature given in Eq. (20)
allows one to numerically integrate the dif-
ferential equation for curvature for thin
coils or to adapt the procedure to existing
numerical solutions for thick coils. Costly
iterative procedures can be avoided and pre-
liminary design parameters chosen directly

from the graphs or the empirical equations
presented. The numerical example presented
shows that a few minutes work will allow in-
telligent choices in the number of coils,
choice of maximum radius and field ripple.

Table III
Design parameters for D shaped toroidal field coils

Parameter N A A A A A

0 1 2 3 4
Pi/Ry

© 1,600 -1.993 1.923 ~-1.076 0.281

48 1.000 -2.075 2.082 -1.202 0.321

R /R, 24 1.000 -2.162 2.252 -1.339  0.364

18 1.000 -2.222 2.374 -1.441 0.398

12 1.000 -2.346 2.636 -1.664 0.472

© 0.000 0.013 1.450 ~-1.161 0.353

48 0.000 -0.052 1.630 -1.330 0.412

H /R, 24 0.000 -0.123 1.831 =-1.524  0.480

1 18 0.000 -0.173 1.976 -1.667 0.531

12 0.000 -0.281 2.298 -1.991 0.648

©  0.000 1.000 -0.214 0.046 =-0.006

48 0.000 1.009 -0.220 0.047 -0.006

W, /R, 24 0.000 1.018 -0.226 0.051 -0.007

18 0.000 1.023 -0.230 0.052 =-0.008

12 0.000 1.035 -0.238 0.055 =-0.008

w 1.000 -1.000 0.497 =-0.156  0.027

48 1.000 -1.020 0.517 =-0.164 0.028

R, /R, 24 1.000 -1.041 0.538 -0.175 0.031

max 18  1.000 -1.055 0.553 -0.182 0.033

12 1.000 -1.083 0.582 -0.196 _ 0.035
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