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I Abstract 

 The main thrust of this research has been in designing and developing two tools to assist 

in performing nuclear systems analysis from modeling to induced activation. In order to do this, 

an extensive amount of careful code development was performed in miniscule steps to guarantee 

accuracy as the work traversed over various forms and types of files. 

 Two useful solutions are provided by the development and implementation of this work. 

The first tool allows an open source method of preparing a model for neutronics analysis that 

greatly reduces human error and provides a systematic approach to be repeated for all variations 

of models. Despite the intent to be used on nuclear systems, the code's versatility permits its use 

on fluid dynamics, stress analysis, and other mesh-based analysis operations with minimal 

adaptation. 

 The second tool reorders an already developed 3-D meshed analysis workflow in order to 

increase its usefulness as an activation analysis tool as well as, once again, reducing human error 

due to small computational mistakes. Whereas previous activation systems were limited to 1-D 

analysis in areas such as waste disposal rating (WDR), the effect of heterogeneity on the system 

can now be closely examined and 1-D predictions can be compared to the more accurate 3-D 

data. 

 In the development of these tools, a nuclear fusion power system is analyzed from its 3-D 

CAD geometry through a neutronics analysis and then further into an induced activation 

analysis. The increased capabilities provided by this work have allowed much more detailed 

material and MCNP tally information to be almost automated. The resulting information is then 

utilized to compare to the original, direct methods in order to demonstrate the improvements and 

also validate the developments. 
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 Despite being used on only one nuclear fusion system, the tools presented along with the 

ones already in use for the study, lend themselves to a plethora of scenarios within the nuclear 

community. Throughout this thesis, the basis of the data types manipulated in the code and their 

format throughout the analysis process are deeply examined. Supplementing this at regular 

intervals are validation steps convincing the workflow's success. The validation steps performed 

have all fallen within expected ranges. There remain numerous aspects and improvements that 

would be necessary for production level distribution, but the developments introduced should 

serve the UW-Madison Fusion Technology Institute very amicably in the future, and even more 

so as small changes are made. 
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1 Introduction 

 This thesis encompasses the development of software to more completely perform 

complex analysis on nuclear systems. A software plugin for ParaView serves to prepare and 

model the geometry, material, and tally definitions for various reactor geometries in a more 

simplistic, user-friendly , and open-source environment. An addition to the R2S-ACT 

(Rigorous 2-Step ACTivation) [1] code provides the user with  more flexibility in the 

activation data collected by the ALARA software including outputting Waste Disposal 

Ratings (WDR) on complex 3D geometries. Throughout the procedures, validation steps are 

performed in order to ensure accuracy. 

 Chapter 1 covers some of the guidelines and processes nuclear analysts go through to 

obtain data on a fusion system. It begins with the workflow currently in place that is 

executed. The chapter culminates with a discussion and description of the physics involved in 

nuclear fusion plants. 

 As Chapter 2 begins, the physics and code development methods behind the edited 

software as well as the intermediary tools are introduced. Specifically, the ITAPS/MOAB 

database, ParaView and the original R2S-ACT code is explained in great detail. In Chapter 3, 

the programming necessary to develop these new tools in conjunction with the current 

workflow is extensively discussed. Additionally, its future role is hypothesized.  

 Chapter 4 introduces a series of validation steps done to verify and confirm the 

success of the created tools. The old method of analysis is compared to the new method, and 

the new method is checked for consistency and robustness. Finally, Chapter 5 rounds out the 

entire nuclear analysis workflow by introducing the ARIES-ACT-1 fusion power plant study 

and driving it through the workflow.  
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1.1 Motivation 

 In the analysis of nuclear systems, it is paramount to obtain data that most 

realistically represents the system in question. Although there are other radiation worries, two 

of the most common are neutron irradiation and photon irradiation from neutron-induced 

activation. To obtain the high-level of accuracy desired for these systems, a complex 3-D 

geometry is a must. Previous studies have shown that when it comes to values such as 

damage, the difference between 3-D geometries and 1-D geometries can be up to a factor of 

3 [2] depending on the accuracy of the 1-D normalization factor. The previous workflow had 

imperfections that made the 3-D analysis more difficult than it should be; in addition, there 

were multiple ways to do each step, which introduced an undesirable variability between 

users. The ParaView plugin suite aims to more accurately “tag” the reactor system's 

geometry and prepares it for neutronics analysis. From here, the reactor system enters the 

R2S-ACT workflow. With previous workflows, interested users could perform activation 

analyses of complex 3D nuclear systems, but due to the formulation of the code, information 

such as the WDR was not easily collected. By varying the way the code tags and interacts 

with the mesh, this information is easily calculated by the computer.  

1.2 Neutronics and Activation Analysis 

 Although any neutron irradiation and activation can pose challenges, the high-fluxes 

and 14.1 MeV neutrons associated with fusion add a whole level of complexity to power 

plant studies. When contrasted against fission energy's approximate 2.5 MeV neutrons, the 

energy spectrum bombarding the wall and other components within a fusion reactor vessel 

create a much higher energy spectrum irradiation flux. This high flux benefits the reactor by 
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producing large amounts of heat; however, it also causes more damage to vessel components 

and an increased amount of activation.  

 Since it is not realistic to test all these properties with physical experiments, 

computational calculations are performed to approximate the effects of the physics in the 

reactor. They also serve to calculate desired data about the reactor model. The first section 

introduces a quick overview of the workflow performed in these analyses. The next few 

sections aim to define the physics and relay the significance of this high fusion flux.  

1.2.1 The Nuclear Analysis Workflow 

 The workflow pathway starts with a reactor design and progresses through a series of 

pre-processing steps, analysis steps, and bridges between these. Figure 1 below provides a 

graphic of the workflow used for these types of analysis. In order to develop a feasible 

reactor model, an iterative process is performed: results from the workflow are analyzed, 

changes to the basic design model are made, and another iteration of the workflow occurs. 

This process continues until a final design is decided upon.  

Figure 1. The workflow pathway for nuclear analysis. Blue shows programs and user manipulations and 
yellow shows inputs and outputs. 
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 The first step in the process is to design the CAD model of the reactor. On the initial 

design, this process can take an extensive amount of time on the order of a full day or two of 

design. It requires building a robust model that meets all the requirements of the desired 

analysis outputs. From here, the model must be labeled with important metadata such as what 

materials compose which components, their density, and desired data outputs on various 

components. This step will take some time depending on the availability of densities and how 

many different materials the model has. The next step is to perform the neutron transport. In 

the workflow used here, this is a Monte Carlo transport, so it can take anywhere from an hour 

or two to multiple days depending on the computing power, size of the model, and statistical 

accuracy required. The next step takes that output and performs a deterministic activation 

calculation. This ranges from a few minutes to a couple of hours. Once the neutron activation 

data is collected it can be plugged into a photon Monte Carlo transport problem to get the 

final results.  

 Although this is the full workflow, there are many outputs along the way that are 

desired for analysis. Sometimes, reactor models do not even need to undergo the entire 

workflow. This entire process on average takes a few days to a week for the first iteration, 

and less thereafter. In the first iteration, much time is spent by user creating the model and 

preparing the programs to work properly over actually running the programs. Subsequently, 

the next iterations mainly require only runtime and some additional metadata work. The next 

sections look at some of these outputs. 
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1.2.2 Neutron Wall Loading, Tritium Breeding Ratio, and Nuclear Heating 

 Obtaining correct characterizations of neutron wall loading (NWL), tritium breeding 

ratio (TBR) and nuclear heating on a fusion power plant system is the first step in 

understanding the whole plant's operating parameters. These three neutronics effects are 

limited to the instant flux and are not concerned with induced activation. Results collected 

from these analyses affects the design parameters of entire fusion devices when heat loads 

are too high or TBR is too low [3]. 

 To commence an analysis, NWL is found by recording (tallying) the neutron current 

that passes through a surface at the first wall (FW) in a magnetic confinement fusion vessel. 

The distribution of this neutron current density in the x, y, and z-axes provides important 

information in order to define the radial builds based on the peak inboard and outboard 

values. These values are normalized to the fusion power the reactor is expected to generate. 

Once this initial radial build is defined, more intricate complexities in the geometry can be 

added. 

 One of the most important analysis balances in the fusion community is the tritium 

breeding ratio (TBR) since it can neither be too high nor too low. Since most potential fusion 

power plants are examining the use of Deuterium-Tritium fuel, generation of tritium is 

required for self-sufficiency. Fusion power plants are usually estimated at anywhere from 2-3 

GW of fusion power. The frequent claim for tritium estimates are about 55.6 kg/GW of 

tritium for a single full power year of operation (FPY). 

 The tritium breeding ratio is calculated based on the ratio of how many tritium atoms 

are produced (bred) for each tritium atom consumed in the fusion reaction. This means plants 

require large amounts of tritium to be self-sustaining, but they must be careful because they 
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can't generate too large of amounts either. Generating too much tritium would put the plant at 

a disadvantage because they'd have licensing issues, storage, and safety concerns. Ultimately, 

a net TBR value at 1.01 is preferred [4]. When performing the neutronics calculations, 

however, the calculated TBR is called "design TBR." This must be larger to account for 

known deficiencies in nuclear data and modeling and unknown uncertainties in design 

elements. Over the years, deficiencies have decreased, but they still are present and currently 

a TBR of 1.05 is preferred. The figure below is an excellent example of the deficiencies 

mentioned.  

Figure 2. The effect of known and unknown discrepancies between design TBR and net TBR. [4] 

 The current nuclear analysis workflow has provided an indispensably close look at 

the effect small changes on complex 3D geometries have on TBR [5]. This narrowing 

towards a more exact replica of the real-world power plant helps to eliminate some of the 
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known deficiencies in modeling shown in figure 2. In figure 3 below, there are eight different 

steps. Each step represents the addition of more complexity to the geometry model of the 

reactor. In order to gather these results, each step requires that a model be created with the 

current step's geometry features, the proper material information be labeled and the proper 

cell tallies with relevant multipliers (response functions). This cyclic pattern through the 

neutronic workflow is effective, but improvements must be made to simplify the selection of 

tallies and materials that are used repeatedly throughout a user's analysis. 

 

Figure 3. These eight TBR steps follow a 3D geometry as it becomes more complex 

 The next major neutron irradiation data gathered is nuclear heating in order to 

estimate the actual electricity the power plant could produce. In computer codes, cross 

sections for isotopes are referenced against the flux and the amount of heat produced in the 

reaction and then summed over the whole geometry and normalized by the density of the 

materials. Each component of the reactor has its heat added together and it's compared to the 

fusion power to see how much recovered energy is gathered. This step requires tagging 
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numerous materials and adding them all to a heating tally. In order to better depict heating 

results, a workflow tool that allowed color coding by material would increase error checking 

on the user's part and present a better depiction of composition for both papers and 

presentations.  

 When it comes to neutrons, there are many more values that studies desire to know 

for 3D geometries. Displacements per atom (a material damage estimate) and helium 

production both serve to dictate how often components need to be replaced in the high flux 

environment and whether or not it is possible to re-weld various components. These 

calculations are currently possible to perform, but would greatly benefit from a stream-lined 

workflow with visualization capabilities. 

1.2.3 Specific Activity, Decay Heat, Clearance, and WDR 

 Neutron induced activation adds an entirely new level of complexity to already 

complex 3D problems. The activation is very dependent on the spatial distribution in the flux, 

and miniscule impurities can become large contributors to final results. These values provide 

very meaningful evaluation steps for studies examining the reactor during operation, 

maintenance periods, and shutdown.  

 Specific activity is very common in power plant studies purely to get an idea of 

radiation density. The values found for specific activity are the linking factor to the other 

activation results. From specific activity, computers can easily calculate waste disposal 

rating, recycling dose, clearance index, decay heat, and more simply through the properties 

of the component and material being examined. 

 The activity is given by equations 3 and 4, 
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 (1)  

      
    (2)  

where gamma is the decay constant and N is the atom number density. These equations give 

the activity in decays per second by understanding this rate of decay is described by the 

original number times some constant. Integrating finds the resultant equation for how many 

atoms there will be at any time, t. 

 In activation codes, the initial concentrations of atoms are defined by the user. The 

code then utilizes a flux and the reactions of that flux with the atoms to build a large matrix 

that keeps track of both the atoms being added to each isotope from reactions, and the atoms 

being taken away by decay. Equation 5 below describes this scenario. N is the vector of atom 

densities, and   is the matrix that keeps track of the time evolution of the system.  

   

  
                           (3)  

 Decay heat information in a nuclear system prepares the designers to assess short 

term adjustments to the reactor during accident scenarios. As was learned in Fukushima [6], 

in the event of an accident decay heat becomes the prime focus of worry. By obtaining this 

information, the amount of back-up cooling can be estimated from hypothetical accident 

scenarios and the reactor design will be more robust. In addition to concern over accidents, 

decay heat provides an indication of the need for active cooling during shutdown.  By 

ensuring this low decay heat, the downtime of the reactor is minimal and the utility would 

stand to profit the most. When calculating the decay heat, the specific activity is needed with 

high resolution in each real-world component.  
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 Decay heat calculations multiply decay reactions by each of the various types of 

energy releases per disintegration for every isotope in the model. By taking the energy 

releases of heavy-particles (alphas, neutrons, fission fragrments), light particles (Auger 

electrons, positrons, betas), and EM radiation (gammas, X-rays, Bremsstrahlung) and 

multiplying it by the isotope concentration and decay constant, a relative heating value is 

found. Equations 6, 7, and 8 describe this by multiplying the decay constant times current 

number of those particles times the energy value for each isotope. 

 
           

 

   

        
  (4)  

 
           

 

   

        
  

(5)  

 
           

 

   

        
  

(6)  

Summing these up for each isotope, and then for all three of the various types of heating, 

gives the total decay heat at any point, t, in time.  

                                (7)  

If total decay heat up to that specific time was desired, a simple integration over time would 

suffice.  

 Recycling, clearance and waste disposal rating assessments most directly motivated 

the alterations to the R2S-ACT workflow. In order for a fusion power plant to operate for an 

extended time, various components need to be replaced periodically until the end of the plant 

life. The time the components spend in the reactor affect their waste disposal rating (WDR), 

recycling dose, and clearance index at the time of replacement. This needs to be at a limit at 
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shutdown and then its activity can be monitored as a function of decay time. Extensive effort 

has been invested in understanding the radiation restrictions that will be imposed on various 

fusion components [7]. With limitations non-existent for some elements and seemingly 

beyond safe for others, collecting the data for recycling, clearance, and waste disposal rating 

allows potential plans to prepare for radwaste management. When finding these values, 

however, it is required that the full components be extracted and that the value is calculated 

over the fully compacted component. The goal of the R2S-ACT developments are to make 

gathering this information on complex, higher-order surfaces an easy task, simply handled by 

the computer and assessed by the researcher. 

 Recycling of materials used in fusion reactors is paramount to their sustainability if 

the community wants to minimize the radwaste stream and enhance economics. Examining 

the waste volume of the Z-Pinch device reveals that if the Recyclable Transmission Lines 

(RTL) are not recycled they will produce about 7 million m
3
 of waste over 40 years [8]. 

When recycled, this value drops to 500 m
3
 over 40 years. In order to calculate recycling 

ability, the recycling does rate is examined to see when it falls below various limits (see 

figure 4 for a look at the ARIES-CS components). The difficulties in recycling fusion reactor 

components are the radiation-resistant handling equipment, a large enough interim storage 

facility, the energy demand of recycling, recycling plant capacity, and more. These are being 

worked out by the fusion community in order to utilize this necessary step in the success of 

these various reactor designs. 
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Figure 4. All ARIES-CS components could potentially be recycled in less than one year with advanced 

RH equipment. 

 For an activation code to calculate clearance, it simply needs the activity of an isotope 

in time. It takes that answer and compares it to a clearance level set by some governing body 

(such as the EU, US NRC, IAEA). Since materials are very seldom composed of one isotope, 

these clearances are summed up for all isotopes. 

 
    

  

  

 

 

 (8)  

If the resultant value is less than or equal to one the material is cleared.  

 For IAEA, clearance levels follow the formula [9] 

 
       

 

            
 
      
    

 
      

      
  (9)  

  , is the effective gamma energy in MeV,    is the effective beta energy in MeV,        is 

the most restrictive annual limit for inhalation, and        is the most restrictive annual limit 

for ingestion, both in Bq.  
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 Neutron induced activation adds a new tool for the preparation of nuclear fusion 

systems. Since the equations can become extremely large and complex, they lend themselves 

to being solved computationally. The need for computational solutions makes it essential to 

have accurate nuclear data libraries for cross-sections and reaction data as well. The gamma 

rays produced by this activation can also be of interest to an analyst. The dose increases more 

when both neutrons and photons are taken into consideration.  

 Although only some of the desired results for power plant studies have been 

examined, it is clear that in order to properly design and build a fusion power plant to benefit 

the future, consistent, accurate, and simple workflows must be designed that allow iterations 

upon iterations of models until the perfect nuclear system design is found. 

1.3 Tools 

 Since hands-on experiments are so limited for extensive nuclear analysis studies, 

nuclear engineers require a plethora of computational tools in order to collect the valuable 

information mentioned in the preceding sections. The tools used at UW-Madison are a 

collection of "in-house" created tools and other research institutions' tools. Starting from a 

CAD model, the workflow progresses through the MCNP transport code [10] , a series of 

Python scripts, and finally into the ALARA [11] activation code. These tools are described in 

more detail next. Figure 1 above mentions a few of these and where they fall in the 

workflow. 

1.3.1 Cubit 

 Cubit was the geometry engine utilized and it was developed by Sandia National 

Laboratories [12]. It functions as a solid modeling program and mesh generation software. It 
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is not necessary to use Cubit in order to create the reactor system. Any solid modeling 

program can be used to generate the basic reactor design. Cubit does need to be used 

eventually, though, for very specific reasons. Two functions known as imprinting and 

merging allow Cubit to traverse the geometry and remove any and all redundant surfaces 

where there are two or more adjacent volumes. If a model is poorly designed, this step will 

be partially or wholly unsuccessful. If the geometry underwent radiation transport, numerous 

histories would be lost and the results could very well be erroneous.  

 In addition to simplifying the model, Cubit is used to group geometric entities in 

order to identify and assign materials and densities. DAG-MCNP [13] passes this 

information directly to the transport analysis in MCNP. 

1.3.2 Direct Accelerated Geometry for Monte Carlo (DAGMC) and MCNP5 

 MCNP5  is a neutral particle, Monte Carlo transport code produced by Los Alamos 

National Laboratory. It transports neutrons, gamma rays, and even electrons, as well as 

performing coupled transport (secondary gamma rays caused by neutron interactions). The 

code can handle a multitude of problems ranging from criticality calculations to specific, 

defined sources. In order to obtain significant data from designed experiments, tallies are 

calculated ranging from cell fluxes to surface fluxes, energy deposition, and more. These 

tallies can also be recorded in the form of structured meshes. It is this feature that facilitates 

the R2S-ACT workflow, by gathering the neutron fluxes in a structured mesh, sending them 

through a series of Python scripts, and then passing them to ALARA. 

 DAG-MCNP [13] is a modified version of MCNP created by UW-Madison. This 

Direct Accelerated Geometry for Monte Carlo (DAG-MC) capability utilizes ray tracing on 
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faceted geometries, which enables complex, higher-order surfaces to be modeled in MCNP 

through the use of CAD-based designs. Because realistic 3D reactors often contain these 

complex surfaces, the code provides increased accuracy in results for a trade-off of speed. 

This speed is a welcome sacrifice, since it enables this much more accurate modeling; using 

native MCNP would require an incredible amount of hours to equivalently model these 

complex geometries. Fortunately, the speed of DAG-MCNP is on the average no slower than 

an order of magnitude lower [14] than native MCNP5.  The DAG-MCNP code also has the 

ability to add unstructured mesh tallies to a geometry. This is very beneficial to get 

distribution maps of tallies of interest that aren't restricted to geometries contained within a 

structured mesh. 

1.3.3 R2S-ACT Python Scripts 

 The set of R2S-ACT scripts (Robust 2-Step ACTivation) serves to couple the 

transport analysis of DAG-MCNP/MCNP with the activation software ALARA. Since these 

programs are not designed together, Python was facilitates the transfer of data from DAG-

MCNP to ALARA. Python was selected due to its ease of use, versatility, and simple, 

straightforward syntax. In order to interact with the mesh passed from DAG-MCNP to 

ALARA, PyTAPS [15], a Python interface to MOAB (covered in the next chapter) is used. 

PyTAPS allows simple manipulation of meshes and is just as straightforward as Python.  

1.3.4 Analytic and Laplacian Adaptive Radioactivity Analysis (ALARA) Code 

 The Analytic and Laplacian Adaptive Radioactivity Analysis (ALARA) code [11] 

calculates the induced activation resulting from neutron irradiation. Within the R2S-ACT 

workflow, it utilizes the neutron flux found from MCNP in order to calculate the photon 
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source density in each volume element throughout the defined mesh. In addition to MCNP's 

neutron flux, an irradiation schedule, the mesh geometry, and the material properties such as 

neutron activation cross-section and decay constants are provided--some in previously 

calculated libraries. 

 ALARA has a variety of output formats that it allows for data. For induced activation, 

the photon source can be output and then utilized by R2S-ACT again in MCNP. The user can 

also select zone, interval output, and the units of the output. For the R2S-ACT workflow 

changes implemented, it will be desired to have a zone output where each zone is 

representing one full volume from the original CAD model. The cooling steps are controlled 

by the user to allow the decay process to be captured statistically. 

2 Development Interfaces and Environments 

 The Mesh Oriented datABase [16] stores and evaluates mesh data; it can handle both 

structured and unstructured meshes with ease. Metadata can easily be applied to the mesh. 

One of MOAB's prime benefits is its speed and efficiency since it processes mesh in groups 

rather than by accessing individual entities. Individual entity access is not eliminated, 

however. MOAB is accessed through a C++ interface for this thesis and, although not used 

here, has parallel functionality. This section delves into the fundamental types that compose 

MOAB and its benefit to nuclear analysis and beyond. 

2.1 MOAB's Fundamental Types 

 The entire MOAB data model uses simply four types: mesh interfaces, mesh entities, 

sets, and tags. These objects are addressed via entity handles rather than pointers. This allows 
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easy access to the types and the values can be easily changed while the address doesn't. The 

MOAB interface is the gateway to all member functions that MOAB provides.  

 MOAB provides support for almost all imaginable mesh entities through enumeration 

in the interface. These range from vertices to polyhedrons. The various entities are ordered 

by dimension from lowest (vertex) to highest and they can be iterated over in loops. The 

entity handles are organized so that entities of similar type are stored together and then the 

individual entity id is labeled after, which allows for efficient grouping based on dimension. 

From a programming point of view, this reduces memory and increases speed that would be 

required by calling a function; rather the entity handle can just be examined by the code. In 

addition, this allows easy reordering and the creation of large groups that are closely linked. 

Since meshes frequently get large, MOAB has specific grouping that stores large sets of 

entity handles in a memory-efficient manner. 

 The vertices also form the basis for entity adjacencies. Higher order entities only have 

a topological relation to the lowest order (vertices) adjacency. For example, when storing a 

square mesh, only the four vertices composing each highest-dimension mesh element are 

stored as adjacency, which greatly reduces the memory requirements. Nonetheless, the faces 

and edges, and their adjacencies to higher or lower-dimension entities, composing the mesh 

element can still be found when requested by the user. As meshes drastically increase in size, 

especially as they do for nuclear fusion systems, the memory usage is much less than other 

data models. 

 Entity sets are groups of other entities and even entity sets. Sets can be utilized to 

group entities for application purposes, to describe geometric relations, or for parallel 
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operations. In order to relate entity sets, parent and child relationships can be applied. The 

analysis workflow analyzed here uses these by representing each geometric volume as an 

entity set and then groups these entity sets into a new set representing materials, tallies, etc. 

This becomes very useful in a variety of scenarios. Containing all entities and entity sets is a 

the "root set," which explicitly is the instance of the MOAB interface. This provides easy 

access to all members of any instance of a mesh. Within these entity sets, entities can be 

contained in a set where order is kept and thus the same handle can be repeated an arbitrary 

number of times, or the entity set can is ordered only by handle and duplications are not 

allowed. 

 Once entity sets are created, it is common and convenient to associate these with tags. 

These tags place metadata on the mesh of almost any type depending on the needs of the 

application. Similarly to entities and entity sets, tags are accessed via handles and thus the 

metadata associated with them can easily be changed without changing relationships between 

the tag and its interaction with the other three MOAB types. Every MOAB tag contains the 

following: name, size, storage type, data type, and a handle. All MOAB tags can be divided 

into three types: dense, sparse, or bit. Dense tags store their values in large arrays matching a 

series of entity handles. This makes them efficient when applying the same tag to a large 

group of entities. Sparse tags store a tuple of entity handle and tag value per sparse tag and 

are sorted by entity handles. Bit tags are very similar to dense tags, with the ability to allocate 

bit-size amounts to entities. If the data types of tags are known, they can be saved on MOAB 

files and the information is easily transported between systems. In the tools designed and 
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already being utilized, MOAB is used with very specific tag conventions to maximize the 

simplicity of passing from one analysis tool to the next. 

2.2 Developing with MOAB's Interface 

 MOAB's use for any and all meshing situations cannot be overlooked. The interface 

is developed to function efficiently and quickly on numerous entities. The interface lends 

itself to nuclear analysis by allowing meshed 3D elements to be associated with a very 

specific geometry and store relationships and connectivity to the rest of the system. Important 

information can be tagged on these meshes to facilitate analysis in another program. The 

interface is designed to avoid copying and instead bringing data directly into MOAB's native 

format.  

 By implementing only the most basic relationships in large sets of mesh data and 

eliminating unnecessary constraints, MOAB increases its versatility and allows the user to 

decide connectivity and relations. Despite this simplistic approach, the underlying interface 

can obtain these increased relationships when it is required.  Even at the lowest dimension 

(vertices) MOAB only connects the minimal amount of vertices to its topological entity. 

Thus, if a mesh has vertices at line midpoints or vertices in the middle of a mesh element, 

they can be ignored for mesh information. Yet with a few simple calls, these "hidden" 

vertices can be requested and connected or related.  

 Since entity lists and sets are such a big part of MOAB, there are many useful 

interactive tools that have been developed to save time and memory computationally. In 

order to find relationships between entities in a range of entities, adjacency information is 
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kept. This allows returning related higher- or lower-dimension entities, which can be used for 

further analysis or comparison. 

 MOAB has a built-in ability to effectively process Cubit files and preserve geometric 

topology and metadata associated with the solid model. As mentioned in the information 

about Cubit, for nuclear analysis the tallies and materials are described within Cubit in the 

forms of groups and names on groups. MOAB can process these files and collect the entity 

ids and names (such as volumes and surfaces) , groups and blocks that these entities are 

stored in, and mesh schemes executed within Cubit.  With this stored mesh representation, 

the geometry can be effectively analyzed by programs such as MCNP that utilize the MOAB 

interface. 

2.3 The Visualization ToolKit and ParaView  

 The Visualization Toolkit (VTK) is an open source software (designed by Kitware, 

Inc) that allows visualization and imaging across a variety of platforms and uses. Although 

based on C++, it contains many interfaces for alternate development. VTK is utilized as the 

basis for the development of the visualization software known as ParaView. ParaView [17] 

displays and operates on large sets of data using filters and other options. It can also create its 

own data in the VTK format. ParaView is open source as well and contains a very specific 

pipeline that enables developers to add features to the software. With the newest ParaView 

release, the developers took a more simplistic approach, allowing other developers to not 

only add features, but take them away or alter their functionality as well. 
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2.3.1 Visualizing and Manipulating with ParaView 

 Visualization takes extensive lists of seemingly meaningless raw data and converts it 

to images that are both viewable and informative. By utilizing fields, tensors, and other 

factors, visualization helps the design and analysis in a variety of circumstances way beyond 

nuclear analysis. 

 ParaView has the functionality to support large 2- and 3- dimensional datasets. It has 

the ability to run on anything from a single-processor to multi-processor supercomputers. It 

has proven itself as a superior visualization tool through its open-source nature, scalability, 

commercial support and updates, a user-friendly GUI easily accessible without any 

programming experience, a modular architecture, and changeability. The actual GUI is easily 

manipulated since ParaView's main strucutre is in the underlying libraries and not the most 

commonly seen client controlling the interface. Figure 5 shows a loose explanation of its 

architecture. 

 

Figure 5. The ParaView client used is only a fraction of the true depth and versatility of the software. [17] 
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 The first step in ParaView is by obtaining data to be visualized. ParaView performs 

this most commonly by reading in data from accepted file types--readers.  It also possess the 

ability to generate data by building various "sources" provided by the ParaView client. This 

data can then be loaded into the ParaView Server and rendered. The parameters utilized in 

rendering are completely adjustable by the user including orientation, data representation 

(such as wireframe models, points, or 3D glpyhs), and field coloring proportional to the data 

on the mesh. 

 In order to maximize options and provide information and applications beyond the 

basic structure of the data, ParaView possesses numerous filters which operate on the current 

data to produce a different subset of that data. Filters can be applied to readers and sources to 

edit raw files. They can also be applied on other filters until the most accurate representation 

of the data desired by the user is obtained. 

 Finally, the data from VTK is rendered onto the screen. Additional data and filters 

can continuously be applied to create more concrete visualizations. One of the benefits 

ParaView provides is a pipeline allowing any or all of these to be hidden or shown at any 

time. In addition, multiple views can be provided in distinct windows to provide users with 

more information on the data. It is not limited to mesh visualizations, however; it also 

provides the ability to plot and graph the data according the user's wishes. 

 ParaView provides another very useful tool for interacting with this nuclear analysis 

workflow and that's selection abilities. ParaView's built-in selection features are limited, but 

the user is allowed to select any subset of the entire dataset. By using this selection, 
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information about this subset can be ascertained. As will be seen, this will be extended to 

allow editing and manipulation of the entire data model. 

 Visualization with ParaView is by no means limited to the topics discussed above. It 

has the features to perform animations, annotate graphs, work on large projects across 

multiple servers and even execute Python batch scripts. These features and the ability to add 

on abilities make ParaView a prime candidate to visualize nuclear fusion models and 

manipulate them. This will provide the nuclear engineer with a better understanding of the 

model and more concretely reveal the metadata surrounding the model. 

2.3.2 Expandability through Plugins and Custom Applications 

 ParaView allows users to increase its functionality by adding readers, writers, filters, 

custom GUI components, and new views for data display. These plugins are accessed as 

shared libraries loaded by ParaView. In order to successfully use a self-developed plugin, 

ParaView must be a special build with shared libraries and the proper header files, the binary 

release will not allow it. Existing, pre-packaged plugins can be enabled by writing a server 

manager configuration XML file. In order to write a completely new plugin, a C++ header 

and program file are required to be written and compiled into a library. A server manager 

configuration XML file is also needed in order to connect the VTK pipeline to the C++ code. 

 Although not extensively analyzed, ParaView was recently restructured to take on a 

whole different workflow. This change has allowed the user to completely edit ParaView 

functionality, whereas plugins can only add features to existing behavior. By writing a 

custom application, pieces can be removed, operations can do something entirely different, 

and also features can be added. The most basic instance of writing a ParaView-brand custom 
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application [18] is to use the libraries and dependencies, but start with just a simple Qt-based 

window that then can have features slowly added. This new ParaView architecture is 

centralized on the idea that there are "Reactions," which responds to user actions, and 

"Behaviors," which allows abstract application editing related to ParaView's existence. 

 By utilizing ParaView's plugin abilities, features can be edited to simplify nuclear 

analysis workflow with relative ease. Using the plugin to import the specific geometry, and 

additional plugins to edit the datasets and save the data with new metadata and tagged 

information will prepare a complex 3-D reactor model that can immediately enter the R2S-

ACT workflow. 

2.3.3 The VTK  File Format and Conversion to MOAB 

 Since ParaView is built on top of VTK, the MOAB data is pushed into the VTK 

library. The MOAB-based geometry file (.h5m) must be properly transferred to the VTK 

representation in ParaView, where it is then visualized through VTK. Part of this work had 

already been completed by a plugin called "vtkMoabReader." This tool converts the MOAB 

data file to  VTK information by utilizing MOAB's tags, sets, and range functions. Figure 6 

below represents the process performed by the library. The first operation is to grab the 

MOAB entities associated with specific tags. In this case, the reader looks at volumes, 

surfaces, materials, Dirichlet sets, Neumann sets, and boundary sets. Each of the entities 

within these sets is added to a VTK dataset. This dataset can then be visualized in ParaView 

directly, then. 
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Figure 6. A representation of the process required to convert MOAB data to VTK data. 

 The MOAB-based geometry file is not actually composed of any 3-dimensional 

entities. Groups of 0-,1-, and 2-dimensional entities (points, curves, and surfaces) are put into 

MOAB's entity sets. These entity sets are then tagged with a tag key called 

"CATEGORY_TAG." The tag value of these entity sets can then be either "Volume," 

"Surface," Curve," "Vertex," or "Group." These are the geometric entities that the user cares 

about when adding metadata and that is desired to be visualized in ParaView. 

2.4 R2S-ACT Workflow 

 The Rigorous 2-Step ACTivation (R2S-ACT) workflow provides a gateway from 

neutral particle transport analysis to activation analysis. This connection was originally 

desired to determine photon biological dose rate resulting from induced activation on 

complex geometries. The workflow utilizes MCNP and ALARA along with the a Python 

script suite in order to facilitate the workflow. Figure 7 shows a graphic of the workflow. The 
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red triangles represent data sinks (anywhere results can be obtained), the purple represents 

the actual R2S portion executed with Python scripts, and the blue squares show external 

software.   

Figure 7. 3-D activation workflow depicting the processes performed for full analysis. Data can be 
collected after any step. 

 The starting point in the workflow requires the CAD geometry for the nuclear system 

to be properly created and the MCNP input to be prepared. The MCNP file needs to contain 

the neutron source definition, any desired tallies, material information, and most importantly 

MCNP's mesh tally feature. This is split up into a 175 neutron group energy structure. The 

material identification number and density also must be tagged onto the geometry of the 

CAD model by utilizing Cubit's groups. Additional tallies can also be added by placing them 

on the Cubit model.  This collection of information can then undergo the neutron transport 

analysis. 
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 Next is the first step of the Python scripts. This step takes the neutron flux mesh file 

that MCNP produces and overlays it on the geometry file provided. After this, ray-firing is 

performed on the combined geometry/mesh at each voxel in the mesh. This ray-firing 

determines the fractions of materials in each cell. Using Python dictionary storage features, 

these fractions are stored for each voxel. The scripts then utilize PyTAPs to obtain any 

material tags from the geometry that are within those voxels. By using these fractions of 

materials and the density values on the tags, a homogeneous mixture for each voxel is created 

and added to an ALARA input file along with the size of the voxel for that mixture. In 

addition, each material taken from the Cubit geometry is added in ALARA's material 

definition stage. The script then writes the flux file for each group and voxel by reading in 

the meshed neutron flux file and listing it in the order matching the voxels. In R2S-ACT, the 

voxels are listed in 'zyx' order along axes.  

 At this point, the Python scripts have created an ALARA input file that is ready to 

undergo analysis. Using ALARA to run the program produces photon source information at a 

specific cooling time step after irradiation as decided by the user. This source information at 

each point in the mesh is then sent to step two of the R2S-ACT workflow. 

 The second step of the Python script uses the same MCNP input as before, but with 

an altered source definition. It eliminates the original source definition and writes one based 

on the calculated photon source in each voxel. When running MCNP for the final time, these 

photon sources will be generated in the corresponding area of the reactor model and any 

desired tally will be calculated. It is important to remember that this photon response is just 
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for a single time step in the reactor's cooling process. By repeating the analysis at various 

time steps, a predictive model can be used to demonstrate the effect of activation over time. 

 The R2S-ACT workflow has been used multiple times within UW-Madison's FTI 

research group and is constantly being improved to grow with the needs of nuclear analysis. 

One of the current projects is to enable the workflow to successfully work on unstructured 

meshes in addition to structured meshes. It is one more tool that assists a nuclear analyst in 

defining and modifying a nuclear fusion system. The developments that will be demonstrated 

aim to increase robustness and user options, so it can be applied to a wider range of nuclear 

applications. 

3 Expanding the Workflow's Abilities 

 As technology improves and nuclear analysis attempts to obtain every piece of 

information about a nuclear system, the analysis software used needs to progress and change 

with it. Especially in the case of nuclear fusion plants, collecting as much activation data 

about a system as possible helps engineers and designers to predict the exact responses of a 

reactor during accidents and after shutdown, cost, shielding requirements, and more. In order 

to assist in the development and increased accuracy of data manipulation, two improvements 

are made to the nuclear analysis workflow.  

 The first improvement utilizes visualization software in order to obtain a depiction of 

the nuclear system modeled in great detail. The user is then able to select subsets of the 

reactor system, whether that be various volumes, surfaces, materials, or tallies and either add 

metadata information, remove it, or edit it to prepare the model for analysis. The 
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development is intended to add metadata information that can be used by MCNP to perform 

neutron transport, but the underlying developments require only minor tweaks to be applied 

to fluid dynamics, thermodynamics, and other analysis. One of the most important parts of 

this change in the workflow is that the metadata is now recorded in the same "language" 

(MOAB) that is used by the analysis; this provides simplification. 

 The second development takes the R2S-ACT workflow discussed above and 

introduces an alternate method of collecting the mesh information. It iterates through the 

mesh geometry and extracts Cubit volume information rather than material information. It 

then uses this to calculate volumes in specific zones. This new method allows all ALARA 

responses to be accurately obtained in a real system.  

3.1 Utilizing Visualization in Model Preparation 

 Computer visualization of geometric models of nuclear fusion systems transforms 

seemingly irrelevant streams of data into understandable depictions of reactor responses. 

ParaView has been used extensively to demonstrate the effect of nuclear heating and tritium 

breeding ratio on the nuclear fusion systems studied at UW-Madison. This section covers the 

development of a plugin to increase ParaView's application ability by improving tools for 

selecting, reporting, and modifying metadata of the model. 

3.1.1 ParaView's Improvements on Cubit 

 Previously, Cubit has been solely utilized to prepare complex 3D geometries for 

MCNP by tagging on material and tally information by assigning geometric entities to 

"groups" and those groups are given names defining the material or tally information. These 

groups are read into MOAB and altered and extracted to become MOAB tags on the 
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geometry. The inherent clumsiness of this method arises because of human error and 

inaccuracy with the MOAB-based analysis. When it comes to human error, the group names 

are required to be in some format such as "mat_#_rho_{density value}" or "tally_#_{tally 

type}." The difficulty with this is misspellings will render the group just ignored when 

passed to DAGMC. Also, the format has changed occasionally with new releases of 

DAGMC, which again risks important metadata being ignored. Computationally, the analysis 

code must parse these strings and extract the significant data. Finally, MOAB tags are 

intended to have single key-value pairs such as {key: MATERIAL_TAG, value: Steel} and 

then another tag key-value pair would provide the density such as {key: DENSITY_TAG, 

value: 0.0444} and not "mat_1_rho_0.0444," where "1" is later associated with steel. Figure 

8 demonstrates the non-natural method of Cubit and compares it to MOAB. 

 

Figure 8. On the left, Cubit uses groups and names on groups. On the right, MOAB assigns values for the 

relevant keys. 

 ParaView can directly add tags to the MOAB geometry with the new plugin. In 

addition, Cubit visualizes geometric models in a different language than ParaView, which 
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increases discrepancies and translation errors. With the metadata labeling, ParaView will 

enable the depiction of materials or tallies by gradient color scales; this feature serves as an 

additional check of accuracy to ensure the right topology belongs to the right materials and 

tallies. Another benefit of developing this visualization plugin is that it removes sources of 

human error such as spelling errors that would render the tag unreadable, and speed of 

processing. Ultimately, ParaView will hopefully become the hub for complex 3D geometry 

analysis--serving to prepare the model for analysis and reviewing the results of the analysis 

on top of the geometry once completed. 

3.1.2 Developing a user-friendly GUI 

 A good or bad program can come down to its Graphical User Interface (GUI). The 

GUI for the ParaView development utilized Qt to create and develop what are known as 

"widgets." When researching and brainstorming this plugin, careful consideration was taken 

to develop a GUI with three main components: simplicity, robustness, and expandability. 

 In making it simple, the GUI was developed to have the fewest buttons and options 

available that still allow for as much manipulation as the data as desired. Although in the 

current workflow, it is used for specific metadata, the goal was to design it with enough 

versatility to handle other engineering workflows and analyses. This was achieved by 

limiting too much specificity. Figure 9 shows a view of the plugin. The first box allows the 

user to select what "picking" mode to be in. Since it is possible for a point to belong to 

multiple geometric values (i.e. a curve, a surface, and a volume), this tells the underlying 

algorithms which one the user wants. Below that box is the tree hierarchy. This tree shows 

the different selectable entity sets and the geometric value that they are defined as. Below 
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that is the name of the current MOAB tag keys on the model in a list, as well as an option to 

add a new tag. Values for the desired tag key are entered in an editable space and finally the 

options to apply--add the tag value--delete, and write the MOAB file to an output round out 

the GUI. 

 

Figure 9. A figure of a geometric model and the plugin's view and widgets. 

 Expandability was a key component in the design so future needs could increase the 

geometry representations and data application. It would be relatively simple to add additional 

hierarchies within the tree with minimal code structural changes. An additional feature is the 

eventual development of smart boundary condition selection to apply graveyards and 

reflecting boundaries within ParaView in addition to material and tag information. Defining 
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neutron or source information would also be easy to add to the GUI once the proper 

implementation into the code was figured out. 

3.1.3 Linking MOAB entities to VTK representations 

 Utilizing the basic "vtkMoabReader.cxx" ParaView reader plugin, relevant MOAB 

entity information was relayed into the VTK data model. Once the geometry has been 

converted into a ParaView-viewable format, selection occurs and executes with VTK 

algorithms and data structures. As the reader iterates over all desirable 2D or 3D entities, it 

transforms MOAB points and cells into VTK cells. In order to maintain the MOAB 

references within the VTK environment, each relevant VTK cell is labeled with field data 

that contains its MOAB equivalent's entity handle. Once in the ParaView GUI, selection 

obtains the VTK cell id, which has associated field data that provides the MOAB entity 

handle it is referencing.  

 At this early step, ParaView's visualization benefits have already become visually 

apparent. Figure10 shows an ITER benchmark that was used to check the progress of the 

plugin throughout development. This model is viewed in Cubit. Its exact construction details 

such as materials and purpose of cells can be seen in Appendix A, but is immaterial to the 

development. By adding in the MOAB entity information, Figure 11 shows how the 

visualization of the model has changed within ParaView. Distinct properties such as surface, 

volumes, materials, etc. can be visualized by examining color gradients. 
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Figure 10. A Cubit solid model of the ITER benchmark 

 

Figure 11. ParaView before (left) and after (right) allowing visualization based off of MOAB entity 

handles. 

 In addition to placing data on the VTK model representing the entity handles, the 

MOAB entities are tagged with data that ties them to the specific CATEGORY_TAG value 
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(volume, surface, etc.). This is necessary since an entity like a point could correlate to 

multiple CATEGORY_TAG values (a vertex, curve, surface, etc.). In order to have this data 

on the individual entities, a category bit masking tag is added on them. This bit masking tag 

assigns a 0 or 1 bit for each value. This set of bits is stored as an integer to minimize memory 

overhead. A 1 bit is used to initialize the tag. For each CATEGORY_TAG value, the integer 

is left bit-shifted; if the entity being tagged is a member of that value, the 0 bit is switched to 

a 1. The CATEGORY_TAG values are iterated over alphabetically. For example, if a point is 

a member of a volume and a group, but not a vertex, curve or surface, it's tag would be 

101001 (initial-1; curve-no; group-yes; surface-no; vertex-no; volume-yes). In the next 

section, this bit masking is utilized to find the entity set that the user desires. 

3.1.4 VTK selection connected to manipulating model 

 At this point, a prepared model is viewable in ParaView and a GUI panel exists with 

tag information selection. In order to connect the GUI selection in ParaView to MOAB entity 

sets, the user must first select a "picking" mode on the GUI panel. This drop down box 

contains all the possible category tag values introduced when the model was loaded.  

 Now, the user can select a single VTK cell up to all the VTK cells. Grabbing this set 

of cells, the field data from each cell is then extracted, which contains the corresponding 

MOAB entity handles. Placing these handles into a MBRange allows them to be fed into an 

algorithm that will predict what entity set the user most likely desired. Each MOAB entity 

handle is used to get the entity and corresponding bit masking tag. This tag is compared to 

the current selection mode, which will only ever have one bit that's 1 (true), except for the 

first bit (always 1). Any entities that don't have this bit true are ignored. The remaining 
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entities are iterated over to find out, which entity set(s) contain them. These entity sets are 

returned as the result of this algorithm.  

 One of the key concepts analyzed in performing this picking, selecting, and tagging 

was ensuring speed was optimized. In getting from the selection of VTK cells to returning 

entity handles, a high speed and memory cost can occur when a user selects every single 

VTK cell and thus, all the MOAB entities. In order to increase the speed, the code first 

checks the number of entity handles (from VTK cells) selected and the number of entity sets, 

whichever group is smaller is the group selected to iterate through. As this group is iterated 

through it is compared to the other group. If they value the iterator is pointing to is in the 

"other group," it is added to the list of results. Originally, the algorithm only ever iterated 

over the selection. By using the original method, the speed of returning the proper entity sets 

for a model with 4.1 million was 609 seconds.  This dropped 30% by iterating over the 

smaller group. 

 The next step takes the user's desired entity set(s) and applies the tag key/value pair. 

The user selects the tag key on the model or chooses to create a new one. After entering a 

value and hitting either "Apply" or "Delete" the tag key/value is either added to the entity set 

or removed, respectively. When the user has finished adding all pertinent metadata, the 

MOAB file can be written by clicking the "Write MOAB to File" button.  
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3.2 Increase R2S-ACT Versatility 

3.2.1 Limitations of original R2S-ACT 

 In the original version of the R2S-ACT workflow, Python iterated through each voxel 

and found the Cubit volumes that were in that voxel. Then, that volume information was used 

to obtain the material information. This material information was then stored along with the 

fraction of that material in each voxel. This worked effectively, but it introduced a problem 

when it came to obtaining activation data such as clearances and WDR. The problem was 

that each voxel was given the proper size in the ALARA input, and it was defined as a 

mixture of all materials that were present in that voxel. As models became more complex 

with higher-order surfaces, the small voxels on bordering surfaces were all different based on 

how it split the two or more conjoining entities. Clearance and WDR are volume integrated 

quantities and since the ALARA geometry did not keep original volume's information intact, 

it couldn't be calculated.  

 An example would be to have two voxels (a, b) containing two different cells (Cell 1, 

2) and two different materials (mix_x, mix_y). The volume of each cell will be         and 

       , respectively, and this can be seen in Figure 12 below. Each voxel has an associated 

neutron flux,     . Now, R2S-ACT finds the volume fraction, associates it with the material 

and defines a mixture. If the WDR is desired in "Cell 1", this is lost since ALARA is really 

calculating the WDR over the combination of "Cells 1 and 2" within "voxel a", which could 

be drastically different from just "Cell 1" depending on B's material composition. In real 

reactor designs, some components have thousands of voxels or more, if each one of those 

was averaged with a wrong material, the final result would be entirely erroneous. 
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Figure 12. A depiction of the original R2S-ACT method 

3.2.2 Implementing Cell-Based Calculations 

 To combat the limitations of the original R2S-ACT workflow, the Python script 

known as "mmgrid.py" was edited to iterate through the geometry and organize the 

information based off of cell instead of material/mixture. Figure 13 provides a good contrast 

against figure 12 and summarizes the steps performed for the ALARA input file.  
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Figure 13. A depiction of the improved R2S-ACT workflow method. 

  

 In order to implement this, the cell information needed to be added as a tag on the 

meshed geometry. The volume list was called using PyTAPs and every cell was assigned a 

tag in the format of "Cell_#." Next required manipulation of the ray-firing algorithm in order 

to keep track of cells rather than materials. When ray-firing, sampling of the cell is 

performed by adding a normalized distance for each cell it encounters when in a voxel. A 

summary of the algorithm is provided. 
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for each dimension (x, y, and z) 
Go in direction (u,v,w) 
 for mesh square encountered 
  for  fragment of cell encountered 
   Add normalized distance traveled for this cell to 
an    array of all the ordered cells in the geometry 

 

 This summed value is found for each voxel and then normalized by the ray-tracing 

scores made in each voxel. This ray-tracing feature was still maintained for materials as well. 

In this way, accurate material information on a per voxel basis is also available for the mesh 

in addition to the cell information. With the information, each cell fraction in each voxel is 

iterated through and assigned a tag with its name ("Cell_#"), its material, and a ray-tracing 

error.  

3.2.3 Create of Equivalent Geometry and Flux 

 At this point, there exists a structured mesh with numerous voxels with volume 

fractions of the cells that they contain. This mesh needs to be examined with PyTAPs and the 

ALARA input needs to be written from this. In "write_alara_geom.py," the following will be 

performed: write the geometry information, write material information, write the mixtures 

derived from the materials for each zone. 

 The ALARA input format controlled by "write_alara_geom.py" is summarized 

below. A full input file example can be seen in Appendix B. 

geometry rectangular 
 {Volume} zone_# 
 .... .... 
end 
mat_loading 
 zone_#  mix_# 
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 ....  .... 
end 
mixture mix_# 
 material {name_from_library} {Rel. Density}
 {Fraction in Mix} 
end 
....(add more mixtures) 

  

 In ALARA, zones are large areas over which data is desired to be collected. When 

making the modifications, the zone became representative of each cell. Zones were selected 

to be cells to maintain the idea of simplicity and allow the user maximum flexibility. Another 

option would have been to make zones correlate to materials; in some instances, however this 

would fail. For example, imagine that there is one component, Cell #1, made of Mix #1 and it 

is close to the plasma in a nuclear fusion reactor. Now imagine you have another component, 

Cell #2, that's beyond the vacuum vessel, but also composed of Mix #1. These components 

should not be combined if WDR is desired. This problem could not be fixed by the user 

either since they would have to know which volumes were for each cell in the input. To 

eliminate this problem, the zones are cell-based. If WDR is desired across multiple cells, then 

the user can change the output to collect results based off of mixture instead of zone. 

 In keeping with simplicity, the mixtures are numbered matching to the material 

identification numbers of the materials placed on the Cubit model. The material definitions 

within each mixture have a name of the form "mat#rho#"--pulled from the geometry--with 

100% relative density and fraction in mix. In most cases, the material list will need to be 

altered to match the material library the user has defined. The last step is to simply match the 

zones to their respective mixes. This information is on the mesh already, so the program 

simply iterates over all the zones (cells), and finds out what mixture is associated with it. 
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With the geometry details of the ALARA input, the file is generated and the user has an 

executable ALARA input deck. 

 The last modification to the R2S-ACT workflow is to print out the correct number of 

fluxes for all the volumes. The old workflow only required one flux for each voxel. As figure 

13 reveals, each voxel needs a flux repeated for each cell within its boundaries. The only 

necessary change was to add a loop over each cell within each voxel after entering the loop 

containing each individual voxel. This adds minimal complexity to the code and should 

trivially slow down the step, since writing the fluxin file only takes a small fraction of the 

time that the ray-firing takes. 

3.3 The Future of the Nuclear Analysis Workflow 

 As these developments were added to the nuclear analysis workflow, the research and 

results obtained by the users of this software will become more accurate and meaningful. 

There is always the need for more advancements, nonetheless. As soon as improved methods 

are introduced, new ideas and improvements are already underway. On the ParaView side, 

more generalizations of the plugins can be developed along with easier selection and 

manipulation of the data, including, hopefully, editing the geometry rather than just metadata. 

The R2S-ACT's next big improvement will be to fully support unstructured meshes. DAG-

MCNP already possesses the capability to create an unstructured mesh to perform neutronics 

analysis, adding that ability to the Python scripts and utilizing it in ALARA would provide 

increased accuracy in collected results. This is due to the fact that a conformal mesh could 

almost identically match the curves of the real cells within a reactor system.  
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4 Validation and Testing of Developments 

 One of the most pertinent aspects of any scientific computing development project is 

to ensure the program does as desired when ultimately finished. A series of excellent 

practices is provided by Wilson, et.al. [19] and includes focusing on writing programs simply 

for people, making small changes, validating along the way, and a handful of other key 

concepts. These guidelines were followed with this nuclear analysis pathway development in 

order to result in a successful series of programs. This section goes over the testing and 

validation used in each of the code developments introduced. 

 One of the first methods used to develop the code was setting up revision control. 

Github [x] was used in order to provide ultimate versatility and store data online. This 

allowed the syncing and use of the altered code from computers in any location with internet 

access. On top of this feature, revision control allows use of "commit" messages to keep 

track of code changes. This provides additional comment-like structures to development and 

changes can be reverted or accepted. Probably the most important aspect of revision control 

is the ability to perform "pull requests" and gain peer review of progress. This allows 

additional programmers to help correct since small errors such as forgetting a semi-colon, 

which cause major frustration. 

 Another development tool used was unit tests. These are small snippets that check to 

see that portions work as expected, and just as importantly, fail when they are expected to. 

This in conjunction with printing information to the command line, helped provide a general 

understanding and confirmation that the code was working as expected. 

 The final step was to evaluate real-models from simple solutions to complex solutions 

that will be referred to as benchmarks. These were specifically designed with the intention to 
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test some form of the code along the way. Due to the relative simplicity, these validation 

models could objectively be compared to known-as-accurate results garnered through a 

different process. 

4.1 Validating the R2S-ACT Workflow Modifications 

 The R2S-ACT workflow modifications broke a script called "r2s_step1.py" that fired 

rays through the meshed geometry, wrote the ALARA geometry file, and wrote the ALARA 

flux file. There were three major benchmarks: one to produce the same results that the 

original workflow would have, one to test simple cell divisions of voxels, and one to analyze 

more complex divisions. 

 The basis of all three benchmarks was a parallelepiped 5 cm by 5 cm with a 20 cm 

depth designed in Cubit. Reflecting boundaries were placed on the x and y surfaces and a 

graveyard (zero importance/particle termination) was placed on the z-direction caps. A 1 

MeV mono-directional source was placed at the furthest end and directed down the 

geometry. A 175 neutron group flux was calculated for each interval. Figure 14 below 

depicts these properties. During the ray-firing step, except where specified, the code fires 50 

rays per mesh row. 
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Figure 14. The basic geometry that all the benchmarks are derived from. The neutron source is also 

shown. 

 For the subsequent benchmarks, there will be two equivalent tests at each level. The 

first one will now be referred to as R2S-ACT (this is the version with the modifications). The 

second one will be referred to as "native MCNP/ALARA." The second one will be used as 

the reference case in all scenarios since it only utilizes analysis programs and code that has 

been extensively validated (MCNP and ALARA). For the volume values used in ALARA, 

the native MCNP/ALARA tests use Cubit to find the analytic volume. In order to create the 

flux neutron flux file for native cases, MCNP f4 tallies (cell flux: neutrons/cm
3
) are used with 

energy bins identical to the fmesh4 card used in the R2S-ACT method. Each of those fluxes 

is then manually copied and pasted into a "manual-fluxin" file for ALARA to process. In this 

way, the R2S-ACT workflow is never utilized for the reference case. The input files for 

MCNP and ALARA, as well as some output can be found in Appendix C. 
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4.1.1 Benchmark #1 

 The first, and simplest, benchmark was designed simply to test that accurate volume 

information was getting input from the ray-tracing into the ALARA input. Mainly, it ensured 

that the code had all been written correctly.  

 For this benchmark, the entire model is composed of 100% Fe at 7.874 g/cm
3
. The 

flux normalization was 10
8
 n/s with a 10 year flux and a 0.15 year resting period. By 

choosing the material such that it encompassed the whole volume of each voxel, this ensured 

that both the original R2S-ACT workflow and the cell-based modified R2S-ACT workflow 

would provide the same results. In addition, a second model could be created that manually 

"slices" the rectangle into the same volume elements as the voxels in the mesh. These results 

are then matched for accuracy. The two models used are shown below in figure 15. 

 

Figure 15. The figure on the left utilizes R2S-ACT, the figure on the right uses only native 

MCNP/ALARA. 

 The first check was to ensure the ALARA input had been properly created. The 

simplicity of this model lends itself to checking the input and it matches perfectly. The 

interval sizes are exactly 125 cm
3
, as expected, and the mixture and zone definitions are 

properly defined for the cell. Next, the activation of the elements is analyzed. The specific 
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activity in each interval or voxel, is shown below in Table 1. It is found to be the same for 

each interval in the native ALARA step (Figure 15 on the right) and the R2S Benchmark #1.  

Table 1. Interval-based activities for benchmark #1 

Interval 
Base Case 

[Ci/cm
3
] 

Benchmark 

#1 [Ci/cm
3
] 

Volume [cm
3
] 

Total Activity 

[Ci] 

1 6.8794E-12 6.8794E-12 125 8.5993E-10 

2 4.7616E-13 4.7616E-13 125 5.9520E-11 

3 8.0451E-14 8.0451E-14 125 1.0056E-11 

4 1.9557E-14 1.9557E-14 125 2.4446E-12 

  
Total:: 500 9.3195E-10 

 

 The average zone activity is then calculated from the intervals and compared to the 

activity calculated from figure 16, which simply finds the flux over the whole geometry.  

Table 2 shows that the same numbers are calculated. The benchmark confirms that it has 

retained the same computational technique as the material-based R2S method.  

 

Figure 16. The benchmark geometry as one zone. The average flux over this one zone is the same as 

calculated with the mesh. 
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Table 2. Zone averaged activities for benchmark #2 

 Specific Activity [Ci/cm
3
] 

Base Case Calculated Zone: 1.8639E-12 

Calculated Zone Averaged 

(Benchmark #1): 
1.863892E-12 

 

 

4.1.2 Benchmark #2 

 The second benchmark aimed to confirm that two different cells split across voxels 

would be properly calculated. Figure 17 shows the R2S geometry in which there are five 

separate cells. In the R2S geometry, the first cell is 2.5 cm in depth in order to offset each full 

cell at the midpoint of each voxel. Also, an additional material was introduced. The green 

colored material is still the Fe at 7.874 g/cm
3
 and the red colored material is W at 19.35 

g/cm
3
. The flux is normalized to 10

16
 n/s. An irradiation history of a 4.9 year pulse with a 0.1 

year rest was used along with this normalization. 
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Figure 17.  Benchmark #2 uses two different materials. The cells are split at exactly halfway by the mesh. 

 

 The native ALARA model has the same geometry except there are no cells split by 

voxels. Table 3 shows the interval and zone differences between the R2S model and the 

native ALARA model. Acquiring the flux in each full cell of the model in all 175-neutron 

groups, this information was entered into a fluxin file for the native input. In comparison, the 

R2S model would have eight fluxes of 175 groups (one for each cell in each mesh interval) 

and the native ALARA model would only have five fluxes of 175 groups (one for each cell 

in the entire geometry).  
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Table 3. The ALARA inputs for both variants are set up with the parameters in this table 

Native ALARA Benchmark #2 ALARA 

Volume Zone Label 
Mixture 

Label 

Benchmark #2 

[cm
3
] 

Zone Label 
Mixture 

Label 

62.5 Zone_1 Mix_1 63.1 Zone_1 Mix_1 

125.0 Zone_2 Mix_3 61.9 Zone_2 Mix_3 

125.0 Zone_3 Mix_1 63.1 Zone_3 Mix_1 

125.0 Zone_4 Mix_3 61.9 Zone_2 Mix_3 

62.5 Zone_5 Mix_1 62.376625 Zone_3 Mix_1 

  
 62.683375 Zone_4 Mix_3 

  
 63.016625 Zone_5 Mix_1 

  
 61.983375 Zone_4 Mix_3 

 

 By printing output information to the shell during the execution of the "r2s_step1.py" 

script, the success or failure of the benchmark could be monitored. One of the output checks 

was to ensure the cell and materials matched for each voxel after ray firing. Since the number 

of cells is not equal to the number of materials, these lists would be of different size, but by 

recording their values at each voxel iteration, a proper comparison could be made because 

the list order does not change. Another output observation is ensuring the Python dictionaries 

for the cell fraction is as expected for each cell. This will mean something along the lines of 

"At voxel 1: {(10, 'Cell_10'): 0.50, (7, 'Cell_7'): 0.20, (3, 'Cell_3'): 0.3}" would appear and 

this would be compared to the Cubit fractions. These comparisons matched. 

 Performing the R2S-ACT ALARA step and comparing it to the native ALARA step, 

revealed that the code was successfully altered to gain results based on cells instead of 
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materials. The table below compares the "base case" (native ALARA) and benchmark #2 

(R2S-ACT ALARA).  

Table 4. Benchmark #2 specific activities at shutdown 

Zone 
Base Case 

[Ci/cm
3
] 

Benchmark #2 

[Ci/cm
3
] 

% Discrepancy 

1 4.8198E-03 4.8198E-03 0.00% 

2 3.9859E-01 3.9894E-01 -0.09% 

3 3.4698E-03 3.4635E-03 0.18% 

4 1.8070E-01 1.7726E-01 1.90% 

5 1.1984E-03 1.1984E-03 0.00% 

 

 The discrepancies between the zones is almost non-existent. The differences that do 

exist are due to some flux statistical errors from the MCNP input that ended up affecting the 

final answer. This fluctuation, when combined with the small discrepancies between the ray-

tracing volumes calculated, can explain the small variance.  

 

4.1.3 Benchmark #3 

 The final benchmark for the R2S-ACT modifications involved a more complex 

geometry that didn't involve even splitting of each voxel. Another key component of this 

model is the addition of a void region. The void region serves to ensure that the code does 

not fail when encountering an empty volume. For this benchmark, accuracy was found by 

printing out the volume of each cell in each voxel. This information was compared to Cubit's 
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calculation of the volume.  Two materials were used in the figure below--tungsten and iron--

along with the void. 

 

Figure 18. The final benchmark has a void region (purple) along with the tungsten (red) and iron (green) 

materials. 

 The first check in the process was once again to confirm volume calculations. By 

printing out the volume fractions for each voxel for each cell to the Unix shell, Table 5 was 

compiled. The fractions found by R2S agreed quite nicely with the analytic volume fractions. 

These values were less than the 2.5% maximum error that the ray-tracing algorithm 

computed.  
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Table 5. This table shows the volume fraction comparison between the R2S method and the analytic 

volume 

Voxel # Zone # 
Analytic Volume 

Fraction (Cubit)  

R2S Volume 

Fraction 

Voxel # 1 1 50% 50.08% 

 
2 50% 49.92% 

 
3 0% 0% 

 
4 0% 0% 

 
5 0% 0% 

Voxel # 2 1 0% 0% 

 
2 0% 0% 

 
3 41.67% 40.55% 

 
4 8.33% 7.83% 

 
5 50% 51.62% 

Voxel # 3 1 0% 0% 

 
2 0% 0% 

 
3 25% 24.62% 

 
4 25% 24.40% 

 
5 50% 50.98% 

Voxel # 4 1 0% 0% 

 
2 0% 0% 

 
3 8.33% 8.34% 

 
4 41.67% 41.24% 

 
5 50% 50.42% 

 

 Once again activity was compared between the meshed geometry and the original 

geometry placed into native ALARA. The fluxes were gathered for each cell from MCNP for 

the native version and input into the ALARA geometry. This was then compared against the 

meshed R2S ALARA results. The values along with the discrepancies between the two is 

shown in Table 6 below. In the first zone and last zones, the discrepancy was rather high. 
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Table 6. The specific activities of benchmark #3 

Zone # 

Specific Activity 

(Native ALARA) 

[Ci/cm
3
] 

Specific Activity 

(R2S ALARA) 

[Ci/cm
3
] 

% Discrepancy 

1 3.61450E+01 2.52890E+01 30.03% 

2 0.00000E+00 0.00000E+00 -- 

3 3.80240E-01 3.86140E-01 -1.55% 

4 4.97300E+01 4.83550E+01 2.76% 

5 2.11380E-01 2.51990E-01 -19.21% 

 

4.1.4 Ray-firing analysis 

 The error introduced does raise an interesting topic of discussion for nuclear analysis: 

how many rays should be fired for the 3D activation analysis. This question has many factors 

contributing to it including how complex the geometry's surfaces are through that voxel, how 

large the voxel is relative the geometry size, and the random numbers of the starting rays. An 

analysis of ray tracing on the third benchmark was performed to better understand the 

changes.  More rays are expected to increase the accuracy of the volumes obtained. In 

order to offset the random number selection of the ray-firing, 100 runs were performed of 

each volume calculation and then averaged. The percent discrepancy from the accepted Cubit 

volumes is plotted as function of rays for each separate voxel and within each cell. The 

discrepancies are all expected to be under the maximum error observed. The volumes are 
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well within the error in all cases. The maximum is high enough that it is above the maximum 

of the plot. Figures 19-22 show this for each voxel. 
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Figure 19, 20, 21, 22. The discrepancies between analytic and calculated volume for each voxel 

 

 The general trend of the plots reveals that more rays being fired calculates the volume 

more closely to the analytic volume, as expected. Voxel 3 seems to reveal that at some point, 

as long as the results are within the error, increasing rays isn't justified due to computer time. 

In order to take a more close look at how ray-tracing will perform on real-world problems 
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was examined by summing each cell's volume in each voxel over the entire geometry for 

benchmark #3 and then comparing that to the analytic cell volume. This results in figure 23 

below. Once again, a downward trend is seen, but the benefit seems to be minimal once 

below expected error and statistical noise introduces random fluctuations. 

 

Figure 23. The discrepancy between cell volumes over the entire geometry due to ray tracing 

 

 

5 Application of Developments 

 The code developments documented necessitate a real-world application in order to 

fully comprehend their usefulness to the users. There are multiple pathways that an analyst 

can use in order to gain accurate results from a nuclear fusion system. By using these 
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developed methods, a simple, clean pathway is revealed that works quickly and efficiently, 

and hopefully reduces problems that may arise from using other pathways. In order to be 

successful, a number of codes are used and many problems solved. This series of steps can 

result in error in application that would be unacceptable for a company or research 

institution.  This chapter examines a real-world problem in the fusion community by utilizing 

this pathway and preventing user-error that may arise. 

5.1 Developing the Geometry Model 

 The nuclear fusion power plant studied is the ARIES-ACT-1 (SiC/LiPb)--the most 

recent design in the ARIES series. The ARIES Team [20] has developed a multitude of 

nuclear fusion reactor studies. An extremely in-depth analysis is performed that provides 

detailed results and analysis from power generation to radwaste management to a cost 

analysis. This specific study utilizes a combination of Aggressive and Conservative 

Technologies (ACT), and in the case of ACT-1, looks at an SiC-based blanket with advanced 

physics. The fusion power of the device is 1804 MW and it has a major radius of 5.5 m. 

Figure 24 below labels some of the more important components of the device. 
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Figure 24. A slice of the ARIES-ACT-1 (SiC/LiPb) fusion device. 

 For ease of 3-D modeling, an 11.25
°
 toroidal section of the plant, cut at the midplane 

was modeled like in figure 25. Reflecting boundary conditions were applied at the outside 

edges of the 1/64th model in order to simulate the full device. The plasma region is split into 

three nested source distributions for analysis in MCNP. The center has 63% intensity, then 

32.5%, and then 4.5%. This model was created using Cubit as the solid modeling engine.  
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Figure 25. The modeled 1/64th device. The nested plasma source is shown in gradient colors. 

5.2 Preparing Model for Neutronics Analysis 

 In order to add the metadata necessary to the model, it was opened in ParaView with 

the plugins activated. The DAG-MCNP analysis code is being edited to handle the proper tag 

key/value pairs when it comes to materials and MCNP tallies that will be added with this 

new, more accurate method.  

 Once visualized the proper material metadata is added. These are summarized in 

Table 7 below. The MATERIAL_TAG references the MCNP material number and the 

MATERIAL_DENSITY_TAG references the density in atoms/(barn-cm) if it is positive, and 

density in g/cm
3
 if it is negative. 
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Table 7. The material metadata added to the ARIES-ACT-1 model. 

MATERIAL_T

AG 

MATERIAL_DENSITY_

TAG 

MATERIAL_T

AG 

MATERIAL_DENSITY_

TAG 

1 0.030167 13 0.0725354 

2 0.06372742 14 0.0859713 

3 0.037611 17 0.04650951 

4 0.0664162 18 0.070499 

5 0.0670813 19 0.042139 

6 0.0842419 20 0.0408082 

7 0.0659506 21 0.0428037 

8 0.0640882 22 0.050183 

9 0.0804506 23 0.043649 

10 0.0722694 24 0.0632489 

11 0.0720699 26 0.058622 

12 0.070274   

 

 

5.3 Entering the R2S-ACT Workflow 

 Once the model has been pre-processed and prepared for analysis, it begins to enter 

the R2S-ACT workflow. The ultimate goal of this study is to find the specific activity, waste 

disposal rating, recycling dose rate, and clearance index of the inboard first wall, which are 

shown in figure 26 below. First, a meshed neutron flux file from MCNP is required. In order 

to do this, an MCNP input is prepared. The input deck (contained in Appendix C) defines the 

constituents of the materials, the source, and tally definitions. Since an activation result is 

desired, the fmesh4 (similar to an f4 tally, but a mesh can be defined) card is the most 

important tally in the problem. The mesh is designed to be a bounding box around the four 

cells that compose the first wall. An approximately 2 cm by 2 cm by 2 cm mesh size is 

requested from the program. In addition, the flux is also being gathered in full individual cell 
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in order to perform validation later. The input is combined with the faceted geometry file, 

and MCNP runs for 1e8 particle histories. 

 

Figure 26. The red boxes are surrounding the curved inboard first walls of the device. 

5.3.1 Discretized Mesh Source Creation (Step 1) 

 In order to create a valid input deck for ALARA next, the neutron flux mesh file has 

to go through processing in the Python "r2s_step1.py" step. A configuration step has defined 

all the names of the files needed--the geometry file, the input file, and the meshtal file--so the 

user can just run the Python script. For this analysis, ten rays are fired along each face in each 

voxel. This implies that 2000 rays are being fired per voxel. With the amount of voxels 

selected, the script must fire just shy of 24.5 million rays. The whole process takes 

approximately two hours to complete. Following this, the R2S-ACT workflow prepares the 

ALARA input file and the fluxin file for the problem. 
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 Figure 27 below shows the meshed neutron flux file overlaid on a wireframe model of 

the device. As expected there is a higher neutron flux at the midplane (the reddish region) 

and the flux decreases further up the z-axis. The lack of symmetry toroidally is due to the fact 

that the structured mesh is a rectangular bounding box for the first wall cells, whereas the 

actual reactor geometry is rotating around the z-axis.  

 

Figure 27. The neutron flux mesh file overlaid on the reactor geometry. 

5.3.2 Performing the Activation Calculation (ALARA) 

 Following the completion of R2S-ACT's Step 1, the user is given two files necessary 

for finding the activation in the fusion system: "alara_geom" and "alara_fluxin." For the 

ARIES-ACT-SiC fusion system, specific activity, total decay heat, WDR, recycling dose, 

and clearance index are desired at a multitude of time steps following shutdown. 



64 

 

 Utilizing the 1804 MW fusion power value for ARIES-ACT-1, the flux input file is 

normalized by 9.99727*10
18

 n/s. For this analysis, the inboard first wall was examined by 

irradiating it under this flux schedule for 3.8 FPY (Full Power Years) with 85% availability. 

In addition to this 3-D analysis, the results were compared to the 1-D results gathered from 

the PARTISN 1D flux input to ALARA using the average NWL over the appropriate first 

wall. The specific activity, total decay heat, recycling dose, IAEA clearance index, and 

FetterLo clearance, respectively, are plotted below for the inboard first wall, the inboard 

vacuum vessel, the outboard first wall, and the outboard vacuum vessel. Here, the 3D results 

are slightly lower at early times. This variance comes from the approximation made to 

estimate the 1-D normalization. The results also confirm that the method used to approximate 

the 3D heterogeneity effects are a very good 1D approximation of a complex 3D system. 

Also, in all results the 1D activation ends up very close to the 3D activation results, which 

confirms the accuracy of the method. 

 Figures 28 through 32 represent the model's inboard first wall.  
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Figure 28. The specific activity for the inboard first wall. 

 

Figure 29. The total decay heat for the inboard first wall. 
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Figure 30. The recycling dose rate  for the inboard first wall. 

 

Figure 31. The IAEA clearance for the inboard first wall. 
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Figure 32. The FetterLo clearance for the inboard first wall. 

 The inboard vacuum vessel activation is plotted in figures 33-37. 
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Figure 33. The specific activity for the inboard vacuum vessel. 

 

Figure 34. The total decay heat for the inboard vacuum vessel. 
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Figure 35. The recycling dose rate for the inboard vacuum vessel. 

 

Figure 36. The IAEA clearance for the inboard vacuum vessel. 
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Figure 37. The FetterLo clearance for the inboard vacuum vessel. 

 The outboard first wall activation is plotted in figures 38-42. 
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Figure 38. The specific activity for the outboard first wall. 

  

Figure 39. The total decay heat for the outboard first wall. 
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Figure 40. The recycling dose rate for the outboard first wall. 

  

Figure 41. The IAEA clearance for the outboard first wall. 
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Figure 42. The FetterLo clearance for the outboard first wall. 

 The outboard vacuum vessel activation is plotted in figures 43-47. 
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Figure 43. The specific activity for the outboard vacuum vessel. 

  

Figure 44. The total decay heat for the outboard vacuum vessel. 
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Figure 45. The recycling dose rate for the outboard vacuum vessel. 
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Figure 46. The IAEA clearance for the outboard vacuum vessel. 
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Figure 47. The FetterLo clearance for the outboard vacuum vessel. 

5.3.3 ARIES-ACT-1 Model Validation 

 Taking a real-world model was the final test for the code alterations introduced to the 

R2S-ACT workflow. In addition to obtaining the specific activity, total decay heat, recycling 

dose, clearance index, and WDR values to check consistency in the R2S workflow were 

collected. The first validation of the workflow was performed by obtaining the volumes 

analytically from the Cubit model that was prepared and comparing them to the volumes 

entered into ALARA from the ray-firing operations. Table 8 below shows this comparison as 

well as the discrepancy between the two evaluations. During the ray-tracing of 

"r2s_step1.py" error is collected for each ray and propagated through to the end. The final 

ray-tracing error is output to the user, and in the case of this analysis was 2.35%. As a result 

of this, the discrepancies between the more accurate Cubit volume and R2S-ACT's volume is 
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expected to be lower than 2.35%. The data fits comfortably under this value. Since the final 

activation data is obtained for all four cells, this discrepancy is even lessened as can be seen 

by the final row. 

 

Table 8. The volumes of the cells agree very nicely between Cubit's and R2S-ACT's ray-tracing. 

Volumes (cm
3
) Cubit (analytic) R2S-ACT % Discrepancy 

Cell #1 7076.57 7056.08 0.290% 

Cell #2 8457.39 8640.29 -2.163% 

Cell #3 8457.49 8399.93 0.681% 

Cell #4 8457.49 8465.31 -0.093% 

All Cells 8112.24 8140.40 -0.348% 

 

 The next validation step involved preparing a native ALARA input to compare to the 

R2S-ACT workflow ALARA. The f4 tally added to the input deck of MCNP at the start of 

the workflow now comes into play. The flux in each of the 175 neutron group energy bins 

was placed into an ALARA fluxin file (from highest energy to lowest energy, the opposite of 

MCNP). In the same cell order that the fluxes were placed in the fluxin file, the volumes of 

that respective cell were added in the geometry definition of ALARA. The materials were 

properly defined and related to these cells, and then the native activation step was performed. 

Table 9 below shows the comparison between the native and R2S-ACT methods by 

examining the activity in the four cells at shutdown. The agreement is within an acceptable 
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range of less than 2.35% that the ray-tracing could be off by.  Once again, looking at the total 

activity makes the discrepancy even less. 

 

Table 9. A comparison between native ALARA and the R2S-ACT workflow reveals only a small 

discrepancy. 

Activity 

[Ci/cm
3
] 

Native R2S-ACT 
% 

Discrepancy 

Cell #1 5.82E+01 5.93E+01 -1.99% 

Cell #2 5.74E+01 5.84E+01 -1.64% 

Cell #3 5.73E+01 5.84E+01 -1.94% 

Cell #4 5.74E+01 5.76E+01 -0.47% 

All Cells 5.75E+01 5.84E+01 -1.46% 
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6 Conclusions 

 This thesis has increased the effectiveness with which activation analyses can be 

performed by offering additional tools to find accurate results on complex 3D geometries. 

The first tool assists analysis by reducing human error, automating actions, and allowing 

visual checkpoints and tests to ensure the accuracy of a model before analysis is performed. 

The simplicity of the new tool also decrease total time in the analysis workflow. This time 

adds up when multiple iterations are performed after changes to geometry or new desired 

data. Indirectly, this leads to better analysis and allows the user to focus on the output data 

rather than worry with the model preparation. Once in the nuclear analysis workflow, the 

improved R2S-ACT workflow scripts allow users much needed activation solutions for their 

systems beyond simple 1D calculations. This greatly reduces user time, since performing a 

similar analysis on complex models by hand would take many user hours. 

 The tools introduced and developed within this body of work were evaluated by 

selecting a real-world nuclear fusion device from the ARIES project and undergoing the 

nuclear analysis process from start to finish. This evaluation showed the benefits of having a 

simple workflow to follow, but also revealed the difficulty of balancing complexity and 

efficiency. Examining complex 3D geometries provides more accurate data on the device, 

but at the expense of a large increase in computational demands. Ray-tracing analysis 

compared to time demonstrated the trade-off that must be accepted. Additional, simple tests 

confirmed the accuracy of the results when large numbers of rays for ray-tracing is 

permissible.  
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6. 1 Some Proposed Future Work 

 While performing this work and developing these tools, there were numerous 

instances of realizations where more work could be done and areas improved. Time proved a 

limiter, but hopefully, and eventually, they will be realized. Now that the plugin is developed 

and with the new capabilities of a completely unique, self-contained ParaView client, it 

would prove useful to develop a very simple, low-level ParaView client with only the bare 

essentials for nuclear analysis available. ParaView's size and versatility are nice for some 

visualization work, but for the purpose of this workflow, prove daunting. The amount of time 

it would take to develop this doesn't seem too intensive since most components and features 

of the underlying VTK model would be ignored. Nonetheless, creating a completely unique 

ParaView client application would require an excellent knowledge of that underlying model, 

so the learning curve would be high. 

 As frequently occured, the ParaView plugin could be further developed to have more 

error checking features to prevent the user from placing metadata on the model that may 

break the analysis execution, or even worse, go unnoticed. In addition, some work could be 

spent on increasing the robustness of the plugin for use on extremely large datasets. 

ParaView internally can handle this by creating instances of the client across many cores, but 

the plugin's response to this may be less than desirable. 

 The activation data collected from the R2S-ACT workflow could be improved by 

developing a powerful unstructured mesh workflow that can be used in the same ways as the 

current workflow. This could help reduce errors and assist even more in complex models. 

Another useful addition would be to develop post-processing tools for the output. ALARA 

provides heaps of output data, but not in a useful form. By spending time on developing post-
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processing tools that could output the data in numerous ways based on a user's requests, 

ALARA's depth of data could be more routinely utilized by researchers. 
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Appendix A 

Shutdown Dose rate Calculational Benchmark 

This note described the radiation transport and activation calculations to be carried out by 

each participant of a calculational benchmark. 

 
Figure 1: Problem geometry 

 

Geometry 

The geometry is cylindrical (see figure 1).  

The radius of the outermost cylinder is 100 cm. All radiation is lost beyond this cylinder. 

The source cell is 10cm thick. There is then a gap of 100 cm. 

The material section consists of an outer steel cylinder is 550 cm long with a 50 cm radius 

hole through it. The first 210 cm of this hole is nearly filled with a steel and water cylinder 

which itself has a 7.5 cm radius hole through its centre. There is a 2 cm gap between the steel 

and water cylinder and the outer steel cylinder. 
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There is a 15 cm thick steel plate at the end of outer steel cylinder. There is a 2 cm gap 

between this plate and the outer cylinder. 

The tally cells are four concentric circular cells in a void at the rear of the material. These 

cells begin 30 cm from the back of the steel and are 10 cm thick (i.e. the centre of the tally 

cells is 35 cm from the plate’s rear face). The outer radii of these tally cells are 15, 30, 45, 

and 60 cm respectively. 

 

Materials 

Table 1: Material definitions 

Steel & water 

Element Atom fractions 

H 1.46E-01 

B 4.02E-05 

C 8.14E-04 

N 2.17E-03 

O 7.29E-02 

Al 8.04E-04 

Si 7.73E-03 

P 3.50E-04 

S 1.02E-04 

K 5.55E-06 

Ti 1.36E-03 

V 3.41E-05 

Cr 1.46E-01 

Mn 1.42E-02 

Fe 5.03E-01 

Co 3.68E-04 

Ni 9.06E-02 

Cu 2.05E-03 

Zr 9.52E-06 

Nb 4.67E-05 

Mo 1.13E-02 

Sn 7.31E-06 

Ta 2.40E-05 

W 2.36E-06 

Pb 1.68E-06 

Bi 1.66E-06 

Steel and water: density= 6.536 g/cm
3
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Steel 

Element Atom fractions 

B 5.14E-05 

C 1.04E-03 

N 2.78E-03 

O 6.95E-05 

Al 1.03E-03 

Si 9.89E-03 

P 4.48E-04 

S 1.30E-04 

K 7.10E-06 

Ti 1.74E-03 

V 4.36E-05 

Cr 1.87E-01 

Mn 1.82E-02 

Fe 6.44E-01 

Co 4.71E-04 

Ni 1.16E-01 

Cu 2.62E-03 

Zr 1.22E-05 

Nb 5.98E-05 

Mo 1.45E-02 

Sn 9.36E-06 

Ta 3.07E-05 

W 3.02E-06 

Pb 2.14E-06 

Bi 2.13E-06 

Steel: density = 7.93 g/cm
3
 

 

Source 

The neutron source is an isotropic 14 MeV neutron source emitted uniformly from within the 

source cell. The neutron production for activation calculations should be as described in table 

2 
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Table 2: Neutron production scenario 

Source Strength Duration No. of times 

1.0714×10
17

 2 years 1 

8.25×10
17

 10 years 1 

0 0.667 years 1 

1.6607×10
18

 1.33 years 1 

0 3920 sec 
17 

2.0×10
19

 400 sec 

0 3920 
4 

2.8×10
19

 400 

 

 

Tallies 

One tally will be the biological gamma dose (Sv/hr) which results from the neutron activation 

of the materials 10
6
 seconds after cessation of neutron production and averaged over each of 

the tally cells or as a description of the dose as a function of radius. The dose should be 

estimated from the gamma flux as prescribed in ITER_D_29PJCT - Recommendations on 

Computation of Dose from Flux Estimates. 

The second tally will be neutron spectra in n/cm
2
/s, normalised to a source strength of 

2.0×10
19

 n/sec. The tally should be made at eight locations: averaged over the front (near 

neutron source) and rear (away from source) faces of the steel and water cylinder and the 

steel plate and at points at the centre of each of these faces. The energy bin bounds for the 

neutron spectra will be: 

 

 

 

 

 

 

https://user.iter.org/?uid=29PJCT
https://user.iter.org/?uid=29PJCT
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Lower Bound (MeV) Upper Bound (MeV) 

1.00E-11 1.00E-10 

1E-10 1.00E-09 

1E-09 1.00E-08 

1E-08 1.00E-07 

1E-07 1.00E-06 

0.000001 1.00E-05 

0.00001 1.00E-04 

0.0001 1.00E-03 

0.001 1.00E-02 

0.01 0.1 

0.1 1 

1 10 

10 13 

13 14 

14 15 

15 16 

16 20 

 

The third tally will be the gamma ray spectra averaged over each of the tally cells indicated 

in figure 1 or as a description of the dose as a function of radius at a position in a plane 

parallel to and 35 cm from the rear face of the plate. The energy bins for the gamma ray 

spectrum will be: 
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Lower Bound (MeV) Upper Bound (MeV) 

0 0.1 

0.1 0.4 

0.4 0.6 

0.6 0.8 

0.8 1 

1 1.22 

1.22 1.44 

1.44 1.66 

1.66 2 

2 2.5 

2.5 3 

3 4 

4 5 

5 8 

8 10 

10 And beyond 
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Appendix B 
An example ALARA input file. 

Specify the geometry type 

geometry rectangular 

 

dimension x 0.0 

     100   100.0 

     100   200.0 

end 

 

mixture mix_0 

    # material <material_name> <relative density> <volume fraction> 

   element     fe      1.0     1.0 

end 

 

mixture mix_1 

   material 

end 

 

mat_loading 

     zone_0     void 

     zone_1     mix_1 

end 

 

# Specify the material, element, and data libraries. 

material_lib ARIES_matlib 

element_lib ARIES_elelib 

data_library alaralib FENDL2 

 

# Specify the cooling times desired for induced activation results. 

cooling 

    1   s 

    1   m 

    1   h 

    1   d 

    1   y 

    1   c 

end 

 

# Specify the dump file that will hold the solution details. 

dump_file   dump.file 

 

# Specify desired ALARA output format 
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# Photon source card will generate a photon source file which can be used in DANTSYS. 

output zone 

       units Ci cm3 

       constituent 

       specific_activity 

# number_density total_heat 

      photon_source  FENDL2  phtn_src 21  1e4  1e5  2e5 

         4e5  1e6  1.5e6  2e6  2.5e6  3e6  3.5e6 

         4e6  4.5e6  5e6  5.5e6  6e6  6.5e6  7e6  7.5e6  8e6 

         1e7  1.2e7  1.4e7 

end 

 

# Specify the fluxin file and normalization, if needed. 

# flux <flux_defn> <flux_file> <norm_value> <group_skip> default 

flux flux_1 rtflux 1.0e18 0 default 

 

 

 

# Specify the irradiation schedule using âscheduleâpulsehistoryâ 

mat_loading 

 

# length of pulse, flux for pulse, pulse schedule, post-pulse time 

    5 y   flux_1  pulse1         0 s 

   10 h   flux_1 pulse2      100 m 

end 

 

 

 

pulsehistory    pulse1 

# number of pulses, delay time between pulses 

    1    0 s 

end 

 

 

 

pulsehistory    pulse2 

   10   1 h 

end 

 

# Specify the value at which activation tree branches are cut. 

truncation  1e-7 

 

# Specify importance of impurities. 

impurity    1e-6    1e-8 
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Appendix C 

Benchmark #1 MCNP input file (using R2S-ACT)--Splitting of cells done in fmesh card. 

Luke Mynsberge: ALARA 3D - Benchmark 1 

c 

c ************************* 

c Material Definitions 

c ************************* 

c 

c Iron Shield 

c 100% Iron 

m1 26000  1.0   

c 

c ************************* 

c Source Definition 

c ************************* 

mode n 

sdef pos=0 0 0.01 x=d1 y=d2 z=0.01 par=1 vec=0 0 1 erg=1.0 

si1 0.1 4.9 

sp1 0 1 

si2 0.1 4.9 

sp2 0 1 

c 

c ************************ 

c Tally Definitions 

c ************************ 

c 

f14:n 1 

fc14 Cell flux 

c 

fmesh24:n geom=xyz origin=0.0 0.0 0.0 

          imesh=5.0 iints=1 

          jmesh=5.0 jints=1 

          kmesh=5.0 10.0 15.0 20.0 

          kints=1 1 1 1 

          emesh=1.0000E-07 4.1399E-07 5.3158E-07 6.8256E-07 8.7642E-07 

               1.1254E-06 1.4450E-06 1.8554E-06 2.3824E-06 3.0590E-06 

               3.9279E-06 5.0435E-06 6.4760E-06 8.3153E-06 1.0677E-05 

               1.3710E-05 1.7603E-05 2.2603E-05 2.9023E-05 3.7267E-05 

               4.7851E-05 6.1442E-05 7.8893E-05 1.0130E-04 1.3007E-04 

               1.6702E-04 2.1445E-04 2.7536E-04 3.5380E-04 4.5400E-04 

               5.8295E-04 7.4852E-04 9.6112E-04 1.2341E-03 1.5846E-03 

               2.0347E-03 2.2487E-03 2.4852E-03 2.6126E-03 2.7465E-03 

               3.0354E-03 3.3546E-03 3.7074E-03 4.3107E-03 5.5308E-03 

               7.1017E-03 9.1188E-03 1.0595E-02 1.1709E-02 1.5034E-02 
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               1.9305E-02 2.1875E-02 2.3579E-02 2.4176E-02 2.4788E-02 

               2.6058E-02 2.7000E-02 2.8500E-02 3.1828E-02 3.4307E-02 

               4.0868E-02 4.6309E-02 5.2475E-02 5.6562E-02 6.7379E-02 

               7.2000E-02 7.9500E-02 8.2500E-02 8.6517E-02 9.8037E-02 

               1.1109E-01 1.1679E-01 1.2277E-01 1.2907E-01 1.3569E-01 

               1.4264E-01 1.4996E-01 1.5764E-01 1.6573E-01 1.7422E-01 

               1.8316E-01 1.9255E-01 2.0242E-01 2.1280E-01 2.2371E-01 

               2.3518E-01 2.4724E-01 2.7324E-01 2.8725E-01 2.9452E-01 

               2.9720E-01 2.9850E-01 3.0197E-01 3.3373E-01 3.6883E-01 

               3.8774E-01 4.0762E-01 4.5049E-01 4.9787E-01 5.2340E-01 

               5.5023E-01 5.7844E-01 6.0810E-01 6.3928E-01 6.7206E-01 

               7.0651E-01 7.4274E-01 7.8082E-01 8.2085E-01 8.6294E-01 

               9.0718E-01 9.6164E-01 1.0026E+00 1.1108E+00 1.1648E+00 

               1.2246E+00 1.2873E+00 1.3534E+00 1.4227E+00 1.4957E+00 

               1.5724E+00 1.6530E+00 1.7377E+00 1.8268E+00 1.9205E+00 

               2.0190E+00 2.1225E+00 2.2313E+00 2.3069E+00 2.3457E+00 

               2.3653E+00 2.3852E+00 2.4660E+00 2.5924E+00 2.7253E+00 

               2.8650E+00 3.0119E+00 3.1664E+00 3.3287E+00 3.6788E+00 

               4.0657E+00 4.4933E+00 4.7237E+00 4.9659E+00 5.2205E+00 

               5.4881E+00 5.7695E+00 6.0653E+00 6.3763E+00 6.5924E+00 

               6.7032E+00 7.0469E+00 7.4082E+00 7.7880E+00 8.1873E+00 

               8.6071E+00 9.0484E+00 9.5123E+00 1.0000E+01 1.0513E+01 

               1.1052E+01 1.1618E+01 1.2214E+01 1.2523E+01 1.2840E+01 

               1.3499E+01 1.3840E+01 1.4191E+01 1.4550E+01 1.4918E+01 

               1.5683E+01 1.6487E+01 1.6905E+01 1.7333E+01 1.9640E+01 

c 

ctme 10 

lost 500 500 

Benchmark #1 MCNP input file (not using R2S-ACT)--Splitting of cells done in model. 

Luke Mynsberge: ALARA 3D - Benchmark 1 

c 

c ************************* 

c Material Definitions 

c ************************* 

c 

c Iron Shield 

c 100% Iron 

m1 26000  1.0 

c 

c ************************* 

c Source Definition 

c ************************* 

mode n 

sdef pos=0 0 0.01 x=d1 y=d2 z=0.01 par=1 vec=0 0 1 erg=1.0 

si1 0.1 4.9 
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sp1 0 1 

si2 0.1 4.9 

sp2 0 1 

c 

c ************************ 

c Tally Definitions 

c ************************ 

c 

f14:n 1 2 3 4 T 

fc14 Cell fluxes for all areas 

e14          1.0000E-07 4.1399E-07 5.3158E-07 6.8256E-07 8.7642E-07 

               1.1254E-06 1.4450E-06 1.8554E-06 2.3824E-06 3.0590E-06 

               3.9279E-06 5.0435E-06 6.4760E-06 8.3153E-06 1.0677E-05 

               1.3710E-05 1.7603E-05 2.2603E-05 2.9023E-05 3.7267E-05 

               4.7851E-05 6.1442E-05 7.8893E-05 1.0130E-04 1.3007E-04 

               1.6702E-04 2.1445E-04 2.7536E-04 3.5380E-04 4.5400E-04 

               5.8295E-04 7.4852E-04 9.6112E-04 1.2341E-03 1.5846E-03 

               2.0347E-03 2.2487E-03 2.4852E-03 2.6126E-03 2.7465E-03 

               3.0354E-03 3.3546E-03 3.7074E-03 4.3107E-03 5.5308E-03 

               7.1017E-03 9.1188E-03 1.0595E-02 1.1709E-02 1.5034E-02 

               1.9305E-02 2.1875E-02 2.3579E-02 2.4176E-02 2.4788E-02 

               2.6058E-02 2.7000E-02 2.8500E-02 3.1828E-02 3.4307E-02 

               4.0868E-02 4.6309E-02 5.2475E-02 5.6562E-02 6.7379E-02 

               7.2000E-02 7.9500E-02 8.2500E-02 8.6517E-02 9.8037E-02 

               1.1109E-01 1.1679E-01 1.2277E-01 1.2907E-01 1.3569E-01 

               1.4264E-01 1.4996E-01 1.5764E-01 1.6573E-01 1.7422E-01 

               1.8316E-01 1.9255E-01 2.0242E-01 2.1280E-01 2.2371E-01 

               2.3518E-01 2.4724E-01 2.7324E-01 2.8725E-01 2.9452E-01 

               2.9720E-01 2.9850E-01 3.0197E-01 3.3373E-01 3.6883E-01 

               3.8774E-01 4.0762E-01 4.5049E-01 4.9787E-01 5.2340E-01 

               5.5023E-01 5.7844E-01 6.0810E-01 6.3928E-01 6.7206E-01 

               7.0651E-01 7.4274E-01 7.8082E-01 8.2085E-01 8.6294E-01 

               9.0718E-01 9.6164E-01 1.0026E+00 1.1108E+00 1.1648E+00 

               1.2246E+00 1.2873E+00 1.3534E+00 1.4227E+00 1.4957E+00 

               1.5724E+00 1.6530E+00 1.7377E+00 1.8268E+00 1.9205E+00 

               2.0190E+00 2.1225E+00 2.2313E+00 2.3069E+00 2.3457E+00 

               2.3653E+00 2.3852E+00 2.4660E+00 2.5924E+00 2.7253E+00 

               2.8650E+00 3.0119E+00 3.1664E+00 3.3287E+00 3.6788E+00 

               4.0657E+00 4.4933E+00 4.7237E+00 4.9659E+00 5.2205E+00 

               5.4881E+00 5.7695E+00 6.0653E+00 6.3763E+00 6.5924E+00 

               6.7032E+00 7.0469E+00 7.4082E+00 7.7880E+00 8.1873E+00 

               8.6071E+00 9.0484E+00 9.5123E+00 1.0000E+01 1.0513E+01 

               1.1052E+01 1.1618E+01 1.2214E+01 1.2523E+01 1.2840E+01 

               1.3499E+01 1.3840E+01 1.4191E+01 1.4550E+01 1.4918E+01 

               1.5683E+01 1.6487E+01 1.6905E+01 1.7333E+01 1.9640E+01 
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c 

ctme 10 

lost 500 500 

Benchmark #1 ALARA input file 

 

geometry rectangular 

 

volume 

 125.0 zone_0 

 125.0 zone_1 

 125.0 zone_2 

 125.0 zone_3 

end 

 

mixture mix_0 

 material mat1_rho-7.874 1 1.0 

end 

 

mixture pseudo_void 

 material pseudo_void 1 1.0 

end 

 

mat_loading 

 zone_0 mix_0 

 zone_1 mix_0 

 zone_2 mix_0 

 zone_3 mix_0 

end 

 

 

# ALARA Snippet file: See ALARA user manual for additional syntax information 

 

# Specify the material, element, and data libraries. 

material_lib    matlib 

element_lib     elelib 

data_library alaralib FENDL2 

 

# Specify the cooling times for which activation results are desired 

cooling 

    1   s 

    1   m 

    1   h 

    1   d 

    1   y 

end 
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# Specify the fluxin file and normalization, if needed  

#    flux name  flux file     norm   shift   unused 

flux flux_1     alara_fluxin  1.0e6    0     default 

 

# Specify the irradiation schedule using "schedule" and "pulsehistory" 

# Syntax is found in the ALARA user manual 

schedule    total 

    10.0 y   flux_1  pulse_once    0  s 

end 

 

# A pulse history is applied to each flux in the schedule. Pulse syntax is: 

#  pulsehistory    pulse_name 

#       num_pulses   delay_between_pulses 

#  end 

pulsehistory    pulse_once 

    1   5.0 s 

end 

pulsehistory    pulse_thrice_wait_some 

    3   0.1 y 

end 

 

# Specify desired ALARA output (e.g. constituant, specific activity). 

# Photon source card must be present to produce the pthn_src file for step2. 

output interval 

       units Ci cm3 

       constituent 

       specific_activity 

       # photon_source  FENDL2  phtn_src 42  1e4  2e4 

       #   3e4  4.5e4  6e4  7e4  7.5e4  1e5  1.5e5  2e5  3e5 

       #   4e5  4.5e5  5.1e5  5.12e5  6e5  7e5  8e5  1e6  1.33e6 

       #   1.34e6  1.5e6  1.66e6  2e6  2.5e6  3e6  3.5e6 

       #   4e6  4.5e6  5e6  5.5e6  6e6  6.5e6  7e6  7.5e6  8e6 

       #   1e7  1.2e7  1.4e7  2e7  3e7  5e7 

end 

 

#other parameters 

truncation  1e-12 

impurity    5e-6    1e-3 

dump_file   dump.file 

 

Some ALARA output for Benchmark #1 

Zone #2: zone_1 

 Relative Volume: 500 

 Containing mixture: mix_1 
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Constituent: mat1_rho-7.874 

 Volume Fraction: 1 Relative Volume: 500 

Specific Activity [Ci/cm3] 

isotope  shutdown         1 s         1 m         1 h         1 d         1 y    

==================================================================

============== 

    Looking for data for 250550 

    Setting NuclearData members. 

    Looking for data for 260540 

    Setting NuclearData members. 

    Looking for data for 260550 

    Setting NuclearData members. 

fe-55  1.7886e-12  1.7886e-12  1.7886e-12  1.7886e-12  1.7874e-12  1.3894e-12   

    Looking for data for 260560 

    Setting NuclearData members. 

    Looking for data for 260570 

    Setting NuclearData members. 

    Looking for data for 260580 

    Setting NuclearData members. 

    Looking for data for 260590 

    Setting NuclearData members. 

fe-59  7.5280e-14  7.5280e-14  7.5279e-14  7.5231e-14  7.4116e-14  2.5967e-16   

    Looking for data for 270590 

    Setting NuclearData members. 

==================================================================

============== 

total 1.8639e-12  1.8639e-12  1.8639e-12  1.8638e-12  1.8615e-12  1.3897e-12   

** Zone totals are the same as those of the single constituent. 
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