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Abstract

Neutron transport is of great importance to inertial confinement fusion (ICF) for
several reasons. An accurate neutron energy spectrum is necessary for tritium breeding
purposes, and the deposition of energy in the ICF target by energetic neutrons born
from fusion may have detrimental effects on the fusion burn. The goal of this research
was to develop an accurate neutron transport method that can be incorporated into
an existing radiation-hydrodynamics code for modeling ICF implosions.

A novel time-dependent neutron transport method, based on the integral form of
the neutron transport equation, was developed. This method utilizes a dimensionless
integration space and the Neumann series method to obtain the integral form of the
reduced collisions equations.

This neutron transport method was implemented for infinite slab and sphere
geometries. Using a pulsed source in space and time, the method was used to reproduce
benchmark solutions previously published in the literature, and was found to have
excellent agreement with these benchmarks.

The method was expanded to incorporate finite slab and sphere geometries. The
method was implemented for a finite slab, and benchmarked against PARTISN, a finite
difference, discrete-ordinates code. The method was found to agree with PARTISN at
intermediate mean free times, while diverging from PARTISN at late mean free times.
The method was used to obtain analytic expression for the first two collided fluxes
in a finite sphere geometry. A collision study was performed for both geometries to
determine how many collisions were necessary to approximate the total flux at early

mean free times. This study showed that only a few collisions were necessary to



approximate the total flux at times of interest to ICF applications.
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Chapter 1

Introduction

1.1 Introduction to Fusion

Fusion energy, which has the potential to create vast amounts of energy, has
been under development since the 1950’s. The two major advantages of fusion en-
ergy over current forms of energy production are: 1) a major component of fusion
fuel, deuterium, is plentiful and inexpensive, and 2) the waste produced from fusion
is not made up of long-lived, heavy radioactive isotopes, but stable light isotopes such
as hydrogen and helium [1]. A disadvantage, however, is that the flux of neutrons
produced from the fusion reactions can activate reactor structural materials. In con-
trast to waste from fission reactors, however, there is no transuranic waste. Though a
few radioisotopes created are long-lived, the vast majority of radioisotopes have short
half-lives, and the small inventory of radioactive waste will decrease rapidly.

Fusion is the process of combining the nuclei of two light elements together,
creating a heavier element. Fusion has been difficult to achieve because the nuclei

are both positively charged, and therefore repel each other. The fusion fuel must be



heated to incredibly high temperatures such that the velocities of the nuclei are very
large, allowing the nuclei to overcome the repulsive Coulomb force. The nuclei will
scatter off each other more often than they will fuse together, therefore the fuel must
be confined, allowing the nuclei to collide many millions of times, until they finally
fuse [1].

There are two confinement schemes commonly considered for fusion energy.
These are the magnetic and inertial confinement fusion concepts. The goal of magnetic
confinement fusion is to create a steady-state plasma confined by a magnetic field [2].
Devices currently being considered for magnetic confinement include the tokamak and
the stellarator [1]. Inertial confinement fusion involves heating the fusion fuel to ther-
monuclear temperatures [1] by rapid compression of the fuel pellet so that a large
number of fusion reactions occur before the pellet blows apart. Large laser beam gen-
erators or light/heavy ion beam accelerators are used as drivers to generate beams,
which compress the pellets to high densities and the fuel to thermonuclear tempera-
tures. While the fusion reactions considered for the two concepts are the same, the

density and pressure regimes differ by several orders of magnitude [2].

1.2 Introduction to Inertial Confinement Fusion

Unlike magnetic confinement fusion, Inertial confinement fusion, or ICF, does
not depend on external means to confine a plasma. Instead, ICF utilizes the mass
inertia of the fuel to confine the fuel long enough to achieve thermonuclear burn. The
confinement time of an ICF plasma is then very short, usually on the order of 50 ps.
Target compression influences the confinement time and the burn yield. Compression

to extremely high densities leads to longer confinement times and higher reaction



rates [2].

To protect the walls of the reactor vessel in which the fusion burn takes place,
the energy release from the explosion of the fuel must be limited. This in turn limits
the mass of fuel in a pellet to only 1 - 10 mg. To burn such a small mass of fuel
requires a very high fuel compression [2].

A typical deuterium-tritium fuel pellet consists of four regions, as seen in Fig 1.1.
The outer shell of the pellet is an ablator, and is made of plastic, followed by a
layer of plastic and deuterium-tritium (DT). The layer of plastic with DT acts as a
thermal shield between the ablator layer and the DT ice, increasing the laser absorption
efficiency of the pellet. Behind this is a shell of DT ice, and the innermost region is DT
vapor. The pellet is uniformly irradiated by a large number of lasers. The energy from
the lasers heats up the ablator, which begins to expand. To conserve momentum, the
rest of the shell is forced inward. As the fuel pressure increases from the implosion, a
hot spot of very high temperature is formed at the center of the pellet. Conduction
by electrons from the hot spot to the surrounding cold fuel and radiation cool the hot
spot.

As long as losses due to conduction and radiation are not too high, ignition will
occur in the central hot spot. To achieve ignition, the confinement parameter, p x R,
of the hot spot must be equal to about 0.3 g/cm? where p is the density and R is the
radius [3]. Alpha particles, produced from fusion reactions in the hot spot, propagate
the burn by depositing their energy in the surrounding fuel. Meanwhile, the fuel is
rapidly expanding, and remains confined for only about 50 ps. Because the fusion
products can be used to propagate the burn to the surrounding fuel, only the hot spot

needs to be compressed to a very high density at a very high temperature, which in
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Fig. 1.1.— Inertial Fusion Energy Pellet. Credit: Andy Schmitt, Naval Research

Laboratory

turn requires less input energy from the lasers [2].

1.3 Motivating Neutron Transport

Neutron transport is of great importance to the study of Inertial confinement
fusion. High-energy neutrons are born from the fusion process. These particles, along
with alpha particles, are necessary to propagate the burn from the ignition region to
the outlying low-temperature, high-density regions surrounding the ignition region of
the target.

The following reactions use the most common fusion fuels, deuterium, tritium,

and helium-3, and therefore are of importance to ICF devices:

D + T — *He (3.5 MeV) + n (14.1 MeV)

D+ D — T (1.0 MeV) + H (3.0 MeV)



D + D — 3He (0.8 MeV) + n (2.45 MeV)

D + 3He — *He (3.7 MeV) + H (14.7 MeV).

As can be seen from the above reactions, neutrons figure prominently in two of
the fusion reactions. The neutrons carry the bulk of the kinetic energy when present.

The alpha particles and neutrons created during a fusion burn propagate the
burn by transferring energy to the low-temperature, high-density regions surrounding
the ignition region. However, the alpha particles and neutrons travel at different
velocities. In a sense, neutrons can be thought of as pre-heating the areas that are
later ignited by the energy from the alpha particles, an effect that may or may not be
detrimental to the burn process. A complete understanding of the interplay of these
particles is essential to fully characterize a fusion burn.

Accurate neutron modeling is important to ICF for other reasons, as well. The
neutrons eventually transport out of the target and collide with the reactor vessel walls.
Since the neutrons may suffer collisions before escaping the target, the neutrons emerge
with a spectrum of energies. This fact will affect the radioactivity of the reactor vessel
walls, tritium breeding, shield designs, and dose rates to reactor personnel.

The deuterium-tritium reaction is of great interest to ICF because the fuel mix-
ture has the lowest ignition temperature of any of the above reactions, in addition
to a very high energy yield [2]. However, since tritium has a half-life of only 12.3
years, tritium must be bred. The reactor vessel has specific zones designed for tritium

breeding. Two important tritium-breeding reactions are:

i+ n— T+ a+ 4.86 MeV



Mi4+n—T+a+n-287 MeV.

Both these reactions require neutrons for breeding. However, the °Li reaction
requires slow neutrons while the “Li reaction requires fast neutrons. Therefore, it
is important to know the energy spectrum of the neutrons escaping the target, to

determine if the breeding zone must be enriched with °Li to ensure that enough tritium

is bred.

1.4 Time-Dependent Neutron Transport

The burn time of a fusion target is incredibly fast, taking approximately 50 ps.
During this phase, a fusion target fuel region changes rapidly. Given the speed of a 14.1
MeV neutron as roughly 5.2 cm/ns and the approximate radius of the compressed fuel
target as 0.012 cm, the fuel traversal time for a neutron is found to be approximately
4.6 ps. Therefore, during the burn phase, a propagating neutron would encounter
a rapidly changing medium. For this reason, a steady state approach to neutron
transport study would not be appropriate.

On the other hand, since the fusion target is so small, a neutron would only
experience a few collisions before escaping the target. The number of collisions a
neutron would experience can be calculated from an escape probability estimate as
a function of the target density, p, multiplied by the target radius, R. Such a study
indicates that, for a p x R value of 2.0 g/cm?, less than 30% of the neutrons experience
a collision [3]. The number of collisions a neutron experiences in a fusion target is
small. Therefore, a Neumann series approach is considered appropriate for calculating

the total neutron flux. As discussed in Section 2.1, a Neumann series decomposes
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the total flux into the uncollided flux and the collided fluxes. The first collided flux
is calculated using the uncollided flux as a source term, the second collided flux is
calculated using the first collided flux as a source term, and so on. Since the neutrons
only make a few collisions before escaping the target, only the first several collided
fluxes need to be calculated to obtain an accurate result for the total flux.

Given the importance of neutron transport to ICF, the goal of this work was to
develop a novel neutron transport method that could be incorporated into an existing
radiation hydrodynamics code. The ensuing chapters discuss common methods for
simplifying the neutron transport equation, and present a novel method for solving the
transport equation utilizing dimensionless variables. A literature review is provided in
Chapter 2, wherein the differential form of the reduced collision equations is introduced
and reviewed. Further developments referenced in Section 2.5 show how to convert
the equation to its integral form.

The integral formulation of the transport equation is the basis for collision prob-
ability methods, which are known to produce highly accurate results for unit cell
calculations in reactor physics. The integral equation will be examined for its appli-
cability to time-dependent neutron transport within inertial fusion targets. Using a
dimensionless variable transformation for the time and space domain, the collision-
by-collision, time-dependent integral equations will be converted into dimensionless
form known as the reduced collision equations. The differential form of the reduced
collision equations has been used to produce highly accurate benchmark solutions to
time-dependent, one-dimensional infinite medium problems in Cartesian and spherical
coordinate systems. Chapter 3 highlights the one-dimensional infinite medium work

using the integral form of the reduced collision equations. Benchmark solutions for the



infinite slab and sphere case were generated and compared to existing solutions in the
literature. The results for one-dimensional finite media are contained in Chapter 4.
For finite media, the solution for the first few collisions is compared to solutions from
the PARTISN code. Finally, Chapter 5 provides a conclusion on the feasibility of this

integral transport method for ICF applications, final comments and future work.



Chapter 2

Literature Review
The neutral particle transport equation is shown below:

10 - o
|:;§+Q'V+Z("'7E7t):| ¢<T79>E7t> -

(2.1)
/dE’/dQ’ES (’r‘; OO E — E>¢ (r, 4 E’,t) +S (r, Q, E,t> .

where 1) is the angular neutron flux, Y, is the macroscopic scattering cross-section, ¥ is
the total cross-section, F is the energy, S is the external source, and () is the scattering
angle. This equation is a linearized form of the Boltzmann equation describing the
statistical distribution of particles in a fluid [4]. The equation describes the balance
of neutrons lost through exiting the volume or suffering collisions to those gained as
secondaries from collisions or produced by sources.

To obtain solutions to equation 2.1 requires several simplifying assumptions.
These assumptions include time-independence, isotropic scattering, one- or two- di-
mensional transport, monoenergetic particles, and several others. By making several

such assumptions, it is possible to find analytic solutions or numerical approximations
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to the neutral particle transport equation.

2.1 Multiple Collision Method

The multiple collision method is alternatively known as the Neumann series
solution, the Order of Scattering Theory, or the Method of Successive Generations.
The multiple collision method expands the total flux into an infinite sum of the collided

fluxes:
¢tot (Ira Q) t) = idjn (Ta Qa t> (22)
n=0

and
Doy ("“7 t) = Z On (7"7 t) (2-3)

where 1 is the angular flux and ® is the scalar flux. The scalar flux is calculated from

the angular flux as:
O(r,t) = /d(w <er> (2.4)

The source for the uncollided flux is simply the external source. The source
for the first collided flux is the uncollided flux, and so on. Using the multiple col-
lision method, the neutron transport equation becomes an infinite series of coupled

equations:
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Hg +Q-V+2(r E t)} o (r,Q,E,t) = (r,Q,t) (2.5)

Fgﬁwzv+zwﬁmﬂw&nQE¢>z

/mﬁm rQéQEe@¢<ﬁﬂﬂ (2.6)

|:12+Q V+X(r E t)] ¢n<r,f2,E,t> =

.ﬁ?ﬁg TQHQE%@%”OQE)

The multiple collision method has been a popular tool for analytically solv-
ing the neutron transport equation. Syros has used the multiple collision method
to obtain closed form solutions in infinite slab geometries with anisotropic scatter-
ing [5,6]. Windhofer and Pucker applied the multiple collision method to finite slab
geometries [7]. Ganapol, in particular, has had considerable success with the multi-
ple collision method, applying it in conjunction with Legendre Polynomial Expansion
(see Section 2.2) to find solutions to a number of infinite medium geometries, in-
cluding infinite and semi-infinite slab geometries [8], and spherical and cylindrical
geometries [9,10]. Ganapol has also generated a number of benchmark solutions for

various infinite geometries [11].
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2.2 Expansion in Legendre Polynomials

The mono-energetic neutron transport equation in one spatial dimension, x, is

shown below:

12+¢§+2@ﬂ}ﬂ%mﬂz/mwuﬂﬁm¢@w%%HN%mﬂ (2.8)

-1

where g (¢/ — ) is the scattering kernel and p = cos(#), and has the domain

pe[-1<p<1]. (2.9)

The scattering kernel can be expressed as an infinite sum of Legendre polyno-

mials [12]:

o

g (4 — 1) z:

=0

MB )Bi(1) (2.10)

where w; are the quadrature weights and wy = 1.
The solution to equation 2.8, with the scattering kernel expressed as in equa-

tion 2.10 can be written as an infinite sum of collision components [13]:

vl ) = 0 F ) (2.11)

where n = x/vt. Substituting the expression for 1) into equation 2.8, the "reduced

collision equations,” an infinite set of integro-differential equations in F, is obtained:
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1
9 Lo+ o ,
n—1+(u—n)8—n] Fu(np)=n)_ 5 szz(M)/duPz(u)Fnl(mu) (2.12)
=0 1

where the infinite sum of Legendre polynomials has been truncated to order L [12].

If the sum of Legendre polynomials is truncated to L = 1, then the P; ap-
proximation is obtained. This corresponds to allowing only two discrete directions
of motion [8]. The two directions of motion are :I:\/Lg. Then the reduced collision
equations in an infinite medium become:

n

(L= )5+ 1= 1| Foslo) = 5 Foaz o) (2.13)

where here n = %, and F'; and F_ correspond to the angular flux in the 4—\%g and —\/Lg
directions, respectively. Ganapol has successfully used this method to obtain solutions
to the time-dependent monoenergetic transport equation in infinite and semi-infinite
geometry [8]. It should be noted, however, that the P; solution gives an incorrect
wave front velocity of = [14].

The scalar flux may also be expanded in Legendre polynomials [10]:

o0

o) =3 P fo) P (214)

where the expansion coefficients are given by
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fult) = / d/ Pl b(, 1). (2.15)

This expansion is valid because ¢ is only defined on —1 < 7 < 1. Ganapol has used
this method to determine the scalar flux in infinite slab, cylindrical, and spherical
geometries, and in conjunction with the multiple collision method, to obtain results

for linearly anisotropic scattering in these same geometries [14].

2.3 Diffusion Equation

The one-speed neutron diffusion equation is shown in equation 2.16 below:

%g—‘f — V- D(r)Vo + Sa(r)p(r,t) = S(r,t) (2.16)

where ¢(7,t) is the scalar flux in three dimensions.

The diffusion equation is found by first finding the P; equations, two equations
that describe the neutron scalar flux, ¢ and the neutron current, J. To obtain the
diffusion equation, we must next relate the neutron current to the neutron scalar flux.

This is done by using Fick’s law:

I(r,t) = —D(r)Ve(r,t) (2.17)

where D is the neutron diffusion coefficient. By using Fick’s law, we are assuming that

the neutron current is proportional to the spatial gradient of the flux. By using the
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P, equations, we are assuming that the angular flux exhibits only linearly anisotropic
angular dependence.

The time-dependent neutron diffusion equation is a parabolic differential equa-
tion. The response of a system governed by a parabolic equation to a source is such
that the source is immediately felt over the entire system. This is not physically
how neutrons emitted from a short burst transport, however, as they will be confined
by wavefronts. The neutron transport equation is a hyperbolic differential equation.
The neutrons move at a finite velocity, and therefore need a finite amount of time to
move to a new location, a phenomenon known as causality. Therefore, the diffusion
equation is a poor approximation to a system that exhibits well-defined wavefronts.
The diffusion equation is also known to be a poor approximation near boundaries of
a medium, near sources, and in strongly absorbing media [15]. This is a consequence

of assuming that the angular flux is only weakly dependent on angle.

2.4 Discrete Ordinates

The discrete ordinates method solves for the angular flux in discrete directions.
The discrete ordinates method is often called the Sy method, where N is related to
the number of directions. As the number of directions increases, the accuracy of the
results also increases, as does the difficulty of the computations [16].

To obtain the discrete ordinates approximation to the neutron transport equa-
tion, the scattering kernel must first be expressed in terms of Legendre polynomials, as
discussed in Section 2.2. The equation obtained is then assumed to hold for each dis-
tinct angle, p,, where n = 1,..., N. The one-dimensional, time-dependent, one-speed

discrete ordinates approximation is [17]
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where ¥(z, pu,,) is written as ¢, (x) and the Legendre moments of the scalar flux are [17]
N
n=l

The TIMEX code, developed at Los Alamos National Laboratory, is a code
that utilizes the discrete ordinates method. TIMEX solves the time-dependent, one-
dimensional multigroup transport equation in a variety of geometries, including plane,
cylindrical, spherical, and two- angle plane geometries. TIMEX can incorporate a
number of boundary conditions and allows for anisotropic scattering [18].

The PARTISN code, also developed at Los Alamos National Laboratory, is the
successor of the TIMEX and DANTSYS discrete ordinates code packages. PARTISN
solves the multigroup form of the neutral particle Boltzmann transport equation.
PARTISN can solve either the time-dependent or the static form of the transport
equation. PARTISN can solve the transport equation for a number of multi- dimen-
sional geometries, and for a variety of boundary conditions. PARTISN allows for

anisotropic scattering and inhomogeneous sources [19].
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2.5 Integral Neutron Transport

2.5.1 Time-Independent Neutron Transport

The time-independent neutron transport equation for one-speed neutrons can be

written as:

where ¢(r) is the number of secondary neutrons produced in a collision, ¥(7) is the
total macroscopic cross section, including fission, and f (r, QO — Q) is the scattering
kernel. This can be transformed into an integral equation for the flux for Cartesian or

spherical coordinates [20]:

o) =5 3 [ o) (ake — i) dy ~3atc = 1) | [ w)Es (alo — o) dy
! ! (2.21)

B Es (all — x]) + (2_1)qu (a1l + z) /qb(y)yqdy

where

¢ = the flux in Cartesian coordinates or the flux times the radial coordinate in spherical
coordinates
a = half-thickness or radius, measured in mean free paths

it = average cosine of the scattering angle
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g = 0 in the slab case or 1 in the spherical case
E,, = exponential integral of order n.

This form of the integral equation is used to solve time-independent neutron
transport problems with both isotropic and linearly anisotropic scattering. Higher
orders of anisotropy can be accounted for by keeping more terms in the scattering
kernel expansion, equation (2.10).

To solve equation 2.21, the flux is expanded in Legendre polynomials:
$(x) =Y F,(2n+1)P,(x). (2.22)
n=0

Inserting this series into equation 2.21, multiplying by P,,(z), and integrating from

—1 to 1 results in an eigenvalue equation for F,, [20]:

(A —3ji(c—1)B]F = —F. (2.23)

The eigenvectors and eigenvalues of equation 2.23 have been found for both infinite and
finite medium, for slab and spherical geometries, with both isotropic and anisotropic

scattering [20].

2.5.2 Time-Dependent Neutron Transport

The time-dependent integral neutron transport kernels can be found in two dif-
ferent manners, the method of characteristics or the Laplace Transform method [21].
To solve for the time-dependent kernels, we begin with the time-dependent monener-

getic neutron transport equation for isotropic scattering:
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10 - A\ Qr,t)
(m +Q~V+E> v (r0u) = (2.24)

where () is the scattered and external source,

Q(r,t) = L 0(r, t) + S(r,t). (2.25)

Using the method of characteristics, the resulting, time-dependent integral equation

to be solved is

t

@(r,t)://K(r,r’;t—t')Q(r',t’)dt/dr’ (2.26)

L)

where K (r,r';t —t') is the time-dependent kernel. The time-dependent kernels for
homogeneous media have been derived using the Laplace Transform method from the
steady-state kernels [21], and are shown in Table 2.1.

The multiple collision method has been used successfully with the integral trans-
port equation [21,22] to solve for the neutron scalar flux in various geometries. The

individual collided fluxes are calculated as:

t

on(r,t) = //K(r, it —t)Qu(r', t)dt'dr’ n=01,2,.. (2.27)

()

where Qo(r,t) = S(r,t) is the external source, and the n'" collided source is given by
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Table 2.1: Time-Dependent Integral Transport Kernels in Homogeneous Materials

Geometry Time-Dependent Integral Transport Kernels
p K ) —Ev(t t') 5 ) |7"—7“/|
int t,t t—1 — ————
om plr it ¥) = A7 |r —r'|u(t — t) ( v )
o T v(t—t") 1z — 2|
Plane Kpl([l'f, Qf/; t, t/) = Q(t——lf/) H (t — t/ - T)
—So(t—t') o
Spherical Kgs(r,r';t,t) = 6— H(t—t — r =
8mrr! (t —t') v
/
Shell —}J(t—t’—liilj)l
v
—Yv(t—t') 1 )
Line Ki(r,r';¢,¢;5t,t) = - H(t—t'——)
2’/T(t—t){[ — )] —p} v
e—Ev(t—t’)
Cylindrical Key(r,r'st,t') = T T
e 17 (t " y) d
Shell — o & —
Ly (2 =y?)2 (2 = | =22 {[v(t = )] — 32}

Qu(r,t) = Sydnr(r,t) n=1,2,3,... (2.28)

The total flux then is simply the sum of the individual collided fluxes.

Using the multiple-collision formalism discussed in Section 2.1, it has been pos-
sible to derive analytic solutions for the uncollided and first collided fluxes for a pulsed
source in space and time, in a variety of geometries, including semi-infinite and finite

slabs and infinite and finite spheres. Additionally, analytic expressions for the uncol-
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lided and n'" collided fluxes were derived for the case of a uniform source in space,
pulsed source in time, for an infinite one-dimensional slab [21].

Further work with integral neutron transport has been in the area of numerical
evaluation. Olson and Henderson [22] solved equation 2.26 for the total scalar flux
where the source term includes both the external and scattered source. The resulting
integral equation when equation 2.25 is substituted into equation 2.26 is a Volterra
type in the temporal dimension and a Fredholm type in the spatial dimension. The
integral equation was solved using an iterative process. It is important to note that the
time domain grows with each iteration. The authors duplicated the Ganapol bench-
mark solutions [11] of a pulsed source in space and time in infinite slab and spherical
coordinates. Additionally, for the case of a pulsed source in infinite spherical coordi-
nates, the authors derived an analytic solution to the second collided flux. Finally, the
authors produced new benchmark solutions for a number of finite medium geometries,
including uniform and localized sources in a finite slab geometry, and spherical shell
and uniform source in a finite sphere geometry.

A particularly important advantage of integral neutron transport is the inclusion
of Heaviside functions in the kernels and analytic solutions, which explicitly incorpo-
rate causality. Causality is the notion that a particle traveling at a finite speed will
need a finite amount of time to travel a given distance.

An important disadvantage of previous work in numerical integral neutron trans-
port is that the time domain continually grows. The limits of integration for the time
domain run from ¢ = 0 to the current time, . Therefore, as time increases, the upper
limit of integration increases, leading to long computation times. This disadvantage

is addressed through the current research, and is discussed in Section 3.1.
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Integral neutron transport is preferred to other methods for solving neutron
transport problems in radiation hydrodynamics codes. The source of neutrons from
the fusion target burn is such that the neutrons are emitted in short bursts and the
flux of neutrons will be confined by wavefronts. As discussed above, the diffusion
equation is a poor approximation to systems that have well-defined wavefronts. The
discrete ordinates method can result in ray effects, in the time domain as well as the
spatial domain in optically low dense media. Ray effects are a phenomenon in which
neutrons transport only along the angles for which the neutron transport equation is
solved. For this reason, the discrete ordinates method can be a poor choice for solving

the time-dependent neutron transport equation in hydrodynamics codes.
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Chapter 3

Infinite Media

This chapter presents the work performed for infinite media. This work includes de-
veloping the integral form of the "reduced collisions” equations for both Cartesian and
spherical coordinate systems, and reproducing benchmark solutions from the literature

for these coordinate systems.
3.1 Infinite Slab Geometry

3.1.1 Mathematical Development

A Green’s function is derived for the integral form of the "reduced collision
equations” for an infinite slab geometry with an arbitrary isotropic source, and will
be used to determine the time-dependent neutron flux.

To derive the Green’s function, we begin with the time-dependent differential
transport equation in planar coordinates for a one-dimensional infinite medium with

an arbitrary source, Q(z,t):
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(i gt + uﬁ + 2) Ui, t) = 280 (3.1)

The differential form of the transport equation can be converted to an integral equa-
tion for the scalar flux through either the method of characteristics or Laplace trans-
forms [21]. Integrating over the angular variable gives the time-dependent integral

equation:

@(:E,t)://K(x,m’;t,t')Q(x',t')d:p’dt’ (3.2)

0 —o0

where

O(x,t) = /\I/(x,u,t)dp (3.3)

is the scalar flux, K(z,2’;t,t') is the time-dependent kernel and Q(z’,t') is the time-
dependent source. The source Q(z',t’) consists of both the external source, S(2/,t'),
and the isotropically scattered source, ¥4(2")o(2’, ). Inserting the explicit expressions
for the planar geometry scalar flux kernel [21] and the time-dependent arbitrary source

into equation 3.2, and expanding the integral, one obtains

D) // e >v(t—t) gle—v— M O (2!, t")dx'dt' + Po(x, 1) (3.4)
2 t_t/ ” , 0 ) '

0 —

where ®q(x,t) is the uncollided flux. The uncollided flux is calculated as
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e—Ey(tt / |ZE—I/| 1oyl ! 34t
o(z,t) //Qt—t’ <t—t—T>S(x,t)dxdt. (3.5)

0 —o0

The above equation is applied to the case of a unit planar source of pulsed neutrons
located at the origin of an infinite medium, S(x,t) = Sod(2)d(t). Using this source in

equation 3.5, the uncollided flux is found to be:

() — % (e:”t> H(t+2)H (-2, (3.6)

The above solution for the uncollided flux describes an outgoing planar wave of par-
ticles moving to the left and right. The neutrons are confined between the wavefronts
at x = vt and © = —vt [21].

The Neumann series method is used to decompose the time-dependent integral
equation into a series of equations for the individual collided fluxes. The integral

equation for the n'® collided flux is

e*EU(tt / |x_xl| 1oyt ! gyl
Es//Qt_t/ <t_t_ o )q)n1(x,t)dxdt (3.7)

0 —o0

for n > 1. The reduced collision equation ansatz for the n'* collided flux has the

form [13]:
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where Fy(z,t) = 1. Inserting the ansatz into equation 3.7 and simplifying, the follow-

ing expression is found:

ﬂWWW+%mp%F:

do'dt’ [ (t')"! L ;=2 , ,
// ﬁW(MI)EAQJW%—ﬁ“fT—H@+EW@—;)

F, is called the shape factor for the n'" collided flux.

Next the integration variables x’ and t' are transformed to a dimensionless do-

. . ’ ’ .
main. The transformed variables are defined as 7/ = £ and 7 = £;. The Jacobian

oz’ t')
an'st")

evaluates to vt?7/. Substituting the transformed variables into equation 3.9

and extracting the step functions, the following is obtained:

1-n 1+n
n 1-n 1 149/
N\n—1 N\n—1
=3[ [ ) b s)drdn + |/ ) (f)dr'dif | . (3.10)
2 1— 1—
Z10 n 0

The shape factors, F},, depend only on the variable 1. This can be seen from the fact
that Fy = 1, and that the limits of the outer integration only contain the variable
7. As a result, the inner 7/ integration can always be performed analytically. The
numerical integration over the n’ variable can be performed using simple integration
methods, such as quadrature rules.

Equation 3.10 can be written more compactly in terms of kernels as:
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n
Fn(n) - 9 /K”,A(n’ nl)anl(n/)dn/ - /K”’B(n>77/)Fn1(77/)d77, (3'11)
gl
where
1-n
e /)n—l
Kn A(nv 77/) = / (T dT/ (312)
) 1 _ 7-/
0
and
1+n

(3.13)

ann /
0

The kernels for each n can be computed analytically. For instance, the kernels for

n =1 are
1—
Kia(n,n) =—In (1 ~ 1 n/) (3.14)
—n
and
L+n
K N=—-In(1- . 3.15
Additionally, the kernels for n = 2 are
1—n 1—mn
K. N=—-In(1- — 3.16
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and

(3.17)

1+ 1+
Kop(n,n) =—In (1 - 77) -

1+77/ l_l_n/'

A pattern in the form of the kernels appears likely from the above equations. Indeed,

futher computation of the kernels leads to the following:

n

1—1n 1 [1—-n\""
/_
Kya(n,m) = —In (1— )_Zi—l( ) forn>2  (3.18)

11— P 1—9

1 1 (1 it
K,p(n,n)=—In (1_ +77) -2; (11_:77,> for n > 2. (3.19)

The kernels have an interesting property as n — oo. Note that following property of

the summation:

=1 (1-p\"! 1-
> ( 77) =—1In (1— 77) (3.20)
iZQz—l 1—n 1—9

and

00 i—1
1 1 1
> - < +") :—ln<1— +77). (3.21)
—~i—1\1+7 1+7
We see, then, that both the kernels go to zero as n — oo.

It is possible to compute the first few shape factors analytically. The resulting

first and second collided shape factors are [23]:
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Fi(y) = —2 KHT") m(”T”) + (“T”> m(l_T”ﬂ (3.22)

n
2
17]2 1—1—772 1—7]2 1—772
—— | In{ — —— ) In[ —= 3.23
+3<2>n(2)+32 o( 1 (3.23)
2 2

where Lisy(z) is the dilogarithm function, and is defined as [24]:

z

Liy(2) = — / Mdz. (3.24)

The dilogartihm belongs to the class of functions known as polylogarithms, and is a
polylogarithm of order two.

The kernels, equations 3.14, 3.15, 3.18, and 3.19 are singular at the point n' = 7.
Using the subtraction of singularity method [25], discussed in Appendix A, the integral

equation for the shape factor, equation 3.11, can be rewritten as:

F.(n) =g Fo1(n) / Kna(n,n')dn' + / Koa(n,n') [Fna(n) — Fooa(n)] dnf

L Fya () / Ko, 1)dif + / Ko (0.7) Facr (1) — Fur () dif

(3.25)
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The first and third integrals can be performed analytically. The second and
fourth integrals must be performed numerically. However, these integrals are equal to
zero at the singularity.

Inserting the form of the kernels above into the first and third integrals of equa-
tion 3.25 and performing the integration, the following results are found for the first

few values of n:

Ky a(n) = Ky p(n) = =2 [(HT"> In (#) + (%) In (1_7”)} , (3.26)

Ky a(n) = -2 (HT"> 1n(1+T”) : (3.27)
Ky p(n) = —2 (1_7’7) m(l_T”) , (3.28)
K3.a(n) = 2 Kl;—") ln(#)} . —+ 4 _4”)2, (3.29)

and

K p(n) = —2 Kl_T”) 1n<1_7")} ! ; n, U Z”)z. (3.30)

For n > 3, a pattern emerges for the integration results of the kernels:



31

=2 [ (2 () 35 [+ ]

(3.31)
and
Knp(n) = —2 K%) ln(1 ; 77)} + Zzn: [(z’ :(21):; ?1)1) + G _(;)J(rzn_)t);@g] .
- (3.32)

3.1.2 Shape Factors

Equation 3.25 now needs to be solved. The first and third integrals can be
performed analytically, as shown above, while the second and fourth integrals must be
computed numerically. The function to be solved for in equation 3.25, F,(n), appears
only on the left-hand side of the equation. Therefore, simple numerical integration
methods, such as Gaussian quadrature rules and the Chebyshev Polynomial Expansion
method, can be utilized. Each shape factor, F},, corresponds to the n'® collided flux.
Shown in Figure 3.1 are the uncollided and first five shape factors.

From this figure, it is evident that, as n increases, the height of the shape factor
at 7 = 0 increases, while near the wavefront the shape factor goes to zero. It also
appears that the area under the curves is conserved. To see if this is the case, the
analytic functions for F; and Fy were integrated over the range of 7, [—1,1]. When
these calculations were performed, it was found that the area under both curves was
equal to two. Additionally, some of the higher order shape factors were numerically

integrated over 7, and the area under these curves was also equal to two. It was
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Fig. 3.1.— Infinite Slab Shape Factors

expected that the area under the curves would be constant, since the shape factors
only represent the scattering of neutrons. The absorption of neutrons is represented
in the exponential decay term of the ansatz, equation 3.8, and is not included in the
shape factors. Also, since the calculations were performed for an infinite medium,
neutrons would not be lost through leakage.

The points 7 = £1 are the wavefronts of the neutrons, and correspond to the
points x = +wt. As expected, only the uncollided shape factor is non-zero at the
wavefront. From figure 3.1, we see that as the number of collisions increases, the
domain on which the n'" shape factor is non-zero decreases. This trend continues, as
shown by the n = 500 shape factor in figure 3.2. Additionally, the shape factors, for
n > 2 are peaked at the origin, n = 0. As n — oo, the shape factors become more
sharply peaked, while the nonzero region decreases. In fact, the shape factors form a

delta sequence, defined as [26]:



33

25

Shape Factor
&
Il

-
o
T
I

| I\

0 " ) . .
-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1
eta

Fig. 3.2.— 500" Shape Factor

lim [ 8,(x)f(x)dz = £(0). (3.33)

Given equation 3.33, we would expect the shape factors at large n to approximate the
shape of a delta function, with a narrow width and large peak. This is in fact the

case, as shown in Fig. 3.2, the n = 500 shape factor.

3.1.3 Benchmark Results

The n'* collided flux is calculated from the n'" shape factor using equation 3.8.
The total flux for a pulsed source in time and space in an infinite medium is then calcu-
lated as a summation of the individual collided fluxes. For comparison to Ganapol’s [11]
and Olson’s and Henderson’s [22] benchmark solutions, the following values were cho-

sen: the source strength, Sy = 1, the neutron velocity, v = 1, the total cross section,
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> = 1, and the absorption cross section, ¥, = 0. For a given mean free time, ¢, the

values for the distances, z;, are calculated from:

Equation 3.34 shows that there is a one-to-one correlation between 1 and z; that is,
if 2501 points are used for calculations in 7 space, then there will be 2501 points in
x space. As time increases, the size of the z domain increases, while the size of the n
domain remains constant. Therefore, as time increases, the ratio of the length of the
x domain to the number z points decreases.

Shown in Figure 3.3 below is the total neutron flux at mean free times of 1, 3,
5, 7, and 9. Figure 3.4 shows the total neutron flux at mean free times of 15, 20,
25, 35, and 45. Notice that the neutrons are always confined behind the wavefronts
at © = Hwt. At early times, the neutrons are clustered near the origin, and the
flux is highly peaked. As time increases, the neutrons spread out, and the flux peak
decreases.

Shown in Table 3.1 below are the results for the infinite slab benchmark at
small mean free times, compared to the results obtained by Ganapol, and by Olson
and Henderson. Table 3.2 shows the benchmark results, in comparison to the Ganapol
and the Olson and Henderson results at later mean free times. Marked with an asterisk
are those values that match neither the Ganapol results nor the Olson and Henderson
results. Examining the tables, we see that there is very good agreement between the

results obtained with the dimensionless integral method and the other benchmark
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results. Note that even for those points in disagreement, the discrepancy is in the
fourth decimal point.

The total flux can also be compared to PARTISN, as long as the size of the slab
is large enough that the neutrons have not reached the boundary. This can be used as
a check for PARTISN, to ensure that it is giving accurate results. The total flux for a
pulsed source in space and time, at various mean free times, for a slab of half-width of
b = 100 mean free paths, are given in the figures below. The neutron speed is v = 1,
so that a neutron will move one mean free path in one mean free time. At mean free
times greater than 80, a total of 150 collisions were used to compute the total flux

using the dimensionless integral method.
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Fig. 3.5.— PARTISN and Infinite Slab Total Flux at 50 MFTs



Table 3.1: Benchmark Results for Infinite Slab at Early Mean Free Times

Time 2z Ganapol Olson and Dimensionless
Henderson Integral
1 1 1.8394E-01  1.8394E-01 1.8394E-01
1 2 0.0000E4-00 0.0000E+00 0.0000E+00
1 3 0.0000E400 0.0000E+00 0.0000E+00
1 4 0.0000E400 0.0000E+00 0.0000E+00
1 5 0.0000E400 0.0000E+00 0.0000E+00
1 6 0.0000E400 0.0000E+00 0.0000E+00
3 1 2.3942E-01  2.3942E-01 2.3942E-01
3 2 9.3836E-02  9.3835E-02 9.3837E-02*
3 3  8.2978E-03  8.2978E-03 8.2978E-03
3 4 0.0000E400 0.0000E+00 0.0000E+00
3 5 0.0000E400 0.0000E+00 0.0000E+00
3 6 0.0000E400 0.0000E+00 0.0000E+00
5 1 1.9957E-01  1.9957E-01 1.9957E-01
5 2 1.2105E-01  1.2105E-01 1.2105E-01
5 3 4.9595E-02  4.9595E-02 4.9595E-02
5 4 1.1823E-02  1.1823E-02 1.1823E-02
5 5 6.7379E-04  6.7379E-04 6.7379E-04
5 6 0.0000E400 0.0000E+00 0.0000E+00
7 1 1.7347E-01  1.7347E-01 1.7348E-01*
7 2 1.2293E-01  1.2293E-01 1.2293E-01
7 3 6.8028E-02  6.8028E-02 6.8028E-02
7 4 2.8447E-02  2.844TE-02 2.8447E-02
7 5 8.4158E-03  8.4157E-03 8.4158E-03
7 6 1.5036E-03  1.5036E-03 1.5037E-03*
9 1 1.5528E-01  1.5528E-01 1.5528E-01
9 2 1.1935E-01  1.1935E-01 1.1935E-01
9 3 T7.6384E-02  7.6384E-02 7.6385E-02*
9 4  4.0186E-02  4.0186E-02 4.0185E-02*
9 5 1.7004E-02  1.7004E-02 1.7004E-02
9 6 5.5765E-03  5.5764E-03 5.5765E-03




Table 3.2: Benchmark Results for Infinite Slab at Late Mean Free Times

Time 2z Ganapol Olson and Dimensionless
Henderson Integral

15 1 1.2269E-01 1.2269E-01 1.2269E-01
15 2 1.0514E-01 1.0514E-01 1.0514E-01
15 3 8.1158E-02 8.1159E-02 8.1159E-02
15 4 5.6305E-02  5.6305E-02 5.6305E-02
15 5 3.4985E-02  3.4985E-02 3.4985E-02
15 6 1.9376E-02 1.9376E-02 1.9376E-02

25 1 9.6128E-02 9.6128E-02 9.6129E-02*
25 2 8.7720E-02 8.7720E-02 8.7721E-02*
25 3 T7.5287TE-02  7.5287E-02 7.5287E-02
25 4 6.0744E-02  6.0744E-02 6.0744E-02
25 5 4.6042E-02 4.6042E-02 4.6042E-02
25 6 3.2757TE-02 3.2757E-02 3.2757TE-02

35 1 8.1632E-02 8.1632E-02 8.1632E-02
35 2 T.6491E-02 7.6491E-02 7.6491E-02
35 3 6.8624E-02 6.8624E-02 6.8624E-02
35 4 5.8937E-02 5.8937E-02 5.8937E-02
35 5 4.8445E-02  4.8445E-02 4.8444E-02*
35 6 3.8099E-02 3.8099E-02 3.8099E-02
45 1 7.2182E-02 7.2182E-02 7.2182E-02
45 2 6.8630E-02 6.8630E-02 6.8630E-02
45 3 6.3091E-02 6.3091E-02 6.3091E-02
45 4 5.6074E-02  5.6074E-02 5.6073E-02*
45 5 48177E-02 4.8177E-02 4.8176E-02*
45 6 4.0007TE-02  4.0007E-02 4.0007E-02
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3.1.3.1 Infinite Slab Error Analysis

The Euclidian norm of the total flux, in comparison to Ganapol’s benchmark
results, is shown in Table 3.3. Table 3.4 shows the Euclidian norm in comparison to
the Olson and Henderson results. The maximum Euclidian norm was set to 1072,
and allowed us to determine how many collisions were necessary for a given mean free
time to obtain a total flux that was accurate in comparison to either the Ganapol
benchmark results or the Olson and Henderson benchmark results. The Euclidean

norm was calculated as:

Norm — \/le\il (qbn,DI(xi: t) _]\;bn,Benchmark(xia t))Q (335)

where ¢, pr is the n'* collided flux obtained using the dimensionless integral method,
and ¢, Benchmark 1S the n'* collided flux obtained from either Ganapol’s benchmark or

Olson and Henderson’s benchmark.



Table 3.3: Euclidian Norm and Number of Collisions, Ganapol Results

Time Number of FEuclidian

Collisions Norm

1 4 2.7941E-07
3 12 6.5686E-06
5 16 9.5323E-06
7 20 2.2152E-06
9 23 7.1675E-06
11 26 7.7016E-06
13 29 6.8604E-06
15 32 8.0801E-06
17 35 6.6292E-06
19 38 7.5120E-06
21 41 6.7145E-06
23 43 9.1038E-06
25 46 7.9991E-06
27 49 6.7690E-06
29 51 9.9345E-06
31 54 7.7301E-06
33 57 5.4631E-06
35 59 8.1612E-06
37 62 5.9891E-06
39 64 8.0880E-06
41 67 5.4323E-06
43 69 7.7964E-06
45 72 5.0386E-06

41
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Table 3.4: Euclidian Norm and Number of Collisions, Olson and Henderson Results

Time Number of FEuclidian

Collisions Norm
1 4 2.7941E-07
2 10 1.9943E-06
3 12 6.6340E-06
4 14 9.3110E-06
5 16 9.5323E-06
6 18 4.2510E-06
7 20 2.0515E-06
8 21 6.5766E-06
9 23 5.8522E-06
10 24 9.1322E-06
14 30 8.9841E-06
15 32 6.7057E-06
16 33 8.7870E-06
19 38 6.1392E-06
20 39 7.4125E-06
21 41 5.4016E-06
24 45 5.2309E-06
25 46 6.6430E-06
26 47 8.7216E-06
29 51 8.3242E-06
30 53 5.5066E-06
31 54 6.6314E-06
34 58 6.0800E-06
35 59 7.2410E-06
36 60 8.5867E-06
39 64 7.3226E-06
40 65 8.6653E-06
41 66 9.9342E-06
44 70 8.0868E-06
45 71 9.0454E-06
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3.2 Infinite Spherical Geometry

3.2.1 Mathmatical Development

To derive the Green’s function for the infinite spherical medium case, we begin
with the time-dependent differential transport equation in spherical coordinates for a

one-dimensional infinite medium with an arbitrary source, Q(r,t):

Q(r,t)
5

2
(18 o 1—p* 0 (3.36)

—+ 2|V =
R L TO)

As in the slab case, the differential form of the transport equation can be con-
verted to an integral equation for the scalar flux through either the method of char-
acteristics or Laplace transforms [21]. The time-dependent integral equation is then

of the form

t oo

O(r,t) ://K(T, 't Q! ) dr' dt! (3.37)
0 0

where K (r,r';t,t') is the time-dependent kernel and Q(r’,t) is the time-dependent
source. The source Q(7’,t") consists of both the external source, S(r',t'), and the
isotropically scattered source, Xs(r")o(r', ). Inserting the explicit expressions for the
spherical shell scalar flux kernel [21] and the time-dependent arbitrary source into

equation 3.37, and expanding the integral, one obtains
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3 e~ Zv(t— ') / /
[ ) o )
/ mrr! (t — v v (3.38)
x ®(r' ' )anrdr'dt’ + ®g(r, 1)

where ®y(r,t) is the uncollided flux. The uncollided flux is calculated using the point

source kernel as:

721}(75 ) 5 / |?_7}/ S(r' "\ dr' dt’
t) t—t — ———— t t. .
(r, //47T|r—r’|t—t’) ( v ) (', t)dr (3.39)

The above equation is applied to the case of a unit point source of pulsed neu-

trons located at the origin of an infinite medium, S(r,t) = 2%8(r)é(¢). Using this

source in equation 3.39, the uncollided flux is found to be:

Bo(r 1) = —0 (ejvt> s(1-2). (3.40)

Arrut

The above solution for the uncollided flux describes an outgoing infinitesimal thin
spherical shell of pulsed neutrons that is infinite at the wavefront and zero elsewhere.
The uncollided flux has a strong singularity at the wavefront, and the first collided
flux will inherit this.

The Neumann series method is used to decompose the time-dependent integral
equation, equation 3.38, into a series of equations for the individual collided fluxes.

The integral equation for the n'* collided flux is
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t oo
:E // 7Evtt) H t—t/—|r_r/| _H t_t/_|r+rl‘
s 8mrr! t—t’ v v
0

x ®,_1(r' t)4mrdr' dt’

(3.41)

for n > 1.
Equation 3.41 can be used to calculate each collided flux. However, there is
a quicker way to calculate the collided fluxes if the planar collided fluxes are known.
The following relation allows for the transformation from slab geometry fluxes, ®,, ,; to
spherical geometry fluxes, ®,, 5,, and is a simple way to obtain the spherical fluxes [10]:
1 0

q)TMSP(Ta t) = Twaq)n,pl(ra t) (342)

Using this relation and the planar forms for the first and second collided fluxes, the

spherical fluxes are

Oy(r1) = 20 L (e_m) H(t-1) 1n<1+—7) (3.43)

4rr vt t

and
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Dy(rt) = 0L (t) Bty (-1
;(H%)m(l%ﬁf (341

2T+3<1 7’)1 - = 2
“—4—-(1——)Inl —%& | —
vt 2 vt 2

r 1-=L r 1+ =
3(1——>L' vt —3(1 —)L' ot | | |
+ vt 12( 2) +vt 12 2

These solutions agree with the results found in literature [11,22], but were found

through alternate means.
Returning to equation 3.41, the reduced collision equation ansatz for the n®

collided flux has the form [27]:

n!

O, (r, 1) = % (etﬁvt> ((&m)”) (Ui)zl-](t ~5) Rty (3.45)

where
vt 1+ =
Fi(r,t) = Sr ln( — %) (3.46)
and
F(t)—vt 2’/‘+3<1 T)l 11— 2 3<1+r>1 I+ = 2
2\ C2r th 2 vt . 2 2 vt " 2

(3.47)

r 1-Z r 1+ =
3(1——) Li vt —3(1 —) Li o | |
- vt 12( 2 ) +vt 2 2

Since the first collided flux, equation 3.43 has a singularity at » = vt, the numerical

calculations must begin at n = 3, with the second collided flux as the forcing function.
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Inserting the ansatz, equation 3.45, into the Neumann series expansion for the
integral form of the time-dependent neutron transport equation, equation 3.41, and

simplifying, the following expression is obtained for the n'* shape factor:

t oo
r n dr'dt’ AR r
R (e Ty [ A (O o Y
(r:2) v 2 vt (t—t) \ [t r v (1)
0 0

< | H t_t/_u _H t—t/—M
v v ’

Next the integration variables ' and ¢’ are transformed to the 7', 7/ domain.

(3.48)

The transformed variables are defined as n’ = vr—t/, and 7' = % The Jacobian of the

transformation 1is:

/
= vt?7.

‘mﬁm
o', 7')

Substituting the transformed variables into equation 3.48 and extracting the Heaviside

functions, the following equation for the n'* shape factor is obtained:

11:3/ T]( /) 2 ./ 11::, 1(/) 2 ./
n T " 77 / / / T " 17 / / /
Fo(n) = = LB (n)dn'd L F 1 (n)dn/d
m=5| [ [ Etrathare+ [ [ 2R s
0 0 0 7
1—n (3.49)

1+n’

1
(T/)nf2n/
! / / R

The notation can be simplified by introducing the concept of kernels:
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0 " (3.50)

where the kernels are:

1-n
=’ N\n—2
Koa(n,n) = / <1T) —dr, (3.51)
—T
0
147
v’ l)n—?
Ko p(n,1) = / (1T _dr’, (3.52)
— T
0
and .
H—:/ (T/)an
Kn,c(n,n/)z/ T dr’. (3.53)
0

The kernels can be evaluated analytically. As in the planar coordinates case, the

kernels follow a pattern with n and can be written as:

Kya—tn(1—1=" §nj L (=)™ (3.54)
n =1n - - . 3 .
A 11— 32—2 !

i= L=
147 "1 [14+p\?
K,g=In(1- -y - , 3.55
v n( 1+n’) ;%—2(1+n’> (3:55)

and

1—7 "1 (1-p\"?
Kpo=In(1- -y - . 3.56
© n( 1+n’> ;Z—2<1+n’> (3:56)
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Examining the kernels, we see that K, 4 and K, p have a singularity at n’ =
n, while K, ¢ has a singularity at ' = n = 0. The singularities can be handled
through the subtraction of singularity method. Using this method, the expression for

F),, becomes:

/

n n
n U4 U
Fol) =5 | [ Kt 1Facsl6f) = Fua il + Foa) [ Koal ) L
0 0

1

1
n n
+ /Kn,B<7]7 77/)? [anl(n/) - Fn71<7]>] dT]/ + Fnl(n)/Kn,B(n7 TII)EdU/
n
1

n
1

n n
- /Kn,C(n7 7]/)5 [Fn71<77/) - Fn71<77)] dTI/ + Fnl(ﬁ)/Kn,C(Tb U/)Zdnl .
0 0

(3.57)

The second, fourth, and sixth integrals may be evaluated analytically. Carrying

out the integration, the following expressions are obtained for n = 3:

2

n 9 9
1—

[ Boattiaonr =2-T+ 5w - L), 359)

0

1
1 2 (1+n)? 1—n?
/K3,B(77777/)77,d77,:_§+%_( 277) 1H(1+77)—( 2n)1n(1—n)+(1+n)1n27
n

(3.59)

and



2 1_2
1177_( n°)

|3
|
|3
—
=
SN~—

1
/Ks,c(n,n’)n’dn’ =—5+5 In(1+n)+(1-n)n2.

For n = 4, the integrals of the kernels be written as:

2
n
Kya(n,n')n'dy = -5 In(n),

Lo (1-7%) (1—7%)
K Noldy = —= + +— — 22" T/ — A !
/ a,8(n,1)n'dn 1T 5 n(l—mn)+ 5 n2
and
L (1-7%
K Noldn = —=+ 1 — 1 A ) )
/ sc(nn)n'dy 1T gt

Finally, for n > 5, a pattern in the integrals of the kernels emerges:

/KnA ’dn_(l— )ln(l—n)—%ln(n)—%;[—%

(1-m?* (1—m)
MG Ty <z’—2><z’—3><z‘—4>} |

1
2 1 1 — 2 1 — 2
/Kn,B(mn’)n’dn’:n————( 277 >1n(1—77)+(T?7)1n2

n

i—2)(i—3) (i—-2)(i—4)  (i—3)(i—4)23]"

+Z{ 1+77 (14n)? (14n)"?

1=5
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(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)
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and

1
2 2 2
1 (1—-7n% (1—77)
K Noldn' = — — — 42— 151 0 e
/ ne(m,n')n'dn T 1T n(l+mn)+ 5 In
n (3.66)

-2 4—1 3—1
21711 2
+Z 2—2 (i—4 _¢—3)]'

The above expressions contain a singularity at the point n = 0. Appendix B

shows the derivation of the expressions that must be solved for the n* shape factor

at n = 0. These expressions are reproduced below:

1

Fy(0) :; 2F5(0)In2 + / (Fy(') — Fy(0)] n/ﬁdn’ 367
F4(0) = 2 | F3(0) +2/[F3(n’) — F3(0)] 7 (% — 1in’ 1 +1n’)2) dn'|, (3.68)
and
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3.2.2 Shape Factors

Equation 3.57 now needs to be solved. The second, fourth, and sixth integrals can
be evaluated analytically, while the first, third, and fifth integrals must be evaluated
numerically. Again, a simple numerical integration method can be implemented. The
Clenshaw-Curtis quadrature rule was used for the fifth integral, while the Chebyshev
Polynomial Expansion was used for the first and third integrals. At the point n =
0, equations 3.67, 3.68, and 3.68 must be solved, using either the Clenshaw-Curtis
quadrature or the Chebyshev Polynomial Expansion. Shown in figure 3.8 below are
the first five collided shape factors. The uncollided flux, equation 3.40, is a delta

function at the wavefront.

3 T I
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- . === 5th Collided
~,
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]
£
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Fig. 3.8.— Infinite Sphere Shape Factors

From this figure, it is apparent that the first collided shape factor has inherited
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the singularity from the uncollided shape factor at the wavefront. As in the infinite
slab case, the collided shape factors, except for the first collided shape factor, go to
zero at the wavefront. It should also be noted that the areas under the curves of the
collided shape factors increase, instead of staying constant, as in the slab case. This
is because the volume through which the neutrons travel increases as the area of a
sphere, 471>

Shown in figure 3.9 below are the first five shape factors multiplied by the factor
47n?. The area under these curves is equal to the volume integral of the shape factors.

Therefore, the area under these curves is conserved, and equals two.
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Fig. 3.9.— Infinite Sphere Shape Factors Multiplied by 47mn?



54

3.2.3 Benchmark Results

The n'* collided flux is calculated from the n'* shape factor by using equa-
tion 3.45. The total flux is again calculated as the sum of the individual collided
fluxes. For comparison to Ganapol’s [11] and Olson’s and Henderson’s [22] benchmark

solutions, the following values were chosen:

Source strength, Sy =1

Neutron speed, v = 1

Total cross section, ¥ =1

Absorption cross section, ¥, = 0.

For a given mean free time, ¢, the values for the distance, r;, are calculated as:

ri = vtn; (3.70)

Again, there is a one-to-one correlation between 7 and r.

Shown in figures 3.10 and 3.11 below is the total flux at early mean free times.
From these figures, it is obvious how quickly the total flux falls off.

The benchmark results, shown in comparison to Ganapol’s and Olson’s and
Henderson’s solutions, are given in Tables 3.5 and 3.6. Marked with an asterisk are
those values that match neither the Ganapol results nor the Olson and Henderson
results.

As with the infinite slab, the total flux can also be compared to PARTISN, as

long as the radius of the sphere is large enough that the neutrons have not reached
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Table 3.5: Benchmark Results for Infinite Sphere at Early Mean Free Times

Time r Ganapol Olson and Dimensionless
Henderson Integral

1 1 00 00 00

1 2 0.0000E+00 0.0000E4-00 0.0000E4-00
1 3 0.0000E4-00 0.0000E+00 0.0000E4-00
1 4 0.0000E400 0.0000E+00 0.0000E4-00
1 5 0.0000E+00 0.0000E4-00 0.0000E4-00
1 6 0.0000E4-00 0.0000E+00 0.0000E4-00
3 1 2.2001E-02 2.2001E-02 2.2001E-02
3 2 1.0187E-02  1.0187E-02 1.0187E-02
3 3 o0 00 o0

3 4 0.0000E4-00 0.0000E4-00 0.0000E4-00
3 5 0.0000E+00 0.0000E+00 0.0000E4-00
3 6 0.0000E4-00 0.0000E4-00 0.0000E4-00
5 1 1.0305E-02  1.0305E-02 1.0305E-02
5 2  6.5738E-03  6.5738E-03 6.5739E-03*
5 3 2.9565E-03  2.9565E-03 2.9565E-03
5 4 8.5550E-04  8.5549E-04 8.5550E-04
) ) o0 00 o0

5 6 0.0000E400 0.0000E4-00 0.0000E4-00
7 1 6.2715E-03  6.2715E-03 6.2715E-03
7 2 4.5417E-03  4.5417E-03 4.5417E-03
7 3  2.6143E-03  2.6143E-03 2.6144E-03*
7 4 1.1654E-03  1.1654E-03 1.1654E-03
7 5 3.8287E-04  3.8287E-04 3.8287E-04
7 6 8.3430E-05  8.3430E-05 8.3430E-05
9 1 4.3089E-03  4.3089E-03 4.3089E-03
9 2 3.3538E-03  3.3538E-03 3.3538E-03
9 3 2.1944E-03  2.1944E-03 2.1944E-03
9 4 1.1937E-03  1.1937E-03 1.1937E-03
9 5 5.3016E-04  5.3016E-04 5.3016E-04
9 6 1.8655E-04  1.8655E-04 1.8655E-04




Table 3.6: Benchmark Results for Infinite Sphere at Late Mean Free Times

Time r Ganapol Olson and Dimensionless
Henderson Integral

15 1 2.0059E-03  2.0059E-03 2.0059E-03
15 2 1.7263E-03 1.7263E-03 1.7263E-03
15 3 1.3423E-03 1.3423E-03 1.3423E-03
15 4 9.4107E-04 9.4106E-04 9.4107E-04
15 5 5.9294E-04 5.9294E-04 5.9295E-04*
15 6 3.3430E-04  3.3430E-04 3.3430E-04
25 1 9.3283E-04 9.3283E-04 9.3284E-04*
25 2 8.5252E-04 8.5252E-04 8.5253E-04*
25 3 T7.3353E-04 7.3353E-04 7.3353E-04
25 4 5.9394E-04 5.9394E-04 5.9395E-04*
25 5 4.5228E-04 4.5228E-04 4.5229E-04*
25 6 3.2364E-04 3.2363E-04 3.2364E-04

35 1 5.6323E-04 5.6323E-04 5.6324E-04*
35 2 5.2816E-04 5.2816E-04 5.2816E-04
35 3 4.7444E-04  4.7443E-04 4.7444E-04
35 4 4.0819E-04 4.0819E-04 4.0820E-04*
35 5 3.3630E-04 3.3629E-04 3.3630E-04
35 6 2.6523E-04 2.6523E-04 2.6523E-04
45 1 3.8637E-04 3.8637E-04 3.8637E-04
45 2 3.6752E-04 3.6752E-04 3.6753E-04*
45 3 3.3812E-04 3.3812E-04 3.3812E-04
45 4  3.0083E-04 3.0083E-04 3.0084E-04*
45 5 2.5882E-04 2.5882E-04 2.5882E-04
45 6 2.1530E-04 2.1529E-04 2.1530E-04
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the boundary. This can be used as a check for PARTISN, to ensure that it is giving
accurate results. The total flux for a pulsed source in space and time, at various mean
free times, for a sphere of radius b = 10 mean free paths, are given in the figures below.
The neutron speed is v = 1, so that a neutron will move one mean free path in one
mean free time. A smaller value of b was picked than with the infinite slab, so as to

illustrate the problems PARTISN has resolving the total flux at early mean free times

Total Flux at 0.5 MFT for b =10
T T . T T

1.6

14r

1.2

Flux
-
T

0.8~

0.6~

0.4r

0.2~

Fig. 3.12.— PARTISN and Infinite Sphere Total Flux at 0.5 MFTs

At early mean free times, PARTISN has trouble resolving the singularity at the
wavefront. We see that the PARTISN flux has a more gradual increase in the flux
at the wavefront, then has a flux of neutrons in front of the wavefront, where there
should be zero flux. At later mean free times the PARTISN and integral transport

results show very good agreement.
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Fig. 3.13.— PARTISN and Infinite Sphere Total Flux at 1 MFTs
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Fig. 3.14.— PARTISN and Infinite Sphere Total Flux at 2 MFTs
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Fig. 3.15.— PARTISN and Infinite Sphere Total Flux at 5 MFTs
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Fig. 3.16.— PARTISN and Infinite Sphere Total Flux at 10 MFTs
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3.2.3.1 Infinite Sphere Error Analysis

As with the infinite slab, the Euclidean norm was used to determine how many
collisions were necessary for a given mean free time to obtain a total flux that was
accurate in comparison to either the Ganapol benchmark results or the Olson and

Henderson benchmark results. The Euclidean norm was calculated as:

N 2
Norm = \/Zzl (¢n,DI<Ti7 t) - an,Benchmark(riu t)) (371)

N

where ¢, pr is the n'* collided flux obtained using the dimensionless integral method,
and ¢, Benchmark 15 the nt" collided flux obtained from either Ganapol’s benchmark or
Olson and Henderson’s benchmark.

The Euclidian norm of the total flux, in comparison to Ganapol’s benchmark
results, is shown in Table 3.7. Table 3.4 shows the Euclidian norm in comparison to

the Olson and Henderson results.



Table 3.7: Euclidian Norm and Number of Collisions, Ganapol Results

Time Number of FEuclidian

Collisions Norm

1 _ _

3 12 3.4012E-06
5 15 4.5644E-06
7 17 8.6092E-06
9 20 6.4914E-06
11 22 9.7837E-06
13 25 6.7904E-06
15 27 8.8387E-06
17 30 6.1001E-06
19 32 7.4410E-06
21 34 8.6989E-06
23 36 9.8371E-06
25 39 6.9289E-06
27 41 7.7260E-06
29 43 8.4588E-06
31 45 9.1261E-06
33 47 9.7349E-06
35 50 7.0962E-06
37 52 7.5463E-06
39 54 7.9548E-06
41 56 8.3281E-06
43 58 8.6634E-06
45 60 8.9658E-06

62
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Table 3.8: Euclidian Norm and Number of Collisions, Olson and Henderson Results

Time Number of FEuclidian

Collisions Norm

1 _ _

2 10 3.1735E-06
3 12 3.4012E-06
4 13 8.1046E-06
5 15 4.5644E-06
6 16 6.5469E-06
7 17 8.6092E-06
8 19 4.5405E-06
9 20 5.6217E-06
10 21 6.6429E-06
14 26 6.3916E-06
15 27 7.2163E-06
16 28 8.0174E-06
19 32 6.0770E-06
20 33 6.5933E-06
21 34 7.1052E-06
24 37 8.4951E-06
25 38 8.9221E-06
26 39 9.3257E-06
29 43 6.9396E-06
30 44 7.2264E-06
31 45 7.5031E-06
34 48 8.2601E-06
35 49 8.4874E-06
36 50 8.7067E-06
39 53 9.2933E-06
40 54 9.4670E-06
41 55 9.6334E-06
44 59 7.3757E-06
45 60 7.5108E-06
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Chapter 4

Finite Media

This chapter shows how to expand the dimensionless integral formulation to incorpo-
rate finite media. Section 4.1 shows how to apply the method to a finite slab of width
2b, while Sections 4.2.1 and 4.2.2 show two approaches to expanding the formulation

to a finite sphere of radius b.

4.1 Finite Slab Medium

The derivation of the finite slab shape factor expression closely follows the deriva-
tion for the infinite slab shape factor. The slab now considered will have a width of
20, where b is referred to as the slab half-width. Including this width changes the

expression for the total flux in Cartesian coordinates, and equation 3.4 becomes:

Z eizv(tt !/ |$_I’/’ Hb /Hb /(b / Id/d/
s//%_t, <t—t—T) (b— 2V H(b+ ') D2/, ¢')dadt

0 —o0

+ q)o(ﬂf,t),

(4.1)
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where the boundaries of the slab are delimited by the Heaviside functions H (b — z’)
and H(b+ z’), and vacuum boundary conditions exist at = £b. A pulsed source in
space and time is again used, so that the uncollided flux is still given by equation 3.6.

Using the same reduced collision ansatz as for the infinite slab case, equation 3.8,

the following expression for the n'* shape factor is found:

Fn(:v,t)H(H%)H(t—E —
t oo
2// dx'dt’
2 — thot!
0 —o0
xH(t’ ) (

When deriving the expression for the n'" collided shape factor for an infinite slab,

t,n 1> w1 (2, t)H(t—t’—‘x;—x/’) (4.2)

) (b—2')H(b+a").

@|%%

the next step was to introduce the dimensionless variables ' and 7/. Here, however,
we will first define the integration region in 2’ and t' space, and then transform the
equation to the dimensionless coordinate system. The integration domain delimited
by the Heaviside functions can be represented graphically. For the n = 1 shape factor,
the domain is shown in Fig. 4.1 below. The n = 1 shape factor can be expressed in 2’

and t’ coordinates as:
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0 t+5 -3 z 53
dt'dx dt'dx
Fi(z. t) = Ey ('t Fy(x' t
o=y | [ ] eengeSy e [ ReogEty
x—vt —z! 0 !
B R
dt'dxr’
F / /
‘|‘/ / 0( ) ) tl(t—t)
N (4.3)
| dt'da’
— H(vt — 2b—x) / / x,t')—x
ot/ (t— )
z+vtt m+x
dt'dx’
— H(vt—2b+ ) / / Fola! ) —2 0
ot (t —t')
b !
.
H(vt+x’) Hvt'-x’)
(x.1)
b,t—€+§)

X+vt x+vt
2 7 2

Hvt-vt’-x +x)

(0,0) x'=x

Fig. 4.1.— F} Integration Domain in 2’ and ¢’ Space

’

X

Examining equation 4.3, we can identify the first three integrals as the infinite medium

solution for the first collided shape factor. The last two integrals correspond to the

area subtracted from the infinite medium integration domain as shown in Fig. 4.1

above.
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The integration domain for the n = 1 shape factor in 7’ and 7" space is shown

graphically in Fig. 4.2 below.

-
H(-t-n’t'+n)
=1 (.1) |
/ Un I
H(1-t-n+n't) ‘/ (1—77;,“7’1_””")
3 (1,%(1“7))
1
(~1:50-m)
Cin,) ¢ » (Ln,)
n'=-1 ©0) m'=n =1

Fig. 4.2.— F} Integration domain in " and 7" Space
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The form of the first collided shape factor in " and 7/ space is

n 1-n’
1 dT’d dT’d
F1(7],7')=§ //Fo 1_:_] //Fo 77
-1 0
—" 1—n
T—my,—1 17 P
-
~H0-2m ) [ [ BT (4.4)
-1 =
14n
! Lo’ dr'dr’
-
— H(1 -2+ 1) / / Fy(n)3 _Z,
b b

T=ny+n n"

where n, = % Note that 7, has a t in the denominator, making 7, a variable. When a
function containing an 7, is written in terms of integration variables, any occurrence

of n, becomes:

b _g _B (4.5)

The first two integrals are simply the infinite medium solution of the first collided
shape factor while the last two integrals represent neutrons lost from the medium. The

n = 1 shape factor can be found analytically as:
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A== [(50)(52) + (5 n()

+sH(1=2m—n) [(L+n)In(1+n) + (1 —n)n(l —n)

N —

— (1 =) In(1 =) + (m +n) In(np + 1)

—(I=n—n)In(l —np, —n) —mIn(n,) — 21n2] (4.6)

SO = 24 ) [(1+ ) In(1 4 0) + (1= ) (1 — )
+ (= m) In(ny —n) — (1 —m) In(1 — )

—(1=my+n)In(l —n+n) —mln(n) — 2In2].

The first line is the infinite medium solution. The final terms are depletion waves.
These terms represent neutrons that have escaped the medium, but would have re-
flected back into the slab. The H (1 —2m, —n) term is the depletion wave coming from
the left, or negative half-space, and is referred to as the Fy. The H(1 —2n,+n) term
is the depletion wave coming from the right, or positive half-space, and is referred
to as the Figr source. Note that the depletion waves, because of the presence of n,,
are now dependent on both n and 7. This will have implications for the numerical
integration scheme.

To obtain the equation for the n = 2 shape factor, we insert the Fj(2’,t") shape

factor into equation 4.2, so that F; becomes the source for Fs.
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dldt/ t/ -

0 —oo

dd'dt’ [t |z — 2|
ik ( Gy

0 —oo

x H(b— 2V H(b+ 2 H(t' — %,)H(t’ + %’)

d'dt’ [t , |z =7
// wt'(t — 1) ( )Fm(x t)H<t_t Ty

x H(b—a")H(b+ 2")H (vt — 2b — x)

do'dt’ [t , |z =2
// wt'(t — 1) ( )Fm(‘r t)H(t_t T

x H(b—2'YH(b+ z')H (vt — 2b + x).

(4.7)
We can see that the additional Heaviside functions from the depletion wave
sources, Fi; and Fig, will further restrict the integration domain. These integration
domains are shown graphically for 2’ and ¢’ space in Figs. 4.3 and 4.4 below. Note that

both Fi; and F|r are negative sources, representing neutrons lost from the medium.
As for the n = 1 shape factor, the extracted Heaviside functions delimit the in-
tegration domain. The integration domain of F, from the Fj infinite medium source,
F1 iny, s identical to the F} integration domain. From Fig. 4.1, we see that the n = 2

shape factor calculated from the F} ;¢ source is:



H(vt+x’)

H(vt’-2b-x")

Ht-vt’-x+x")

H(vt’-x")

(b,t—é+1)
v v

vt—=2b+x vt+2b+x)

2v
;)

H(vt-vt’-x +x)

s’

X

Fig. 4.3.— Integration Domain For F, from Fj; Source in ' and ¢’ Space

H(vt+x’)

2b-vt+x 2b+vt—x
27

H(vt-vt’-x+x")

|

Hvt'-x)

X+vt x+vt
2 7 2w

Hvt-vt’-x +x)

Fig. 4.4.— Integration Domain For F, from Fir Source in 2’ and ¢’ Space
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F2,fromF1’mf (.Z',t) =
!/

0 t+L -2 xS -2
dz'dt t dz'dt t
Figng (@ ) ——( — Figng(a' ) — = =
J T gt (5) o [ et (2
J;Evt 771/ 0 %/
Sty
dz'dt t
Figng (@ ) ——( =
o] P %t/(t_t/)(t)
A (4.8)
S t+—”
dz'dt t
t—2b— Fm ’ —
H{v x/ / ting (7 t'(t—t')(t)
cc+vtt zl g
dx'dt’ t
t—2b Fm t —
H ”/ / s (2 tf(t—tf)(t)

From Fig. 4.3, we find that the n = 2 shape factor calculated from the Fj j source is

F2,fr0mF1L (.I, t) =

v tHE -2
do'dt’ [t
H(’Ut—Qb—ZL') / / FlL([E,,t,)m<?>
—b  2b4a’
(4.9)

vt—2b+x g_i
2 t+'u

: de'dt! [t
F //— -
o[ i s (5)

vt— 2b+zt+x a:

de'dt’ [t
b

2b+‘L
v




73

while from Fig. 4.4, the n = 2 shape factor calculated from the F} g source is

FQ,fI‘OInFlR(l‘7 t) -

t+2 -2

da'dt’ [t
— H(vt —2b+ ) / /Fm #) o t/)(?)

2b— vt+x 2b /!

b+ (4.10)

of gt ()

2bz

! A (¢

2b—vt+x 2b—go/
2 v

Then the total n = 2 shape factor is found by combining the integrals found in
equations 4.8, 4.9, and 4.10.

In " and 7’ space, the integration domains from the Fy; and Fjg sources are as
shown in Figs. 4.5 and 4.6 below. Note that when the depletion waves are converted

from z’ and ¢’ space to ' and 7/, they will contain a 7/. For example:

In 1" and 7’ space, the expression for Fj fromp, ,, ; becomes



1-1n,+n

( e »1-’7b+77)
| en| 0 ,

1-2n,+n 1+42n,+n
1+271b+71’ 2

o) Y(1i0en)
(—1,%(1—77)) .// . - (3377) (121 n)

O2n) (n)

-1, ; "
1n.) H(t-21,-n'T")

n'=-1 ©0) n'=n n=1 n

Fig. 4.5.— Integration Domain For F, from Fj; Source in 1’ and 7’ Space

-
=1| @)
(1 T, l—n,,—n) ( L J—mw)
=1, -1 1-n,+n
m, +n-12n,-n+1 / .
an—n+1’ 2 (1,5(1+17))
Pa—"
—*’377;7) (0 2n )\\_‘
_ s 3 >=b Ln,
(-1n,) H(t-2n,tn't) Gn,)
n'=-1 00) n'=n =1

Fig. 4.6.— Integration Domain For F, from Fjr Source in n and 7" Space
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1=n 1+n
n 1=y ) 1 it /
.
F27fr0mF17inf (77, 7') = / / F1mf(7] ) 1 ,dT/dn’ + Flznf(n,) - dT’dn,
10 v 0
-np  1-n
1-mp—m 1—n/ .
.
— H(1—2n,—n) / / Flmf(n/) = T/dT'dn’ (4.12)
n
14n
1 147/ ,
.
— H(1—2n,+n) / / Flinf(n/)l _T/dT’dn'
My ny
1-mp+n  n/

while the equation for Fb fromp,, becomes

1

7_/

B
n 1-n
Foompy 1 (1, 7) = H (1 = 215 — 1) / / B ') dr'dyf

—1 2np

1—n/

1-2np41 149 —my 1
1+2n,+n 149/ 1-np=n1—n

_I_
= —
—
he>
h
=
3\
\]\
N—
[S—y
| ~
a
\]\
Q.
d\
|
—
§-I \
he>
h
P
d\
\]\
SN—
—_
] =
\]\
Q.
\]\
Q.
$\

1-2np4n 149
14205 +n 149/

/
+ / /F1L(77',7") T dr'dn
1—7
5

7

1-n

(4.13)

and the equation for I gomr ,, becomes
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n 1—n/
-

FZ,fromFl’R(T], T> = H(1 —2m + 77) / / FlR(T’Iy T,) 1—7 dT/dn/

2nptn—1 2ny
2np—n+1 147/

147 1+n
1 1+n/ 1 T/
- -
ot 1.1 A, 11
+ Fir(n', ") ~dr'dn’ — Figr(n', 1) -dt'dn
1—17 1—7
2n M ny
K 1+7l;/ T=np+n o’

2nptn—1 2m
2np—n+1 147/

Since the depletion wave sources are dependent on both 1’ and 7/, we are unable to
perform the 7" integration independent of the source. Instead, we apply a variable

change from 7’ to n;:

b
dy, —d o\ —m
dr’ dr' (;) - ()% (4.15)

We can now write F5 in terms of 7, and n'":
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14n
1 1+9/ ,
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—mp
1—np—n -n

2
dn’. dn/
— H(1—4n, —n) / / Figp(n',my) (@) S T

/ /
M/ My — b
L np(1—n)

_T 1—n
(4.16)

/

’

=1 1+n
3

2 2 59 ’
m )~ dny, dn

+ / /Fm(n’,n’) (—)
"\ ) nh—m

2nptn—1 ny(1—n')
2np—n+1 1—n

Since the F;,s source is not dependent on 7/, the variable change does not need to be
performed on the first four integrals.

At this point, we introduce a new problem parameter, m, which we refer to as
the reflection number. The reflection number indicates the number of times a neutron
has moved across the medium, and varies from 1---n — 1. By using this parameter,
we can write the general expressions for the shape factors. The n'* shape factor from

the F,_1 1 source is:
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(4.17)

Similarly, the n'” shape factor found from the F,,_;,, p source is
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(4.18)

The method of evaluating the integrals in equations 4.17 and 4.18 is similar to the
infinite medium case, except that there are double integrals to evaluate. However, since
there are integration variables in only the ), limits of integration, we can evaluate the
n, integrals first, followed by the 7’ integrals. Note that the 7, integrals are singular
at the point 1, = n,. As such, we will have to perform subtraction of singularity
on each of the above integrals. Performing subtraction of singularity on one integral

specifically, we find:
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(4.19)

We note that the results of the 7, integration are singular at " = n. Again, we

perform subtraction of singularity:
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(4.20)

We must use subtraction of singularity on the integrals in equations 4.17 and
4.18. Following the procedure outlined above, and generalizing for the collision num-

ber, n and the reflection number m, where m varies from 1 to n — 1.
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We begin with type 1 limits of integration

—n
l=np—m —n

/

dny, dn/
Ktl = / /anL(n 77)() b 4.21
’ 77b 77b 776 ( )
QT;L np(1—n’)
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The results of the 7, integration, without the source:

J
M) My — b

mi=nt) (4.22)

(et () (22

1=

Equation 4.22 is singular at n’ = —n,. The results of the n’ integration:

) o

B 1 2m(1 + ny — 2mn) 2m(my, +n)
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(4.23)

Type 2 limits of integration:
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2m1
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The results of the 7, integration, without the source:
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Equation 4.25 is singular at " = n,. The results of the i’ integration:
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Type 3 limits of integration:

n il

My dn
Kt3:/ /an 7, n)( ) 4.27
an (' m M) M= ( )

np(1—mn

2m 1 T—n



85

The results of the ), integration, without the source:
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Equation 4.28 is singular at ' = 7. The results of the 7’ integration:

n . .
1—2mm — 7' Z” 1 2 s g\
n—=n — 1= 1 |\1=7 L=
1 =

2m—1

2m ln((1+nb—2mm)(1—n))_ 1 1n((1—n+2mn)(1—n))

T 2m—1 1—2mn, —n 2m — 1 2m(1 — 2mn, — )

om(1 — 2mm, — 1—n)(1 )
+nln( m(1 — 2m, —n) >_2m77b1n(( (L + mm))
(1—77+2m77)(1—77) 1—2mnb—n

(2mmnp) 2m — 1
+Z (i—1)(i—2) [(1—;) — (2mm)™ ( om )

— (L= + (1 —p)! (2”;7; 1)i_2] .

(4.29)
Type 4 limits of integration:
1 147/
2m—1 om nd,r’/ d/r]/
Ul b
Ktd = / / Fomr(m',m) (—> ) 4.30
" Y\ ) mh—m (4:30)
n  np(1+n))

The results of the 7, integration, without the source:
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Equation 4.31 is singular at ' = 7. The results of the 7’ integration:
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Type 5 limits of integration:
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14+n+2mmny, 2m nd , d ,
yl Ty an
Kt5 = / / Fomr(n',m, (—) ) 4.33
) (59
n ny(1+n")

47

The results of the 7, integration, without the source:
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:ln((l _(fnjn;)(n —177+n > 22 [(anb) - (HU)H]'

77/ 1+ 7],
(4.34)
Equation 4.34 is singular at ' = 7. The results of the n integration:
1+n—2mny
1+n+2mmny,
/ {m((l — 2mn, —1')(1 + 77/))
(L =)' —n)
n
- 2mmny - 1+n ot
_ dr’
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1 — 4.35
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+ Z YA [ m( 2i_;76 1) _ El _Ub))i_2
i=3 n
1+ 2mm, + 7\
F (1) (SR (1
Type 6 limits of integration:
1t/
n 2m ?7 ndn/ dn/
Kit6 = / / Fn7m7R(n,7 77/ <_b) b . 4.36
\o) w—n (4.36)
—(1=n—2mny) nu(1—n’)

1—n+2mnb 1—n

The results of the 7, integration, without the source:
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Equation 4.37 is singular at " = 7. The results of the n integration:
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4.1.1 Results

Shown in Fig. 4.7 is the total flux for the finite slab benchmark problem at early
mean free times. This benchmark problem uses the same parameters as the infinite
slab problem, with the addition of a slab half-width of b = 2. In the same figure, for
reference, the infinite slab total flux is shown. For one mft, the neutrons have not yet
reached the boundary, so the finite and infinite medium solutions match. At three mfts,
the neutrons have reached the boundary, and some leakage has begun. Equivalently,

one could say that near the x = —b boundary, the H (vt — 2b — ) depletion wave has
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been activated, while at the x = +b boundary, the H (vt — 2b + z) depletion wave
has been activated. Since the Heaviside functions have only been turned on near the
boundaries, then only the flux near the boundaries is affected. Near the center of the
medium, the infinite medium and finite medium total fluxes match. None of the other
depletion waves, such as H(vt — 4b — ) or H(vt — 4b + x), have been activated at

three mean free times.

Finite Slab Flux at Early Mean Free Times
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Fig. 4.7.— Total Flux at Early Mean Free Times

Shown in Fig. 4.8 below is the total flux for five and nine mean free time. Again,
the infinite medium solution for these same times is shown for comparison. We see
that for both these mean free times, the peak finite medium flux at the center of the
medium is lower than the infinite medium flux. This means that for every point x, at
least one of the depletion waves, H (vt —2b— x) or H (vt — 2b+ x), has passed. At the

center of the medium, both the H (vt —2b—x) and the H (vt —2b+ x) depletion waves
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have passed. Equivalently, one could say that the effect of the loss of neutrons from
the boundary is felt by the entire medium. At nine mean free times, the H (vt —2b—x)
and the H (vt —2b+ x) depletion waves have crossed the entire medium. Additionally,
for every point x in the medium, at least one of the depletion waves, H (vt — 4b — x)

or H(vt — 4b + z), has passed.

Finite Slab Flux at Mid Mean Free Times
0.25 T T T T T

T T
— 5 MFT, Infinite
= = =9 MFT, Infinite
5MFT,b=2

0.2

Flux

0.1+

0.051

Fig. 4.8.— Total Flux at Midrange Mean Free Times

The results for the pulsed source in space and time benchmark problem were
compared to the discrete ordinates code, PARTISN. To model an approximation of a
delta function in time in PARTISN, the time-dependent commands stimes and samp
were used. stimes lets the user set the time points at which the source is assumed
linear. samp is the relative source amplitude at each time point [19]. The initial source
amplitude was picked to be 10000, which dropped to zero after 0.0001 mean free times

passed. To approximate a delta function in space, the source was located in a small
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cell centered at = 0. The PARTISN input file was created with the assistance of Dr.
Randy Baker at Los Alamos National Laboratory.

Shown in Fig. 4.9 is the total neutron flux at 0.5 MF'T for a slab half-width of
b = 5. The figure shows two integral transport results: one for a total flux calculated
using 100 collisions, and one for a total flux calculated using three collisions. By
comparing these two fluxes found with the integral transport method, we can see that
at early mean free times the first several collisions dominate the total flux. By 15
mfts, the contribution from the first several fluxes has essentially gone to zero, so for
later mean free times, the results for the flux calculated using three collisions is not
shown.

Note that PARTISN has difficulty resolving the flux at early mean free times,
due to the singular nature of the source. By 5 mean free times, the PARTISN result
has smoothed out considerably, and the two codes match very well. By 25 MFT,
however, the integral transport flux has started to diverge from the PARTISN flux,
and by 50 MFT, the two codes give very different results for the total flux.

To determine how many collisions were necessary to accurately obtain the total

flux in the finite slab at a given mean free time, a local error was calculated:

an(xv %7 t) - gbn—l(m’ %t)
O, %7 t)

(4.39)

err =

where ¢, (z, %, t) is the total flux calculated from n collisions, and ¢,_1(z, %t) is the

total flux calculated from n — 1 collisions. The maximum local error was set to 107°.

The maximum local error was chosen to ensure that effects of later collisions not
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included in the total flux calculation would be minimal. Shown in Table 4.1 below
are the number of collisions necessary to satisfy the local error requirement at various

mean free times.

Table 4.1: Number of Collisions at Various Mean Free Times

Time Number of

Collisions
0.5 7
1 9
18
15 36
25 50
50 93

Although the results diverge at later times, there was very good agreement be-
tween the PARTISN results and the total flux calculated using 100 collisions between
5 and 15 mean free times. Additionally, there was good agreement between the total
flux calculated using 100 collisions and the flux calculated using three collisions at
early mean free times. This leads to the notion that the integral transport method is
especially suited to applications where only a few collisions need be calculated. This
is reenforced by the fact that the method becomes increasingly costly, in terms of
computer time and memory necessary, to implement as the total number of collisions
calculated increases. This is because the total number of integrals that must be eval-
uated numerically increases with every collision. A timing study was performed, to
determine how computation time increases with an increasing number of collisions.
The study was performed for a total number of points in 7 of 101, and the results are

shown in Table 4.2.
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Table 4.2: Total Time to Calculate Collisions

Number of Total Collision
Collisions Time [s] Time [s]

2 7.47 7.47
3 16.84 9.17
) 37.91 10.89
10 98.72 12.80
25 307.26 14.43
100 1446.95 16.08

Specifically, this integral transport method could still be of value to radiation
hydrodynamics codes used to model inertial confinement fusion implosions. To under-
stand why this is the case, it is instructive to estimate how many mean free times a
neutron is likely to spend in an ICF pellet before escaping. We stated in Section 1.4
that a 14.1 MeV neutron has a speed of approximately 5.2 cm/ns. Given the macro-
scopic cross-section of highly compressed DT as 39.4 cm ™!, the average amount a time
before a neutron will experience a reaction in a DT fuel pellet, or the mean free time
of a neutron in DT, is approximately 4.9 ps. We also estimated the fuel traversal
time of a neutron in a compressed fuel pellet as roughly 4.6 ps, which is on the order
of the neutron mean free time. At one mean free time, the total flux is dominated
by the first few collisions. We saw that the PARTISN results and the dimensionless
integral results were in very good agreement from 5 mean free times through 15 mean
free times, giving us confidence in the dimensionless integral results at these times.
To determine how many collisions would be necessary to give an accurate total flux
for time scales used in inertial confinement fusion problems, we plotted the total flux

from 100 collisions and the total flux for three collisions for a slab with a half-width
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Fig. 4.15.— Total Flux at 0.1 MFT in a Slab of Width 2 MFP
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At 0.1 and 0.5 MFTs, the agreement between the two integral transport fluxes

is very good. By 1.5 MFTs, the integral transport flux calculated from only three

collisions has started to diverge from the flux calculated using 100 collisions, with

the peak of the flux calculated using only three collisions off by about 10% from

the peak of the flux calculated from 100 collisions.

This discrepancy in the flux

may not be detrimental to the method’s application to a one-dimensional radiation

hydrodynamics code, as these codes tend to be used to obtain a range of parameters

in which a fusion burn might occur. The parameters then tend to be refined using

radiation hydrodynamics codes in two or three dimensions. By 2 MFTs, the n = 3

integral transport flux peak is off the n = 100 integral transport peak by about 20%.

After this time, the discrepancy in the flux calculated from three collisions is too great,

and for accurate answers, a greater number of collisions would be required.
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4.2 Finite Sphere

We now show how to extend this integral neutron transport method to in-
corporate a finite sphere geometry. We return to the integral form of the time-
dependent neutron transport equation, equation 3.38, where K (r,r’;t,t’) is the same
time-dependent kernel as was used for the infinite sphere. From here, there are two
approaches to the problem. Sec. 4.2.1 follows the same method as outlined in Sec. 3.2,
using a reflective boundary condition at r = 0 and a vacuum boundary condition
at r = b. Sec. 4.2.2 shows how to reformulate the problem so that the domain of

consideration is from —b < r < b, with vacuum boundary conditions at r = +b.

4.2.1 Finite Sphere Using Reflective Boundary Condition

To obtain the expression for the shape factor for a finite sphere of radius » = b,
with a vacuum boundary condition at b, we can start with the integral form of the

time-dependent neutron transport equation in spherical coordinates:

t

b
B(r, 1) = / / K, t, Q) dr'dt (4.40)
0 O

where K (r,r';t,t') is the time-dependent kernel and Q(r’,t’) is the time-dependent
source. Note that the upper limit of integration for the 7’ is no longer oo, but is now
the radius of the sphere.

The uncollided flux is the same as for the infinite sphere, and is reproduced

below:
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drrut vt

Bo(r 1) = —° (€:Ut> s(1-2). (4.41)

Inserting the spherical shell kernel into equation 4.40, and using the Neumann
series method to decompose the total flux into an infinite sum of the uncollided and

collided fluxes leads to the following equation for the n* collided flux:

t oo
=5 // R 77 PR (et AW SRR
s 87r7“7’ v v
0

x H(b—1")®,_1(r', t')4rr"dr' dt’
(4.42)
Note that the boundary at » = b is now denoted with a Heaviside function underneath
the integral, rather than as the upper limit of the ' integration.
Substituting the reduced collision ansatz, equation 3.45, into equation 4.42 and

simplifying, the following expression for the n'* shape factor is found:

! g4t n—=3 /
Fn(r,t)H t—— // drdt t— Doply - F, ('t
vt (t — 1) T v
_ /
x [H(t—t’—vv—r')—H(t—t’—@)}f[(b—r’).

When deriving the equation for the n'®* collided shape factor for the infinite

(4.43)

sphere case, the next step was to introduce a change of variables to a dimensionless
integration space. However, in the finite sphere case, it is instructive to examine the

integration domain in " and ¢’ space, in addition to " and 7’ space. Extracting the
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Heaviside functions in equation 4.43 will give the integration domain for the n = 1
shape factor in " and ¢’ space. The integration domain is shown graphically in Fig. 4.20

below.

(—l",t) t’:t | (I”,t) H(ﬁj'r’)

r+vt r+vt
2 7 v

H(vt-vt"-rtr’) (rﬁ H(vt-vt'-r +r)
(--1.0) 00) r=r (v —r,0)

(vt'+ r,O) r’

Fig. 4.20.— Finite sphere integration domain for n = 1 shape factor in 7’ and t’ space.

Upon examining the integration domain in Fig. 4.20, we find that the expression

for the n = 1 shape factor in 7" and ¢’ space can be written as:
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rotmgty ) =TS )
"t Eo(r',t "t Eo(r',t
Fy(r,t) _/ / T B dr'dt’ + / / T ) dr’dt’
r \t') vt'(t—1t) r\t') vt'(t—1t)
0 r! r T/

2 v 2 ,
_/ 7“_ i Fo?"t dr'dt’
r \ t vt’t—t’
0
vt+rt r +'r )
t Folr' t
Hvt+r—2b/ / Y B g
r \t') ot'(t—1t)
b

2 v 2
/ F !4l
+ H(vt —r — 2b) / / ; (%) %dr’dt'.
b

(4.44)

To obtain the integration domain in 7' and 7’ space, we must first perform

a change of variables on equation 4.43. As before, the dimensionless variables are
defined as 7/ = %/ and ' = v’"—t/, In addition to these variables, there is a third
parameter, to indicate the radius of the sphere in dimensionless space: 7, = % The

general expression for the n'* shape factor in 7’ and 7’ space is then:

1

Fn(nﬁ)z// 17 % w1 (', ) H (my — ' ) H(1 — 1)

(4.45)

X [H(1=7"=n=n'7) = H1 =7 —[n+n'7'|)] dndr’.

To determine the integration domain in 7" and 7’ space, we must extract the
Heaviside functions in equation 4.45. The integration domain is shown in Fig. 4.21

below. The boundary at " = b has become a curved line in 1’ and 7’ space, where
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Fig. 4.21.— Finite sphere integration domain for n = 1 shape factor in 7’ and 7’ space.

The limits of integration indicated by Fig. 4.21 give the following expression for

the n = 1 shape factor:

1-n 1+n
n 1-n/ 1 149/

T]F / / 1 n/F / /

= —_— + —_———

10 7) //7”1—7’ )n o(n)dr'dn //7"(1—7”)7) o(m)dr dn
0 0

1 (4.46)

77/
1N Z FO (n)dT/dT]/ .
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\]\
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\]
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The first three integrals correspond to the expression for the n = 1 infinite sphere
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shape factor. The last two integrals are depletion waves, negative sources of neutrons
that move across the medium, depleting neutrons. Solving equation 4.46 analytically,

the following expression for the n = 1 shape factor is obtained:

i~ Lo (220 13 [ (152) <t ) )

—H(1— 2, +7) {m G*—D +In(l — ) — ln(nb)] } |
(4.47)

Note that the expression for the n = 1 shape factor is dependent on 7/, unlike for the
infinite sphere. This is due to the definition of 7, = £. When F(n, ) is used as

the source for the n = 2 shape factor, we will need to rewrite the source to explicitly

include 7':

We can write the general expression for the n = 2 shape factor in r’ and t' space

in terms of the n = 1 shape factor as

t

1) e L) mor i
x [H(t T;M) —H(t—t’—w;—ﬂﬂdr’dt’.

Fy(r,t)H t— -
(4.49)
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However, there are three distinct sources that make up the total n = 1 shape factor.
These are the infinite medium source; the left depletion wave source, H (vt — 2b — r);
and the right depletion wave source, H(vt — 2b + r). Inserting the three sources into

equation 4.49, the following expression for the n = 2 shape factor is obtained:

T N\ r! i (1)
Fy(r,t) = S B A Iy (N e O AL
2(r7t) //(t) ( ’U> (b ’I“) Ut/(t—t/)
0
x [H(t—t |T_T‘)—H(t—t’—@)]dr’dt’

-1 / ;o
) T_H(t_zb_T_)H(b_mM

ot (t — ')

— !
X{H(t p_Ir r|)—H(t—t’—M)]dr’dt’
v
t oo
t 17“' 26 1’ Fy g(r',t)
- ) HOb— )
+//( ) < v+v) ( T)vt’(t—t’)
0 0
o /
X [H(t " T‘) —H(t—t’—M)] dr'dt’.
v v

The first integral, with the F} ;,y source underneath, has the same Heaviside functions

(4.50)

as the n = 1 case, so the integration domain for that source is as shown in Fig. 4.21.
For the F 1 source, the integration domain is shown in Fig. 4.22 below.
Referring to Fig. 4.22 for the limits of integration, the expression for the n = 2

shape factor from the Fj j source is:
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Fig. 4.22.— Finite sphere integration domain for n = 2 shape factor from F} j, source

in " and t’ space.
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Transforming this to n” and 7’ space, the following expression is obtained:
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(4.52)

The integration domain for the n = 2 shape factor from the F ; source in 7’

and 7" space is shown in Fig. 4.23 below.
The integration domain for the n = 2 shape factor from the Fj p source in r

and t' space is shown in Fig. 4.24. Referring to this figure to obtain the limits of

integration, we find that the form of the shape factor from the Fj p source is:
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Fig. 4.23.— Finite sphere integration domain for n = 2 shape factor from F} j, source

in " and t’' space.
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= 7t'r’ "Fyr(r' t)
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N / / tr Fur( ) b (4.53)
t'r ot/ (t—t)
b 2b=r/
b t—*—*
tr' F, t/
+ H(vt —2b—7) / / " BRI
tr ot (t — ')
2b r!

Examining the lower limit of integration of the first integral, we see that this

limit would give a negative value for r’.

Since our domain is restricted to positive

values of 7/, we need to perform a change of variables on this integral from ' to —7’:

e
tr F "t
/ wr 17R(r’ )dt,d ’
t'r vt'(t —1t)
r4+2b—vt  2p—yr/
2 v
0 t—%"r%/ pot== L’
tr'F 4 tr F
= / / _T_Mdt’dﬂ +/ / T R( )dt,dT/
tr vt (t —t) tr ot (t — ')
r+2b—uvt 26—/ 0 2b—7r/
0 _%_%/ T t_*+7
t F tr'F t
= / / (=) Buelor dt —dr') / / PRRLE) g
v\ r vt’(t—t’) ' ot'(t —t)
vt—r—2b  2p4r/ 2b !
2 v
vt—g—Qb t_%_r/ . t_7+7/
tr F 't tr' F t
- — / / —T—Mdt’dr’—i-/ / ' Fugr(r, )dt/d/r/'
tr ot (t —t) tr ot'(t — ')
0 2b4r! 0 2b—r/
(4.54)
Note that we have taken advantage of the fact that Fy ,(r',t') = Fy g(—1",t'):
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We can now rewrite the equation for F gomp, , as:

s

tr "Fyr(r 1)
F2,fromF1,R(r7 t) = H<Ut —2b+ 7’ / / t, . Ut’ P t’) T 2t dy

Tt Fy g(r', 1) ,
—dtd 4.56
+//w ot — 1) (4.56)
2b—r!
b t=I-L
tr F t
+H(vt—2b—r)/ / LR E) g
tr ot (t —t')
0 2b—r!

v

In n" and 7’ space, the integration domain for F, from the Fj g is shown in

Fig. 4.25 below. Examining Fig. 4.25 we see that the integration domain is:
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’

T

( 7717 51+n_nb)

J 7=1

1\(0,1—17)|

H(T-2n,40'T)

_1-n-2n, 1-n+2n,
1-n+2n,’ 2

||

n'=-n 00) n'=n n’=1 n

Fig. 4.25.— Finite sphere integration domain for n = 2 shape factor from £} r source

in ' and 7’ space.

1+n 1—n

1+n/ n n
/F / / /F / /
- / / % LR(??/;—/T >d7—,d77/ + / / % 1,11%(77 7/7— )d,]_/d,r]/
Ty
n

[y

1—- -7
1+:7]b_77b 4 *1:21322 1237;’
. (4.57)
1 14/
F
+H(1— 77—277b) _/ / n_ 1,R(777T)d ldn/
n 1—7
0 2m
1+7]’
1-n 1-n
1 vy "B ( ’ /) y = "B ( ’ /)
i /l L,rR\N, T dT’d’f}l— / / 77_ LRI, T dT’dn/
n 1—7 n 1-—7
LI Iy _1-n—2n, 2my
1—n—ny =’ 1—n+2m, 140/

Note that we have two integrals with limits of integration that move into —n’

space. Since our domain is restricted to positive values of 1, we perform a change of
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variables from 7' to —7'.

0 f:$
77 1—71
1—n—2n, 2n
T I=nF2n, 1497
1—-n
0 L’ /F ( / /)
- 1L,R\—1, T
== [ [P e an 59

Note that the result of the transformation of variables on this integral is equal

to the negative of the third integral in equation 4.52. Since these two integrals will

cancel each other out, they may be ignored.

1—n
1777/
¥ /.,
/ nm 173(77 , T )dT/dn/
n 1—-7

_1-n—2m, 2my
1-n+2n, 1+n/

1-n 1—n
1—n’ n 1-n

0
F!
/ /77 1R(?77- ld +// lll'%an/dn/
-7

1—n—2mn, 2n
177]+2nb 1+7] 1‘“7

o . (4.59)
0 LA’ 'F ( / /) i 'F ( / /)
_ / / n 1,R n,T dT/(—dT],> +/ / 77_ LR\, T dT/dn/
i 1—7 n 1—-7
1—m—2n; 2n 0 2n
1—n+2n, 1—n' T4/
1—-n—2n, 1— 1—n
1—n+2n 1+n n 1-n ' ( , /)
/ 77_ 1L777 )d /dn/+//77_ L,R\, T dT/dn/.
n 1- n 1—7
0 2my, 0 2
1—n/ T4/
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Now the equation for the n = 2 shape factor from the Fj r source can be written as:

1 1+n/
/F /, 7_/
FZ,fromFl,R(T], 7-) = H(]_ +n— 2’[]b) / / % 171Rﬁ77—/ )dT/dn/

147/
1+n
Oy E F
. / /Z l,R(T’? /d +//77 1R777—d/d77
n
1+:777b—n,, % 1+n ( )
4.60
1 1+7y F
+H(1— 5 — 2) //77 “‘”7 Br(s ) gy
1+n
1—-n
1 147/ ,
+/ /T]_FR(T’T)d/d/
n 1—7
b ny
1-n—my 7

while the equation for the n = 2 shape factor from the F} j, source becomes:
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(_777—,7— )dTldn/

FQ,fromFLL (777 7-) = H<1 -—n- 2775) /
0

1—n—2ny
1—n+2n 1+n

1+n—2n, 1+n
1+n+2n, 147/

F; F;
/ 77 1L77 T)d’dr]' — H(1+n—2m) / /77_ 11L(77> )d’dn’
0 2y, "
177]/
[ 14+n—2n 1+n 1 147 T
1+n+2n, 149/ 3 147

n Fio(n, T

3
/
— H(1+n—4n) / / )d 'dn'—l—/ /H—Mch’dn’
1—7 n 1
mmp
L 1—77’ T—np+n o’ |
B 11 1—n—2m, 1y B
T By, ) R L, 7)
+ H(1—n—4n) / /—de "dn’ + / /—1—d7"d77'
Ty " 1 20y, 1
[T—n—np o 3 1—n/ 4
(4.61)

Examining the expression for the n 2 shape factor from the F}; source,
equations 4.51 and 4.61, we see that the original Heaviside functions, corresponding
to the depletion wave source, is present, along with two new Heaviside functions.
The expressions multiplying the two new Heaviside functions will become additional
depletion wave sources, so that the n = 3 shape factor will have a total of five sources:
Faings Foma—n—2ny), Fo.nasn-20,)s F2.m(1-n—an), and Fa g14n—an,)-

As was the case for the finite slab, all the shape factors, excluding the infinite

medium pieces, have a dependence on 7'. To make this dependence more explicit, we

will again perform a change of variables from 7’ to 7;:

(4.62)
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and

dn, d (m) —1
- (22) = ] 4.63
dr’  dr’ \1’ (17)? ( )
We can now write Fj gomp,, in terms of n, and n':
FZ,fromFl,L (777 77b) - H(l - - 27717 / ?7 nb LL 77 nb)d édn/
N M= M
0 nb(l n)
4n—2n, |_ 0’
14n+2n, —3 , F ( , ,>
+ / 77_7]_1/) 1,1/'1 77 777b dnll)dn/
N My — M
n np(+n’)
47
1-n—2np ¢ _
1—n+2n,, 2 F
H(l + n— 2771) / n T}b 1L(7] nb)d l/,dn/
n 77b 771, b
0 mp(1+4n")
1-n
n=2np 1_,/
14+n+2ny, P} , F ( , /)
— H(1+n—4n,) / %%%dmﬁdn’ (4.64)
% np(1+n') b b
17
1 /
3

n
/ F /, /
M My — b
1,% np(1+n")
np+n 147/

1
3 n
+ H(L—n— 4m) / /77—77— L7, nb)d{)dn/
nm
np(14+1")

—
np
I=n—mp — 14

1—n—2mn 1_7]/
1—n+2mn, 2

" F /, /
MM My =
% np(1+n")
1-n
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and I fromr,, becomes:

147
2

1
n' e Fur(n',m)
FQ,fromFLR (777 775) = H(l +n— 27717) / / T / : dnl,)dn/
Ny My — M
n np(1+n")
=
! 77/ / F ( ! /) n 1zn/ / F ( ! /)
e £1,r\1 7] o LL,r\T, 0
— / / — =y + / / — = =y df
Ny My — b Ny My — b
b np(14+n’) 0 np(1-n")
I+n—mny 147/ 1—7 (4 65)
147’ )
1 2 / F ( ! l)
nm 1, rR\N,N
+ H(1—n—2m) —/ / 2
nm My —m
0 7]b(1+7]/)
1-n

The above integrals can be evaluated analytically to obtain a closed form solution
for the n = 2 shape factor. The analytic expression for the n = 2 shape factor is
reproduced in Appendix C.

At this point, we introduce a new problem parameter, m, which we refer to as
the reflection number. The reflection number indicates the number of times a neutron
has moved across the medium, and varies from 1---n — 1. By using this parameter,
we can rewrite the expressions for the shape factors. The n'* shape factor from the

Foo1,H(1—n—2mn,) Source is:
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n—1 oo
7]_ (_) nfl,jn,L(n 777b> dnll)dn/
n My — M

Fn,froan_l,,mL (777 nb) = H(l — 17— anb /
0

nb(l n)

1+n—2mnp 4 _
TenT2mm, g

n—1
Fn— m /’ b
/ / T]_ (_) 1,/ ,L(n 771;) dnll)dn/
n M — M

T]b(1+7y
1+4n

1—n—2mny 1—
1=n+2mmny 2m

n—1
Fn— m /’ /
H(]_ -+ n— 2m77b / / 2 (_) 17/ ,L(n nb) dngdn/
n My — T

le(1+ﬁ/)

14+n—2mny 1— "7
I+n+2mn, 3,

0\ Facvms (0 1)
—H1+n—-2(m+ 1)n / / —(—) R LD dnydny
( ( ) n \m, My — 1o ’

1 ’
np(1+1")
2m—+1 7b1+'r]

N n (" L,z (0, M)
+/ /—(—,> R dy iy
m\" My — M

by (14n")

_ 1
2m+1 n

/

/ n—1 ’oot
Fn— m Y
i g2 nm| [ [ D(2) Dty
by (14n) ’ ’
1=n—np 1—n

1—n—2mny 1—

S n—1 ’oo
+ / / 77_ (n_l;) n71,7/n,L(77 77717) dngdnl
n\" My —

1 np(14+1")
1-n

(4.66)

Similarly, using the reflection number, m, we can write a general expression for

th shape factor from the F},_1 pr(141—2mpy,) Source:
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1 14
2m—1 2m

7 (" Faetmr(nn})
n—lm, bl / /
Fn7froan—l,m,R (777 nb) = H(l + 17 o 2mnb) / / ; (_) dlrlbdn

m, My — M
N np(l+n’)
+7
o i n (M "R 1 R(77/ 77/)
T ()
T\ My — M
1+n b W51(1+J7r]n)
1+n
e / n—1 ;oo
FTL— m bl
/ / n <”—f) L RN nb)d%dn,
T\ Ty — M
Wb(l n)
1 14y
amot ’ n—1 F ( / /)
CH(1— 15— 2mpy) | — / / T (@) n=Lm BT o). gy iy
T\ My — T
0 mp(1+n’)
1-n
1 /
Im—1 n , el ( )
+/ /77_(77_1/;) ntm ROV ) g g
n\"m My — 7
T ny(l4n’)
1—n—mny

(4.67)

Examining equations 4.66 and 4.67, we see that there is a singularity at n;, = .

For the specific case of n = 3, the subtraction of singularity method for each of the

integrals in the above equations is shown below:

1777/

n 2m
Foom
Ktl = / / Q(—) Z2m A ) L0 ””)dngdn’. (4.68)
n 771, 771; b
0 'r]b(llif'r]/)

The results of the 7, integration, without the source:



:1n<1—2mnb—n’)_ 1—77+ Zmnb.

n—mn

1—97 1—9

Equation 4.69 is singular at ' = 7. The results of the n integration:

n
1 —2mn, — 1/ 1-— 2
/ In mi, =1\ o 2mi | g
n—n L—ny 1-v
0
Con(L—2mm,—n) (1 —2mmn)° 1 —2mn,
= + In{ ———
1L —2mn, —n

2 2

2
+(1—2m77b—77)1n(1—77)—77—1n (4

/ 2 oo
Fy ;
Kt2:/ / n_(n_z:> ), ;R(n Ub)d%dn,_
n\" M —

The results of the 7, integration, without the source:

140/

2m

2
/ <@) &
C\my) =

np(1—n’)
1-n

2mny

)

I ((1 — 2m, — 1) (1 —n’)) L=n

_1_77/ 1+77/'

(L+n)(n—n)
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(4.69)

(4.70)

(4.71)

(4.72)

Equation 4.72 is in fact singular for a range of values of 7/, and the subtraction of

singularity method cannot be used on this particular integral.



The type 3 limits of integration:

14n—2mmny /

TenEm, / 2F I
Kt3 = / / 1(@> —2’m;L(”’”b)dngdn’.
m\" Ty — M
n np(1+n")
T+n

The results of the 7, integration, without the source:

1-n
2m 2 ,
e
M/ Ty —
np(14+1")
T+

:m(ﬂ—ﬂmm—nﬂl+ﬁv__l+n 2muy,
(L=n)n" —=n) L+n 1-9o

Equation 4.74 is singular at ' = 7. The results of the n integration:

e
1—2mn, — 1) (141 1 9
/‘ %n(( mmlﬁ)(+n))_ 4ﬂz+ m@}nﬂ#
(1 =2)"—n) I+n7 1-n7
n
—1? 1—n
= +mnp(1+n) — (1 —2mmn, +n)In 5

om 1+n)? 1—
(53 )+ )

L+ 2mn, + 1

The type 4 limits of integration:

1 147’
ol 2m / 2 Ja ( / /)
kn= [ z(n_f;) BP0 6) g iy
T\ My —
N np(1+n’)
=

The results of the 7, integration, without the source:

121

(4.73)

(4.74)

(4.75)

(4.76)
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e
) M — M

np(1+n")

(4.77)
7

] 1 —2mny, + 7' 14+n  2mn,
= In o o /+ ’°
n—n 147 1+n

Equation 4.77 is singular at " = 7. The results of the n integration:

1

2
1-2 AN 2
[ ()t e
n=n L+ 147

n

(1—=2mm,+n)(1+n—2mn) 1427 In

2m —1
2 2 ]
22m — 1) (2m) + 2(map)” In ( om )
2 _
2 2(2m —1)2 14+n—2mn

1-2 2 1-2
—(1—2m77—b—77)1n(1+7})+< i) ln< mﬁb+77)

2 L+ np — 2mm,
2 1 -2
L (2R e
2 1 —=2mn, +n

(4.78)
The type 5 limits of integration:
1—n—2mny 1_n/
- a / 2 I I
Kt5 = / / T (@) Boma (01, 16) g g (4.79)
T\ My — Tl
0 nb(ll-Hl’)
-n

The results of the 7, integration, without the source:
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1—n
2m
/ r
nb(11+n/) " T e (480)
—n

:ln((1—2mm—n’)(1+n’))_1—77 2muy,
(L =)' +n) L+ 1-9"

There are no singularities in equation 4.80, given the 7’ limits of integration.

The type 6 limits of integration:

2m ' 2 ’ ’
Fy,, :
Kt6 = / / l<@) P00 10) g (4.81)
n \" My — T
0 np(14n")
1-n

147/

2m 2 ’

/ (@) &

M) =1
A (4.82)
1—n
(1 — 2mny +77/) L—mn  2mn
=In — + .
n+n L+ 147

There are no singularities in equation 4.82, given the 1’ limits of integration

The type 7 limits of integration:

/ 2 roo
}7 m )
Kt7 = / / s (77—1,’) Z2m, R Th) ;R(" ”b)dn;dn’. (4.83)
n\" My — o
b np(1+n’)
1+n—mny 1+n

The results of the 7, integration, without the source:
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J
77/ m, — Mo
np(1+n’) b b (484)
n ((nb —n){1 +n’)> Ltn , m
n'(

"(n—1') 1+ 0

Equation 4.84 is singular at 7" = n,. The results of the ' integration:

1

e L+7") (e — 1 1+n
/ {ln (( / )(_b / ) - 1 / + _l/) n/dn/
J n(n—n) +n7 n

1+n—mny
— 142 2 2m —1 -
_logmmt A2 oy 4 Ty, < me(2m = 1) (1 = 1) )
2(2m — 1) 2 2 (L+m, —2mmnp) (1 —np + 1)
1 I 2m(1 + n, — 2mn) +(1+7})21n( 1—m+n )
( —1)2 1+n—2mn 2 (2m — 1)(1 +n)
2 1 -2
I (M)
2 M —1
(4.85)
The type 8 limits of integration:
2'm 1 F
Kt8 = / / <—> QW,R(" ) gt iy (4.86)
My —
7]b(1+7y
1— 7] np T—n
The results of the 7, integration, without the source:
/'7/
j o
Mo/ Ty =
my(14+1') ’ ’ (4.87)

1—n

I <(n’—nb)(1+n’)> R /B

n(n+n) T+ o
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Equation 4.87 is singular at ' = m,. The results of the 1’ integration:

1

m—

[ () i e

Ul
1—n—mny

D
=

1= 2mgy—1y  1-2 2 om — 1
e Ll R Y ’71n(2m)+"—"1n( o(2m = 1) (1 + 1) )

2(2m — 1) 2 2\ (1 +m —2mm) (1 —m —n)
— —n)2 o —
N 1 I 2m(1 + ny — 2mny) Jr(1 n) I IT—n—nm
2(2m — 1)? 1—n—2mn 2 (2m —1)(1 —n)
2 _
(P (1
2 Mo+ 1
(4.88)

4.2.2 Finite Sphere Without Reflective Boundary Condition

This method is based off the following derivation in [16], for steady-state neutron
transport in a finite sphere. The integral form of the neutron transport equation can

be written as:

ro(r, E) =

N | —

/T’q(r', EY{E:[c(E)|r —1'|] = E1[c(E)(r + 7))} dr (4.89)

where a is the radius of the sphere, E is the energy, F; is the exponential integral,
q(r, E') is the external source and o is the cross section. Note that the source, ¢(r, E)
is symmetric around r = 0, that is, ¢(—r, F') = q(r, F). Using this fact, we can rewrite

equation 4.89 to expand the domain from —a < r < a as:
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a

ré(r, B) = % / V(' BYEy (o(B)|r — ']) dr. (4.90)

—a

Of particular importance to this method is that we have replaced the spherical form
of the integration kernel, E; [o(E)|r —'|] — Ey [o(E)(r +1')], with the slab form of
the integration kernel, E; (o(E)|r —1'|).

Now we will extend this method to incorporate a time-dependent kernel. The
time-dependent neutron transport equation for the n** collided flux in a finite sphere

can be written as:

—Z‘U(t t') o /
rén(r, t) = // { (t—t’—u)—H(t—t’—M)}
81 (t v v

XAy (' )y dt!

(4.91)

where b is the radius of the sphere. By analogy with the steady-state sphere, we can
rewrite the n'* collided flux over the domain —b < r < b using the slab form of the

integration kernel Heaviside functions:

b
6721)15 ) / |’I“ _T/| 2 rogl ! 34l
ron(rt) = Xy t—t — ——— | dmr=g,_ (v, t)dr'dt"  (4.92)
v

87rr’
0

or, alternatively, we can write the above as
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t oo
—Sv(t—t") o
WY § e A
8mrr!(t — ) v

) (4.93)

XH(b—1r"VH(b+ 1 )Anr?¢,_(r', ) dr'dt’.

Note that the Heavisides in equation 4.93 are identical to those in the finite slab
equation, equation 4.1. The advantage of this approach is now apparent. No further
work in extracting the Heaviside functions to determine the limits of integration is
necessary. We can use the same limits of integration as derived for the finite slab case.

The next step is to determine the uncollided flux from the external source. The
external source is the same as for the infinite sphere, and is a pulsed source in space
and time. The uncollided flux, too, is the same as for the infinite sphere, and is given
by equation 3.40.

Applying the spherical coordinates ansatz, equation 3.45 to the expression for
the n'" collided flux, equation 4.93, results in the following equation for the n** shape

factor:

b —
/r—/ v 3—1 H t’—r—, H t’+r—/ H t—t’——‘r_r,‘
r A\t vt (t —t') v v v
b

X Fy 1 (r' ") dr'dt’.
(4.94)
To determine the integration domain for the n = 1 shape factor in " and ¢/

space, extract the Heaviside functions in equation 4.94. The integration domain is as
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shown in Fig. 4.1. The expression for the n = 1 is then

1 / t+%_%r’ t\> Fo(r',t) f t+%_;r’ t\> Fy(r',t)
F1<7’, t) = = / / —\ 7 ﬁdﬂd?‘l —|—/ / —\ %dtldﬂ
2 r \t') ot'(t—1t) r \t') vt'(t—1t)
r;vt ,Ur/ 0 ,,1,}/
=T )
/ t F / t/
+ / / T_ - O(T ) ) dt/dr/
r \t') vt'(t—1t)
—b t+ -5
F t/
H(vt —2b—r) / / 7’_ — Mdt’dr'
r t’ vt (t —t')
#HL—% 5
/ t F / t/
—H(vt—2b+r)/ / O G0 I
r \t') vt'(t—1)
b r’
(4.95)

Solving this analytically, the following expression for the n = 1 shape factor is
found:

:q
—
=
~
S~—
|
1=
—N—
N}
=3
/N
—_
I+
=S |=
~__
=
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+
=
— |
DO
=
| — |
N
—| =
+
3=
~_
+
=3
VR
—_
|
| o>
~

This result was previously published in [21].

To obtain the equation for the n = 1 shape factor in ' and 7’space, we first need

to change variables in equation 4.94 from 7’ and ¢’ space to ' and 7’ space. Doing so

we obtain the general expression for the n** shape factor:
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3

= |

1—71

F.(n,7) —/ / (T/)n—/ /Fn,l(n’, ™VH(ny — 70" YH(ny + 70" )YH(1 —n")H(1 + 1)

XH(1—1"—|n—n'7")dn'dr.
(4.97)
In 7" and 7’ space, the integration domain is found from Fig. 4.2, and the equation

for the n = 1 shape factor can be written as

] n 11:77’ ] , 1 11177’ 1 ,
77 / / / /
r _- L Fy(n)dr'd L Fy(n)dr'd
1(0,7) =35 / / = o(n)dr'dn’ + / A7) o(n)dr'dn
-1 0 n 0

(1 —17)
71 —731)
n
149
1 147’ 1 ,
— H(]_ — 277b+77) / / T/<1 _7_/) EFO(n)dT,dn/
T M
1-np+n 7/

(4.98)

Evaluating the above integrals analytically gives the same result for the n = 1

shape factor as was found using the reflective boundary condition, and is given in
equation 4.47.

To obtain the n = 2 shape factor, we use the n = 1 shape factor as the source.

The n = 1 shape factor can be broken into three separate sources: the infinite medium

source, the left depletion wave and the right depletion wave. The integration domain

found from the infinite medium source is identical to the integration domain for the

n = 1 shape factor. The integration domain from the left depletion wave, in 7" and ¢/
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space is shown in Fig 4.3, while the integration domain from the right depletion wave
is shown in Fig. 4.4. The expression for the n = 2 shape factor from the n = 1 infinite

medium source is:

0
1 ot Flyi"f<rlat/> 1yt
FQ,fTOmFl,inf<7n7t): 5 / / ? (;) mdt dr
r—2vt _TT/
Pt -t
(T Fring (', 1) / / (T Fring(r', 1)
M R I L A S [ o M ) )t dr!
+/ / r(t’) wt—) “ T r\# ) e —e)
0 " M
bt
! 14 an 7t
—H(vt—2b—r)/ /T— LN Bring (00 g0
r \t') vt'(t—t)
r;vt %
R
! 13 Fm /)t,
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(4.99)

The expression for the n = 2 shape factor from the n = 1 left depletion wave is:



131

F2,fromF1L (T7 t) =

R
/ t F / t/
H(vt —2b—7) A R WAGSLD v
r \t' ) vt'(t—1t)
—b  2b4r/
vt7§b+r t"l‘%_%/
/ )n Y,
+ / / 7'_ i 1,L(r 7t )dt/dT/ (4100)
r \t' ) vt'(t —t)
r 2b+r/

2 v v
— H(vt —4b+) v Mdt’dr’
r \t ) vut'(t —t)

b 2b+r/

v

and the expression for the n = 2 shape factor from the n = 1 right depletion wave is:

FQ,fT‘O’VTLFlR(r7 t) =

— H(vt —2b+ 1) v Mdt’dr’
r \t' ) vt'(t —t)

(4.101)

— H(vt—4b—7) / / Y <—> FLr( ) g
r vt (t —t')

2b— ’Ut+’r‘ 21; r!

The integration domain for F fromp, and Fs fromp,, in n'and 7'space are shown
in Figs. 4.5 and 4.6, respectively. In n’and 7'space, the equations for F3 tromr, .,

FZ,fromFlL and FQ,fTomFlR are:
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respectively.

Introducing the variable change from 7'to 7, allows us to rewrite equations 4.103

and 4.104 as:
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By using the reflection number, m, we can write the above equations more gen-

erally as:

/

1-n
n—1 / /
7]/ Ty anl,m,L(n 1 )
w () e

Y 2m

Fo fromFy_y . (1,M) = H(1 = 2mmn, —n) / /

My My —
2;11 ’flb(l n”l ")
1-2mmny,+n 1—n
tHEmaptn 3 n—1 F ( / /)
+ / 77_ (_) n—l,:n,L n 7T]b dnédnl
U/ Ty — ™
np(14+1")
47
—m
_ / / 77_ (T]_l;) n—l,:n,L My dnédnl
RN My — M
Zmt =)
1
T " Facn (1)
n Mo n—1,m,L n,n
— H(1=2(m+ D —1n) / / — (—,> = dnydn
m A\ Mo — 1
Mo ny(14n")
1=np+n blfn
1—2mnb+n 177]/
1+2wn,+n 2m , n—1 F ( , /)
-/ ] (@) et i
/ ) n A\ T —
2m+1 Wb(llj;l”l )
(4.107)
and



136

zmt n—1 )
77, Ty Fn—l,m,R(” » N )
F”vfman—l,m,R (7777717) = H(l —2mn, + 77) / / n (_’) / b d??{)dn'
X" My — b
n mp(tn’)
T+n
l+n/
n 2m 77/ nb TL—lF L R(’]’]/ ’[’Il)
Ty et g
T\ /)
2mny+n—1 "b(l_n/)
2mny—n+1 177]/
1 !
amt " / n—1 Ja ( / /)
-/ ] (”—) R i
P ) n\" M — M
1—nzl:+n "b(llfj," )
—ny
— H(l — 2(m + 1)771) —|— ’)’]) / / n_ (?7_?) nflﬂlﬂ,R 77 777b dn[/)dn/
; T\ My — "
ST le(ll:nn)
1 147/
2m+1 2m

/ n—1 roo
Fo1mr(0,
N / / Q(n_z;) L RN m)d%dn,
n\" My —

2mnptn—=1 ny(1—7')
2mmny—n+1 1—n

(4.108)

The integrals in the above two equations are singular at n; = n,. Subtraction of
singularity will have to be performed on each of the above integrals. The results of
the 7, integrations are shown in equations 4.22, 4.25, 4.28, 4.31, 4.34, and 4.37, given
in Section 4.1, where n is replaced by n — 1. Because of the factor of " in each of the
integrals, the results of the 1’ integration are not the same as for the finite slab case.
The results of the n, integration, for the specific case of n = 3 are shown below.

Beginning with the type 1:
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4.2.3 Comparison of the Two Finite Sphere Methods

To ensure that the finite sphere derivations are consistent, there are a number
of checks that may be performed. This section describes many of these checks, in an
effort to determine if and where any errors in the method may have occurred.

For a finite sphere, it is possible to determine at what time, in terms of mean
free paths, that the flux for a given collision goes to zero. For instance, in a sphere
of radius b, the n = 1 flux must go to zero at time ¢t = %b A neutron that has not
collided can travel, at most, the radius of the sphere. Once the neutron has reached
the boundary, it must either exit the sphere or collide. Once the neutron has collided,

it moves into the n = 1 collision. At this point, the maximum distance the neutron
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can travel is an additional 2b, where b is the radius of the sphere, for a total distance
of 3b. At this point, the neutron is at the boundary and must either exit the sphere,
or collide, where it will contribute to the n = 2 collisional flux. Therefore, to verify
that the n = 1 collided shape factor is behaving as expected, we need to ensure that
when t = %b, the shape factor is zero. In terms of 7,, the n = 1 shape factor must go
to zero when n;, = %, and must stay zero for smaller values of 7,. Plugging n, = % into

equation 4.47

7 1
_u (% _ 77> {m i—Z) —In (%) i (%ﬂ (4.115)

Here, we have taken advantage of the fact that n < 1, which allows us to
determine that the H (% — n) Heaviside function is always turned on. Additionally, in

the formulation utilizing the reflective boundary at n = 0, n is defined to be strictly
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positive, therefore the H ( % + 77) Heaviside function is always turned on. Alternatively,
in the formulation not utilizing the reflective boundary condition, we note that n, > |n|.
This means that —n > n,, and the H (% — n) is always turned on.

Another way to utilize the fact that the shape factors must go to zero is to
examine the limits of integration. We can insert the source into the integrals, and
then ensure that, by matching limits of integration, the result is equal to zero when
all the depletion wave Heaviside functions are turned on. We do this for the n = 2
shape factor in the reflective boundary condition formulation in Appendix D. This
same check was performed on the n = 2 shape factor formulation that does not utilize
the reflective boundary condition, though it is not reproduced in this work. In both
cases, it was found that the n = 2 shape factor went to zero after all the Heaviside
functions were turned on.

An additional check, utilizing the time at which the shape factor goes to zero,

may be performed on the n = 2 shape factor. Since the maximum distance a neutron

5b

contributing to the second collided flux may travel is ¢ = 2>, we can check that after
this time, the n = 2 flux goes to zero. Since we have an analytic expression for the
n = 2 shape factor, we check this graphically. Figs. 4.26 through 4.29 show the n = 2
shape factor, found from both the formulation using the reflective boundary condition,
and the formulation without the reflective boundary condition, for various values of
1. Here we have provided two checks of the finite sphere formulation. We have found
that both formulations give the same result for the n = 2 shape factor, and that the
n = 2 shape factor goes to zero when n, = 0.2.

To ensure that the derivation of the finite sphere shape factors in both formu-

lations are consistent, we can match integrals for the shape factors. Table 4.3 shows
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Fig. 4.26.— n = 2 Finite Sphere Shape Factor for n, = 0.7.
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Fig. 4.27.— n = 2 Finite Sphere Shape Factor for n, = 0.5.
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Fig. 4.28.— n = 2 Finite Sphere Shape Factor for n, = 0.3.
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Fig. 4.29.— n = 2 Finite Sphere Shape Factor for n, = 0.2.
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the n = 3 integrals in both formulations.
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4.2.4 Finite Sphere Results

147

Although the finite sphere dimensionless integral method was never successfully

implemented numerically, the first two collisions were calculated analytically. At early

mean free times, or for a sphere with a very small radius with respect to the neutron

speed, we would expect the early collisions to dominate the total flux. To verify this,

we plot the finite sphere total flux for a sphere of radius b = 1, and compare it to the

infinite medium flux at early mean free times, and the PARTISN results at later mean

free times.
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Fig. 4.30.— Total Flux at 0.1 MFT in a Sphere of Radius 1 MFP

At 0.1 MFT, the infinite sphere and the finite sphere utilizing two collisions

match very well, indicating that the two first collisions are dominating the flux. At

0.5 MFTs, we see that the finite sphere result has already started to diverge from the
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Fig. 4.31.— Total Flux at 0.5 MFT in a Sphere of Radius 1 MFP
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Fig. 4.32.— Total Flux at 1 MFT in a Sphere of Radius 1 MFP
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Total Flux at 1.5 MFT for b =1
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Fig. 4.33.— Total Flux at 1.5 MFT in a Sphere of Radius 1 MFP

infinite medium result, indicating that some of the later collisions are now affecting
the total infinite sphere flux. By 1 MFT, the flux from two collisions is about 30%
smaller than the infinite sphere flux, indicating that more collisions are necessary to

obtain an accurate total neutron flux.

4.3 Discussion

The above sections showed how to expand the dimensionless integral transport
method to incorporate finite media, and showed some results for the total flux. This
section will discuss the limitations and possible applications of this method.

The finite slab total flux was compared to the total flux as calculated by PAR-
TISN for a pulsed source in space and time. This comparison showed that the total
flux from the integral transport method and the PARTISN results matched very well

for early mean free times, but that the results diverged at later mean free times. The
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total flux from the integral transport method was also compared with a flux calculated
from only a few collisions. This comparison showed that at early mean free times, the
first several collisions dominate the total flux results.

The finite sphere flux was calculated using only two collisions, as the method
was never successfully implemented numerically. Numerical calculations for the third
collided flux gave a negative flux value. The flux was compared to PARTISN results
for a pulsed source in space and time, as well as the infinite sphere results. Comparing
the infinite sphere results to the PARTISN results showed that PARTISN had trouble
resolving the singularity in the flux at the wavefront. At later mean free times, after
the singularity was no longer as pronounced, the infinite sphere and PARTISN flux
results matched very well. Comparing the infinite sphere flux to the finite sphere flux
showed good agreement before 1 MFT. This indicates again that at early mean free
times the total flux is dominated by the first several collided fluxes. However, by 1
MFT, the finite sphere flux from two collisions had diverged from the infinite sphere
results, indicating that more collisions are necessary after this time.

Also noted above is the fact that the dimensionless integral method coupled with
the Neumann series method becomes unwieldy as the number of collisions increases.
This is due to the fact that as the number of collisions increases, the total number of
integrals that must be evaluated numerically also increases. This fact, coupled with
the method’s failure at accurately calculating the total flux at later mean free times,
leads to the conclusion that the method is not appropriate for problems in which
neutrons will suffer many collisions, or problems that may need results at late mean
free times.

However, the method was successful at calculating the first several collisions,
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numerically in the finite slab case, and analytically in the finite sphere case. This
means that the method still holds potential for being incorporated into a radiation-
hydrodynamics code. As was discussed in Section 1.4, the majority of neutrons born
in an Inertial Confinement Fusion implosion will suffer few, if any, collisions before
escaping the target. This was a prime motivating factor for choosing a Multiple
Collision approach to evaluating the neutron transport equation: only a few collisions

would need to be calculated to obtain an accurate total flux.
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Chapter 5

Conclusions

We have introduced a new method for solving the one-dimensional, one-speed, time-
dependent neutron transport equation for homogenous media. This method was ap-
plied to both infinite and finite media. This method involved utilizing the Multiple
Collisions method in conjunction with dimensionless variables to solve the integral
form of the transport equation. While the integral form of the neutron transport
equation has been previously used to solve a variety of transport problems in both fi-
nite and infinite media [22], this is the first time that the integral form of the equation
has been coupled with a dimensionless integration space.

The infinite media results were compared to benchmark problems previously
published in the literature [11,22]. The benchmark problem was for a pulsed source
in space and time, in both infinite slabs and spheres. The media were purely scat-
tering with a scattering cross section of one, and the neutron speed was set to one.
For both the infinite slab and infinite sphere formulations, there was excellent agree-
ment between the dimensionless integral transport method presented and the previous

methods.
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The finite media chapter showed how to expand the dimensionless integral for-
mulation to incorporate either a finite slab or a finite sphere. Since there are no
benchmark problems in the literature for a finite slab or sphere with a pulsed source
in space or time, the finite media results were compared to PARTISN. The PARTISN
runs approximated a pulsed source in time using a source of large relative amplitude
that went to zero after a very short amount of time. The localized nature of the source
was approximated by locating the source within a cell of very small size.

For the finite slab case, the PARTISN results were compared to both the integral
transport results for a full run of 100 collisions and for a total flux calculated with
only three collisions. For the sphere case, the PARTISN results were compared to
both the infinite medium flux at early times, and the finite flux calculated with only
two collisions.

For the slab case, it was found that at early mean free times, there was very good
agreement between the total flux calculated using three collisions and the total flux
calculated using 100 collisions. This led us to the conclusion that at early mean free
times, a method that only calculates a few collisions could be adequate. At later mean
free times, the PARTISN results and the integral transport method results diverged.
Assuming that the problem lay in the integral transport method would lead us to
conclude that the method is not well suited to calculate the total flux in situations
where the effects of the later collisions dominate. A further limitation of the neutron
transport method, in which ever more integrals must be numerically evaluated for
each successive collision, reinforces this conclusion.

For the finite sphere case, the infinite sphere flux and the finite sphere flux

calculated from the first two collisions were compared at early mean free times. There
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was good agreement between the infinite medium results and the finite medium results
calculated from the first two collisions at mean free times less than one. This again
bodes well for using this method in specific applications where only a few collisions
need be calculated, or where the total flux is only needed for a few time steps, such as
ICF. However, to make this method appropriate for radiation-hydrodynamics codes,
several features would need to be added to the neutron transport method. A 14.1 MeV
neutron will suffer only glancing collisions with the DT fuel, therefore, anisotropic
scattering would need to be incorporated. Additionally, the composition of the target
is not homogeneous, and heterogeneous media would need to be incorporated. The
time-dependent, heterogeneous media integration is derived in Appendix E.

Given the unwieldy nature of the Multiple Collision Method coupled with the
dimensionless integral method, future work in this area might best be pursued along a
course that does not include the Multiple Collision Method, but still retains the novel
dimensionless integral approach. By solving for the total flux, rather than a large
number of collided fluxes, some of the issues encountered in this method, namely the
ever increasing number of integrals that must be evaluated as the number of collisions
increases, would not be encountered. But by keeping the dimensionless variables, a
major limitation of previous work in integral neutron transport, namely the increasing

size of the time domain, is not encountered.
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Appendix A

Subtraction of Singularity

Consider an integral with a singularity at some point xy3. The idea of subtraction of
singularity is to extract the singular part of the integrand. This is done by subtracting,
from the integrand, an expression integrable in closed form, which eliminates the sin-
gularity and yields an integral which can be evaluated numerically [25]. For instance,

consider

e *dx
](q):/l—x 0<¢g<l. (A1)
0

The integrand has a singularity at x = 1, and I(1) = oco. However, we can

subtract the singularity in the following manner:

q oy q P q . .
e “dx x e e
I(q) = =e! - d
(9) /1—x c /1—:17+/(1—x 1—x> .
0 0 0
’ - -1
=—e¢ 'ln(1 — ¢ _ .
e 'In( q>+/(1—:c T2 dzx
0

The first integral is evaluated analytically. The second integral has no singularity,
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since it equals zero at z = 1, and can be evaluated numerically over the whole range.
Now consider the infinite slab geometry case. The expression for the n'* shape
)th

factor, in terms of the (n — 1) shape factor is:

n 1
n
Fn(n) - 9 /KA»“(n’ 77I>Fn71(77/)d77/ + /KBv"(na W/)anl(n/)dn/ (A'?’)
1 n

where K4 ,(n,n') and Kp,(n,n’) are the kernels, and are calculated as:

1-n
1—n/
N\n—1 1_ n 1 1_ 1—1
Kan(n,n') = / O g = (1= 121 - L (A.4)
’ 1—7 1—n 2@—1 1—7
0 =
and
147
1+n/( /)n—l 1+77 n 1 1+17 1—1
T
Kgn.(n,n) = ~2 _drf'=—In(1- — . (A5
B, (77 77) / 1 — T n( 1_|_77/) z;i_1<1+n/) ( )
0 =

The kernels have a singularity at the point ’ = 7. To apply the subtraction of
singularity method, we need to ensure that the form of the integrand that is extracted
is integrable in closed form, and that the integral calculated numerically is equal to

zero at ' = 7. Rewriting equation A.3 as

E.(n) :g F,_i(n) / Kan(n,n')dn + / Kan(n,n') [Fa1(n') = Fuoa(n)] dnf
- ! (A.6)

T Faa(n) / K, 1)dnf + / Kon(n,1) [Fact (1) — Fas (n)) dif
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fulfills the above requirements. The first and third integrals, which contain a sin-
gularity at ' = 7, can be evaluated analytically. Meanwhile, the second and fourth

integrals, which cannot be evaluated analytically, are equal to zero at the point ' = 7.
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Appendix B

Derivation of Shape Factor Equations at

n =0 for Spherical Medium

This appendix gives the detailed derivation of the shape factor equations at the point

1 = 0 for the infinite spherical medium with isotropic scattering problem.

B.1 Infinite Sphere Shape Factors

We begin the discussion with the equation for the n'* collided shape factor,

equation 3.57 in section 3.2.1:

/

Faln) :g [/KA’”(W?')%, [Foa(n) = Fooa(m)]dn + Fn—l(n)/KA,n(nv n’)%dn’

/

1 1
n n
+ / Kpa(n, n’)g [Fo1(n') — Foci(n)] dn' + Foi(n) / Kpa(n, n’);dn’
n n

1 1
U n
- /Kc,n(n, n’)g [Fai(n') = Faei(n)] dn' + Fnl(n)/KCm(nan/)Ean]
0 0

(B.1)
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where the kernels are given by

N2 1_77 n 1 1_77 1—2
K no [ (1 - B.2
A7n(77777) / 1— 7/ T I 1_77/ : i—92 1_77/ ’ ( )
0

Nn—2 1+77 n 1 1_'_77 i—2
Ky = [ T g (1 _ B.3
B, (77777) /1_7_/ T n 1+n/ . i =92 1+77/ ) ( )
0

=3
and
1—-n
140/ AN n i—92
" 1—mn 1 1—n
Kentnn) = [ Cagr —1n (1 - - B.4
cn(n ) / 1— T n 1+ 3i—2 1+ ’ (B.4)
0 b=
and where the integrals of the kernels are given by
7 2 2 2
1—
[Eastaaor =2-T+ 5 w0 - T, ©5)
2 2 2 2
0
/ Lo (L) (1 -1
/KB,3(77a77/)77/d77, =5t 55 b+ -l -n+1+n)h2
n
(B.6)
: 2 2
1 1—
[ estutyan = =5+ 2= L) - S5 na+ g + -z, B2
0

for n = 3, and
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AV 2 n (1_77)
Kan(nn/f'dn = (1=n") In(1 —n) - n—ln(n) + Z T v A
2 - { e (B.8)
(1- 7))2 B (1-— n)ifQ
/KByn(mn/)n/dn/ N %2 a i -8 _2772) In(1 —n) + (I_T?f)lnz
(B.9)
L +n) _ (1+n)? (1+n)2
+Z5[2—2 3) (i—2)(z’—4)+(¢_3)(¢_4)2i_3},
| Hentn s - UZ - ﬁ -0 g+ U s
(B.10)

+Z

-2 94—i _ 1 93—i
Z—2 1—4 1 —3

for n > 4.

The above derived expressions are not enough to numerically solve the spherical
infinite medium problem because there is a singularity at 7 = 0. Therefore, the limit
of F,, as n — 0 must be computed. Plugging in n = 0 for the n = 1 shape factor

results in 9 or indeterminate. Applying L’Hospital’s rule gives:

#iin ()
1 1 - 1
F(0) = lim {_ (ﬂ)] _ & A2 (B.11)
n—0|2mn \1—n 2m4en T

Again, with the n = 2 shape factor, plugging in = 0 results in the indeterminate

relation. Applying L’Hospital’s rule yields
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Next, the equation for the shape factors for n > 3 at n = 0 will be determined. The

derivation begins by taking the limit of equation B.1:

lim {F,,(n)

n—0

/

n n
n U4 n
5 | Eann) (Pucs o) = Faca) o + Foca ) [ Kol f) L
0 0

; y ] ' (B.13)
+/&mmmgmuwwwzmmw+m1w/mmmw5w
n n

/

1 1
n n
— /Kc,n(mﬁ/)g [Fei(n) — Fozi(n)] dn' + Fnl(ﬁ)/Kc,n(%ﬂ/);dﬁl
0 0

From equation B.13, it is apparent that the first and second integrals are equal to zero

in the limit at 7 — 0. Therefore, in the limit that n — 0, equation B.13 simplifies to



1
Kg, ! K n
:g / [Fo1(n) — F,—1(0)] lim 2BV (7,7 >77’d17' + Foq( hm/ B
n
0

1
Ken(n,n' Ke
~ [ st = Fa Oty S g 1 ) i / c.
0

For the specific case where n = 3, the kernels at n = 0 are

1
K N=In(l+17") —In("n) —
B3(0,7") =In(1+n") —In(n) T+
and
Kea(0,7) = n(1 + 1) — () — —
C,3 ) 1+n/
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/dn

(B.14)

(B.15)

(B.16)

At n = 0, the kernels are equal. Therefore, subtracting the third integral from

the first integral in equation B.14 results in the indeterminate relation. Once again,

L’Hospital’s rule can be used and gives

/ L (0)] 7 71]13(1) [Kp3(n,1) ; KC,3(77’77/)]dn/
/ Kp3 Kes(n,n
~ [ (R = Fa0)) oty dy Ko ) ~ — )
0 dn

1

:/WWﬁ—&@ML—LﬁW“

J (1+n)n

(B.17)



The integrated kernels in the limit that n — 0, for n = 3 are

1

1
hH(l) Kps(n,n)n'dy = —5 +In(2)
77—)

n

and

1
1
liIr(l)/Kc,g(n,n’)n’dn’ =3 +1In(2).
’I’]—)
0
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(B.18)

(B.19)

Again, the integrals of the kernels are equal. Therefore, subtracting the fourth integral

from the second integral in equation B.14 results in an indeterminate. Once again,

L’Hospital’s rule is used:

1 1

1

F>(0) i / Kps(n,n')n'dn’ — / Kes(n,n')n'dn’
n 0

1 1
po [fn Kps(n,n')n'dy — [y Keas(n,n')n'dy

0 =
n— dnn

=2F5(0) In 2.

Therefore, the equation for the n = 3 shape factor at n = 0 is

9
1+

/

F(0) = 5§ 20 2+ [ [Falo) = B d

(B.20)

(B.21)



164

These same steps can be applied to determine the equation to be solved for

F,(0). Start again by examining the kernels for n = 4 when n = 0.

1 1
L+n (1+7)

Kpa(0,7') =In(1+7') —In(n’)

and

1 1
L0 (1)

Kea(0,7) =In(1417") —In(y)

(B.22)

(B.23)

Again, subtracting the third integral from the first integral results in the inde-

terminate relation. Applying L’Hospital’s rule yields

1
M — /
/ [Fg(n/) o Fg(O)] 77/ hl’I(l) [KBA(na n ) KC’,4(7], n )] d,)?/
0 K n
: d
. dn [KBA(na 77/) - KC,4(77, 77’)]
:/ [F3(n') — F3(0)] ' lim dn - i
0 K a7l

2 2 2 ,

- / Fao) - B | - .

v (L)

Taking the limits of the integrals of the kernels as n — 0,

/ n(2)

2

. 1
lim [ Kpa(n,n)n'dy = —=+
n—0 4

n

and

(B.24)

(B.25)
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1

—_
Ju—

n(2)
5

lim [ Kea(n,n')n'dn’ = -5 + (B.26)
T]—)

0

W

As in the n = 3 case, the integrals of the kernels are equal to each other at n = 0. Sub-
tracting the fourth integral from the second integral again results in the indeterminate

relation. Once again, L’Hospital’s rule may be applied, and results in

1 1
1
F3(0) lim — / Kpa(n,n')n'dy' — / Kea(n,n')yn'dy
n 0

n—0n
1 1
n [fn Kpa(n.n')n'dn’ — [y Kcaln,n')n'dn’ (B.27)
n—0 %n

Finally, the equation to be solved for n =4 is

Fi(0) = 2 F5(0) +2 / By () — F(0)] 9 | = —

The same procedure can be applied to find the equation that must be solved at
1n =0 for n > 5. First, look at the expressions for the kernels at n = 0:
. 1

Kpn(0,') = In(1+n') = In(n) - Z (i—2)(1+7)?

(B.29)

and
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n

Kea(0.n) =1In(l+ 1) = In(y') - Z (i —2) (11 )

(B.30)

As in the cases with n = 3 and n = 4, the kernels are equal to each other at n = 0. Sub-
tracting the third integral from the first in equation B.14 results in the indeterminate

relation. Once again, apply L'Hospital’s rule to obtain

1
/ IAE K n ) ! _K n 3 ! ,
[ 1Facalof) = Fuca (0] iy 220 = Kol
0

/ ’ /- % [KBJL(na 77,) - KC,n<n7 7]/)] ’
= [ (Fasof) = s )ty - o (B3
dn

The final step is to examine the integrals of the kernels at n = 0.

1

, 1 In(2) < i—2— 2173
1 Kpna(n,n)ndy = —= + —= : B.32
iy | Ko, 1) = =3 4 =5 +iz_; [(i—Q)(i—3)(i—4)213 (B-32)
/ -
and
/ I In(2) < j — 2 — 273
n 1—2-—2"
lim [ Ken(n,n)n/dy = —~ . (B.33
iy | Kentmnidif = =3+ = 2 {(z’—Q)(z’—3)(i—4)213 (B-33)

0

Once again, the integrals of the kernels are equal to each other in the limit that n = 0.
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Subtracting the fourth integral from the second in equation B.14 again results in the

indeterminate relation. Applying L’Hospital’s rule yields

1 1
1
Fo_1(0) lim— / Kpn(n,n')n'dy — / Kepn(n,n')n'dy'
n 0

n—0n
. % [fnl KB,n(Tlv 77/)77/d77/ - fol Kan(??a 77/)77/d77/] (B'34)
=F,_1(0) lim d
n—0 %TI

" T —2) (16 +21(i — 5))
=F,1(0) Z [ (i —3)(i—4)2 } '

- [(i —2) (16 + 2%(i — 5))}
(i —3)(i — 4)2°

B.2 Finite Sphere Shape Factors

The finite sphere shape factors equations were derived using two formulations,
one using a reflective boundary condition at 7 = 0, and one without the reflective
boundary condition. The following sections show how to derive the equations at n = 0
for the specific case of n = 3 in the formulation utilizing the reflective boundary
condition. This same method may be applied to obtain the equations at 7 = 0 for the
formulation not utilizing the reflective boundary condition.

Recall from Section 4.2 that the equations for the n = 3 finite sphere shape

factor from the various n = 2 sources are
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1—n 1+”]
n 1-n 1 1479/

n
F'3 tromFy i (1, M) = // Fsz( "dr'dn' +// T anmf( n')dr'dn’

/ / FQ ng(n))dr'dn

141
! v / /
H(1-2 L Ty s ()T dif
— H(1 —2ny + 1) A= bang (1 )dT'dn
b Ny
1-np+n n
1-n
147’

1
CH(L - 2m— ) /
b

1—np—n

/ /
/ T - n—Fgmf(n’)dT’dn'.
Ui
y
n/

(B.36)
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% (_) 2mL(7] nb)d l/)dn/

F3,fromF2’m,L (77) /r/b) - H(l - - lerlb /
] My — M

nb(l n)

14+n—2mmny 1—
1+n+2mny 2m

Pom
/ / ud (_) Boomn OV 1) g0
n My — T

np(1+n")
e

1—n—2mny 1—
1—=n+2mny, 2m

2
Fy (' 1,
— H(1+n — 2mn) / / A (—) . ,’L(n nb)dm’,dn’
n T —

nb(1+77')

14+n—2mny 1— 7]
14+n+2mn, 3,

/ 2 ’oor
E
— H(1+n—2(m+ 1)n) / / T (—"l’> —Q’m’L("’"b)dngdn'

n \1, M — b

2ml+1 nb(ll_;]n’)
1
T e\ B ()
+ / / 2 (77_1/7) 27ml7L n 777b dnll)dn/
n\" My — o
o np(1+n")
1—ny+n 147/
L 2 Fypnn (0, 115)
+ H(L—n—2(m+ 1)) / / T (77—’,’) Z2m LT T it iy
X\ Ty — M
b np(141")

1=n—my 1—7

1—n—2mn, 1
1=n+2mn, 3,

2
F m /’ !
—b) st }L(n m’)dnédn’
My — M

_|_
»—‘\
—
=S =
A~
SHES

(B.37)
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2m—1 2m

2
ngfromFQ,m,R (777 nb) = H(l + n - 27’77,771)) / / % (Z—)
b

N np(1+n’)
nb(1+n )

==
1+W My 1+,,]

T —

Fom
77_ (_> 2 /R(n T/b) dn[l)dn/
n My —

1+7]/
2

3

i 2
Fotmr(n'
+/ 77_ <Tl_) 1,,,R(77 nb)dnédn,
n 771) M —
0 np(1—n")
1-n
1 1+
T (0 Pams(n' )
+ H(1— n — 2mny,) —/ / —(—?) M
A\ Ty — M
0 nb(11+n/)
-n

Fm
N / /Q(ﬁ/) b /R<77 nb)dn,’,dn’
n\" My — M

where m =1 or 2.

Fym,m(1',75)
- d

My —

dnydn/

nydn’

170

(B.38)

The first three integrals in equation B.36 are identical the infinite sphere inte-

grals, and the singularity at 7 = 0 can be handled as described in Section B.1. The

next two integrals have the following kernels:

1+n

(1—7") n'(n —n) 7

1+n’
/ 1 / !/
KD73<77’77/) — / T d'/_/ — ln (( +7] )(77 77b) +> @ _
%}

and

1+n
1+7

(B.39)
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1-7n
1+n/
u A+7)0 —m) \m 1-n
KE,?)(na 7’,/) — / (1 — 7_/) d'r, = lIl ( 77/(77/ T 77) + F - 1 i n/. (B40)
jiy
At n =0, the kernels are:
147
7o A+ —m) \m 1
/ /
KD’g(O,T] ) = / (1 — T’) dr =1In ( 7],2 +) W - —1 T T], <B41)
.
and
1-n
T (L+7)0 —m) \n 1
T — M b
KE,3<0777/) — / (1 — 7'/) dT/ = In ( 77/2 +) W — rn/ <B42)

My
o

3

Additionally, at n = 0, the two Heaviside functions multiplying these integrals are
equal. Subtracting the two integral from each other at n = 0 would result in %,
allowing us to use L’Hospital’s rule. Taking into account that the kernels are singular
at ' = n, and that Subtraction of Singularity must be used on these integrals, we

obtain the following at n = 0:

1

/ . [ Kges(n,n)— Kps(n,n' /
/ [Foins () — Fons ()] 1 }72%[ e3(n,n) — Kps(n 77)](177

n
b
l—nb
L d
S [Kes(n,n') — Kps(n,1')]
- / [Foing () = Foing ()] ' lim i o dnf (B.43)
dn

b

-
/ 2
= / [Foing (') — Foing(me)] 1 (—) dn'.
M

n(1+7)

1—n

S
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The integrals of the Kp3(n,n) and Kg3(n,n') at n = 0 are:

1

. 1
}JL% Kps(n,n')n'dy = -t In(2) + (1 —n7) In(1 — mp) + m; In(np) (B.44)
Tt

and
/ 1
lim / Kp(n.n)nf'dn' = —= +m +10(2) + (1 =) In(1 = ns) + 5 n(ms). (B.45)

p
1—ny—n

Combining these two equations would give %, so we will use L’Hospital’s rule.

1 1
1
FQ,mf(nb)}Yli%E / Kgs(n,n')n'dy — / Kps(n,n')n'dy
p n

b
1—np—n 1—np+n

i {flnb Kps(n,n)ndy = [Lo_ Kps(n,o)n'dy

1—np—n 1—np+n

= FQ,inf(ﬁb) lim
n—0

an'l

= —2F2,mf<77b)-

(B.46)

Turning now to equation B.37, we note that the first integral will be equal to

zero when 1 = 0. The kernels of the second and third integrals are:
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%(11:7;7/) (B'47)
I ((1 — 2m, — n)(1 +77’)) _1+n | 2mny,
(T =70 —mn) L+n  1-7
and
- )
1
Kt5,—5 = / ("—f) p dn,,
My My — 1
np(14n") (B48)
1-n
—In ((1 — 2ma, —1')(1 +n’)) _1—n | 2mn
(=20 +n) L+n  1-7n
At n = 0, the kernels equal:
177]/
2m 2
1
Kt3,—3 = / ("—’,’) ——d )
np(1+1") T e " <B49)
7
oy (A= 2Zmn =) A +) ] 2mn,
(I =) L+n  1-1n
and
1777/
2m ) 1
Kt5,_5 = / <@> m— )
Ub(llj'ﬂ/) T T & <B50)
o (2w =)+ )] 2mn,
(=) L+ 1-n"

The Heaviside functions multiplying these two integrals are equal at n = 0. Subtract-

ing the kernels will result in 2

o> S0 we can use L’Hospital’s rule:
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1—-2mmny
14+2mmny,
. Kt?)n: 5 " — Kt5n: ) '
/ [F27m7L(’I7/7 T]b) o FQ,m’L<T]77]b)] 7], hm [ 3(/)7 77) 3(77 n )] dnl
/ n—0 77
1—2mny
1+2mmny, d
LK t3,-3(n, 1) — Kt5,—3(n,1)]
. d [ n=3\",7] n=3\1,1]
= / [FQ,m,L<77/7 nb) - F2,m,L(77> Ub)] nl 71721[1) ! d dnl
0 an'l
1—2mny

1+2m7]b
2
= F: m /, — F m ) N5 d /'
0

(B.51)

Note the singularity at n” = n. The integrals of the kernels at n = 0 are:

14+n—2mny
14+n+2mmny,

1
lim / Kt3,—3(n,n")n'dn = — i+ (1 = 2mmn,) In(2) — 2(mm)* In(2mm,)

n—0
n
1—1(2 2
(B.52)
and
14+n—2mny
1+n+2mny, 1
liﬂg / Kt5,—3(n,n")n'dn’ = - (1 = 2mmy) In(2) — 2(mn,)? In(2ma,)
’,7—)
0
1—1(2 2
_ 1= @) In(1 + 2mmn,).
(B.53)

Combining these two equations would give 8, so we will use L’Hospital’s rule:
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1+n—2mny 1+n—2mny
14+n+2mmny, 14+n+2mmny,
o1
Fom,n(n,m) 71713% 0 / Kt3,—3(n,n')n'dn’ — / Kt5n—s(n,n')n'dn
n 0
d 1+n—2mny iiz;;z?]b
. % |:fn1+n+2mm, Kt3n:3 (7]7 n/)n/dn/ _ fO b Kt5n:3<7], 77/)n/dn/
= F2,m,L<777 nb) lim d
n—0 %77

2
- 2F2,m,L(n7 nb) In <—) :

14 2mn,
(B.54)

We turn now to the fourth and seventh integrals in equation B.37. The n, limits of
integration are identical to the integrals we just examined, so we know we can use
L’Hospital’s rule. These integrals do not contain any singularities, so at n = 0, the

fourth and seventh integrals combined become:

1—2mmny
14+2mmny,

[Kt5n:3 (77, 77/) - Kt3n=3 (na 77/)] dnl

Fy (1, "lim
o,z (1 )N Lim .

o Kt5n: 77a71/ _Kt3n: 77777/
= / Fon, (', o)1 linny i | d 3, a )]dn’ (B.55)

—9
— F m /7 / d /'
/ b, (10, 1)1 (—n’(Hn’)) n

We turn now to the final two integrals in equation B.37, the fifth and sixth integrals.
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S|
Hl8n=s = / (%Z) My, — ﬂbd l/)
nb(lljnn’) (B56)
o (O =) ) 1 m
(n' +n)n’ L+n
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n' 9
1
RlTnzs = / (Z_Z) .
"7b<11+"/> (B57)
+n
_l(m“wwﬂ+#0__LH7 m
(n" —mn)n’ L+n 7
At n = 0, the kernels equal:
7 9
1
Hel8n=y = / (%) M — ﬂbd l/)
nb(11_+nn’) (B58)
_1(@“ﬂwﬂ+w9)_l+n Q_
(n' —n)n’ L+n
and
n 9
1
Jauﬁzzt/ (@) —;
My My — M
np(14+7") (B59)

") (140 1 2
(W =)+ L 2ma
L4+ 1=

The Heaviside functions multiplying these two integrals are equal at n = 0. Subtract-

ing the kernels will result in %, so we can use L’Hospital’s rule:
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1
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(B.60)
Note the singularity at " = n,. The integrals of the kernels at n = 0 are:
_1
" 1= 2mmp, 1 (1+17)>2 1 -
li KtTo_s(n,n)ndy = ——— 4 ZIn(2 1 b
) sl ndn’ = =550y T @)+ 5 n<(2m—1)
e
1 U < ny(2m —1) )
+——In(2m(1 4+ n, — 2m + —21n
2(2m — 1)2 (2m(L 47, = 2mmy)) + 5 1+ 7 — 2mm) (1 — )
(B.61)
and
_1
o 1—2mm 1 1 117
li Kt8,_s(n, 7\ dn = ———— 1 _ ~1n(2 “In(—0"
) =s(m i ndif = =550y — o mm) + 3 n((2m—1)
1—:7”)—711;
1 U 1y (2m — 1)
+ —In(2m(1 +n, — 2m + —>1n .
S = 1y (@m(L = 2mmp)) + 5 ((1 1 — 2m) (1 — 1)
(B.62)

Combining these two equations would give %, so we will use L’Hospital’s rule:
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_1
2m+1

Kt8,—3(n,n")n'dn — / Kt7,—s(n,n")n'dy

i)
1+n—mny

_ 1 _ 1
4 [f’”? Kt8,—s(n,n')n'dn — [*"t KtTu—s(n,n')n'dy

T—n—mny 14+n—mny

= FQ,m,L(”ba nb) lim
n—0

= —2F% . 1.(0, mp) In (

d
dnn

2m(1 — )

2m — 1 )

(B.63)

We can now turn to the integrals in equation B.38. Note that the third integral

in equation B.38 will be equal to zero at n = 0. Now we can turn to the first and

fourth integrals in equation B.38. The kernels of these integrals are:

1+n

2m

Kt4n:3 - /

np(14+n")

1+7

and

’

/ o
o/ Mo (B.64)
(1—2m77b+77/> L+n  2mn
—n(—= T ) +
n—n I+n  1+7
/ r
y N e (B.65)
(1 —2mn, + 1/ 1—n 2mmn,,
—n(—=2 T + .
n+n L+ 147

At n = 0, the kernels are equal to:

147’

2m

2
d /
At = / (%) 77’ jbnb
bo (B.66)

np(14+n")

1+n

| 1—2mn, + 1/ 1 2mn,
= 1n _—_— —
n/ 1 + ,'7/ 1 + ,'7/
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and
140/
2m ) d P
K16,_5 = / (77_‘,’> 2 _
n My — M
nb(11+n’) b b (B.67)
-n
1—2mm,+1 1 2mm,
=ln| ——7 | - ; 7
i 1+n 1+n

The Heaviside functions multiplying these two integrals are equal at n = 0. Subtract-

ing the kernels will result in 8, so we can use L’Hospital’s rule:

[Kt6,—3(n, 1) — Kt4,—3(n, )] i

2m—1
/ [F2,m,R(n,7 nb) - FQ,m,R(U? Ub)] 7], lim
n—0 n

0

T L Kt6,5(n, 1) — /

. n=3\", 1] ) Kt4n:3<n7 n )]

= / [Fomr (7', m) — Fam,r(n,m)] 1 71711)% K Ly dnf

0 an

2m—

-2
0/ (Fomr(m'sm) — Fomr(n,me) 7 (m) dn'.

(B.68)
Note the singularity at n” = 7. The integrals of the kernels at n = 0 are:
T
. 1 —2mmn, 1 2m — 1
1 Kt6,- "ndn = ————— + = In(2 2 2]
lim =3(n,n")n'dn 2am—1) 2 n(2m) + 2(mam) n( 5 )
0
L (2m —1) + ! In (2m(1 + 2mm)) (B.69)
— —In(2m — —— In(2m —2m
2 2(2m — 1)2 T ST
L (L= 2mn)®, (1 2m,
2 14+ ny — 2mmn,

and
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1
2m—1

. 1 —2mmn, 1 2m —1
1 Ktdy_s(n,n)gdy = —————" 4+ ~1In(2 2 2]
lim n=s(n, 1) dn 2@m—1) 2 n(2m) + 2(ma) H< 5 )
n
D@m= 1) 4 —— I (2m(1 4+, — 2mmy) (B.70)
— —1In{£m — — = 1N (4m — zMm
2 22m — 1)? T S
N (1 —2mmy)? In 1 —2mmn, .
2 1+ — 2mn,

Combining these two equations would give %, so we will use L’Hospital’s rule:

_1 _1
2m—1 2m—1

1
Fz,m,R(n,m)ql?gr(l); / Kt6,—3(n,n')n'dn’ — / Ktdny(n,n')n'dy
0 n

_ 1 _1
= {fozm1 Kt6ns(n,n')n/dy’ — [7~1 Ktdy—s(n,7')n'dn

= FQ,m,R<n7 nb) lim d
n—0 %77
2m
= -2F,, , | .
2,m, k(11 7p) In. <2m — 1)

(B.71)

The final two integrals to consider are second and fifth. These two integrals have the
same 7, limits of integration as the fifth and sixth integrals in equation B.37, and were

already considered above.
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Appendix C

Analytic Expression for n = 2 Finite

Sphere Shape Factor

This appendix reproduces the n = 2 shape factor for the finite sphere. The analytic
expression for the n = 2 shape factor is used as the initial source for the numerical

implementation of finite sphere neutron transport method described in Sec. 4.2.

C.1 Infinite Medium Source

The n = 2 infinite sphere shape factor is:

1 3 1-n\> 3 14+n\>
Fz,mf(n):% 7T277+§(1—77)1n( 5 ) —5(14'77)111( )

+3(1 - ) Lis (1_7”) —3(1 4 1) Li, (HT”)}

C.2 m =1 Depletion Waves

The n = 2,m = 1 right depletion, corresponding to the H (1 — 2n, + n) Heaviside

function, where m is the reflection number, is:
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{ 1—1n }_Hnmg[(l—?nbﬂtn)(l—n)]
4 (L —m)(1+2m —n) 4mn (1+2m —n)(1+n)
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(C.2)
The n = 2, m =1 left depletion, corresponding to the H(1 — 2n, — n) Heaviside
function, where m is the reflection number, is:
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C.3 m =2 Depletion Waves

The n = 2,m = 2 right depletion, corresponding to the H (1 —4n,+n) Heaviside

function, where m is the reflection number, is:
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Appendix E

Deriving Heterogeneous Kernel

This appendix shows the derivation of the time-dependent, spherical shell heteroge-
neous medium integration kernel, using the Laplace transform method [21]. Consider
the time dependent, one-speed neutron transport equation with isotropic scattering,
for a heterogeneous medium:

(%%+Q.V+E(T))w(r,§2,t) = %7:) (E.1)

Taking the Laplace transform of equation E.1, the following equation is obtained:

<Q -V + i(r)) Y (r, Q, s) = Q4(7:) (E.2)

where the steady-state macroscopic cross section has been replaced with:

The corresponding integral equation to equation E.2 is
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(7, s) /K r, 7' s)Q(r, s)dr'. (E.4)

Taking the inverse Laplace transform of the both sides of equation E.4 gives

(r,t) /£ (r, 7', 8)Q(r',s)| dr'. (E.5)

Finally, the convolution theorem can be used on the right side of equation E.5 to

obtain

o(r,t) = K(r,r';t —thQ(r',t")dt'dr'. (E.6)
!

Henderson and Maynard [21] note that time-dependent integration kernels can
be obtained from steady-state kernels. Therefore, the heterogeneous time-dependent
spherical shell integration kernel can be found from the steady-state spherical shell

kernel. The steady-state heterogeneous medium spherical shell kernel is:

Kyo(r,r') = 87370,,,, {E1 (7(r, 1)) = Ex (v(r, =)} (E.7)
where
fr—r| -
) = / > (7’ - w‘: — :‘) dw. (E.8)

Making the substitution described above, equation E.3, in equation E.7, and

then taking the Laplace transform of the resulting expression gives the following:
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1 (r—r") s
Ko(r,r') = E > (r— °la
N R VA G =) L
0

(Tl e

To find the time-dependent, heterogeneous spherical shell kernel is found by

taking the Laplace transform of the above expression. The rest of the derivation

proceeds as follows:
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r=r
Kes(r,r'st) = L7 E, / b r—w(r_r) + 2 dw
8mrr! | — 1| v
0
4
_E / [z(r—w)+§] dw

1 1 N
= Gorr? {E [El <T<T,T’ )+ ” >
o[ty S0
v

: o]

]_ G_UT(TJJ) slr—r'|
- SRS [ s ] d
Smrr! / U € Y

—ut(r,—7r") s(r4r)

” £t [G_T] du

1
1/
1 /e—mwd(t_u|r_r'\)du
8mrr! U )
1
1

—ut(r,—r") /
s (t _ M) du

u v

vtr(r,r! _ ! vt (r,—r' /
— 1 e_ Trir/\>H t— ‘T r | — 6_ t\r(+r/\ )H t— M
8mrr't v v

(E.10)

To obtain the final form of the time-dependent, steady-state, spherical shell

kernel, replace ¢t with ¢ — t'.

1 _o(t=t)7(rr’) — 7
Ka(rrit—t) =L Jo25m2g (=
8rrr!(t — t') v

_wt=t)7(r,—r") r 4
—e [r+r/] H (t _ t/ o | _I_ |
v

(E.11)
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