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ABSTRACT 
A theoretical model for the effect of molecular interactions on the flow of molecular ions 

in spherically convergent geometry where the inner grid (cathode) is at a large negative potential 
and the outer grid (anode) is grounded has been developed.  The model assumes a weakly 
ionized deuterium plasma composed of D+, D2

+, and D3
+ ions which interact with the dominant 

background gas (D2). The interactions included are charge exchange, ionization, and dissociative 
processes. The formalism developed includes the bouncing motion of the ions in the electrostatic 
well and sums over all generations of subsequent ions produced by atomic and molecular 
processes.  This leads to a set of two coupled Volterra integral equations which are solved 
numerically. From the solution of the Volterra equations one can obtain quantities of interest, 
such as the energy spectra of the ions and fast neutral atoms and molecules, and the fusion 
reaction rate.  To provide an experimental test, the model is applied to inertial electrostatic 
devices and the calculated neutron production rate is compared with previously reported 
measurements for one University of Wisconsin inertial-electrostatic confinement (IEC) device 
[D. C. Donovan, D. R. Boris, G. L. Kulcinski, and J. F. Santarius, Fusion Sci. Technol. 56, 507 
(2009)].  The results show general agreement with the experimental results, but significant 
differences remain to be resolved. 

I. INTRODUCTION 
In a companion paper,1 a model for spherically convergent ion flow was developed; the 

model assumed the ions and the background gas were atomic, such as helium ions interacting 
with helium gas. In this paper, we extend this model to include deuterium molecular ions (D+, 
D2

+, and D3
+). This work is particularly relevant to inertial electrostatic confinement (IEC) 

devices using deuterium as the working gas. The geometric configuration consists of two 
concentric spherical, nearly transparent electrodes with the outer electrode grounded and the 
inner electrode at a large negative potential (see Fig. 1). Ions are created in the region outside the 
outer electrode and are accelerated towards the center by the electric field. For moderate pressure 
operation (a few mTorr), the ions undergo charge exchange and dissociative processes, while 

 



inducing ionization of the background D2 gas, on their way to the center; the mean free path for 
these processes is comparable with the size of the device. These atomic and molecular processes 
degrade the energy of the ions, while increasing the ion flux; they also produce energetic neutral 
atoms and molecules which stream throughout the vacuum chamber. 

 

Anode grid 
φ = 0 

cathode 
grid 

Figure 1.  Schematic showing the geometry.  The anode grid is grounded, the 
cathode grid is at a large negative potential. Ions enter from the source region 
outside the anode grid and are accelerated towards the center by the electric field. 

 

II. MOLECULAR REACTIONS INCLUDED  
The plasma created in the source region is assumed to be a mixture of D+, D2

+, and D3
+ 

ions. The ion densities are assumed to be sufficiently low that ion interactions with the 
background gas dominate over ion-ion interactions. The ions from the source region enter the 
intergrid region, collide with the background D2 gas, and dissociate to form a variety of fast and 
slow products (D2

+, D+, D2, and D).  The interactions between D+, D2
+, and D3

+ with the 
background gas that we include in this analysis are shown in Table I. 

The cross sections are defined in Table I; we use the s superscript to denote the 
production of slow ions, the f superscript to denote the production of fast ions, and the d 
superscript to denote the total destruction cross section. We also denote the species of the parent 
ion by the first subscript and the daughter ion by the second subscript. These cross sections are, 
for the most part, available in the literature2. Note that some of these processes are sums over 
different reaction channels that lead to the same end products. Since we are interested in the 
energy range from thermal energies to about 300 keV, which is appropriate to IEC devices, 
interpolations and extrapolations have been used to fill in gaps in the published cross section 
data. The cross section data are mostly for hydrogen ions (H+, H2

+, and H3
+) interacting with H2 

gas; we use these for deuterium interactions at the same energy per amu of the incident particle. 
There are also cross-sections for forming fast neutral atoms and molecules (see Table II). We 
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don’t need these for the ion dynamics, but will need them to compute the fusion reaction rate 
from fast neutral atoms and molecules striking the background gas. These are also available in 
the literature.2  

Table 1.  Interactions Included in the Model. 

 
 

Reaction Process Cross section 

D+ + D2 -> various products Total destruction of D+ σd
1 

D+ + D2 -> D+ + … Stationary D+ production σs
11 

D+ + D2 -> D2
+ + … Stationary D2

+ production σs
12 

D2
+ + D2 -> various products Total destruction of D2

+ σd
2 

D2
+ + D2 ->D+ + … Fast D+ production σf

21 

D2
+ + D2 ->D+ + … Stationary D+ production σs

21 

D2
+ + D2 ->D2 + D2

+ Stationary D2
+ production σs

22 

D3
+ + D2 -> various products Total destruction of D3

+ σd
3 

D3
+ + D2 ->D+ + … Fast D+ production σf

31 

D3
+ + D2 ->D2

+ + … Fast D2
+ production σf

32 

D3
+ + D2 ->D+ + … Stationary D+ production σs

31 

D3
+ + D2 ->D2

+ + … Stationary D2
+ production σs

32 

 

 

Unfortunately, the cross-sections for producing slow D2
+ and D+ ions from D3

+ striking 
D2, and for producing slow D+ ions from D2

+ striking D2 are not available. To fill in the missing 
data, we use a reaction channel model for the interaction. In the case of  D3

+  colliding with D2, 
we assume the relevant reaction channels are charge exchange, dissociation, and dissociative 
charge transfer. We determine the cross sections for each channel by fitting to the known cross 
sections for forming fast ions and neutral atoms or molecules; we then compare the calculated 
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destruction cross section with the measured value to determine the “goodness” of the model. 
With this choice, we can then determine the total cross section for forming slow reaction product 
ions.  The result is that  

σs
31 + σs

32 = σd
3 – σf

31 - σf
32, (1) 

which is what we expect from charge conservation. For D2
+, we assume the relevant reaction 

channels are charge exchange, dissociation, dissociative charge exchange and dissociative 
ionization. Using measured cross sections for charge exchange and dissociation, we can 
determine the other reaction channel cross sections by fitting to the measured cross sections for 
forming fast D+ ions and D atoms. The result is that the cross section for forming slow D+ should 
satisfy 

σ 21
s = 1

2 σ 21
fn + σ 21

f( )−σ 2
d . (2) 

Table 2. Notation for cross sections for forming fast neutral atoms and molecules. 

 
 

 Cross section Process  

fn
11σ  Production of fast D from D+ incident on D2 

fn
21σ  Production of fast D from D2

+ incident on D2 

fn
22σ  Production of fast D2 from D2

+ incident on D2 

fn
31σ  Production of fast D from D3

+ incident on D2 

fn
32σ  Production of fast D2 from D3

+ incident on D2 

 
 

In Eq. (1) we only get a limit on the sum of σs
31 and σs

32; lacking further information, we 
assume the slow ions formed are D+. With these assumptions we get specific values for the 
missing cross sections. The cross sections used in this analysis are shown in Fig. 2 as a function 
of the projectile energy. 

Since the reactions listed in Table I normally do not involve significant momentum 
transfer from one molecule (or ion) to the other, we will assume the daughter products have the 
same speed as the parent. Consequently the daughter ions have finite speed at birth if they were 
created by dissociation of an energetic parent ion. If the daughter ion was created by charge 
transfer to the background D2 molecule, or ionization (including dissociative ionization) of the 
background D2 molecule, then the daughter ion will be assumed to be born stationary. 
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Figure 2.  Cross sections for forming fast and slow ions: (a) D+ interacting with D2, 
(b) D2

+ interacting with D2, (c) D3
+ interacting with D2. 
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III. INTEGRAL EQUATIONS FOR ION TRANSPORT IN THE IEC 

The integral equations for molecular ion transport are straightforward generalizations of 
those developed for atomic ions in the companion paper1. We use the terminology that was 
developed there; we define class I ions as those ions that enter the intergrid region from the 
source region and class II ions as those ions that are born within the intergrid and cathode 
regions. There are three types of class I ions: D+, D2

+, and D3
+. Class I D3

+ ions from the source 
region enter the intergrid region and react with D2 to produce D2

+ and D+ ions, both fast and 
stationary. Class I D2

+ ions react with D2 to produce stationary D2
+ and both fast and stationary 

D+ ions. Class I D+ ions react with D2 to produce stationary D+ and D2
+ ions. Thus we get an 

internal source of both fast and stationary D+ and D2
+ ions in the cathode and intergrid region; 

these are called class II ions. Stationary D+ and D2
+ ions are accelerated by the electric field to 

become energetic; they can then interact with the background gas to produce subsequent 
generations of class II D+ and D2

+ ions in the intergrid and cathode regions. This leads to two 
coupled integral equations, one for each species of class II ions. 

To develop the integral transport equations we start with the class I ions entering from the 
source region. We define Γ0 to be the ion flux leaving the anode and heading inward, and hi to be 
the fraction in the ith species, where  i =1 denotes D+, i = 2 denotes D2

+ and i = 3 denotes D3
+.   

We define the attenuation function for the ith species, 
fi r( )= exp − ngσ i

d E ′ r ( )[ ]d ′ r 
 r

 b∫{ }, (3) 
where 

E ′ r ( ) = E0 − qφ ′ r ( ) (4) 
is the kinetic energy of a class I ion at the radius r′ . The (non-directed) flux of the ith species 
class I ions at the radius r is 

 Γi r( ) =
b2hiΓ0

r 2 fi r( )+Tc
2 fi

cp

fi r( )
 

 
 

 

 
 . (5) 

where we have introduced the complete pass attenuation function, 
fi

cp = fi
2 0( ). (6) 

The first term in the square bracket in Eq. (5) is the contribution from inward traveling 
ions and the second term is the contribution from outward traveling ions. From the flux of class I 
ions of species i at radius r we can calculate the source term for the creation of first generation 
class II ions at the radius r, 

Ai
s r( ) = ng Γj r( )σ ji

s

j =1

3

∑ . (7) 

Substituting from Eq. (5) for the flux, we get the source term for first generation class II ions, 

Ai
s r( ) =

b2

r 2 ngΓ0 hj fj r( )+Tc
2 fi

cp

fj r( )
 

 
 

 

 
 σ ji

s ,   
j =1

3

∑ i = 1,2, (8) 

due to the class I ions crossing the anode and heading inward. 
So far the analysis considers only daughter ions that are born cold. However, daughter 

ions created by dissociation of the fast parent ion have the speed of the parent, so they can’t be 
included in the As(r) as defined so far. To include the ions born with finite speed, we shift them 
to their turning point, where they are stationary, and put them into the source of next generation 
ions at that location. For those ions born with positive radial velocity, this shifts the starting point 
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of their track forward; for ions born with negative radial velocity, this shifts the starting point of 
their track backwards. To lowest order in the asymmetry between the inward and outward radial 
velocities, these shifts cancel. 

Consider an ion which was born at radius r′  with kinetic energy E0 (we include E0 so 
that we can treat parent ions of class I as well as class II in the same equation). Assume the 
parent reaches the radius r ′′ where it undergoes dissociation to create a daughter ion. The parent 
ion has kinetic energy 

Ep ′ ′ r ( ) = q φ ′ r ( )−φ ′ ′ r ( )[ + E0] . (9) 
Define m to be the number of nuclei in the parent ion and n to be the number of nuclei in 

the resulting daughter ion.  Since the daughter has the same velocity as the parent, its kinetic 
energy at birth is 

Ed ′ ′ r ( ) =
n
m

Ep ′ ′ r ( ). (10) 

The daughter will have its turning point at the radius r, where 
Ed ′ ′ r ( )+ qφ ′ ′ r ( ) = qφ r( ). (11) 

Substituting from Eqs. (9) and (10) and solving for the potential at the birth point of the 
daughter, we get 

φ ′ ′ r ( ) =
mφ r( )− nφ ′ r ( )− n E0

q
m− n

. (12) 

From Eq. (12) we can determine the daughter birth point, r ′′ , for a given turning point, r, and 
origin of the parent ion, r′ . For class I parent ions, ′ r = b  (the anode radius) and E0 is given by 
the input value; for class II parent ions, r′ = their birth point and E0 = 0.  

Class I D2
+ ions entering from the anode and interacting with the background gas will 

create slow and fast D+ ions and slow D2
+ ions. The slow D+ and D2

+ ions have been included in 
the analysis above. We now consider the fast D+ ions created by the D2

+ ions. The fast ions born 
at a radius r ′′  will have their turning points at a radius r. The number of fast ions created per unit 
time in a shell of radius r ′′  and thickness dr ′′  is ngΓ2 ′ ′ r ( )σ21

f E( ′ ′ r )[ ]4π ′ ′ r 2d ′ ′ r , where the non-
directed flux  Γ2 is given by Eq. (5). We now move these ions from the shell at radius r ′′  to a 
shell of thickness dr at radius r; conserving the number of ions yields the resulting “cold” ion 
source density at radius r, 

A1
f 1 r( ) 4πr2dr( )= ngΓ ′ ′ r ( )σ 21

f E( ′ ′ r )[ ]4π ′ ′ r 2d ′ ′ r . (13) 
Substituting for , this becomes Γ ′ ′ r ( )

A1
f1 r( ) = ng

b2

r 2 h2Γ0 f2 ′ ′ r ( )+Tc
2 f2

cp

f2 ′ ′ r ( )
 

 
 

 

 
 σ21

f E( ′ ′ r )[ ]d ′ ′ r 
dr

. (14) 

The two shell thicknesses, rd ′′  and dr, are not independent, but have to be related by 
Eq. (12).  Since we are moving ions to their turning points, those on the inner edge of the shell at 
r ′′  map to the inner edge of the shell at radius r, and those on the outer edge at radius r ′′  map to 
the outer edge at radius r. Differentiating Eq. (12) with respect to r, we get 

d ′ ′ r 
dr

=
mE f r( )

m − n( )E f ′ ′ r ( )
, (15) 

where Ef(r) is the electric field at the radius r. Using Eq. (15), the equivalent source term at 
radius r is 
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A1
f 1 r( )=  ng

b2

r2 h2Γ0 f2 ′ ′ r ( )+ Tc
2 f2

cp

f2 ′ ′ r ( )
 

 
 

 

 
 σ 21

f E( ′ ′ r )[ ]
mE f r( )

m − n( )E f ′ ′ r ( )
. (16) 

Equation (16) incorporates the fast daughter ions born in the intergrid region, but does 
not include the fast ions born in the cathode region where the potential is constant. For a given 
parent ion, all the fast daughter ions born in the cathode region have the same turning point. The 
number of fast daughter ions created per unit volume per second in the cathode region by class I 
D2

+ parent ions is 
b2

′ ′ r 2 h2Γ0Tc f2 ′ ′ r ( )+
f2

cp

f2 ′ ′ r ( )
 

 
 

 

 
 ngσ21

f E( ′ ′ r )[ ]. (17) 

We integrate this over the cathode region to get the number created per second, 

4πb2h2ngΓ0Tc f2 ′ ′ r ( )+
f2

cp

f2 ′ ′ r ( )
 

 
 

 

 
 σ21

f E( ′ ′ r )[ ]d ′ ′ r 
 0

 a
∫ . (18) 

These ions are to be placed at their turning point, , which is gotten by solving Eq. (12); tmnr

φ rtmn( ) =
m− n

m
φc +

n
m

φ ′ r ( )+
nE0

mq
, (19) 

where cφ  is the potential in the cathode region. [In using Eq. (19), we put φ ′ r ( ) = 0,  E0 ≠ 0 for 
class I ions, and φ ′ r ( ) ≠ 0,  E0 = 0 for class II ions.]  Consequently, this contribution to the 
source function A(r) is given by 

A1
f 2 r( ) =

b2

r 2 h2ngΓ0Tc f2 ′ ′ r ( )+
f2

cp

f2 ′ ′ r ( )
 

 
 

 

 
 σ21

f E( ′ ′ r )[ ]d ′ ′ r 
 0

 a
∫ δ r − rt 21( ), (20) 

where we have introduced the Dirac delta function to ensure that the ions are placed only in the 
shell at radius .  tmnr

In the cathode region, the energy E ′ ′ r ( ) is constant and the attenuation function, fi ′ ′ r ( ) , 
is a simple exponential function of r ′′ ,  

fi ′ ′ r ( ) = fi 0( )exp αi ′ ′ r ( ) = f2
cp exp αi ′ ′ r ( ), (21) 

where αi = ngσ i
d E a( )[ ], so the integral in Eq. (20) can be done analytically; 

fi ′ ′ r ( )+
f2

cp

fi ′ ′ r ( )
 

 
 

 

 
 σ21

f E( ′ ′ r )[ ]d ′ ′ r 
 0

 a
∫ = σ ij

f E a( )[ ] f2
cp

αi

exp αia( )− exp −αia([ )]. (22) 

The generalization of the integral equation analysis to include the fast ions is now clear. 
Adding the slow, A1

s (r), and two fast, A1
f1(r) and A1

f2(r), daughter ion contributions from both 
class I D2

+ and D3
+ ions, the total source term for class II D+ ions becomes 
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A1 r( ) =
b2

r 2 ngΓ0 h1 f1 r( )+Tc
2 f1

cp

f1 r( )
 

 
 

 

 
 σ11

s E(r )[ ]+
 
 
 

  
h2 f2 r( )+Tc

2 f2
cp

f2 r( )
 

 
 

 

 
 σ21

s E(r )[ ]

           + h3 f3 r( )+Tc
2 f3

cp

f3 r( )
 

 
 

 

 
 σ31

s E(r )[ ]+ h2 f2 ′ ′ r 21( )+Tc
2 f2

cp

f2 ′ ′ r 21( )
 

 
 

 

 
 σ21

f E ′ ′ r 21( )[ ]2Ef r( )
Ef ′ ′ r 21( )

           + h3 f3 ′ ′ r 31( )+Tc
2 f3

cp

f3 ′ ′ r 31( )
 

 
 

 

 
 σ31

f E ′ ′ r 31( )[ ] 3Ef r( )
2Ef ′ ′ r 31( )

+

           + h2Tc f2 ′ ′ r ( )+
f2

cp

f2 ′ ′ r ( )
 

 
 

 

 
 σ21

f E ′ ′ r ( )[ ]d ′ ′ r 
 0

 a
∫ δ r − rt 21( )

           + h3Tc f3 ′ ′ r ( )+
f3

cp

f3 ′ ′ r ( )
 

 
 

 

 
 σ31

f E ′ ′ r ( )[ ]d ′ ′ r 
 0

 a
∫ δ r − rt 31( )

 
 
 

  
.

 (23) 

The first three terms on the right-hand side give the contribution from slow D+ ion 
production, and the next two terms give the contribution from fast D+ ion production at the 
radius  or  (in the intergrid region), where they have a total energy that carries them to the 
turning point at r. The last two terms give the contribution from fast D

21r ′′ 31r ′′
+ ions born in the cathode 

region; they have turning points at radii r  and . We use Eq. (22) to evaluate the integral in 
the last two terms. 

21t 31tr

The source term for class II D2
+ ions becomes, with terms analogous to those in Eq. (23), 

A2 r( )=
b2

r2 ngΓ h1 f1 r( )+ Tc
2 f1

cp

f1 r( )
 

 
 

 

 
 

 
 
 

  
σ12

s E(r)[ ]

           + h2 f2 r( )+ Tc
2 f2

cp

f2 r( )
 

 
 

 

 
 σ 22

s E(r)[ ]+ h3 f3 r( )+ Tc
2 f3

cp

f3 r( )
 

 
 

 

 
 σ 32

s E(r)[ ]

           + h3 f3 ′ ′ r 32( )+ Tc
2 f3

cp

f3 ′ ′ r 32( )
 

 
 

 

 
 σ 32

f E ′ ′ r 32( )[ ]3E f r( )
E f ′ ′ r 31( )

           + h3Tc f3 ′ ′ r ( )+
f3

cp

f3 ′ ′ r ( )
 

 
 

 

 
 σ 32

f E ′ ′ r ( )[ ]d ′ ′ r 
 0

 a∫ δ r − rt 32( )
 
 
 

  
 .

 (24) 

For subsequent generations of class II ions, we follow the same approach used in the 
atomic model.1  We now have two species of class II ions, so we introduce S1 as the source term 
for D+ ions, and S2 as the source term for D2

+ ions. Energetic D+ ions can produce cold D2
+ ions 

by ionization of the D2 gas, and energetic D2
+ ions can produce cold D+ ions by dissociative 

ionization of the D2 gas.  Consequently, we get two coupled integral equations for the cold D+ 
and D2

+ source functions, respectively, 
S1 r( ) = A1(r )+ K11 r , ′ r ( )S1 ′ r ( )d ′ r 

 r

 b
∫ + K12 r , ′ r ( )S2 ′ r ( )d ′ r 

 r

 b
∫ , (25) 

S2 r( ) = A2(r )+ K21 r , ′ r ( )S1 ′ r ( )d ′ r 
 r

 b
∫ + K22 r , ′ r ( )S2 ′ r ( )d ′ r 

 r

 b
∫ . (26) 

To obtain the kernels, Kij, we follow the same procedure as in companion paper1 of this 
paper. However, now there are kernel cross terms, K12 and K21, since D+ ions can produce D2

+ 
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ions, and vice versa. It is also convenient to split the kernels into the slow and fast daughter ion 
contributions, 

Kij r , ′ r ( ) = Kij
s r , ′ r ( )+ Kij

f r , ′ r ( ) . (27) 
By straightforward generalization of the procedure used in the companion paper,1 the 

slow daughter ion contributions to the kernels are 

Kij
s r, ′ r ( )= ngσ ji

s E(r, ′ r )[ ] ′ r 2

r2

 

 
 

 

 
 gi(r, ′ r ) +

Tc
2gi

cp ′ r ( )
gi(r, ′ r )

 

 
 

 

 
 

1
1− Tc

2gi
cp ( ′ r )

. (28) 

where we have introduced the attenuation function, 
gi r, ′ r ( )= exp −ng σ i

d E ′ ′ r , ′ r ( )[ ]d ′ ′ r 
r

′ r ∫{ } (29) 

which measures the probability of an ion born at r′  reaching the radius r. We have also 
introduced the complete pass probability, 

gi
cp ′ r ( )= gi 0, ′ r ( )[ 2] , (30) 

which is the probability of an ion born at radius r′  to reach the origin and return to the radius r′ . 
The cross-sections are a function of the energy 

E r , ′ r ( ) = q φ ′ r ( )− φ r( )[ ], (31) 
which is the energy of an ion at radius r that was born at radius r′ . 

The fast contributions, , are zero, except for i =1, j = 2, which is caused by class II 
D

f
ijK

2
+ ions interacting with the background gas and dissociating to produce fast class II D+ ions. 

We use the same procedure as for daughter ions produced by class I ions; we shift them from the 
birth point to their turning point. The resulting kernel is 

K12
f r, ′ r ( )= ngσ 21

f E ′ ′ r 21, ′ r ( )[ ] ′ r 2

r2

 

 
 

 

 
 g2 ′ ′ r 21, ′ r ( )+

Tc
2g2

cp ( ′ r )
g2 ′ ′ r 21, ′ r ( )

 

 
 

 

 
 

1
1− Tc

2g2
cp ( ′ r )

2E f r( )
E f ′ ′ r 21( )

          + ng
′ r 2

r2

 

 
 

 

 
 Tc g2 ′ ′ r , ′ r ( )+

g2
cp ( ′ r )

g2 ′ ′ r , ′ r ( )
 

 
 

 

 
 σ 21

f E ′ ′ r , ′ r ( )[ ]d ′ ′ r 
 0

 a∫ 1
1− Tc

2g2
cp ( ′ r )

δ r − rt ′ r ( )[ ].
 (32) 

The first term on the right side of Eq. (32) is the contribution of fast D+ ions born at 
radius  in the intergrid region from parent D21r ′′ 2

+ ions born at radius r′ ; the daughter ions have 
turning points at radius r. For a given  r  and r′ , the birth point is calculated using Eq. (12) with 
m = 2, n = 1, and E0 = 0.  The second term on the right side of Eq. (32) is the contribution of fast 
D+ ions born at radius  in the cathode region; these ions all have their turning point at the 
radius , where 

21r ′′
rt( ′ r ) r′  is the parent’s birth point. The turning point rt ′ r ( ) is the solution of Eq. 

(12) with m = 2, n = 1, and E0 = 0.  
In the cathode region, the g2 attenuation function varies exponentially, 
g2 ′ ′ r , ′ r ( ) = g2 0, ′ r ( )exp α2 ′ ′ r ( ) = g2

cp( ′ r ) exp α2 ′ ′ r ( ), (33) 
where α2 = ngσ 2

d E a , ′ r (( )). In addition, the energy E ′ ′ r , ′ r ( ) is independent of r ′′  in the cathode 
region. This allows the integral involving the g2 function to be done analytically; 

g2 ′ ′ r , ′ r ( )+
g2

cp ( ′ r )
g2 ′ ′ r , ′ r ( )

 

 
 

 

 
 σ 21

f E ′ ′ r , ′ r ( )[ ]d ′ ′ r 
 0

 a∫ = σ 21
f E a, ′ r ( )[ ] g2

cp ( ′ r )
α2

exp α2a( )− exp −α2a([ ]) . (34) 

 The 
two coupled Volterra equations [Eq. (25) and (26)] are solved numerically to obtain the source 
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functions S1(r) and S2(r); the numerical method is described in Appendix A. Detailed information 
about the ion energy spectra, etc., can then be calculated from these source functions. 

IV. NEUTRON PRODUCTION 
Neutron production from D(d,n)3He reactions is a convenient diagnostic tool, as well as 

one of the applications of inertial electrostatic confinement devices. In this section we use the 
integral transport equation to determine the total neutron production rate. We consider energetic 
ions and fast neutral atoms or molecules fusing with the background gas, but do not include 
fusion reactions due to ion-ion or ion-fast neutral atom collisions. 

A. Ion – neutral gas fusion 
We start with the class I ions coming from the anode. The non-directed ion flux of type i 

ions at a point r in the intergrid and cathode regions is given by Eq. (5). The rate of neutron 
production from these ions colliding with the background gas is 

( ) ( ) drrr
i
EniN i

b

fgi
2 

0 1 4 2 πσ Γ





= ∫& , (35) 

In Eq. (35), the factor i comes from one nucleus per D  ion (i = 1), two nuclei per D  ion 
(i = 2), and three nuclei per D  ion (i = 3).  The factor 2 comes from two nuclei per D  molecule 
in the background gas; the D(d,n)He  fusion cross-section, σ , is evaluated at the energy per 
nucleus, E(r)/i, where E(r) is given by Eq. (4). Substituting from Eq. (5), this becomes 

++
2

+
3 2

3
f

( ) ( ) ( ) ( ) 
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Γ= ∫∫ dr

rf
frf

i
ETdr

rf
fTrf

i
EhbniN

i

cp
i

i

a

fc
i

cp
i

ci

b

a figi

 

0 

2 

 0
2

1 8 σσπ& , (36) 

where we have written the cathode and intergrid region contributions to the integral separately. 
The integral over the cathode region can be done analytically, 

σ f
E
i

 
 
 

 
 
 

 0

 a∫ f i r( )+
f i

cp

f i r( )
 

 
 

 

 
 dr = σ f

E 0( )
i

 

 
 

 

 
 

f i
cp

α i

exp α ia( )− exp −α ia([ )], (37) 

where αi = ngσ i
d E a( )[ ]. 

Next we consider class II ions of type i born in a shell of thickness  at a radius rd ′ r′ ; 
their flux at a radius r is 

dΓi r( ) = ′ r 
r

 
 
 

 
 
 

2

Si ′ r ( ) gi r , ′ r ( )+Tc
2 gi

cp ′ r ( )
gi r , ′ r ( )

 

 
 

 

 
 

1
1− Tc

2gi
cp ′ r ( )

d ′ r . (38) 

Integrating over both r′ and r gives this contribution to the neutron production; 
( ) ( ) ( ) ( )

( ) ( )∫ ∫ ′
′−

′
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′

+′′
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=
b

a

b

r cp
ici

cp
i

ciifgi drrd
rgT

r
rrg
rgTrrgrS
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rrEniN

 

 

 

 2

2
2

2 1,
,,4)2( σπ& , (39)  

where the energy of an ion at r that was born at r′  is given by Eq. (31), the index i in Eq. (39) 
takes the values i = 1 and i = 2.  

The contribution from the cathode region is similar, except that the class II ions were 
born in the intergrid region. This contribution to the neutron production is 

( ) ( ) ( ) ( )
( ) ( )∫ ∫ ′

′−
′









′
′

+′′



 ′

=
a b

a cp
ici

cp
i

iifcgi drrd
rgT

r
rrg
rgrrgrS

i
rrETniN

 

0 

 

 2

2

3 1,
,, 4)2( σπ& . (40) 

Note that the integration over r is from 0 to a and the integration over r′  is from a to b. We can 
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reverse the order of the integrations and do the r integration analytically because, for 0 ≤ r ≤ a , 
. We get  E r , ′ r ( ) = E a, ′ r (

gi r ,r 
 

 
 

 0

 a
∫

αi = ngσ i
d

=i iN3  8π&

∑
=

=
3

1i
ionN&

σ i
n = σ21

fn

σ31
fn

fn
21σ

 

 
 

 
 

r′
r′

r′
r′

Sn
′ r ( )= n

)

′ ( )+
gi

cp ′ r ( )
gi r , ′ r ( )

 

 
 dr =

gi
cp ′ r ( )
αi

exp αia( )− exp −αia([ )], (41) 

where E a , ′ r ([ )]. The neutron production rate becomes 

( )
( )

( )[ ] ( ) ( ) ( )[ ]
( )∫ ′′

′−
−−′

′
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′
b

a cp
ic

iicp
i
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f

ic rdr
rgT

aarg
raE

i
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2
21

expexp
,

,
αα

σ

σ
 (42) 

The total rate of neutron production from ion – background gas interactions is then 

∑∑
==

++
2

1
3

2

1
21

i
i

i
ii NNN &&& . (43) 

B. Fusion from fast neutral atoms and molecules striking background gas 

Fast deuterium atoms and molecules can be produced in the interaction of D+, D2
+, and 

D3
+ ions with the background D2 gas. We introduce the notation shown in Table II. Note that 

some of these cross sections are sums over several different reaction channels. For example,  
is the sum of the cross sections for D2

+ + D2 → (D+ + D)fast + slow products and D2
+ + D2 → (D + 

D)fast + slow products. The cross sections  and  are for pure charge exchange. Cross 
section data for the hydrogen counterpart to these reactions are available;

fn
11σ fn

22σ
2 we use this data for 

deuterium interactions at the same energy per unit mass, since the cross sections should be 
essentially independent of the isotope involved. 

For the purposes of calculating the rate of neutron production by fusion reactions, it is 
immaterial whether the fast nuclei are in the form of atoms or molecules. Hence it is convenient 
to consider them as atoms with a speed equal to the speed of their parent ion. We introduce the 
short-hand notation 

σ11
fn

+ 2σ22
fn

+ 2σ32
fn

    i = 1
   i =  2
   i =  3

 (44) 

It is also convenient to use the term “charge exchange” as short-hand terminology to 
mean any process producing fast neutral atoms or molecules. 

Consider a flux of class I ions of type i at energy E0 leaving the anode surface of radius b 
and heading inward. The ions are accelerated by the potential and therefore have kinetic energy 
E, given by Eq. (4), at the radius r′ . The neutral atoms produced at r′  from these ions have the 
same speed, and therefore the energy E ′ r ( )/ i . Inward traveling ions will produce inward 
traveling fast neutrals, which pass through the cathode and become outward traveling neutrals. 
Outward traveling ions at r′ produce additional outward traveling fast neutrals, but only for 
r > .  

We start with the inward traveling ions of type i and consider a shell of radius  and 
thickness d , where inward traveling ions with energy E produce fast neutrals by charge 
exchange. The number of fast neutrals created per unit time per unit volume at radius  is 

gσ i
n E ′ r ( )[ ]Γi

in ′ r ( ), (45)  
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where the inward ion flux is 

Γi
in ′ r ( ) =

b2

′ r 2 hiΓ0 fi ′ r ( ). (46) 

This volume source of fast neutrals will produce a flux of fast neutrals of energy E/i at a radius r, 
where r < r′ . The fast atom flux at r is 

dΓn r( )=
′ r 

r
 
 
 

 
 
 

2

Sn ′ r ( )d ′ r =
b
r

 
 
 

 
 
 

2

ngσ i
n E ′ r ( )[ ]hiΓ0 f i ′ r ( )d ′ r . (47) 

The number of neutrons generated per second by D-D fusion in the shell at radius r with 
thickness dr is 

( ) ( ) drr
i
rErdnNd fng

22  42 πσ 



 ′

Γ=& , (48) 

where fσ  is the appropriate fusion cross-section. We introduce the shorthand notation 

σi
n ′ r ( ) = σ i

n E ′ r ( )[ ],         σf ′ r ( ) = σf

E ′ r ( )
i

 

 
 

 

 
 . (49) 

and insert from Eq. (47) for dΓn to get 
( ) ( ) ( ) drrdrfhrrnbNd iifing ′′Γ′′= 0

222  8 σσπ& . (50) 
Next we integrate over r to get the total neutron production from the neutrals produced by 

charge exchange in the shell d r′ . Now 

dr= Tc dr+ dr
  a

  ′ r 
∫ 0

  a
∫∫ . (51) 

The factor Tc accounts for the reduction of the atom flux in the cathode region because of the 
grid transparency. The second integration stops at r′  because the fast neutrals are inward 
traveling and don’t reach r > r′ .Once the inward traveling fast neutrals reach the origin, they 
become outward traveling fast neutrals and generate fusion events all the way to the wall. Thus 
we get an additional contribution 

dr= Tc dr
  0

  a
∫ +Tc

2 dr
  a

  b
∫ +Tc

2Ta dr
  b

  c
∫∫ , (52) 

where Ta is the transparency of the anode grid, and c is the equivalent spherical radius of the 
vacuum chamber.  The first term in Eq. (52) is the outward traveling neutrals inside the cathode, 
the second term is the intergrid region (the neutrals passed through the cathode grid twice to get 
there) and the third term is the contribution from the region between the anode (transparency Ta) 
and the vacuum wall.  Putting all these together and evaluating the integrals, we get 

dr = ′ r + A∫ , (53) 

where     A = 2Tca − a +Tc
2 b − a( )+ Tc

2Ta c − b( ). (54) 
Consequently, the integration of  Eq. (49) over r yields 

( ) ( ) ( )( ) rdArrfhrrnbNd iif
n
ig ′+′′Γ′′= 0

22 8 σσπ& . (55) 
We now integrate over the radius r′  to cover the shells that produce the charge exchange 

neutrals from the inward traveling ions. We get 

( ) ( ) ( )( )∫ ′+′′′′Γ=
b

a if
n
iig rdArrfrrhnbN

 

 0
22 8 σσπ& . (56) 

This gives the neutrons generated by fast nuclei produced from inward traveling class I ions as 
they traverse the intergrid region. 
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We also have to consider outward traveling class I ions in the intergrid region. Following 
the same procedure, the number of neutrons generated per second in the shell dr is now 

( ) ( ) ( ) drrd
rf

fThrrnbNd
i

cp
i

cif
n
ig ′








′

Γ′′= 2
0

222  8 σσπ& . (57) 

Integrating over dr gives 

dr∫ = dr
  ′ r 

  b
∫ +Ta dr

  b

  c
∫ = b− ′ r ( )+Ta c− b( ). (58) 

We integrate over d r′  to get 

( ) ( ) ( ) ( )∫ ′′−







′

′′Γ=
b

a
i

cp
i

f
n
icig rdrB

rf
frrThnbN

 

 

2
0

22 8 σσπ& , (59) 

where . (60) B = b 1 − Ta( )+ Tac
This contribution is to be added to the contribution in Eq. (56). We combine these to get the 
following expression 

( ) ( ) ( ) ( ) ( ) ( )∫ ′
















′

′−+′+′′′Γ=
b

a
i

cp
i

cif
n
iig rd

rf
frBTrfArrrhnbN

 

 

2
0

228 σσπ& . (61) 

We also have to consider charge exchange of class I ions as they traverse the cathode 
region. Since our model for the potential assumes a constant potential inside the cathode, the ions 
have the full energy Emax = E0 − qφ a( )[ ].  The inward flux of ions at radius r′  inside the cathode 
region is 

Γi
in ′ r ( )=

b2

′ r 2 TchiΓ0 f i a( )exp ngσ i
d Emax( ) ′ r − a([ )], (62) 

where the exponential term arises because of attenuation between a and r′ and the grid 
transparency considers those lost on the grid. As these ions traverse the cathode region some of 
them undergo charge exchange to become fast neutrals. Using the same procedure as for the 
intergrid region, the number of neutrons produced in a shell of radius r and thickness dr due to 
inward traveling ions is 

( ) ( ) ( )( )[ ] drrdarEnafhT
i

EEnbNd d
igiicf

n
ig ′−′Γ






= max0

max
max

222 exp 8 σσσπ& . (63) 

Integrating over r gives 
dr∫ = dr

 0

 ′ r 
∫ + dr

 0

 a
∫ +Tc dr

 a

 b
∫ +TcTa dr

 b

 c
∫ . (64) 

The first term is the contribution of the neutrals as they travel inward to the origin, the second is 
the contribution as they travel outward in the cathode region, the third is the contribution as they 
travel through the intergrid region, and the fourth is the contribution from the region between the 
anode and the vacuum wall. Evaluating the integral, we get 

dr∫ = ′ r + a +Tc b − a( )+TcTa c − b( ) = C + ′ r , (65) 

where    C . (66) = a +Tc b − a( )+TcTa c − b( )
Consequently, the neutron production rate from inward traveling class I ions in the cathode 
region is 

( ) ( ) ( ) ( )( )[ ]∫ ′−′+′





Γ=

a d
igf

n
iciig rdarEnCr

i
EETafhnbN

 

0 max
max

max0
22 exp 8 σσσπ& . (67) 
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We also need to consider the fast neutrals, and their neutron production, generated by 
outgoing class I ions in the cathode region. The outgoing ion flux at r′ is 

Γi
out ′ r ( )=

b2

′ r 2 TchiΓ0 f i a( )exp −ngσ i
d Emax( ) ′ r + a([ )]. (68) 

Using the same arguments as above, the neutron generation rate from fast neutral-gas 
interactions resulting from these ions is 

( ) ( ) ( )( )[ ] drrdarEnafhT
i

EEnbNd d
igiicf

n
ig ′+′−Γ






= max0

max
max

222 exp 8 σσσπ& . (69)  

Integrating over r gives 
dr = dr

 ′ r 

 a
∫∫ +Tc dr

 a

 b
∫ +TcTa dr

 b

 c
∫ = a − ′ r +Tc b − a( )+TcTa c − b( ) = C − ′ r , (70) 

so the neutron production rate becomes 

( ) ( ) ( )( )[ ]( )∫ ′′−+′−Γ





=

a

idgiicfing rdrCarEnafhT
i

EEnbN
 

0 max0
max

max
22 exp 8 σσσπ& . (71) 

Adding the contributions from inward [Eq. (67)] and outward [Eq. (71)] traveling class I 
ions, and evaluating the integrals analytically gives 
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d
where αi = ngσ i Emax( ). 

The total neutron production from neutrals arising from class I ions of type i is the sum of 
the results in Eq. (61) and (72), 
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 (73) 

In the second line of Eq. (73) the cross sections are constants; σin and σid are evaluated at Emax 

and σf  at Emax/i.   
Equation (73) gives the neutron production due to neutrals generated from class I ions. 

These are a beam of ions (flux = hiΓ0) originating with very low energy at the anode (r = b) and 
traveling inward. We can use the same process to consider charge exchange neutrals coming 
from class II D+ and D2

+ ions; they are a beam (flux = Si ′ ′ r ( )d ′ ′ r ) and originating with very low 
energy at the radius r ′′ . We make the substitutions 

b 2hiΓ0 → ′ ′ r 2Si ′ ′ r ( )d ′ ′ r , 
E ′ r ( ) → E ′ r , ′ ′ r ( ), 

fi ′ r ( ) →
gi ′ r , ′ ′ r ( )

1− Tc
2gi

cp ′ ′ r ( )
, 

f i
cp

fi ′ r ( )
→

gi
cp ′ ′ r ( )

gi ′ r , ′ ′ r ( )
1

1− Tc
2gi

cp ′ ′ r ( )
 

 
 

 

 
 , 

 b  ′ ′ r 
d ′ r 

 a∫ → d ′ r 
 a∫ , 
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Emax → E a, ′ ′ r ( ). 
We make these replacements both for i = 1 (D+) and i = 2 (D2

+) and keep track of the energy of 
the fast nuclei produced when evaluating the fusion cross section. We also need to make one 
additional integration, namely over r ′′ . 

For neutrons generated from neutrals arising from class II ions of type i (i = 1 for D+, i = 
2 for D2

+) we get 

( )[ ] ( ) ( ) ( ) ( ) ( )
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( )
( )
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 (74) 

where α i = ngσ i
d E a, ′ ′ r ([ )]

. (75) 

The total neutron production from fast neutral – background gas interactions is then  

∑∑
==

+=
2

1
II

3

1
I

i
in

i
inn NNN &&& , (76) 

and the overall neutron production is the sum of the fast ion – background gas contribution 
[Eq. (43)] and the fast neutral – background gas contribution [Eq. (76)];  

nion NNN &&& += . (77) 

C. Cathode current 

A difficulty with our model so far is that we do not have a direct measurement of the ion 
flux, Γ0, crossing the anode and entering the intergrid region. However, the current to the 
cathode is normally measured experimentally. Consequently, we use the cathode current to 
determine Γ0.  Within the context of our model, there are several contributions to the cathode 
current. The first is the contribution from class I D+, D2

+, and D3
+ ions crossing the anode, 

heading inward, and being intercepted by the cathode grid. The second is the contribution from 
D+ and D2

+ ions born in the intergrid and cathode regions and intercepted by the cathode grid. 
These ions intercept the grid at finite energy and induce secondary electron emission; this also 
contributes to the measured cathode current. We allow for an energy- and species-dependent 
secondary electron emission coefficient, γι(E). Cold ions produced in the cathode region (r < a), 
are contained by the electrostatic potential. They and the converging ion flow also produce a 
positive potential relative to the cathode grid that can trap electrons. If the cold ions reach the 
cathode grid before being neutralized by the electrons trapped in the cathode region, they are 
neutralized at the grid surface and contribute to the cathode current. However, if they are 
neutralized by the trapped electrons, then they don’t contribute to the cathode current. The 
trapped electron physics is beyond the scope of this paper, so we consider both extremes to 
“bracket” the results. 

The contribution from D+, D2
+, and D3

+ ions being intercepted by the cathode grid is 

Ii
1 = 4πq 1− Tc( )Γ0hib

2 f i a( )+ Tc
fi

2 0( )
fi a( )

 

 
 

 

 
 1+ γ i qV0( )[ ],      i = 1, 2, 3, (78) 

where -V0 is the potential of the cathode. The first term in the square bracket in Eq. (78) is the 
contribution from ions hitting the outside of the cathode grid as they travel inward in radius, and 
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the second term is the contribution from ions hitting the inside of the cathode grid as they travel 
outward in radius. The factor Tc appears to the first power inside the square brackets since the 
outward traveling ions have traversed the cathode grid once to get to the cathode region. 

The second part of the cathode current is that due to D+ and D2
+ ions being created at r 

and intercepting the cathode. This contribution is 

Ii
2 = 4πq 1− Tc( ) Si r( )

 a

 b∫ gi a,r( )+ Tc

gcpi r( )
gi a,r( )

 

 
 

 

 
 

r2 1+ γ i ′ E r( )[ ]{ }
1− Tc

2gcpi r( )
dr ,      i = 1, 2 (79) 

The terms in the square brackets in Eq. (79) represent the inward and outward traveling ions, 
respectively, hitting the cathode wires, just as for class I ions.  The secondary electron emission 
coefficient is energy dependent and is therefore an implicit function of r through  

′ E r( )= q φ r( )− φ a( )[ ]. (80) 
Cold ions created by charge exchange and ionization at radii less than the cathode radius 

are trapped in an electrostatic well; they cannot penetrate to r > a, so they wander around and 
may eventually get collected by the cathode. Both class I and class II ions contribute to the 
source of these cold ions.  The (non-directed) flux of class I ions of type i inside the cathode is 

Γi r( ) =
b2hiΓ0

r 2 Tc fi r( )+
fi

2 0( )
fi r( )

 

 
 

 

 
 , (81) 

where the attenuation function inside the cathode is 
f i r( )= f i a( )exp −ngσ i

d qV0( ) a − r( )[ ]. (82) 
Computing the rate of cold ion production by charge exchange and ionization and 

integrating over the cathode region, r < a, gives the number of cold ions produced per unit time 
by class I ions of type i within the cathode region; the current due to these ions is 

I i
3 = 4πqngσ i

tot qV( )b2hiΓ0Tc fi r( )+
fi

2 0( )
fi r( )

 

 
 

 

 
 

 0

 a
∫ dr , (83)  

where  

σ i
tot = σ ij

s

j =1

2

∑ , (84) 

all evaluated at the energy qV0. Because of the constant speed and the exponential variation of 
f(r) inside the cathode, the above integral can be done analytically. The result is 

 

Ii
3 = 4πqb2hiΓ0Tc fi a( )σ i

tot qV( )
σ i

d qV0( )
1− exp −2ngσ i

d qV0( )a[{ ]}.      i = 1, 2, 3 (85) 

We neglect secondary electron emission induced by cold ions created within the cathode region 
since these ions hit the cathode at low energy. 

The current due to cold ion production by charge exchange and ionization inside the 
cathode region by class II ions of type i is 

Ii
4 = 4πq ′ r 2ngσ i

tot E r, ′ r ( )[ ]Si ′ r ( )
 a

 b∫  Tc gi r, ′ r ( )+
gcpi ′ r ( )
gi r, ′ r ( )

 

 
 

 

 
 

1
1− Tc

2gcpi ′ r ( )
 

 
 
 

 

 
 
 
d ′ r dr

 0

 a∫ . (86) 

Inside the cathode the energy is constant , E r , ′ r ( ) = E a, ′ r ( ), and the attenuation function gi r , ′ r ( ) 
is given by 
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gi r, ′ r ( )= gi a, ′ r ( )exp ngσ id E a,r( )[ ] r − a( ){ }. (87) 
Consequently, we can reverse the order of the two integrations in Eq. (86) and do the r-
integration analytically.  The result is 

Ii
4 = 4πqTc ′ r 2 σ i

tot E r, ′ r ( )[ ]
σ i

d E a,r( )[ ] a

 b∫  Si ′ r ( )gi a, ′ r ( )
1− Tc

2gcpi ′ r ( )
 

 
 
 

 

 
 
 

1− exp −2ngσ i
d E a,r( )[ ]a{( )d ′}  r  (88) 

The total cathode current is then 

Icathode = I i
1 + I i

3( )
i =1

3

∑ + I i
2 + I i

4( )
i =1

2

∑ . (89) 

Equation (89) assumes the cold ions produced in the cathode region reach the cathode grid 
before being neutralized by trapped electrons.  Alternatively, one can assume that the trapped 
electrons neutralize the cold ions before reaching the grid; in this case they do not contribute to 
the cathode current. The corresponding cathode current is then 

Icathode = I i
1

i =1

3

∑ + I i
2

i =1

2

∑  (90) 

Either Eq. (89) or (90) is used to determine the ion flux, Γ0, crossing the anode and heading 
towards the cathode.  With this, the solution to the integral transport equations is fully 
determined, and we can calculate physical quantities of interest.  In the next section, we consider 
both possibilities for cold ion contribution to the cathode current to bracket the predictions from 
this analysis. 

D. Comparison with published experimental results 
Spherical, gridded, inertial electrostatic confinement (IEC) devices are an important 

application of this analyis.  The IEC concept was first patented by Farnsworth3 in the 1960s and 
advanced by Hirsch4 shortly thereafter. The IEC concept is of particular interest in the arena of 
non-power applications of fusion, such as neutron sources and high-energy proton sources for 
medical isotope production.  The gridded IEC device has been extensively investigated by 
research groups around the world.5-11  Neutron production rates measured in these devices 
provide experimental data for comparison with the predictions of our analysis. The Wisconsin 
IEC12 device operating in the low-pressure regime (< 4 mTorr) fits the assumptions of our model 
the best, so we use it for comparison. 

 Shown in Fig. 3 is the comparison between the experimentally measured neutron 
production rate12 and the rate predicted by the model. The experimental data is for a cathode 
diameter of 20 cm, anode diameter of 40 cm, background pressure of 2.5 mTorr, and a cathode 
current of 30 mA. The mix for the current into the intergrid region from the source region has 
been taken to be 71% D3

+, 23% D2
+, and 6% D+ ions.13   If it is assumed that the cold ions in the 

cathode are neutralized by trapped electrons before reaching the cathode (curve I in Fig. 3), then 
the predicted neutron production rate is about 30% low compared with the experimental rate.  
But, if the cold ions in the cathode region are assumed to be neutralized at the cathode grid 
(curve II), then the calculated neutron production rate is a factor of four to five low, depending 
on the voltage. Note that, in both case I and case II, the slope of the neutron production with 
cathode voltage agrees well with the experimental results. 
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Figure 3.  Comparison between experimental and calculated neutron production 
rates as a function of cathode voltage.  A: model with cold ions in cathode region not 
included.  B: model with cold ions in cathode region included. 

It should be noted that the model does not consider fusion reactions arising from ion-ion 
collisions. Since the plasma is weakly ionized, this should be small. The model also does not 
include fusion reactions due to fast ions fusing with deuterium embedded in the near surface 
region of the grids and vacuum chamber. Experimentally, this has been measured14 to be small 
for D-D fusion under normal operating conditions, but can be significant for D-3He fusion. 

Figure 4 shows the comparison of the measured12 and calculated neutron production rates 
as a function of the background pressure while holding the cathode current constant at 60 mA; 
the experimental data is for a cathode diameter of 20 cm and anode diameter of 50 cm;  the 
cathode voltage is constant at 100 kV. The pressure influences the results in several ways. First 
the target gas density increases with pressure. But attenuation of fast ions by charge exchange 
and dissociative processes also increase with pressure. This latter effect reduces the mean energy 
of the ions, which reduces the fusion rate. Finally, increasing pressure increases the formation of 
cold ions in the cathode region, which, for a given cathode current, has an effect on the ion flux 
crossing the anode and heading for the cathode. This latter effect is the reason for the greater 
sensitivity of case I in Fig. 4, compared with case II. A pressure effect not considered in our 
analysis is the ionization of gas by energetic electrons streaming from the cathode to the vacuum 
chamber wall.  
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Figure 4.  Comparison of experimental and calculated neutron production rates as a 
function of background pressure.  A: model with cold ions in cathode region not 
included.  B: model with cold ions in cathode region included. 

 
In Fig. 4, the model shows more sensitivity to the background pressure than the measured 

values. One possible explanation for the different pressure sensitivity is that, while embedded 
fusion is small at normal operating pressure, it can become a larger fraction of the total fusion 
rate at lower pressure due to two effects.  First, the reduced gas density reduces the target density 
and therefore the neutron production rate from fast ion and fast neutral fusion with the 
background gas. Second, the reduced gas density hardens the energy spectrum of the ions and 
neutrals impinging on the grids and walls, increasing the embedded fusion rate.  Analyzing these 
effects to determine the embedded fusion contribution is beyond the scope of this paper. 

V. SUMMARY AND CONCLUSIONS 
A theoretical model for the effect of molecular interactions on the flow of molecular ions 

in spherically convergent geometry where the inner grid (cathode) is at a large negative potential 
and the outer grid (anode) is grounded has been developed. The model assumes a weakly ionized 
deuterium plasma composed of D+, D2

+, and D3
+ ions which interact with the dominant 

background gas (D2). The interactions included are charge exchange, ionization, and dissociative 
processes. The formalism developed includes the bouncing motion of the ions in the electrostatic 
well and sums over all generations of subsequent ions produced by atomic and molecular 
processes. This leads to a set of two coupled Volterra integral equations which are solved 
numerically. From the solution of the Volterra equations one can obtain quantities of interest, 
such as the energy spectra of the ions and fast neutral atoms and molecules, and the fusion 
reaction rate.  

To provide an experimental test, the model is applied to inertial electrostatic devices and 
the calculated neutron production rate is compared with the measured value. The results show 
general agreement with the experimental results, but significant differences remain to be 
resolved. In particular, the model shows substantially more scaling with pressure than seen 
experimentally. The biggest uncertainty arises from not having a measurement of the ion current 
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across the anode. As a substitute, a relationship between the cathode current, which is measured 
experimentally, and the ion current has been developed. An uncertainty in this relationship is the 
extent to which electrons trapped in the center of the cathode region can neutralize cold ions 
formed there by charge exchange and ionization. If they do so, then the agreement between the 
model and experimental results is improved. 

The formalism developed can be applied to other gases, depending on the availability of 
the relevant cross sections for molecular interactions. 
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APPENDIX A:  NUMERICAL SOLUTION OF TWO COUPLED VOLTERRA 
EQUATIONS 

The method developed here is a modest extension of a standard method15 for solving 
single Volterra equations.  We write the two coupled Volterra equations symbolically as  

 
′S1 = A1 + K11S1d ′ r 

r

b
∫ + K12S2d  r 

r

b
∫  

 
′S2 = A2 + K 21S1d ′ r 

r

b
∫ + K 22S2d  r 

r

b
∫  

where we have switched from subscripts to superscripts to denote the species. We set up a 
uniform mesh (of width ∆ and N points) with the subscript i denoting the mesh point. Using 
trapezoidal integration to evaluate the integrals, we get 
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We collect the ith terms on the left and put the j > i terms on the right. 
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We can view this as a set of two coupled equations (at any mesh point) in two unknowns, 
Si

1 and Si
2. We write the 2 equations in matrix form, 
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where the Bi
1 and Bi

2 are the right hand sides of  Eqs. (A1) and (A2). We use the inverse of the 
coefficient matrix to get a solution for the source functions Si

1 and Si
2, 
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where the determinant of the coefficient matrix is 
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We can solve Eq. (A3) at each point in the mesh by starting at the Nth mesh point, which 
is at the anode grid. From Eqs. (25) and (26) 

 
SN

1 = AN
1  (A5) 
 

SN
2 = AN

2  (A6) 
since the integral terms do not contribute at this mesh point. Given the solution at the Nth mesh 
point, we get from Eq. (A3) the solution at the i = N-1, N-2, N-3, … mesh points recursively. 
Hence a single sweep through the mesh determines the solution at all mesh points. This 
completes the solution of the coupled Volterra equations. 
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