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ABSTRACT 

A formalism for analyzing the effect of ion-neutral gas interactions on the flow of ions 
between nearly transparent electrodes in spherical geometry has been developed for atomic ions 
in a weakly ionized plasma, so that the important atomic effects are charge exchange and ion 
impact ionization.  The formalism is applied to spherical, gridded, inertial-electrostatic 
confinement (IEC) devices. The formalism yields detailed information about the energy spectra 
of the ions and fast neutral atoms, and the resulting fusion rate for 3He ions in a background 3He 
gas.  The results are illustrated with an example calculation for the Wisconsin IEC device 
operating on 3He.  

 
 

I. INTRODUCTION 
Investigations of charged-particle flow between electrodes date back to Child1 and 

Langmuir,2 and the problem possesses a long history3,4,5,6,7,8,9 that continues today.10,11   The 
Child-Langmuir problem has been solved for completely ionized plasmas, but the presence of 
neutral gas and multiple species complicates the analysis.  The present paper addresses the 
problem of spherically convergent ion flow of a single, atomic species at moderate pressure 
(>0.133 Pa = 1 mTorr) in a weakly ionized plasma, where the effects of charge exchange and 
ionization must be included.  The results will apply to singly charged helium flow,12,13 for 
example.  A companion paper14 extends the analysis to the problem of multiple molecular 
species, which is more generally applicable but substantially more complicated.  The theory 
developed herein applies to ion flow in spherical geometry between solid electrodes, and also to 
a configuration called gridded inertial-electrostatic confinement (IEC),15,16,17 in which ions make 
multiple radial passes between nearly transparent electrodes. 

Most present IEC experiments operate in the moderate-pressure regime.18,19,20,21,22,23,24,25   
Several active IEC experimental efforts exist, including devices at the University of 
Wisconsin,24,26 University of Illinois,18 Los Alamos National Laboratory,27 University of 
Missouri—Columbia,28 Kyoto University,23 Kansai University,23 Kyushu University,23 and 
Tokyo Institute of Technology.23   The main motivation for recent IEC research has been to 
create fusion-product neutrons and protons for use in detecting landmines23 and highly enriched 
uranium,29 producing radioisotopes,30 and pursuing other applications.31  The present paper and 
its companion paper aim to provide tools for understanding ion flow at moderate pressures.  We 
anticipate that the theory will also be useful for the optimization of such devices. 

The theoretical framework for the problem is laid in Sec. II.  As an example calculation, 
Sec. III gives some results for 3He operation in the Wisconsin IEC device. 



II. THEORETICAL MODEL 

A. Overview 
For a nearly transparent inner electrode in spherically symmetric geometry, ions 

accelerated inward by the electric field pass through the inner electrode (cathode) and experience 
multiple passes between the region near the origin and the outer electrode (anode).  The ion flow 
problem consists of analyzing ion interactions (charge exchange and ionization of background 
gas, plus collisions with grid wires) during their radial bounce motion in the electrostatic 
potential well.  For the case of a single atomic species, charge exchange reactions generate a fast 
neutral atom and a cold ion, whereas ionization of background gas creates a cold ion.  The cold 
ions created by charge exchange and ionization are considered to belong to the next ion 
generation; in the case of charge exchange the parent ion disappears, causing attenuation of the 
parent generation. The electrostatic potential difference accelerates cold ions, producing 
energetic ions that can interact with the background gas to produce new fast neutral atoms and 
cold ions. The integral equation analysis presented here follows this infinite recursion of 
generations of ions.  The key physics effects in gridded IEC devices are illustrated in Fig. 1 for 
the moderate-pressure regime of the experiments.  

 

 

Figure 1.  Key features of inertial-electrostatic confinement physics.  Contours 
shown are of the electrostatic potential.  Only one quarter of the equatorial plane of 
the spherically symmetric geometry is shown. 

 
In principal, the self-consistent radial electrostatic potential profile can be determined by 

the solution to Poisson’s equation with the appropriate boundary conditions. For typical steady-
state IEC device operation, the current is small compared with the space-charge-limited current, 
and the ion space charge does not significantly affect the vacuum electrostatic potential profile.  
The present analysis assumes that the radial electrostatic potential profile can be specified as an 
input to the analysis, rather than solved for self-consistently. The following definitions and 
assumptions will be used: 
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1. The spherically symmetric case is treated, ignoring the high-voltage, insulating stalk 
that separates the electrodes in experimental devices. 

2. The cathode grid is at radius r = a, the anode is at radius r = b, and the cathode and 
anode transparencies are Tc and Ta, respectively. 

3. The electrostatic potential, φ(r), is given, not solved for self-consistently.  The 
electrostatic potential is assumed to be monotonically decreasing towards the cathode, 
which is at a large negative potential, and have negligible gradient inside the cathode 
region (r < a). 

4. The cold neutral gas density, ng, is uniform.  In this paper, we consider only a single 
species of neutrals and ions with charge q. 

5. The plasma is assumed to be weakly ionized. 
6. We consider charge exchange and ionization between the ions and the cold 

background gas as the only atomic processes. We assume that the fast neutral atoms 
produced by charge exchange reach the walls of the IEC device without interaction 
(except for fast neutral atoms striking gas atoms and producing fusion reactions), so 
we ignore them after they are created and focus on the birth of cold ions by charge 
exchange.  Ionization by ion impact is assumed to occur with little momentum 
transfer, so that the incident ion is not slowed and the newly created ion is cold. 

7. Ionization and charge exchange inside the cathode region (r < a) produce cold ions 
that are electrostatically trapped; they wander around the cathode region and 
ultimately hit the cathode grid or are neutralized by trapped electrons in that region.  
We neglect any acceleration of these ions by the potential since the gradients are 
assumed small inside the cathode region. 

 
Summing over an infinite number of radial passes and generations of ions results in a 

Volterra integral equation for the source of cold ions.  From this source function, the energy 
spectrum of the ions and energetic neutrals is obtained, along with other macroscopic quantities 
of interest.  The numerical solution of the Volterra integral equation for helium and atomic 
deuterium has been implemented in a computer code used to generate the results in Sec. III. 

B. Volterra equation for the ion source function 
We divide the ions into two classes, class I ions and class II ions.  Class I ions are created 

in the source region outside the anode and cross the anode grid heading towards the cathode.  
Class II ions are ions created in the region between the anode and cathode (the intergrid region).  
Class I ions may undergo charge exchange and thereby become the source of class II ions. They 
can also ionize the background gas, which adds to the source of class II ions. Class II ions, which 
are born at radius r < b due to charge exchange and ionization, accelerate inwards and, upon 
reaching the origin, become outgoing ions that reflect at their birth radius and start a new pass 
towards the origin.  We divide class II ions into generations, with charge exchange and impact on 
the grid wires being the loss processes for a given generation, and charge exchange and 
ionization being the source of the next generation. 

As class I ions leave the anode and head inward they are attenuated by charge exchange; 
the probability of surviving to reach the radius r is 

f (r) = exp − ngσ cx E(r')[ ]dr'
r

b∫{ }, (1)

where the charge exchange cross section, σcx, is a function of the energy, E, of the ion, 

3  



E(r') = E0 − qφ(r'). (2)

The ions have been assumed to leave the anode with the (small) energy E0. The non-directed flux 
(sum of the inward and outward fluxes) of class I ions at radius r (for a < r < b) is 

Γ(r) =
b2Γ0

r2 f (r) + Tc
2 f 2(0)

f (r)
 

 
 

 

 
 , (3)

where Γ0 is the flux of ions crossing the anode and heading inward. The first term, f(r), in Eq. (3) 
is the contribution of the inward traveling class I ions to the flux at radius r; those ions that made 
it this far have a certain probability of passing through the cathode and reaching the radius r on 
their way back to the anode; the second term, T , measures their contribution to the 
flux at r on their way out.  The factor T

c
2 f 2(0) / f (r)

c
2 is because they passed through the cathode grid twice.  

To see that the survival factor for the returning ions can be put in this form, note that the survival 
factor (not including the cathode transparency) for a transit from the anode to the origin and then 
back to r is 

exp − ngσ cx dr'
0

b∫ − ngσ cx dr'
0

r∫( )= exp −2 ngσ cx dr'
0

b∫ + ngσ cx dr'
r

b∫( )=
f 2(0)
f (r)

, (4)

where 

f 2(0) = exp −2 ngσ cx dr'
0

b∫( ) (5)

is the probability of making a complete pass from the anode back to the anode. We do not follow 
class I ions beyond one complete pass through the cathode and back to the anode.  Those ions 
that reach the anode are assumed to rejoin the reservoir of ions in the source region outside the 
anode.  

The ionization and charge exchange rate at radius r is 

A(r) = ngΓ(r)σ tot[E (r)], (6)

where σtot is the total cross section, 

σ tot = σ cx + σ ioniz, (7)

and σioniz is the ion impact ionization cross section. Using Eq. (3), we get 

A(r) =
b2ngσ tot E(r)[ ]

r2 f (r) + Tc
2 f 2(0)

f (r)
 

 
 

 

 
 . (8)

We divide class II ions into generations.  Ionization and charge exchange of class I ions 
with the background gas [Eq.(8)] constitute the sources of the first generation of class II ions.  
These ions are born cold and are accelerated towards the origin by the electric field. Each 
generation will travel continually from their birth radius through the cathode and back to their 
birth radius, where they reflect and start another pass, until they undergo charge exchange or hit 
the cathode grid.  Hence we have to sum over an infinite number of passes.  These ions create the 
next generation by charge exchange and ionization with the background gas.  Hence we also 
have to sum over an infinite number of generations to get the total ion density. 

Consider a source shell at radius r′. The energy at radius r of the ions born at radius r´ is 

4  



E(r,r') = qφ(r') − qφ(r). (9)

We define the survival function 

g(r,r') = exp − ngσ cx[E(r' ',r')]dr' '
r

r'∫{ }, (10)

which measures the probability of an ion born at radius r´ reaching the radius r. The contribution 
to the non-directed flux at r due to ions born in the shell at r′ is 

dΓ(r) =
A(r') r'2 dr'

r2 g(r,r') + Tc
2 g2(0,r')

g(r,r')
 

 
 

 

 
 , r < r'

0, r > r'

 

 
 

 
 

. (11)

 The first term in the square brackets in Eq. (11) is the contribution from inward-traveling 
ions born at r′ and traveling to r.  The second term is the contribution from ions born at r′ that 
penetrated to the origin and are now traveling outward at r.  This form for the attenuation factor 
is obtained by the same arguments used for class I ions.  However, the ions that survive all the 
way back to the birth radius can make additional passes through the shell at r and thus contribute 
again to the flux at r.  We define the complete pass attenuation factor 

gcp (r') = g2(0,r') . (12)

Each pass is attenuated by Tc
2 gcp(r′) compared with the previous pass, so summing over 

passes gives the contribution, 

  
1+ Tc

2gcp + Tc
2gcp( )2

+ Tc
2gcp( )3

+ Tc
2gcp( )4

+K =
1

1− Tc
2gcp (r')

, (13)

so that the flux in the shell at r due to the ions born at r′ becomes 

dΓ(r) =
A(r') r'2 dr'

r2 g(r,r') + Tc
2 gcp (r')

g(r,r')
 

 
 

 

 
 

1
1− Tc

2gcp (r')
, r < r'

0, r > r'

 

 
 

 
 

. (14)

The production rate of cold ions by charge exchange and ionization at r due to ions that 
were born at r′ is 

dS1(r) = dΓ(r) ng σ tot E (r,r')[ ]. (15)

Substituting from Eq. (14) and integrating over the radius r´, we get the source rate for the next 
generation of class II ions at radius r; 

S1(r) = K(r,r')A(r') dr
0

b∫ ' , (16)

where the kernel K(r, r′) is defined by 

K(r,r') =
ngσ tot E(r,r')[ ] r'2

r2

 

 
 

 

 
 g(r,r') + Tc

2 gcp (r')
g(r,r')

 

 
 

 

 
 

1
1− Tc

2gcp (r')
, r < r'

0, r > r'

 

 
 

 
 

. (17)
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Now consider subsequent generations, letting p denote the generation number.  For the 
p+1 generation, which is born by charge exchange and ionization from the pth generation, we 
have 

  
Sp +1(r) = K(r,r')Sp (r')dr'

0

b∫ , p =1, 2, K ∞ , (18)

by the same reasoning that led to Eq. (16).  Note that the kernel K is independent of the 
generation number.  It is convenient to write Eq. (18) symbolically as 

  Sp +1(r) = K Sp (r), p =1, 2, K ∞ , (19)

where K is the integral operator whose kernel is defined by Eqs. (17), and S1(r) is defined by 
Eq. (16).  The total source rate at r due to class I ions and all generations of class II ions is 

S(r) = A(r) + Sp (r)
p=1

∞

∑ . (20)

Using operator notation and applying Eq. (18) recursively gives 

  
S(r) = [I + K + K 2 + K 3 +K ] A(r) =

1
I − K

A(r), (21)

where I is the identity operator.  We can rewrite this as  

S(r) = A(r) + K S(r) = A(r) + K(r,r') S(r') dr
a

b
'∫ , (22)

where we have replaced the operator K by its definition in terms of the kernel K(r,r´). Eq. (22) is 
an integral equation for the source rate.  It is written in the Fredholm form, but it is actually a 
Volterra integral equation since the kernel is zero for r > r´.  The Volterra form is 

S(r) = A(r) + K(r,r') S(r') dr'
r

b∫ . (23)

Eq. (23) can be solved by finite difference methods32. 

C. Energy spectra 

1. Energy spectrum of the fast ion flux for r > a 
We now turn our attention to the energy spectrum, f (r, E), in the region between the 

anode and the cathode. We define f (r, E) to be the energy spectrum of the particle flux at radius 
r, so that f (r,E )dE∫  

is the particle flux passing radius r in a given direction.  Since we have 
inward-going ions and outward-going ions, we introduce an energy spectrum for each, i.e. f -(r,E) 
and f +(r,E).  Consider a shell of thickness dr´ at radius r´ and a surface at radius r. For inward 
moving ions, 

4π r2 f −(r, E ) dE = S(r') g(r,r')
1− Tc

2gcp (r')
4π r'2 dr' , (24)

where E=E(r,r´) is given in Eq. (9). Differentiating Eq. (9) with respect to r´, we obtain the 
relationship between the “window widths” dr´ and dE, 

dE = q ∂φ
∂r'

dr' . (25)

We introduced the absolute value signs since both dE and dr´ are considered positive.  Thus the 
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energy distribution of fast ions is 

f −(r,E)=
1
q

 

 
 

 

 
 

r'
r

 
 
 

 
 
 

2 S(r')
∂φ
∂r'

g(r,r')
1− Tc

2gcp (r')

 

 
 

 

 
  (26)

for inward moving ions. 
For outward moving ions we replace g(r,r´) by the survival function for ions that have 

traversed the core and are heading outward, giving 

f +(r,E)=
1
q

 

 
 

 

 
 

r'
r

 
 
 

 
 
 

2 S(r')
∂φ
∂r'

Tc
2gcp (r')

1− Tc
2gcp (r')

 

 
 

 

 
 

1
g(r,r')

. (27)

Equations (26) and (27) apply for ion energies less than the full potential difference 
between the anode and the point where we are evaluating the distribution function.  We also need 
to include the class I ions at the full (local) energy.  Using Eqs. (2) and (3), we add the class I 
beam-like contribution by introducing the delta function. For inward traveling ions, the energy 
spectrum is 

f −(r,E)=
1
q

 

 
 

 

 
 

r'
r

 
 
 

 
 
 

2 S(r')
∂φ
∂r'

g(r,r')
1− Tc

2gcp (r')

 

 
 

 

 
 +

b2Γ0 f (r)
r2 δ E − E0 − qφ(r)[ ], (28)

and, for outward moving ions, it is 

f +(r,E)=
1
q

 

 
 

 

 
 

r'
r

 
 
 

 
 
 

2 S(r')
∂φ
∂r'

Tc
2 gcp (r')

1− Tc
2gcp (r')

 

 
 

 

 
 

1
g(r,r')

+
b2Γ0Tc

2 f 2(0)
r2 f (r)

δ E − E0 − qφ(r)[ ] (29)

In Eq. (28) and (29), the radius r´ is restricted to r < r´ < b, so that Eq. (9) has a positive solution 
for the energy E. 

2. Energy spectrum of the fast ion flux for r < a 
We can also evaluate the energy spectrum of the fast ion flux inside the cathode region 
(r < a).  The source of these ions is the same as for the intergrid region, but we have to include 
the loss due to impact on the cathode grid in passing into the cathode region. The result is  

f −(r,E)=
1
q

 

 
 

 

 
 

r'
r

 
 
 

 
 
 

2 S(r')
∂φ
∂r'

Tc
g(r,r')

1− Tc
2gcp (r')

 

 
 

 

 
 +

b2Γ0Tc f (r)
r2 δ E − E0 − qφ(a)[ ], (30)

for inward traveling ions, and 

f +(r,E)=
1
q

 

 
 

 

 
 

r'
r

 
 
 

 
 
 

2 S(r')
∂φ
∂r'

Tc gcp (r')
1− Tc

2gcp (r')

 

 
 

 

 
 

1
g(r,r')

+
b2Γ0Tc f 2(0)

r2 f (r)
δ E − E0 − qφ(a)[ ] (31)

for outward traveling ions. 
The ions in the cathode region travel at constant energy since the potential is assumed to be 
constant. Hence, the survival functions f(r) and g(r,r´) can be written as 

f (r) = f (a)exp ngσ cx E a( )[ ] r − a( ){ }, (32)
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g(r,r') = g(a,r')exp ngσ cx E a,r'( )[ ] r − a( ){ }. (33)

Note that the radius r´ in Eqs. (30), (31),and (33) is restricted to a < r < b, since the class II ions 
are born in the intergrid region. 

3. Energy spectrum of the fast neutral atom flux 
Ions of energy E undergoing charge exchange produce fast atoms; we determine the 

energy spectra of the fast atoms by determining the energy of the ions that created them. We start 
with a flux of class I ions with energy E0 leaving the anode surface of radius b and heading 
inward. The ions are accelerated by the potential and therefore have kinetic energy E, given by 
Eq. (2), at the radius r´, creating fast neutral atoms at radius r´ with energy E. The number of fast 
neutrals created per unit time per unit volume at radius r´ is 

Sn1(r') = ngΓ(r')σ cx (E). (34)

Substituting for the inward flux [see Eq. (3)], we get 

Sn1(r') = ng σ cx (E) b2

r'2
Γ0 f (r'). (35)

This volume source of fast neutrals will produce a flux of fast neutrals of energy E at a radius r, 
where r < r′ . We write the fast neutral flux as 

Γn1
± (r) = fn1

±(r,E)dE∫ , (36)

where f±(r,E) is the energy spectrum of the fast neutral atom flux. The + or – superscript denotes 
the direction of travel of the neutral atoms. The “1” in the subscript denotes that these neutrals 
were generated by charge exchange of class I ions. The neutral atoms arriving at radius r with 
energy inside a window dE about E all came from a spherical shell of radius r′  and thickness 
d r′ .  Consequently, 

4π r2 fn1
− (r, E)dE = 4π r'2 Sn1(r')dr' . (37)

Substituting from Eq. (35) we get 

fn1
− (r,E)dE =

b2

r2 ng σ cx (E)Γ0 f (r') dr', (38)

where E and r´are related by Eq. (2). Differentiating Eq. (2), we get 

dE = q ∂φ(r')
∂r'

dr' . (39)

The absolute value sign has been introduced so that the “window widths” dE and dr´are both 
positive.  Inserting Eq. (39) into Eq. (38), we get 

fn1
− (r, E ) =

b2

r2q ∂φ(r')
∂r'

ng σ cx (E)Γ0 f (r')Θ(r'−r), r < a < r' . 
(40)

This expression gives the energy spectrum of the fast neutral atoms traveling inward. Note that 
the r´ in Eq. (40) is an implicit function of E through Eq. (2). If Eq. (2) has no solution for a 
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certain E, then the corresponding fn1
− (r, E ) is zero. We have introduced the Heaviside step 

function Θ into Eq. (40); it forces r´ > r. 
Inside the cathode region, the result corresponding to Eq. (40) is 

fn1
− (r, E) =

b2

r2q ∂φ(r')
∂r'

ng σ cx (E)Tc Γ0 f (r'), r < a < r' . 
(41)

The factor Tc enters because of the attenuation of the fast neutrals while crossing the grid. Note 
that Eq. (41) considers only the fast neutrals that arose from charge exchange in the intergrid 
region.  Because of the potential variation at the point of charge exchange, the energy spectrum 
is continuous, not discrete. Since our model for the potential assumes a constant potential inside 
the cathode, charge exchange inside the cathode region gives rise to a discrete spectrum of fast 
neutrals at the full ion energy, 

Emax = E0 = qφ(a). (42)

The inward flux of ions just inside the cathode is 

Γi
−(a) =

b2

a2 Tc Γ0 f (a) . (43)

As these ions traverse the cathode region some of them undergo charge exchange to become fast 
neutrals.  At radius r the ion flux is 

Γi
−(r) =

a2

r2 Γi
−(a)exp ngσ cx (Emax )(r − a)[ ], (44)

where the exponential term arises because of attenuation by charge exchange between r and a. 
Since particles are conserved by this process, 

Γn1
− (r) + Γi

−(r) =
a2

r2 Γi
− (a), (45)

so that the fast neutral flux arising from charge exchange inside the cathode is 

Γn1
− (r) =

b2

r2 TcΓ0 f (a) 1− exp ngσ cx Emax( )(r − a)[ ]{ }. (46)

Equations (41) and (46) can be combined into one expression by introducing the delta function.  
We get 

fn1
− (r,E) =

b2

r2q ∂φ(r')
∂r'

ngσ cx E( )TcΓ0 f (r')

+
b2

r2 Tc Γ0 f (a) 1− exp ngσ cx Emax( )(r − a)[ ]{ }δ(E − Emax )

 (47)

for r < a < r´. 
The inward traveling fast neutrals cross the origin and become outward traveling fast 

neutrals.  We also pick up a contribution from charge exchange of outward traveling ions with 
background gas.  We start with the region inside the cathode and consider the discrete spectrum. 
From particle conservation, 
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Γn1
− (r) + Γi

−(r) = Γn1
+ (r) + Γi

+ (r) . (48)

But 

Γi
+(r) = Γi

−(r)exp −2ng σ cx (Emax )[ ], (49)

so that, after using Eqs. (43)-(45) and (49), we get 

Γn1
+ (r) =

b2

r2 TcΓ0 f (a) 1− exp −ngσ cx Emax( )(a + r)[ ]{ }. (50)

Adding in the continuous spectrum, which is unaffected by charge exchange in the cathode 
region, gives the final result, 

fn1
+(r,E) =

b2

r2q ∂φ(r')
∂r'

ngσ cx E( )TcΓ0 f (r')

+
b2

r2 Tc Γ0 f (a) 1− exp −ngσ cx Emax( )(a + r)[ ]{ }δ(E − Emax )

 (51)

for r < a < r´.  
Next we consider the outgoing neutrals in the intergrid region (a < r < b); there will be 

both a continuous spectrum (due to the continuous spectrum of inward traveling neutrals and the 
additional charge exchange of outward traveling ions between the cathode and the point of 
interest) and a discrete spectrum (at the full energy) arising from charge exchange inside the 
cathode region. The current in the discrete part of the spectrum is attenuated by the cathode grid 
and then remains constant for larger r.  For the discrete part of the spectrum, 

Γn1
+ (r) =

b2

r2 Tc
2 Γ0 f (a) 1− exp −2ngσ cx Emax( )a[ ]{ }. (52)

The continuous part of the spectrum can be written 

fn1
+ (r, E ) = Tc

2 fn1
− (r, E) + δ fn1

+ (r, E), (53)

where δf is the contribution due to charge exchange of outward going ions with energy E. By the 
same arguments that led to Eq. (40) we get 

δfn1
+ (r, E) =

b2

r2q ∂φ(r')
∂r'

ng σ cx (E )Tc
2 Γ0

f 2(0)
f (r')

. 
(54)

In this expression, the radius r´ is restricted to a < r´ < r < b. Putting these results together, we 
get 

fn1
+(r,E) =

b2

r2q ∂φ(r')
∂r'

ngσ cx E( )Tc
2 Γ0 f (r') +

f 2(0)
f (r')

Θ(r − r')
 

 
 

 

 
 

+
b2

r2 Tc
2 Γ0 f (a) 1− exp −2ngσ cx Emax( )a[ ]{ }δ(E − Emax )

 (55)

for r < a < r´. In this result, r´ is an implicit function of E through Eq. (2). 
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We now consider fast neutrals generated by class II ions; these are born within the 
intergrid region. Consider a set of cold ions born within a shell of radius r˝ and thickness dr˝. 
They travel inward and undergo charge exchange within a shell of radius r´ and thickness dr´. 
Fast neutrals are emitted in the inward direction with energy E, 

E(r,r' ') = qφ(r' ') − qφ(r'). (56)

Note that different sets of radii r´ and r˝ can produce fast neutrals with the same energy E(r´, r˝) 
as long as they satisfy Eq. (56). Hence, to get the total fast neutral flux at a given energy, we 
have to integrate over possible source shells, i.e. integrate over r˝. We use the same formalism as 
for class I ions to describe the energy spectrum of the fast neutrals, but with the following 
replacements: 

b2 Γ0 → r' '2 S(r' ')dr' ', 
E(r') → E(r',r' ') , 

f (r') →
g(r',r' ')

1− Tc
2 gcp (r' ')

. 

Thus, Eq. (40) becomes 

dfn 2
− (r, E ) =

r' '2

r2q ∂φ(r')
∂r'

ng σ cx (E) g(r',r' ')
1− Tc

2 gcp (r' ')
S(r' ') dr' '  

(57)

Integrating this over r˝ gives the result 

fn 2
− (r,E) =

ng σ cx (E)
r2q

S(r' ')
∂φ(r')

∂r'

g(r',r' ')
1− Tc

2 gcp (r' ')

 

 
 

 

 
 Θ(r'−r) r' '2 dr' '

r

b∫ . (58)

For a given energy E, the radius r´ is a function of r˝ and E through Eq. (56). This variation has 
to be included in the integration over r˝. The Θ function was introduced to zero the integrand 
when r´< r; the inward traveling fast neutrals are born from inward traveling ions that were born 
at a larger radius.   

Inside the cathode region, the corresponding equation is 

fn 2
− (r,E) = Tc

ng σ cx (E)
r2q

S(r' ')
∂φ(r')

∂r'

g(r',r' ')
1− Tc

2 gcp (r' ')

 

 
 

 

 
 Θ(r'−a) r' '2 dr' '

a

b∫ . (59)

Eq. (59) assumes that the source of ions and the charge exchange process producing the fast 
neutrals are both located in the intergrid region.  

We also have to add the fast neutrals born inside the cathode by  charge exchange of 
class II ions traversing the cathode region. We use the same reasoning as for class I ions.  
Starting with Eq. (46) and making the replacements listed above, the fast neutral flux at r in a 
given energy range is 

δΓn2
− (r,E) =

r"2

r2 Tc S(r")dr" g(a,r")
1− Tc

2gcp (r")

 

 
 

 

 
 1− exp ngσ cx (E)(r − a)[ ]{ }. (60)

We let  

δΓn 2
± (r, E) = fn 2

± (r, E) dE , (61)
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where E is given by 

E = qφ(r' ') − qφ(a) , (62)

and the energy and spatial “window widths” are related by 

dE = q ∂φ(r' ')
∂r' '

dr' ' . (63)

Our result becomes 

fn 2
− r,E( )=

′ ′ r 2

r2 Tc
g a, ′ ′ r ( )

1− Tc
2gcp ′ ′ r ( )

 

 
 
 

 

 
 
 

1− exp ngσ cx E( ) r − a( )[ ] { } S ′ ′ r ( )

q
∂φ ′ ′ r ( )

∂ ′ ′ r 

. 
(64)

This contribution is in addition to the contribution in Eq. (59). Adding them together, we get the 
final result for inward traveling neutrals in the cathode region, 

fn 2
− r,E( )= Tc

ngσ cx E( )
r2q

S ′ ′ r ( )
∂φ ′ r ( )

∂ ′ r 

g ′ r , ′ ′ r ( )
1− Tc

2gcp ′ ′ r ( )
 

 
 
 

 

 
 
 
Θ ′ r − a( ) ′ ′ r 2d ′ ′ r 

 a

 b∫

                    +
′ ′ r 2

r2 Tc
g a, ′ ′ r ( )

1− Tc
2gcp ′ ′ r ( )

 

 
 
 

 

 
 
 

1− exp ngσ cx E( ) r − a( )[ ] { } S ′ ′ r ( )

q
∂φ ′ ′ r ( )

∂ ′ ′ r 

 (65)

where r´ in the integral is determined by Eq. (56) and r˝ in the last term is determined by Eq. 
(62). 

Similar to neutrals generated by class I ions, the inward traveling fast neutrals from 
class II ions cross the origin and become outward traveling fast neutrals.  We also pick up a 
contribution from charge exchange of outward traveling ions with background gas.  Starting with 
Eq. (55) for class I ions and making the replacements above to convert it to the corresponding 
equation for class II ions, we get 

δΓn2
+ (r,E) =

r"2

r2 Tc S(r")dr" g(a,r")
1− Tc

2gcp (r")

 

 
 

 

 
 1− exp −ngσ cx (E)(a + r)[ ]{ }. (66)

+We convert this to  using Eqs. (61)- (63); fn 2(r, E )

fn 2
+ r,E( )=

′ ′ r 2

r2 Tc
g a, ′ ′ r ( )

1− Tc
2gcp ′ ′ r ( )

 

 
 
 

 

 
 
 

1− exp ngσ cx E( ) r + a( )[ ] { } S ′ ′ r ( )

q
∂φ ′ ′ r ( )

∂ ′ ′ r 

. 
(67)

We have to add the contribution from Eq. (59) for fast neutrals born in the intergrid region:  

fn 2
+ r,E( )= Tc

ngσ cx E( )
r2q

S ′ ′ r ( )
∂φ ′ r ( )

∂ ′ r 

g ′ r , ′ ′ r ( )
1− Tc

2gcp ′ ′ r ( )
 

 
 
 

 

 
 
 
Θ ′ r − a( ) ′ ′ r 2d ′ ′ r 

 a

 b∫ +

                    ′ ′ r 2

r2 Tc
g a, ′ ′ r ( )

1− Tc
2gcp ′ ′ r ( )

 

 
 
 

 

 
 
 

1− exp ngσ cx E( ) r + a( )[ ] { } S ′ ′ r ( )

q
∂φ ′ ′ r ( )

∂ ′ ′ r 

.

 (68)

12 



As before, r´ in the integral is determined by Eq. (56) and r˝ in the last term is determined by 
Eq. (62). 

Next we consider the outgoing neutrals in the intergrid region (a < r < b).  The flux of 
fast neutrals just outside the cathode grid is 

fn 2
+ a,E( )= Tc

2 ngσ cx E( )
a2q

S ′ ′ r ( )
∂φ ′ r ( )

∂ ′ r 

g ′ r , ′ ′ r ( )
1− Tc

2gcp ′ ′ r ( )
 

 
 
 

 

 
 
 
Θ ′ r − a( ) ′ ′ r 2d ′ ′ r 

 a

 b∫ +

                    ′ ′ r 2

a2 Tc
2 g a, ′ ′ r ( )

1− Tc
2gcp ′ ′ r ( )

 

 
 
 

 

 
 
 

1− exp 2angσ cx E( )[ ] { } S ′ ′ r ( )

q
∂φ ′ ′ r ( )

∂ ′ ′ r 

.

 (69)

The neutral flux coming through the cathode grid varies as r -2 due to spherical divergence; 

fn 2
+ (r,E) =

a2

r2 fn 2
+ (a,E). (70)

In addition to the flux of neutrals coming through the cathode grid, there will be a source due to 
charge exchange of outward traveling ions in the intergrid region.  This source at radius r´ 
produces a contribution to the flux at the radius r if r´ < r.  By the same arguments that lead to 
Eq. (58), the additional contribution to the outward traveling fast ions is 

δ fn 2
− (r, E ) =

ng σ cx (E)
r2q

S(r' ')
∂φ(r')

∂r'

gcp (r' ')
g(r',r' ') 1− Tc

2 gcp (r' ')[ ]
Θ(r − r') r' '2 dr' '

a

r∫ , 
(71)

so that the outward traveling fast neutral distribution in the intergrid region is 

fn 2
+ r, E( )= Tc

2 ngσ cx E( )
r2q

S ′ ′ r ( )
∂φ ′ r ( )

∂ ′ r 

1
1− Tc

2gcp ′ ′ r ( )
 

 
 
 

 

 
 
 

g ′ r , ′ ′ r ( )Θ ′ r − a( )+
gcp ′ ′ r ( )
g ′ r , ′ ′ r ( )

Θ r − ′ r ( )
 

 
 

 

 
 

 a

 b∫ ′ ′ r 2d ′ ′ r 

                    +
′ ′ r 2

r2 Tc
2 g a, ′ ′ r ( )

1− Tc
2gcp ′ ′ r ( )

 

 
 
 

 

 
 
 

1− exp 2angσ cx E( )[ ] { } S ′ ′ r ( )

q
∂φ ′ ′ r ( )

∂ ′ ′ r 

.

 (72)

  
The total fast neutral energy distribution is simply the sum over the class I and class II 
contributions at each energy, and in each region, 

fn
±(r, E ) = fn1

±(r, E ) + fn 2
± (r, E) . (73)

Finally we come to the region outside the anode, where there are no additional sources of fast 
neutrals.  The flux drops by 1/r2 due to the spherical divergence; 

fn
+(r,E) =

b2

r2 Ta fn
+(b,E)

fn
+(r,E) = 0

 (74)

where fn
+(b,E) is evaluated just inside the anode. 
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D. Cathode current 
A difficulty with our model so far is that experiments do not normally provide a direct 

measurement of the ion flux, Γ0, crossing the anode and entering the intergrid region to use as 
the input to our analysis. However, the current to the cathode is normally measured 
experimentally. Consequently, we use the cathode current to determine Γ0.  Within the context of 
our model, there are several contributions to the cathode current. The first is from class I ions 
crossing the anode, heading inward, and being intercepted by the cathode grid. The second is 
from class II ions born in the intergrid and cathode regions and intercepted by the cathode grid. 
These ions intercept the grid at finite energy and induce secondary electron emission; this also 
contributes to the measured cathode current. We allow for an energy- and species-dependent 
secondary electron emission coefficient, γι(E). Cold ions produced in the cathode region (r < a), 
are contained by the electrostatic potential. Both the cold ions and the converging fast ions 
produce a positive potential relative to the cathode grid that can trap electrons. If the cold ions 
reach the cathode grid before being neutralized by the electrons trapped in the cathode region, 
they are neutralized at the grid surface and contribute to the cathode current. However, if they are 
neutralized by the trapped electrons, then they do not contribute to the cathode current. The 
trapped electron physics is beyond the scope of this paper, so we consider both extremes to 
“bracket” the results.  Thermionic emission may also affect the measured cathode current; this 
depends on the cathode material and its operating temperature, and is outside the realm of this 
analysis. 

The contribution from class I ions being intercepted by the cathode grid is 

Ic1 = 4πq(1− Tc )Γ0 b2 f (a) + Tc
f 2(0)
f (a)

 

 
 

 

 
 1+ γ(qV0)[ ], (75)

where -V0 is the potential on the cathode. The first term in the square bracket in Eq. (75) is the 
contribution from ions hitting the outside of the cathode grid as they travel inward in radius, and 
the second term is the contribution from ions hitting the inside of the cathode grid as they travel 
outward in radius.  The factor Tc appears to the first power inside the square brackets since the 
outward traveling ions have traversed the cathode grid once to get to the cathode region. 

The second part of the cathode current is that due to ions being created in the region 
between the cathode and the anode (class II ions).  This contribution is 

Ic2 = 4π q(1− Tc) S(r')
1− Tc

2gcp (r')
g(a,r') + Tc

gcp (r')
g(a,r')

 

 
 

 

 
 a

b∫ 1+ γ(r')[ ]r'2 dr' . (76)

The terms in the square bracket represent the inward and outward traveling ions, respectively, 
hitting the cathode wires, just as for class I ions.  The secondary electron emission coefficient is 
an implicit function of r′ through its energy dependence using Eq. (9). 

The final contribution to the cathode current is the effect of charge exchange and 
ionization at radii less than the cathode radius.  These ions are created cold and trapped in the 
electrostatic well; they reach r > a only through very slow energy diffusion, so they wander 
around and eventually are either collected by the cathode or neutralized by trapped electrons.  
Both class I and class II ions contribute to the source of these cold ions.  The flux of class I ions 
inside the cathode is 

n(r) =
b2

r2 Γ0 Tc f (r) +
f 2(0)
f (r)

 

 
 




, (77)

where the survival function, f,  inside the cathode is given by Eq. (32). Computing the rate of 
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cold ion production by charge exchange and ionization and integrating over the cathode region 
(r < a) gives the number of cold ions produced per unit time by class I ions within the cathode 
region; 

Ic3 = 4πqngσ tot E(a)[ ]b2 Γ0 Tc f (r) +
f 2(0)
f (r)

 

 
 

 

 
 0

a∫ dr. (78)

Because of the constant energy and the exponential variation of f(r) inside the cathode, the 
integral can be done analytically.  The result is 

Ic3 = 4πqng
σ tot (Emax )
σ cx (Emax )

b2 Γ0 Tc f (a) 1− exp −2ngσ cx (Emax ) a[ ]{ }, (79)

where Emax = E(a) using Eq. (2). We neglect secondary electron emission induced by cold ions 
created within the cathode region since these ions hit the cathode at very low energy. 

The rate of cold ion production by charge exchange and ionization inside the cathode 
region by class II ions is 

Si(r) =
ngTc

r2

σ tot E(r,r')[ ]S(r')
1− Tc

2gcp (r')a

b∫ g(r,r') +
gcp (r')
g(r,r')

 

 
 

 

 
 r'2 dr' . (80)

Integrating this over the volume of the cathode region gives 

Ic4 = 4π q ngTc

σ tot E r, ′ r ( )( )S ′ r ( )
1− Tc

2gcp ′ r ( ) a

 b∫  g r, ′ r ( )+
gcp ′ r ( )
g r, ′ r ( )

 

 
 

 

 
 ′ r 2d ′ r dr

 0

 a∫ . (81)

Inside the cathode the energy is constant at E(a,r´), and the attenuation function g(r,r’) is given 
by Eq. (33). Consequently, we can reverse the order of the two integrations in Eq. (81) and do 
the r-integration analytically.  The result is 

Ic4 = 4π q Tc ′ r 2 σ tot E a, ′ r ( )[ ]
σ cx E a, ′ r ( )[ ] a

 b∫  
S ′ r ( )g a, ′ r ( )

1− Tc
2gcp ′ r ( )

1− exp −2ngσ cx E a, ′ r ( )[ ]a[ ] { }d ′ r . (82)

The total electron current to the cathode is then 

Ic = Ic1 + Ic2 + Ic3 + Ic4 . (83)

if the cold ions created in the cathode region are included in the cathode current. However, if the 
trapped electrons neutralize these ions before they reach the cathode grid, then the cathode 
current is simply 

Ic = Ic1 + Ic2. (84)

E. Fusion Reaction Rate 
The fusion reaction rate, which is a point of possible connection to experimental results, 

can be calculated using the energy spectrum given above. We consider two contributions to the 
fusion rate, (1) fast ions colliding with the background gas, and (2) fast neutral atoms colliding 
with the background gas. We neglect fusion due to ion-ion collisions since the plasma is weakly 
ionized. We also do not consider fusion due to fast ions or neutral atoms colliding with gas 
embedded in the grids or vacuum chamber wall, since this topic is outside the scope of this 
paper. 

The fusion rate per unit volume due to fast ions colliding with the background gas can be 
determined from 
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S fi r( )= ng σ f∫ E( ) f + r,E( )+ f − r,E( ){ }dE . (85)

where σf(E) is the relevant fusion cross section; the ion energy spectra, f + and f - are given in 
Eqs. (28) and (29) for the intergrid region, and in Eqs. (30) and (31) for the cathode region. The 
fusion rate per unit volume due to fast neutral atoms colliding with the background gas can be 
determined from 

S fn r( )= ng σ f∫ E( ) fn
+ r,E( )+ fn

− r,E( ){ }dE  (86)

where the relevant fast neutral atom energy spectra are given in Eq. (73), which uses results from 
the following equations: Eqs. (40) and (58) for inward traveling neutrals in the intergrid region, 
Eqs. (55) and (72) for outward traveling neutrals in the intergrid region, Eqs. (47) and (65) for 
inward traveling neutrals in the cathode region, Eqs. (51) and (68) for outward traveling neutrals 
in the intergrid region, and Eq. (74) for fast neutrals in the source region. 

III. RESULTS 
 The formalism and analysis presented in Sec. II have been implemented in a computer 
code.  As an example, we consider a 3He plasma in a Wisconsin IEC device; the machine 
normally operates with a deuterium plasma, but has also utilized D-3He plasmas,21 and has been 
used for 3He-3He studies.12,13  The vacuum vessel of the UW-IEC experiment consists of a large 
aluminum chamber 91 cm in diameter and 66 cm high; the base pressure is in the range 1x10-6 to 
5x10-6 Torr, with the operating pressure normally between 1 and 4 mTorr. Different size cathode 
and anode grids have been studied; typical voltages on the cathode grid are between -30 kV and 
-185 kV, with the anode grid grounded.  

As an example calculation to illustrate the predictions from this analysis, we consider a 
20 cm diameter cathode and 40 cm diameter anode, cathode potential of 200 kV, cathode current 
of 60 mA, and operating helium pressure of 2 mTorr; cold ions produced in the cathode region 
are assumed to reach the cathode grid, and are therefore counted in the cathode current.  For this 
case the attenuation function, f(r), for class I ions and the complete pass probability, gcp(r), for 
class II ions is shown in Fig. 2.  The cold ion source rate produced by class I ions, A(r), and the 
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Figure 2.  The attenuation function, f(r), for class I ions and the complete pass 
probability, gcp(r), for class II ions for a case with a=0.1 m, b=0.2 m, V0=200 kV, 
Ic=60 mA, P=2 mTorr. 
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solution to the Volterra integral equation, S(r), are shown in Fig. 3; the peaking at the anode 
radius (20 cm) is due to the low energy of the ions at the anode and the resulting high charge 
exchange rate.  The rise of A(r) towards the cathode is due to the convergence of the ion motion 
in spherical geometry; the rise of S(r) towards the center is partly due to the converging ion 
motion and to the accumulation of class II ions.  Figure 4 shows the resulting ion and neutral 
atom energy spectra at the cathode.  The ions have a broad energy spectrum due to charge 
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Figure 3. The cold ion source, A(r), produced by class I ions, and the solution, S(r), 
to the Volterra integral equation for a case with a=0.1 m, b=0.2 m, V0=200 kV, 
Ic=60 mA, P=2 mTorr. 
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Figure 4. Ion and neutral atom energy spectra at the cathode radius for a case with 
a=0.1 m, b=0.2 m, V0=200 kV, Ic=60 mA, P=2 mTorr. 

 
exchange producing stationary ions that get accelerated by the electric field; not shown in Fig. 4 
is the delta function spectrum at 200 kV of class I ions as they reach the cathode. The neutral 
atoms have an energy spectrum that peaks at low energy; this is due to the energy dependence of 
the charge exchange cross section.  Figure 5 shows the 3He-3He fusion rate as a function of the 
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operating pressure; the increase with pressure is due to the increased target atom density and the 
rollover at higher pressure is due to softening of the ion and neutral energy spectra with 
increased operating pressure. Figure 6 shows the effect of increasing cathode voltage on the 3He-
3He fusion rate; not surprisingly, the fusion rate increases rapidly with increasing voltage. 
Figure 7 shows the effect of decreasing the anode radius while holding the cathode radius 
constant. Surprisingly, decreasing the anode radius greatly increases the fusion rate; the 
decreased separation increases the electric field, allowing the ions to reach higher energy before 
undergoing charge exchange with the background gas.  This hardens both the ion and fast neutral 
atom energy spectra. 
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Figure 5. The 3He-3He fusion rate as a function of the operating pressure for a case 
with a=0.1 m, b=0.2 m, V0=200 kV, Ic=60 mA. 
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Figure 6. The effect of varying cathode voltage on the 3He-3He fusion rate for a case 
with a=0.1 m, b=0.2 m, Ic=60 mA, P=2 mTorr. 
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Figure 7. The effect on the 3He-3He fusion rate of varying the anode radius, while 
holding the cathode radius constant for a case with a=0.1 m, V0=200 kV, Ic=60 mA, 
P=2 mTorr. 

 
Unfortunately, experimental IEC data is only available for plasmas that involve 

molecular ions, so we cannot compare our analysis in this paper with actual data. Comparison 
between experiments and theory is deferred to the companion paper,14 which extends this 
analysis to multi-species plasmas involving D+, D2

+, and D3
+ ions in a background D2 gas. 

 

IV. SUMMARY AND CONCLUSIONS 
We have developed a formalism for analyzing the effect of ion-neutral gas interactions on 

the flow of ions between nearly transparent electrodes in spherical geometry; in this paper the 
formalism is restricted to neutral atoms and atomic ions, so that the important atomic effects are 
charge exchange and ion impact ionization. The formalism is applied to spherical, gridded, 
inertial-electrostatic confinement (IEC) devices. The formalism yields detailed predictions about 
the energy spectra of the ions and fast neutral atoms, and the resulting fusion rate for 3He ions in 
a background 3He gas. The results are illustrated with an example calculation for the Wisconsin 
IEC device operating on 3He. The analysis is useful for optimizing the performance of such 
devices, although experimental confirmation of the results is not yet available. In a companion 
paper, this formalism is extended to the more physically relevant case of molecular ions, such as 
deuterium ions in a deuterium gas, and compares the predictions with experimental results for 
the Wisconsin IEC device operating on deuterium. 
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