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ABSTRACT

Motivated by the need for a continuum mechanical description of particulate materials for nuclear safety

analyses, several recently proposed hyperelastic models for granular materials are analyzed and compared

with experiment data. As even the quasi-elastic regime of granular materials is non-linear, the hyperelastic

forms considered here are all designed to capture the widely observed dependence of the elastic moduli on

the square root of pressure. Building this sort of dependence in to the free energy results in some physically

relevant behavior that is missed by other non-linear models, including stress-induced anisotropy and shear

dilatancy. The granular elasticity (GE) model of Jiang and Liu additionally possesses a region outside a

Drucker-Prager type yield surface in which the free energy is not convex, implying a lack of stable solutions

there. This proves to be an over-constraint, as it limits yield angles to values lower than typically observed.

Models due to Einav and Puzrin (EP), and Houlsby, Amorosi, and Rojas (HAR), lack this constraint, and

thus provide greater flexibility; the EP model proves to best capture the sort of stress-induced anisotropy

observed in experiments. All three models are implemented in the finite element code Abaqus, and used to

calculate stress distributions in sand piles and silos, and the granular response function. The models agree

qualitatively, but not always quantitatively, with experiments; paradoxically, the EP model proves to be

the least accurate, producing an unphysically narrow and high peaked response function. They also possess

shortcomings similar to those of linear elasticity. In silos with an applied surface load, they underestimate the

observed“overshoot”of the saturated stress. For both sand piles and the response function, the stress profiles

are insensitive to the values of the elastic constants, and as such are not able to account for the range of data

observed experimentally. Incorporating some dependence on the pile formation history is likely necessary to

describe these effects. In light of the findings, and the relative simplicity it affords, linear elasticity (despite

its known shortcomings) is an appropriate choice for coupling to flow models in engineering analyses.



ii

ACKNOWLEDGMENTS

Thanks are due to the many people who have shaped my experience at UW and at INL, without whom

this work would not have been possible. My advisor, Mike Corradini, was charged with the difficult task of

keeping tabs on a student over a thousand miles away, but has always been available and has continually

been a source of new ideas and much needed direction. I am grateful to Phil Sharpe, my INL mentor, for

encouraging me to pursue the technical problems I found most interesting, for his continued patience, and for

bringing me to INL many years ago. It has been a pleasure to work with him and everyone else in the Fusion

Safety Program at INL, and I look forward to continuing my work there. Lee Cadwallader deserves special

thanks for his careful reading of this manuscript, and most of my other papers. In earlier years at UW, I

enjoyed working with and learned a lot from Paul Wilson, my M.S. advisor, everyone at UWNR, and the

professors in the College of Engineering, too many to name, who taught me through my undergraduate and

graduate careers; your efforts were probably underappreciated at the time. Finally, I am eternally grateful

to my parents, Scott and Deb, for their continued support and guidance throughout my life- I would not be

here today without it.



DISCARD THIS PAGE



iii

TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Statics of Granular Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Some Characteristics of Granular Materials . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Dilatancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Arching, “stress propagation”, and the stress dip in sand piles . . . . . . . . . 5
2.1.4 The Hertz problem and non-linearity at small strains . . . . . . . . . . . . . 6

2.2 Methods of Determining Static Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Mohr-Coulomb limit state analysis . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 The Janssen method for silos . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Fixed Principal Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Linear Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.5 Non-linear elasticity: Effective Medium Theory and the Boussinesq model . . 9

3 Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 On the Validity of Elasticity for Granular Materials . . . . . . . . . . . . . . . . . . . 11
3.2 Linear Elasticity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Granular Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 The Yield Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Generalizing the Granular Elasticity Theory . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.1 Differing dependence of bulk and shear moduli on compression . . . . . . . . 27
3.5.2 Incorporating dependence on the third strain invariant . . . . . . . . . . . . 27
3.5.3 A nonlinear shear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 The Gibbs Free Energy in Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6.1 Thermodynamic potentials and the Legendre transform . . . . . . . . . . . . 33
3.6.2 Model of Einav and Puzrin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6.3 Model of Houlsby, Amorosi, and Rojas . . . . . . . . . . . . . . . . . . . . . 38

4 Elastic Moduli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1 Pressure Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Stress Induced and Inherent Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Comparison of Theories and Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Young’s Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 Poisson’s Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.3 Shear Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Stress Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1 Abaqus Implementation of Non-linear Elastic Models . . . . . . . . . . . . . . . . . . . 64



iv

Page
5.2 Abaqus UMAT Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Sand Piles and the Stress Dip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4 The Janssen Silo Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5 Layer Under a Point Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A Appendix: Granular Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.2 Frictional Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.4 Kinetic/Collisional regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.5 Aerosols and Lagrangian particle tracking . . . . . . . . . . . . . . . . . . . . . . . . . 91

B Appendix: Dust Mobilization Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
B.1 The Toroidal Dust Mobilization Experiment . . . . . . . . . . . . . . . . . . . . . . . . 94

B.1.1 Pressurization rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
B.2 Simple pipe mobilization experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

C Appendix: Maple calculation of eigenvalues for GE-NLS . . . . . . . . . . . . . . . . . . . . . 103
D Appendix: Plane stress solution for the Einav-Puzrin model . . . . . . . . . . . . . . . . . . . 108
E Appendix: Legendre Transform of the HAR Model . . . . . . . . . . . . . . . . . . . . . . . . 112
F Appendix: Abaqus UMAT implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

F.1 Granular Elasticity - Plane Strain/Axisymmetric Stress . . . . . . . . . . . . . . . . . 115
F.2 EP Model - Plane Strain/Axisymmetric Stress . . . . . . . . . . . . . . . . . . . . . . 117
F.3 HAR Model - Plane Strain/Axisymmetric Stress . . . . . . . . . . . . . . . . . . . . . 119
F.4 Einav and Puzrin Model - Plane Stress . . . . . . . . . . . . . . . . . . . . . . . . . . 122

F.4.1 Compliance and Stiffness Matrices . . . . . . . . . . . . . . . . . . . . . . . . 122
F.4.2 UMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

F.5 Einav and Puzrin Model - 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
F.5.1 3D stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
F.5.2 UMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

G Appendix: Extension to cohesive materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
G.1 Particle interaction models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134



DISCARD THIS PAGE



v

LIST OF FIGURES

Figure Page

2.1 The Coulomb yield criterion and Mohr’s circle. τ and σ are the shear and normal stresses, σxx

and σyy are the principal stresses, and φ is the angle of internal friction or Coulomb angle. . . . 4

2.2 Dilatancy in a granular layer: particles must slide up and over each other while undergoing shear
deformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Two spheres deforming elastically under load [28]. If they have identical radii (i.e. R′
1 = R′

2)
then δ1 = δ2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Stress dips produced by the FPA model, in 2D (left) and 3D (right). Reprinted by permission
from Macmillan Publishers Ltd.: Nature [21], copyright 1996. . . . . . . . . . . . . . . . . . . . . 8

3.1 Hierarchy of elastic models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Stress paths for various values of G̃∆a+1 (arbitrary units), illustrating the lack of solutions for
σs/P >

√
5/(2ξa(a+ 2)). Here a = 1/2 and ξ = 5/3. . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Strain paths for various values of P/G̃, with ξ = 5/3, and a = 1/2 (left) and a = 1 (right). ∆
decreases (volume increases) with us in the stable region of each curve (solid lines). The dotted
lines are thermodynamically unstable solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Left: infinite granular layer subject to normal force N and tangential force T . Right: infinite
granular layer inclined at angle θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 The yield angle φy for GE as a function of ξ. The maximum occurs at ∼ 25.5◦ for a = 1/2 and
∼ 17◦ for a = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 The maximum yield angle for GE, a decreasing function of a. . . . . . . . . . . . . . . . . . . . . 26

3.7 Maximum stable value of γ2
4/u

2
2 for the two stability criteria, equations 3.102-3.103, in the limit

ξ → ∞. Stability is lost at condition two before ever reaching condition one. . . . . . . . . . . . 29

3.8 The yield angle φy as a function of the constants ξ and ζ. φy decreases rapidly with ζ. . . . . . 30

3.9 The yield angle for GE-NLS, for various values of a. As in GE, there is maximum value of φy,
which decreases with a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.10 The stress ratio σs/P as a function of pressure, for β = 1 and B =1e12 (arbitrary units). . . . . 36

3.11 EP model strain paths for B = 1e12 and β = 1 (arbitrary units). . . . . . . . . . . . . . . . . . . 37

3.12 The stress ratio τ4/σ2 as a function of the strain ratio γ4/u2 for plane stress in the EP model.
τ4/σ2 approaches the limit

√
5/3 as γ4/u2 becomes large. . . . . . . . . . . . . . . . . . . . . . . 38



vi

Figure Page

3.13 ∆ vs. us for α = 1 and P 2/
(
9A2

)
=1e-17 (dot), 5e-17 (dash), and 1e-16 (solid). . . . . . . . . . 39

4.1 The triaxial test configuration. The stress component into the page is also equal to σh; in the
“true” triaxial test, this third stress component may differ from the other two. . . . . . . . . . . 41

4.2 Experiment data from [56] illustrating the difference between “stress-induced” and “inherent”
anisotropy. Here E1v and E1h are constants equivalent to Cv and Ch in equations 4.8-4.9. . . . . 43

4.3 The ratio of Young’s moduli Ev/Eh as a function of the stress ratio σv/σh for the GE-C model
(solid line) and the empirical fit (dashed line). Here ξ = 5/3, in order to give the highest possible
value of the yield angle for this model (∼ 17◦). The dotted lines mark the stability limits of GE-C. 44

4.4 The ratio of Young’s moduli Ev/Eh as a function of the stress ratio σv/σh for the EP model, at
varying values of β, and empirical fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 The ratio of Young’s moduli Ev/Eh as a function of the stress ratio σv/σh for the HAR model,
at varying values of α, and empirical fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Data of Hoque and Tatsuoka, showing no discernible relationship between Ev and σh. On the left,
Ev appears to decrease slightly with σh ([49], reprinted, with permission, from the Geotechnical
Testing Journal, Vol. 19, No. 4, copyright ASTM International, 100 Barr Harbor Drive, West
Conshohocken, PA 19428). On the right, it increases slightly with σh [52]. . . . . . . . . . . . . . 46

4.7 Young’s modulus as a function of stress as determined by Bellotti et al. [47]. Ev perhaps decreases
slightly with σh (left); there is no clear dependence of Eh on σv (right; note the mislabeling of
the x axis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.8 Data of Kuwano and Jardine [55] showing a ±10% scatter about the data fits; Ev is assumed to
be independent of σh, and Eh independent of σv. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.9 The vertical Young’s modulus Ev as a function of the horizontal stress σh for the GE-C model.
Values are normalized with respect to G̃; σv = 1 and ξ = 5/3. Ev varies substantially with σh,
in contrast with experiment data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.10 The vertical Young’s modulus Ev as a function of the horizontal stress σh for the EP model,
σv/B = 1. Ev varies only slightly with σh, in relative agreement with experiment data, where
there is no clear dependence of Ev on σh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.11 The vertical Young’s modulus Ev as a function of the horizontal stress σh for the HAR model,
σv/A = 1. Ev varies substantially with σh, in contrast with experiment data. In particular, as
noted previously, results become more unphysical for increasing values of α. . . . . . . . . . . . . 50

4.12 The horizontal Young’s modulus Eh as a function of the vertical stress σv for the EP model,
σh/B = 1. Once again, Eh varies only slightly with the out of plane stress σv, in agreement with
experiment data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.13 The horizontal Young’s modulus Eh as a function of the vertical stress σv for the HAR model,
σh/A = 1. Eh varies substantially with the out of plane stress σv, particularly for larger values
of α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



vii

Figure Page

4.14 The horizontal Young’s modulus Eh as a function of the vertical stress σv for the GE-C model.
Values are normalized with respect to G̃; σh = 1 and ξ = 5/3. Eh varies substantially with σv,
in contrast with experiment data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.15 Ev vs. σv for the EP model, and experiment fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.16 Ev vs. σv for the HAR model, and experiment fit. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.17 Ev vs. σv (normalized to G̃) for the GE-C model, and experiment fit. . . . . . . . . . . . . . . . 53

4.18 Measured values of Poisson’s ratio, from [55] (left) and [97] (right). Poisson’s ratio is assumed to
be independent of the isotropic stress, though there is a large amount of scatter in the data. . . 54

4.19 Experiment data for Poisson’s ratio vs. stress ratio, from [97] (right) and [49] (left: reprinted,
with permission, from the Geotechnical Testing Journal, Vol. 19, No. 4, copyright ASTM
International, 100 Barr Harbor Drive, West Conshohocken, PA 19428). . . . . . . . . . . . . . . 55

4.20 The isotropic Poisson’s ratio as a function of dimensionless material constant β in the EP model. 57

4.21 The isotropic Poisson’s ratio as a function of dimensionless material constant α in the HAR model. 57

4.22 Poisson’s ratio, νvh, as a function of the stress ratio σv/σh, for the EP model. . . . . . . . . . . 58

4.23 Poisson’s ratio, νvh, as a function of the stress ratio σv/σh, for the HAR model. . . . . . . . . . 59

4.24 Shear wave velocities, from [42] (with permission from ASCE), as a function of each of the normal
stresses, here labeled σa, σp, and σs. The shear modulus (∼ vs) is independent of the normal
stress in the planes of shear, σs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.25 The shear modulus as a function of pressure, for isotropic stress. Here the EP and HAR models
are identical, with σs = 0, and

√
B/4 =

√
3A/2α1/4 = 286.6 MPa1/2. The experiment fit [55] is

Ghh = 286.6σ−0.04
v σ0.53

h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.26 The shear modulus Ghh as a function of the vertical stress σv. Here the EP and HAR models
are identical, with σs = 0, and

√
B/4 =

√
3A/2α1/4 = 286.6 MPa1/2. The experiment fit [55] is

Ghh = 286.6σ−0.04
v σ0.53

h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.27 The effect of shear stress τ on the shear modulus in the HAR model. . . . . . . . . . . . . . . . 63

4.28 The effect of shear stress on the shear modulus [57]. No significant trend is identified; the
decreasing values at larger shear are attributed to increasing plastic deformations. Reprinted,
with permission, from the Geotechnical Testing Journal, Vol. 19, No. 4, copyright ASTM
International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. . . . . . . . . . . . . . . . 63

5.1 Experimental (left: reprinted figure with permission from [101], copyright 1999 by the American
Physical Society) and Abaqus (center, right) results for the stress at the bottom of a conical sand
pile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Experimental (left, points), GE (left, dashed line), and Abaqus (center, right) plane strain results
for the stress at the bottom of a sand wedge. Left figure reprinted with permission from [25].
Copyright 1999 by the American Physical Society. . . . . . . . . . . . . . . . . . . . . . . . . . . 69



viii

Appendix

Figure Page

5.3 Published GE results for silo stresses (left), and Abaqus implementation (right). Note the pub-
lished result for the Janssen constant is plotted backwards, from bottom to top. Left figure
reprinted with permission from [71]. Copyright 1999 by the American Physical Society. . . . . . 71

5.4 Abaqus results for silo stresses using the EP model (β = 3/2, left) and HAR model (α = 1, right). 72

5.5 The Janssen constant for different friction coefficients: EP model (β = 2, left) and HAR model
(α = 1, right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6 Janssen’s constant as a function of the materials constant β for the EP model (left) and α for
the HAR model (right). Values are taken at r/R = 0.5 and z/H = 0.5. . . . . . . . . . . . . . . 73

5.7 Experimental data (a) and linear elastic model (b) for the “overshoot” in stress when a load equal
to σsat is applied to the surface of the silo (from [107], with kind permission from the European
Physical Journal (EPL)). Hyperelastic models (right) similarly underestimate the overshoot; the
decrease to the saturated value is much slower for the EP model. . . . . . . . . . . . . . . . . . 75

5.8 Experimental measurements of the response function for granular materials ([109], with kind
permission from the European Physical Journal (EPL)). “Elasticity” here is the Boussinesq-
Cerutti solution for an infinite half space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.9 Calculations of the response function for GE (left) and linear elasticity (right). Note that the
peak values for GE and ILE reported in [71] are lower than those reported in [109] and in the
present work (see figure 5.10). Left figure reprinted with permission from [71], copyright 1999
by the American Physical Society. Right figure [109] reprinted with kind permission from the
European Physical Journal (EPL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.10 Abaqus calculations of the response function for GE (left) and ILE (right). The presence of
boundaries increases the peak height, and a frictionless bottom surface results in a higher peak
than a rough surface (glued grains). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.11 Abaqus calculations of the response function for the HAR (left) and EP (right) models. The
EP model predicts a much narrower response function than is observed, and is not particularly
sensitive to the value of β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.1 Comparison of viscous granular flow regimes, from [116]. . . . . . . . . . . . . . . . . . . . . . . 85

A.2 The von Mises yield cone, or Drucker-Prager yield surface, an extension of the Coulomb condition
(equation 2.9) to three dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.3 Yield loci at two different volume fractions ν1 and ν2 in principal stress space (reprinted from
[118] with permission from Elsevier). Dilation occurs on segments OCi, while compaction occurs
on segments CiVi. The dotted lines define the critical state. . . . . . . . . . . . . . . . . . . . . . 88

A.4 Generalized yield conditions (reprinted from [128] with permission from Elsevier). At the critical
state, ∂τ/∂σ = 0. At lower pressures, the material dilates; at higher pressures, it compacts. . . . 89

B.1 The Toroidal Dust Mobilization Experiment (TDMX). . . . . . . . . . . . . . . . . . . . . . . . 95

B.2 Comparison of analytical (gray), experimental, and Fluent (black) results. . . . . . . . . . . . . 98



ix

Figure Page

B.3 Mobilized fraction of 2 gram tungsten dust piles directly underneath the vent (0◦ offset) and
offset 180◦, for a variety of vent sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

B.4 The test section with a pile of 65 µm stainless steel dust following shear by a flow of helium up
to Re = 930. There was no observable mobilization, and the pile remained stable. . . . . . . . . 101

B.5 Piles of 4 µm carbon dust before (top) and after (bottom) shear by a flow of helium up to Re =
930. While the majority of the pile was stable, some mobilization did occur. Note the irregularity
of the pile due to cohesive and electrostatic effects, and the visible deposition downstream (right)
of the pile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

G.1 Particle interaction models, from [28]. The Hertz model considers only elastic deformation. In
the JKR theory, surface forces act only inside the contact circle. In the Bradley and DMT
theories, van der Waals forces act outside the contact area. The DMT theory also includes
elastic deformation; Bradley considers only rigid spheres. . . . . . . . . . . . . . . . . . . . . . . 131

G.2 A comparison of particle interaction models (reprinted from [144] with permission from Elsevier).
The JKR theory (c) assumes short (infinitesimal) range forces, while in the DMT theory (d) they
act over longer distances. In the transition regime, Schwarz proposes a superposition of the JKR
and DMT models (f); Maugis uses a Dugale model (e). . . . . . . . . . . . . . . . . . . . . . . . 131

G.3 Map of the various particle interaction models and there range of applicability (reprinted from
[150] with permission from Elsevier). The elasticity parameter λ = 1.16µ, with the Tabor pa-
rameter µ defined in equation G.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



DISCARD THIS PAGE



x

LIST OF TABLES

Table Page

3.1 Mapping of tensor to matrix indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1 Abaqus GE results for a single quadratic, reduced integration, plane strain element. . . . . . . . 66

5.2 Abaqus EP results for a single quadratic, reduced integration, plane strain element. . . . . . . . 67

5.3 Abaqus EP results for a single quadratic, reduced integration, axisymmetric stress element. . . . 67

5.4 Abaqus HAR results for a single quadratic, reduced integration, plane strain element. . . . . . . 67

B.1 TDMX conditions and vessel fill times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

F.1 Abaqus results for a single quadratic, reduced integration, plane stress element. . . . . . . . . . . 122

F.2 Abaqus results for a single quadratic, reduced integration, 3D stress element. . . . . . . . . . . . 126



1

1 Introduction

Granular materials, though ubiquitous in nature and widely used in engineering and construction, remain

relatively poorly understood. They may variously behave like solids, liquids or gases, though typically

exhibiting a variety of unexpected behaviors that are not encountered in these conventional forms of materials.

The preponderance of problems yet to be solved has sparked a renewed interest in granular materials,

particularly in the physics community [1].

Much of this new research has focused on a discrete element description of granular materials, analogous

to molecular dynamics. In many situations this is the most intuitive and appropriate way to describe the

system, and there is much insight to be gained from such analyses. On the other hand, many granular

systems are comprised of very many particles which are small relative to the system under consideration.

This is the limit in which continuum models apply. Clearly there are many engineering problems for which

the continuum description is simpler and more appropriate, and we consider the applicability of various

continuum models in what follows.

For both static and flow problems, constitutive models are notoriously problem-specific; in a review of

recently proposed flow models, it was noted [2] that none seem to work for more than a single problem. As

we will see, the situation is similar for granular statics. Linear elasticity is regularly employed to calculate

static stress distributions, or coupled with various plasticity models, though we know granular statics is not

always well described by linear elasticity. An analogous situation for flow problems would be modeling a

granular material as a Newtonian fluid. The author is not aware of any flow models employing such an

oversimplification. Non-Newtonian models for granular flow have even made their way into CFD codes such

as Fluent [3]. Seeking to rectify the failings of linear elasticity, in recent years hyperelastic models have been

proposed for granular materials. These have been successful in describing some aspects of granular statics

absent from linear elasticity, and a critical evalutation is given here.

While one important objective of the present work is to evaluate continuum models for generality, there

is a specific problem to which we shall regularly refer. This is the mobilization of a granular pile sheared by a

flowing gas. This type of problem is of interest in nuclear systems, both fission and fusion. In tokamaks such

as the International Experimental Thermonuclear Reactor (ITER), large quantities of particulate material

are produced from wall materials through plasma-surface interactions [4, 5]. The material is potentially

toxic, radioactive, tritiated, and if mobilized, could enable a dust explosion; thus, understanding how it is

mobilized and transported during loss of vacuum or other accident scenarios is important. Similar issues

may exist for gas-cooled fission reactors [6].
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Interest in “mobilization” and “transport” suggests we are solving a flow problem. But this is not always

the case. Experiments designed to study mobilization of dust (appendix B, [7]) clearly indicate that it does

not always flow; for sufficiently low flow rates, dust piles remain entirely static. When does flow begin?

This is usually understood in terms of a “yield surface” that divides allowed and unobtainable static stress

states. Thus the static problem is a prerequisite to the flow problem. Unfortunately, as was noted, models

for granular statics tend to over-simplify; they are either tailored to very specific types of problems, or simply

employ linear elasticity, for lack of a better model, and despite its inability to describe many characteristics

of granular materials.

We begin with a review of some noteworthy aspects of granular behavior, and of the various existing

models for granular statics, in section 2. The focus of the work is primarily on three recently proposed

hyperelastic models, which successfully describe many granular phenomena, despite their relative simplicity.

The motivation for and applicability of hyperelastic models is discussed in section 3. Some analytical results

from these theories are compared with experiment data in section 4, and finite element calculations of stress

distributions are presented in section 5.
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2 Statics of Granular Materials

2.1 Some Characteristics of Granular Materials

2.1.1 Yield

Our earliest knowledge of granular materials is due to Coulomb [8]. He observed that in static equilibrium,

in accordance with static friction, the shear τn on a plane of granular material cannot exceed a constant

fraction of the normal force σn:

τn ≤ µf (−σn) + c (2.1)

where µf is the coefficient of friction, and c is a constant of cohesion. We take the usual sign convention

of solid mechanics (contrary to some work in soil mechanics and granular materials), with tension positive.

Here and throughout (except in appendix G), we will ignore cohesive effects and take c = 0. We may also

redefine the friction coefficient in terms of the Coulomb angle or angle of internal friction:∣∣∣∣ τn

σn

∣∣∣∣ ≤ µf = tan φ (2.2)

In terms of the actual stress tensor components,

τ∗ − σ∗ sin φ ≤ 0 (2.3)

where

τ∗ =

√
1

4
(σxx − σyy)

2
+ σ2

xy (2.4)

is the radius of Mohr’s circle, and

−σ∗ =
1

2
(σxx + σyy) (2.5)

its center (figure 2.1). All stable stress circles, then, are bounded by the line defined by the friction angle φ.

If the stress state reaches the yield surface, then plastic deformations ensue; we will be primarily interested

in the static problem here, though some yield surfaces and plastic flow models are considered in appendix

A.2.

Extending the Mohr-Coulomb condition to three dimensions results in either a hexagonal cone or cone

in principal stress space. In the former case, it is assumed that there is no dependence on the intermediate

principal stress σ2, in which case the major and minor principal stresses are given by

σ1 = − (σ∗ + τ∗) (2.6)

σ3 = − (σ∗ − τ∗) (2.7)

with the yield surface defined by

1

2
(σ3 − σ1) +

1

2
(σ3 + σ1) sin φ = 0 (2.8)
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σ

φ

σxx σyy

τ

Figure 2.1. The Coulomb yield criterion and Mohr’s circle. τ and σ are the shear and normal stresses, σxx

and σyy are the principal stresses, and φ is the angle of internal friction or Coulomb angle.

or
σ1

σ3
=

1 + sin φ

1 − sin φ
(2.9)

For the conical (Drucker-Prager) yield surface (also known as the conical von Mises yield surface, see appendix

A.2),

σ2
s − C2P 2 = 0 (2.10)

where the stress tensor invariants P and σ2
s are given by

P = 1
3 (σxx + σyy + σzz) (2.11)

σ2
s = σ2

xx + σ2
yy + σ2

zz + 2τ2
xy + 2τ2

yz + 2τ2
xz − 3P 2 (2.12)

or in terms of the principal stresses,

P = 1
3 (σ1 + σ2 + σ3) (2.13)

σ2
s =

1

3

(
(σ1 − σ2)

2
+ (σ2 − σ3)

2
+ (σ3 − σ1)

2
)

(2.14)

C is a constant; if we assume σ2 = (σ1 + σ3) /2 (appropriate for plane strain [9]),

C =
sin φ√

2
(2.15)

Note that this is not the same angle as that defined by plotting σs vs. P in 2D. More complicated yield

surfaces are commonly employed in modeling plastic flows, see appendix A.2. Whatever yield surface is

employed, stress states that fall within it are stable and must be treated with a suitable static model; this is

the subject of the present work.

For a Mohr-Coulomb yield condition, the friction angle is identical to the angle of repose, the latter

identifying the steepest stable slope of a granular pile or layer. For other surfaces, there is not always a

unique definition of the “friction angle” (as evidenced above), and may be different from the angle of repose.
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Figure 2.2. Dilatancy in a granular layer: particles must slide up and over each other while undergoing
shear deformation.

Modaressi and Evesque, for example, have modeled stable piles using the Drucker-Prager model with angles

of repose higher than the friction angle [10]. Typical angles of repose are in the range 10◦-20◦ for perfectly

spherical particles, ∼ 30◦-40◦ for more irregular materials such as sand [11], and perhaps as high as 60◦ for

very angular materials [12]. The angle of repose is, not surprisingly, dependent on the geometry of the pile.

Different values for the angle of repose are obtained for conical and wedge shaped piles, and for a cone vs. a

conical crater (i.e., a convex vs. concave surface) [13, 14]. There are also observed differences depending on

the preparation method; pouring a sand wedge into a box, for example, may result in different angles than

draining from a filled box [11, 15], and the presence of walls increases the angle of stability [11, 12, 15]. One

may also identify a distinct “angle of movement”; a layer poured at its angle of repose may be carefully tilted

slightly higher by a degree or two, at which point an avalanche occurs, and the pile relaxes to the angle of

repose [11, 16]. If the experiment is performed in a rotating drum, the rate of rotation may be increased

such that avalanches cease to be discrete events, allowing for the definition of a “dynamic” angle [13, 14, 17].

2.1.2 Dilatancy

Reynolds [18] first observed that granular materials possess dilatancy; when sheared, they also undergo

a volume expansion. This can lead to some rather non-intuitive behavior, as described by Duran [14]. For

example, consider a rubber pouch or balloon filled with sand and liquid, with a thin tube penetrating the

top. Intuition suggests that squeezing the pouch should result in a rise of the level of the liquid in the tube,

but in fact the opposite occurs: the liquid level falls. Changing the shape of the compacted sand results in

a volume expansion, and more liquid fills the balloon.

The dilatancy principle is easier to understand by considering a discrete granular layer (figure 2.2). In

order to undergo shear deformations, layers of particles must roll or slide up and over the top of each other.

For a more quantitative discussion of the problem, see Duran [14].

2.1.3 Arching, “stress propagation”, and the stress dip in sand piles

Experimental measurements of the stress distribution at the bottom of sand piles have revealed rather

counter-intuitive behavior: the stress sometimes possesses a dip, rather than a maximum, under the peak of
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Figure 2.3. Two spheres deforming elastically under load [28]. If they have identical radii (i.e. R′
1 = R′

2)
then δ1 = δ2.

the pile [19]. This is thought by some to be related to the the ability of granular materials to form arches

[14] and “force chains” [20], and has led some to propose a description of granular materials in which stresses

“propagate” [21, 22], governed by hyperbolic rather than elliptic equations as in elasticity. The competing

descriptions and the stress dip problem have sparked a heated debate in recent years [23]. The stress dip

has also been variously explained by anisotropy [24] and density inhomogeneity [25]. The applicability of

hyperbolic vs. elliptic models will be considered in subsequent sections.

2.1.4 The Hertz problem and non-linearity at small strains

An intuitive starting point for granular mechanics is the deformation of two elastic spheres in contact.

This problem was originally solved by Hertz [26] and is described by Landau and Lifshitz [27]. As two

particles of radius R are pressed together by a force F , the radius of their circular contact area a increases,

and each suffers a displacement δ (Figure 2.3).

Hertz established that

a =

(
RF

Ke

)1/3

(2.16)

and

δ =
a2

R
(2.17)

where Ke is an “effective” elastic modulus given in terms of the bulk and shear moduli K and G by

Ke =
8G(3K +G)

3(3K + 4G)
(2.18)
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Thus the applied force is related to the deformation by

F = Ke

√
Rδ3/2 (2.19)

and the elastic energy UE is given by

UE =

∫
Fdδ =

2

5
Ke

√
Rδ5/2 (2.20)

Thus, due to the changing contact area a, the relationship between normal force and displacement for two

spheres that are themselves linear elastic, is not linear. We anticipate, then, that bulk granular materials

will possess non-linear stress-strain behavior, even at small strains.

2.2 Methods of Determining Static Stress

Before considering several new hyperelastic models for granular materials, we review briefly some existing

methods for calculating static stresses. These are either elastic-type constitutive relations, which relate the

stresses in some way to the strains, or stress-only closures, in which some special relation between stress

components is proposed in order to close the force balance.

2.2.1 Mohr-Coulomb limit state analysis

Perhaps the simplest and oldest model for granular statics is to simply employ the Coulomb condition

(equation 2.2, or equivalently equation 2.9), as an equality, which is sufficient to close the force balance in

2D [9, 29]. This places the material in a state of incipient failure everywhere (IFE). While perhaps useful

as a bound for stable systems or in those close to yield, this will not be the case for many static systems of

interest. Furthermore, what is desired is a model of granular statics that will be a predictive tool for yield;

i.e., one in which stresses are calculated, and compared against some yield criterion. If yield is imposed from

the outset, the IFE model is obviously not useful for this purpose.

2.2.2 The Janssen method for silos

The method of Janssen [30] is notable for its widespread use in design of silos. He assumes that the ratio

of horizontal to vertical stress is a constant, given by

kJ =
σrr

σzz
(2.21)

and that friction acts along the wall and is “fully mobilized”, i.e. it takes the maximum static value

σrz = µfσrr (2.22)

Assuming that σzz is a function of z only, it is found to saturate with depth, in contrast with the usual

hydrostatic pressure. The value of kJ is sometimes supposed to be related to the yield angle φy by the
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Figure 2.4. Stress dips produced by the FPA model, in 2D (left) and 3D (right). Reprinted by permission
from Macmillan Publishers Ltd.: Nature [21], copyright 1996.

empirical relation [31]

kJ = 1 − sin φy (2.23)

These conditions are sufficient to determine σrr and σzz. The Janssen problem is solved and compared with

some numerical results in section 5.4.

2.2.3 Fixed Principal Axis

Another stress-only closure has been proposed more recently [21, 22, 32], whose motivation is explaining

the stress dip that is sometimes measured at the center of sand piles. It is hypothesized that the principal

axes of stress are “frozen in” during the pouring of the pile, leading to a relationship

σrr = σzz − 2tanφy|σzr| (2.24)

which is sufficient to close the 2D force balance. This gives wave equations with piecewise linear solutions

that possess a stress dip (figure 2.4). Results are similar in 3D, though another constitutive relation is

required (the second relation is not found to strongly influence the stress distributions [21]).

Though successful at producing a stress dip, it is not clear that the fixed principal axis (FPA) model

would apply generally, tailored as it is to not only a specific problem geometry (conical pile), but a specific

pile formation mechanism (pouring from a funnel). Indeed, it is found experimentally that piles formed

by sieving lack the stress dip. Furthermore, FPA presumes to rectify a perceived failing of elastic-type

constitutive models, namely that they do not produce the stress dip, but some, in fact, do. Cantelaube and

Goddard find multiple solutions with a coupled linear elastic, Mohr-Coulomb plastic model, some of which

possess stress dips [33, 34]. Others [25] have proposed that it may result from density inhomogeneity; grains

rolling down the sides of pile are supposed to pack themselves more tightly at the edges of the pile, leaving

a core of lesser density. See also critiques by Savage [23, 35] and comments by de Gennes [1].

FPA and other hyperbolic models also possess a double-peaked response function, which we consider

in more detail in section 5.5. As experiments invariably give a single peak characteristic of elliptic (e.g.

elastic) systems except for discrete and highly ordered systems, the general applicability of such models is
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questionable. It is worth noting, however, that a proposed “force-chain splitting” mechanism may lead to

elliptic systems beginning with FPA assumptions, see [36].

2.2.4 Linear Elasticity

All “stress only” closures have a similar shortcoming in that they do not account for deformations of the

material; there is a large body of work dedicated to (quasi) elastic deformations, elastic moduli, and sound

propagation in granular materials [37–58]. Probably the most common method of modeling the elastic region

is to simply employ isotropic linear elasticity (ILE) up to the presumed point of failure on a Mohr-Coulomb

or other yield surface (cf. [59, 60]). This treatment is simple, but there are many reasons why linear elasticity

fails to properly describe granular materials. As we have seen, such materials cannot take tension, undergo

shear dilation, and yield under relatively small shear stresses, none of which are accounted for by ILE. The

aforementioned large body of work on the elastic moduli of soils demonstrates the non-linear, quasi-elastic

regime clearly; the elastic moduli are not constant, but depend on the stress.

2.2.5 Non-linear elasticity: Effective Medium Theory and the Boussinesq model

As an improvement on linear elasticity, there have been attempts to incorporate nonlinear stress-strain

relations or stress-dependent elastic moduli in the elastic framework. An early example is due to Boussinesq

[61] (see also [62, 63]), who took elastic moduli ∼ √
uii, the square root of the trace of the small strain tensor,

similar to Hertz contacts. Duffy and Mindlin [64] added Mindlin tangential forces to the Hertz model [28],

and extended it to the continuum in a model referred to as the effective medium theory (EMT) [65]; for an

increment of tangential force ∆Ft and corresponding tangential displacement ∆s,

∆Ft = Kt

√
Rδ∆s (2.25)

with Kt given in terms of the solid shear modulus G and Poisson’s ratio ν,

Kt =
8G

2 − ν
(2.26)

There are numerous additional examples in soil mechanics. Such models behave in ways inconsistent with

the usual picture of elasticity; they may, for example, be path dependent [65] and fail to conserve energy

[66, 67]. This has led to several proposed hyperelastic models [25, 63, 67–76], which, proceeding from a

scalar free energy function, always conserve energy and are independent of path (the hierarchy of elastic

models is described in section 3.1). In some cases these models do rather well at reproducing granular

behavior including nonlinearity, shear dilation, and yield, but have been selectively or minimally tested

against experiment data. It is this task that will be the focus of the present work.

There is an overwhelming body of experimental data that suggests the elastic moduli for dry granular

materials do not have K, G ∼ P
1
3 as in the Hertz model [37–57], but rather K, G ∼ P

1
2 . This has
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been variously explained by Goddard [77] as due to either non-spherical contacts (e.g. sharp or conical

contacts characteristic of angular particles) or an increase in the number of contacts with loading, and by

de Gennes [78], who found that spherical particles with a soft shell (due to, say, oxidation) also have K,

G ∼ P
1
2 . Whatever the micro-mechanical explanation, this experimental result is unambiguous, and will be

our preferred stress dependence in what follows.
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3 Elasticity

3.1 On the Validity of Elasticity for Granular Materials

“Elastic”is not an intuitive description of granular materials, so some comments on the validity of elasticity

theory are in order. First, it should be clarified what is meant by“elasticity”. In particular, we consider three

different definitions, as outlined in [67, 79]. Elastic deformations are generally understood to be reversible.

This does not preclude additional irreversible plastic strains, but henceforth when considering“strain”we are

referring to the elastic strain, and assume that the total strain may be decomposed into elastic and plastic

parts:

uelastic
ij = utotal

ij − uplastic
ij (3.1)

The only way to ensure that the elastic strains are indeed reversible and energy is conserved, is to specify a

strain energy potential F , from which the stresses are given as functions of the strains by differentiation:

σij =
∂F (uij)

∂uij
(3.2)

A material which possesses such a strain energy function is said to be hyperelastic. Alternately, the require-

ment of a strain energy potential may be relaxed, and instead we require only that the stresses are given as

some function of the strains,

σij = fij (uij) (3.3)

In this case the material is said to be just elastic. If f is integrable such that F can be obtained, the material

is in fact hyperelastic; thus, hyperelasticity is a special case of elasticity. Taking this line of thinking a step

further, we might also consider a material in which we define only the incremental stress-strain relation:

δσij = fijk� (uij) δuk� (3.4)

This type of relation is called hypoelastic. Once again, if f were integrable we would obtain stresses as a

function of strains, and recover the elastic case. The incremental relation for the elastic and hyperelastic

cases are given, respectively, by

δσij =
∂fij (uij)

∂uk�
δuk� (3.5)

δσij =
∂2F (uij)

∂uij∂uk�
δuk� (3.6)

The hierarchy of these definitions is illustrated in figure 3.1.

Kolymbas [80] adopts the hypoelastic approach in developing the theory of hypoplasticity, which proposes

rate equations of the type given above (equation 3.4), and additionally dispenses with the usual strain

decomposition (equation 3.1), taking the stress rate to be a function of the total strain rate, and declaring

simply that “soil is not elastic” [81]. Furthermore, he outlines three reasons why elasticity is not appropriate

for modeling granular materials:
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Hyperelastic

Hypoelastic

Elastic

Figure 3.1. Hierarchy of elastic models.

1. It does not account for plastic yield.

2. It does not account for dilatancy/contractancy, i.e. coupled volume and shear deformations.

3. It does not account for stress-dependent stiffness

While this list of shortcomings certainly applies to linear elasticity, we will consider several hyperelastic

models that predict all of the preceding behavior. Thus, this list of requirements certainly does not invalidate

elastic, elasto-plastic, or hyperelastic models for granular materials. Furthermore, as hypoplasticity employs

rate equations, it follows the evolution of stresses and strains with time, but the initial stress “has to be

known or assumed” [80]. The initial or static stress distribution prior to plastic deformation is precisely the

information that elasticity provides, and thus is better suited to this purpose than hypoplasticity, which was

noted by Jiang and Liu [82]. Kolymbas does not consider elasticity appropriate for even the static stress

calculation, but does not propose an alternative either.

Nevertheless, in many problems dealing with soils and granular materials, plastic deformations, which

include irreversible rolling and sliding of particles, will far exceed elastic ones. If elasticity is appropriate for

describing some classes of problems, we expect there to be at least a small range where elastic deformations

dominate, i.e. where the deformation is predominantly reversible. This elastic regime has been identified

in both experiments (e.g. [55]) and numerical simulations [83]. Difficulties have been noted in the case of

shearing, in which some discrete element simulations suggest there are always irreversible shear deformations,

leading some authors to conclude that all granular materials must be considered viscoelastic [84, 85]. Some

types of loading, e.g. changes in direction of shear, are likely to always result in some changes to the particle

contact network, and irreversible sliding, that are not elastic. But the major discrepancy here seems to appear

when the inter-particle friction coefficient goes to zero, in which case discrete element simulations, but not

the effective medium theory (EMT), predict a vanishing shear modulus. That elasticity is inappropriate for
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materials that cannot sustain static shear is not a surprising conclusion, as this is essentially the definition

of a fluid. For many cases in which both plastic and elastic deformations occur, viscoelasticity may be

appropriate or necessary, but the viscous part is not necessary for static problems (see appendix A.2), and

we may as well employ an elastic model, greatly simplifying the problem.

Others have questioned the continuum approach altogether, arguing that granular materials exhibit

behavior that cannot be described by continuum mechanics. Many of these arguments have been motivated

by the stress dip in sand piles, and arching. Some have proposed that stresses “propagate” in granular media

along preferred directions, as if governed by hyperbolic, rather than elliptic, equations [22]. Goldenberg and

Goldhirsch have shown in simulations that while this is true for small systems, there is a transition to elliptic

behavior for larger systems [20, 86, 87]. That the constituent particles be large in number and small relative

to the system size, of course, is the usual requirement of continuum mechanics. Put another way, there must

exist a sufficiently large separation of micro and macro scales, and a representative volume element may be

defined in which stresses and strains vary smoothly from one to the next. Rycroft and Kamrin [65, 88] find

that for granular materials the size of this representative volume element may be as small as five particle

diameters, validating the the use of continuum mechanics for such problems.

Perhaps the most convincing argument in favor of elasticity is the so-called “response function” of a gran-

ular layer to a point force perturbation. This will be discussed in detail in section 5.5; the measured response

function is consistent with the elliptic equations of elasticity, and not the variously proposed hyperbolic

models.

We will not concern ourselves further with any micro-scale problems. While there are clearly some

difficulties in applying continuum mechanics and elasticity to some problems of granular physics, it does not

appear to be an invalid approach altogether. An appropriate elastic model (i.e. one that successfully models

experiment data) is a useful and simple tool in determining the static stress distribution.

3.2 Linear Elasticity Theory

In order to solve the force balance ∂σij/∂xj + ρgi = 0, we require a constitutive equation that relates

forces and displacements in a body. We will consider only cases in which the strains uij are small, in which

case they are given in terms of the displacements Ui by the following [27]:

uij =
1

2

(
∂Ui

∂xj
+

∂Uj

∂xi

)
(3.7)

Elasticity implies reversible deformations, which change the internal energy E of the deformed body according

to

dE = TdS + σijduij (3.8)

a generalization of the familiar

dE = TdS − PdV (3.9)
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for temperature T , entropy S, pressure P , and volume V . In hydrostatic compression, σij = −P δij , and

σijduij = −P δijduij = −Pduii; the sum uii is the relative volume change. Equivalently, we may consider

the Helmholtz free energy F , defined by

F = E − TS (3.10)

and differential relation

dF = −SdT + σijduij (3.11)

If there are no changes in temperature (or an analogous “granular temperature”, [89, 90]),

dF
duij

= σij (3.12)

the stresses are given as derivatives of the Helmholtz free energy with respect to the strains. The constitutive

behavior of a material, then, is completely specified by F(uij). The question remains, what is the appropriate

form of F(uij)? The linear elasticity theory assumes a reference state of zero strain at zero applied force,

and since the strains are small, expands the free energy in a Taylor series about this point. The free energy

is a scalar, and as such must be a function of scalar quantities. For an isotropic material, this means that it

is a function of the strain invariants

uii = u11 + u22 + u33 (3.13)

uijuij ≡ u2
11 + u2

12 + u2
13 + u2

21 + u2
22 + u2

23 + u2
31 + u2

32 + u2
33 (3.14)

uijujkuki = detu (3.15)

Neglecting any higher (third) order terms,

F = F0 + Cuii +
1

2
λu2

ii + µuijuij (3.16)

where F0, C, λ, and µ are constants. Since the energy must be a minimum at zero strain, we require

dF
duij

= 0 (3.17)

and hence C = 0. Neglecting the free energy of the undeformed body F0,

F =
1

2
λu2

ii + µuijuij (3.18)

It is more useful to consider the free energy in terms of volume changes, or pure compression, and shape

changes, or pure shear; we may do so by instead defining

u0
ij ≡ uij − 1

3
u��δij (3.19)

u2
s ≡ u0

iju
0
ij (3.20)

∆ ≡ −uii (3.21)
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Table 3.1. Mapping of tensor to matrix indices

Matrix 1 2 3 4 5 6

Tensor 11 22 33 12 & 21 23 & 32 13 & 31

K ≡ λ + 2
3µ (3.22)

G ≡ µ (3.23)

referring generally to ∆ as the “compression” and us as the “shear”. The free energy is then given by

F = 1
2K∆2 +Gu2

s (3.24)

Since the free energy is quadratic in the strains, the stress-strain relationship will be linear:

σij =
∂F
∂uij

(3.25)

with the incremental stress-strain relation given by

δσij = Mijk�δuk� (3.26)

where Mijk� is the stiffness tensor. As the stress and strain tensors are symmetric, we may re-index according

to table 3.1 and write the system of six equations in the matrix notation


δσ1

δσ2

δσ3

δτ4

δτ5

δτ6




=




∂2F
∂u2

1

∂2F
∂u1∂u2

∂2F
∂u1∂u3

∂2F
∂u1∂γ4

∂2F
∂u1∂γ5

∂2F
∂u1∂γ6

∂2F
∂u2∂u1

∂2F
∂u2

2

∂2F
∂u2∂u3

∂2F
∂u2∂γ4

∂2F
∂u2∂γ5

∂2F
∂u2∂γ6

∂2F
∂u3∂u1

∂2F
∂u3∂u2

∂2F
∂u2

3

∂2F
∂u3∂γ4

∂2F
∂u3∂γ5

∂2F
∂u3∂γ6

∂2F
∂γ4∂u1

∂2F
∂γ4∂u2

∂2F
∂γ4∂u3

∂2F
∂γ2

4

∂2F
∂γ4∂γ5

∂2F
∂γ4∂γ6

∂2F
∂γ5∂u1

∂2F
∂γ5∂u2

∂2F
∂γ5∂u3

∂2F
∂γ5∂γ4

∂2F
∂γ2

5

∂2F
∂γ5∂γ6

∂2F
∂γ6∂u1

∂2F
∂γ6∂u2

∂2F
∂γ6∂u3

∂2F
∂γ6∂γ4

∂2F
∂γ6∂γ5

∂2F
∂γ2

6







δu1

δu2

δu3

δγ4

δγ5

δγ6




(3.27)

where shear stresses are denoted by τ and the engineering shear strain γi = 2ui. Since the free energy for

linear elasticity is quadratic in the strains, the second derivatives that comprise the stiffness matrix Mij are

combinations of the constants K and G;

Mij =




K + 4
3G K − 2

3G K − 2
3G 0 0 0

K − 2
3G K + 4

3G K − 2
3G 0 0 0

K − 2
3G K − 2

3G K + 4
3G 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G




(3.28)
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It is apparent that the shear modulus, or ratio of shear stress to shear strain, is equal to G:

δτi

δγi
= G (3.29)

In the absence of shear,

1
3σii ≡ P = K∆ (3.30)

The bulk modulus given by the constant K.

There are thermodynamic restrictions on the values of K and G. Stability requires that the free energy

F be a convex function of the strains [91], or

∂2F
∂∆2

≥ 0 (3.31)

∂2F
∂u2

s

≥ 0 (3.32)

∂2F
∂∆2

∂2F
∂u2

s

−
(

∂2F
∂∆∂us

)2

≥ 0 (3.33)

The first two require that K and G, respectively, are positive. The third condition, in this case, places no

additional restrictions on K and G.

3.3 Granular Elasticity

We know that the elastic behavior of granular materials is not linear, and there have been many attempts

to model it by taking the elastic moduli as functions of stress or strain. Zytynski et al. [66] were the

first to point out a significant theoretical problem with such models; as they did not derive the elastic

moduli from an appropriate free energy, the elastic response was not always conservative, with some models

predicting continuous production of energy by materials subjected to a simple stress cycle (i.e. perpetual

motion machines). An elastic constitutive relation must conserve energy, and hence follow from the free

energy. We now consider some recently proposed free energies for granular materials, and their ability to

predict experimental data.

The following free energy has been proposed and analyzed in a series of papers by Jiang and Liu [25, 63,

68–72]:

F = ∆a
(

1
2K̃∆2 + G̃u2

s

)
(3.34)

Here they have taken the free energy of isotropic linear elasticity and multiplied it by ∆a. They take a = 1/2,

consistent with “Hertz contacts”, if not experimental data, and call this “granular elasticity”, or GE. We shall

leave a unspecified for the time being, and investigate different choices of a below. Here and throughout,

tildes have been added to the constants K and G to distinguish them from the bulk and shear moduli. In

linear elasticity, as was shown above, these constants are the bulk and shear moduli; but for any other form
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of the free energy that is not quadratic in the strains, the quantities in the stiffness matrix that we identify

as “elastic moduli” will not be constants, but will have some dependence on the strains.

In linear elasticity, the thermodynamic stability requirement that the free energy be a convex function

of the strains established that K̃ and G̃ must be positive constants. Similarly, thermodynamic stability will

place some constraints on the present model. For reasons that will become apparent, it is useful to define a

dimensionless constant ξ,

ξ ≡ 5K̃

4G̃
(3.35)

and rewrite the free energy as

F = G̃∆a
(

2
5ξ∆2 + u2

s

)
(3.36)

The second derivatives are given by

∂2F
∂∆2

= 2
5ξG̃(a+ 1)(a+ 2)∆a + a(a− 1)∆a−2u2

s (3.37)

∂2F
∂u2

s

= 2G̃∆a (3.38)

∂2F
∂∆∂us

= 2aG̃∆a−1us (3.39)

Recalling that ∆ = −uii will be positive in compression, the second stability condition (equation 3.32)

indicates G̃ is still a positive constant, but also that the material is not stable under tension; this is precisely

the case for granular materials. The first stability condition (equation 3.31) is more complicated, and includes

both terms ∆ and us. It requires

2
5ξG̃(a+ 1)(a+ 2)∆a + G̃a(a− 1)∆a−2u2

s > 0 (3.40)

or

2
5ξG̃(a+ 1)(a+ 2) + G̃a(a− 1)

u2
s

∆2
> 0 (3.41)

Anticipating that 0 < a < 1, the second of the two terms will be negative. The first, then, must be positive

for this condition to hold at all, so ξ must also be positive. But it also implies a maximum stable ratio of

shear to compressive strain:
u2

s

∆2
<

2ξ(a+ 1)(a+ 2)

5a(1 − a)
(3.42)

The third stability condition (equation 3.33) is an even stricter requirement of this type:

(
2
5ξG̃(a+ 1)(a+ 2)∆a + G̃a(a− 1)∆a−2u2

s

)(
2G̃∆a

)
>

(
2aG̃∆a−1us

)2

(3.43)

Canceling common terms,
2

5
ξ(a+ 1)(a+ 2) + a(a− 1)

u2
s

∆2
> 2a2 u

2
s

∆2
(3.44)
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and rearranging,
u2

s

∆2

(
2a2 − a(a− 1)

)
=

u2
s

∆2
a(a+ 1) <

2

5
ξ(a+ 1)(a+ 2) (3.45)

or
u2

s

∆2
<

2ξ(a+ 2)

5a
(3.46)

What does this mean in terms of the stresses? The pressure and effective shear stress are given by

P ≡ ∂F
∂∆

= 2
5 G̃ξ(a+ 2)∆a+1 + aG̃

u2
s

∆1−a
(3.47)

σs ≡ ∂F
∂us

= 2G̃∆aus (3.48)

At the loss of stability,

us = ∆

√
2ξ(a+ 2)

5a
(3.49)

Substituting this into equations 3.47 and 3.48 gives

P = 2
5 G̃ξ(a+ 2)∆a+1 + aG̃

∆2 2ξ(a+2)
5a

∆1−a
(3.50)

σs = 2G̃∆a∆

√
2ξ(a+ 2)

5a
(3.51)

or

P = 4
5 G̃ξ(a+ 2)∆a+1 (3.52)

∆a+1 =
σs

G̃

√
5a

8ξ(a+ 2)
(3.53)

Combining the two gives the stability limit in terms of the stresses,

σs

P
=

√
5

2ξa(a+ 2)
(3.54)

Remarkably, this is precisely the Drucker-Prager form of the Coulomb yield criterion (2.9), with the Coulomb

angle φc defined by

φc = arctan

√
5

2ξa(a+ 2)
(3.55)

Stress states violating this yield criterion are not merely inadmissible in this case, they are also inaccessible;

there are no real solutions for

σs

P
>

√
5

2ξa(a+ 2)
(3.56)

To see why this is so, consider the stress paths for some constant value of ∆. Solving equation 3.48 for us

and substituting into equation 3.47 gives

P = 2
5 G̃ξ(a+ 2)∆a+1 +

aσ2
s

4G̃∆a+1
(3.57)



19

Figure 3.2. Stress paths for various values of G̃∆a+1 (arbitrary units), illustrating the lack of solutions for
σs/P >

√
5/(2ξa(a+ 2)). Here a = 1/2 and ξ = 5/3.
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The curves P (σs) at constant ∆ are parabolas (see Figure 3.2). The line beginning at the origin and tangent

to the parabolic stress path intersects it at the maximum value of σs/P , (or, equivalently, the minimum

value of P/σs). The slope at this point of intersection is given by

∂P

∂σs
=

aσs

2G̃∆a+1
(3.58)

and the tangent line is then defined by
P

σs
=

aσs

2G̃∆a+1
(3.59)

The two equations 3.57 and 3.59 are sufficient to solve for the two unknowns P and σs, which are

σs = G̃∆a+1

√
8ξ(a+ 2)

5a
(3.60)

P =
4

5
G̃ξ(a+ 2)∆a+1 (3.61)

or
σs

P
=

√
5

2ξa(a+ 2)
(3.62)

independent of ∆; the maximum attainable stress ratio along any path is the same as the limit for thermo-

dynamic stability, equation 3.54.

Just as the pressure P and shear stress σs are no longer independent (as they are in linear elasticity),

we might consider the relationship between ∆ and us at constant pressure. This is obtained simply by

rearranging equation 3.47, to get

us =

√
1

a

(
P

G̃

)
∆1−a − 2ξ

5a
(a+ 2)∆2 (3.63)

In this case, there are solutions for the strains that are thermodynamically inadmissible according to the

stability condition, equation A.5. But in the stable regions, as indicated in Figure 3.3, increasing the shear

us decreases the compression ∆; in other words, we also have shear dilatancy: shearing results in volume

expansion, and eventually yield.

Thus, in adopting the hyperelastic formalism, and modifying the form of the free energy so as to account

for the power law dependence of the elastic moduli on the stress (or strain), GE is able to describe many

aspects of granular physics. Suitable values for the exponent a will be discussed at length below, but it is

expected that a is not a material constant; a particular value of a should apply to an entire class of granular

materials (say, cohesionless dry sands). So this form of the free energy, without really introducing any new

material constants, predicts the following well known behavior of granular materials:

1. The inability to take tension

2. Yield, with a Coulomb condition limiting the shear
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Figure 3.3. Strain paths for various values of P/G̃, with ξ = 5/3, and a = 1/2 (left) and a = 1 (right). ∆
decreases (volume increases) with us in the stable region of each curve (solid lines). The dotted lines are

thermodynamically unstable solutions.
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Figure 3.4. Left: infinite granular layer subject to normal force N and tangential force T . Right: infinite
granular layer inclined at angle θ.

3. Reynolds dilatancy, the volume expansion that accompanies shear

This is a remarkable list of qualitative successes, given the simplicity of the approach. We now consider some

analytical results to see how the theory performs quantitatively.

3.4 The Yield Angle

In a recent paper employing granular elasticity [58], the stress ratio σs/P was identified as the tangent of

the Coulomb friction angle φc, but we have seen in section 2.1.1 that this Drucker-Prager parameter is not

the Coulomb angle. Furthermore, the friction angle for the Drucker-Prager yield condition is not necessarily

the angle of repose φy. In granular elasticity, the Drucker-Prager yield surface is a natural consequence of

the thermodynamic stability requirement that the free energy be convex in the strains. Following Jiang and

Liu [68], we consider two particular problems which give a definition of the yield angle for GE.

Consider the following two simple cases [68], whose solutions we will find to be identical. The first is a

granular layer, infinite in two directions (Figure 3.4), subjected to a normal force N and shearing force T at

its surface. The second is a similar layer, also infinite in extent, subject to gravity and inclined at an angle

θ. In both cases, we are left with only two non-zero components of the strain, one normal and one shear,

say u2 and γ4. In the first case, in which the only applied forces are the two at the surface, the stresses and

strains will be uniform throughout the layer. Their constant values are given by the constitutive relation,

equation 3.36. With u1, u3, γ5, and γ6 all equal to zero, the equations for the stresses become

σ2 =
∂F
∂u2

= −G̃ (−u2)
a+1

(
a

2

γ2
4

u2
2

+ (a+ 2)

(
2

5
ξ +

2

3

))
(3.64)

τ4 =
∂F
∂γ4

= G̃ (−u2)
a
γ4 (3.65)
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In the first case, σ2 = −N , and τ4 = T throughout the layer. For the inclined layer, the above stress-strain

relations hold, but they vary spatially. It is then necessary to solve the force balance,

dσyy

dy
=

dσ2

dy
= −ρg cos θ (3.66)

dσxy

dy
=

dτ4

dy
= ρg sin θ (3.67)

Integrating with respect to y,

σ2 = −gM(y) cos θ (3.68)

τ4 = gM(y) sin θ (3.69)

where

M(y) ≡
∫ H

y

ρ(y′)dy′ (3.70)

is the mass per unit area between y and the free surface at H. M(y) is not a function of the angle of the

layer, θ, so we may write

tan θ =
τ4

−σ2
=

T

−N (3.71)

From the equations 3.64 and 3.65,

tan θ =

γ4

−u2

2

5
ξ (a+ 2) +

1

2
a
γ2
4

u2
2

+

2

3
a2 + 2a+

4

3
a+ 1

(3.72)

So, we have the angle θ as a function of the strain ratio γ4/u2, the exponent a, and the material constant ξ.

We identify the angle of repose as the value of θ at which there are no solutions, or no thermodynamically

stable solutions, for the strains. Recall that we have a stability condition on the strain ratio,

u2
s

∆2
<

2ξ(a+ 2)

5a
(3.73)

which simplifies, in the present case, to

γ2
4

u2
2

<
4ξ(a+ 2)

5a
− 4

3
(3.74)

since

∆ = −u2 (3.75)

and

u2
s = 2

3u
2
2 + 1

2γ2
4 (3.76)
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Figure 3.5. The yield angle φy for GE as a function of ξ. The maximum occurs at ∼ 25.5◦ for a = 1/2 and
∼ 17◦ for a = 1.

Substituting this critical value of the strain ratio into equation 3.72 gives the angle of repose φy in terms of

only the constants a and ξ:

tanφy =

√
4ξ (a+ 2)

5a
− 4

3

2

5
ξ (a+ 2) +

1

2
a

(
4ξ (a+ 2)

5a
− 4

3

)
+

2

3
a2 + 2a+

4

3
a+ 1

(3.77)

which simplifies to

tan φy =

√
ξ (a+ 2)

5a
− 1

3
2

5
ξ (a+ 2) +

2

3

(3.78)

So, φy is no longer a third material constant, but is given here in terms of the other material constants, a

requirement for thermodynamic stability. This is a satisfying physical description of the problem, but it is

also a significant practical advantage for the modeler. Rather than having to postulate the values of K̃ and

G̃, or determine them at great expense through triaxial tests or something similar, one may conduct simple

experiments to determine φy, and back out the value of ξ employing the equation above. ξ fixes the ratio of

K̃ and G̃, so one of them must be determined via some other means if it is important to know the magnitude

of the strains, but the ratio ξ alone is sufficient to predict the onset of yield.

Of course, we must also pick a value for the exponent a, and it is apparent from equation 3.78 that the

yield angle depends on a. But we do not expect a to differ much from one material to the next; as discussed

previously, it reflects the changing contact area between discrete particles when stressed. The Hertz theory

for spheres suggests a = 1/2, while a large body of experimental evidence suggests a ∼ 1. Consider, then,

φy(ξ) for a = 1/2 and a = 1, shown in Figure 3.5. Equation 3.78 simplifies to
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φy = arctan




√
ξ − 1

3

ξ + 2
3


 (3.79)

for a = 1/2 and

φy = arctan




√
3
5ξ − 1

3

6
5ξ + 2

3


 (3.80)

for a = 1. The peculiar feature of these curves is that they have a maximum; for GE (a = 1/2) it occurs at

ξ = 4/3, φy ≈ 25.5◦. So no matter what the material constants K̃ and G̃ are, granular elasticity predicts

a yield angle that is, at most, 25.5◦. As we have seen, yield angles for most materials are around 30-35◦;

thus yield, the remarkable qualitative feature of GE, possesses a significant quantitative discrepancy with

real materials.

While the choice of a = 1/2 is motivated by the Hertz theory, we have also seen that real granular

materials, except at high pressures [77], generally have elastic moduli varying as P 1/2, implying a ∼ 1. We

shall subsequently refer to this case as GE-C, for “granular elasticity - cubic”, since the free energy is a cubic

function of the strains:

F =
2

5
ξG̃∆3 + G̃∆u2

s (3.81)

In this case, φy(ξ) has a similar shape, but shifts to even lower values of φy, with a maximum at ξ = 5/3,

φy ≈ 17◦. The peak in the curve, as a function of a, can be determined by solving for ξ at the maximum,

∂φy/∂ξ = 0, with

ξmax =
5(1 + 2a)

3(a+ 2)
(3.82)

and the value of the maximum yield angle given by

φy,max = arctan

(
1

4

√
3

a(a+ 1)

)
(3.83)

We see in Figure 3.6 that φy,max is a decreasing function of a. Thus, in employing GE/GE-C, one is forced

to make a rather unpleasant choice; take a ∼ 1/4, say, to allow for realistic yield angles (a maximum of

∼ 37.76◦ in that case), but contrary to what we know about the pressure dependence of the elastic moduli,

or take a ∼ 1 to match the latter, implying sand piles cannot be stable if steeper than ∼ 17◦. a = 1/2 is

something of a compromise in that regard; Jiang and Liu mention that the chosen form “oversimplifies” [68].

They have, however, suggested two ways in which one might generalize the theory to resolve the discrepancy,

which we consider below.

3.5 Generalizing the Granular Elasticity Theory

While the qualitative successes of granular elasticity are remarkable, we have seen that quantitatively,

there is a contradiction; choosing a power law form of the free energy to match the widely observed scaling

of the elastic moduli with pressure results in unrealistically low yield angles. Conversely, choosing the power
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Figure 3.6. The maximum yield angle for GE, a decreasing function of a.
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law to give an appropriate range of yield angles gives a much weaker dependence of the moduli on pressure

than is observed. Jiang and Liu have proposed two possible generalizations of granular elasticity to rectify

this difficulty, though they pursue neither; both will be considered here.

3.5.1 Differing dependence of bulk and shear moduli on compression

Originally, Jiang and Liu considered the following more general form for the free energy [68]:

F = 1
2K̃∆b+2 + G̃∆au2

s (3.84)

of which granular elasticity is the special case a = b = 1/2. This gives the freedom to choose a < 1/2 in an

attempt to allow higher yield angles, and b = 1 such that, for isotropic compression, the bulk modulus has

the desired P 1/2 dependence. First, consider the effect on the stability condition,(
∂2F
∂∆2

)(
∂2F
∂u2

s

)
−

(
∂2F

∂∆∂us

)2

≥ 0 (3.85)

Now we have
∂2F
∂∆2

= 1
2 (b+ 1)(b+ 2)K̃∆b + G̃a(a− 1)∆a−2u2

s (3.86)

∂2F
∂u2

s

= 2G̃∆a (3.87)

∂2F
∂∆∂us

= 2G̃a∆a−1us (3.88)

and the stability condition simplifies to

u2
s

∆2
≤ (b+ 1)(b+ 2)K̃

2a(a+ 1)G̃
∆b−a (3.89)

The presence of the term ∆b−a on the right hand side means the limiting stress ratio is no longer constant,

but depends on the compression ∆; so the Drucker-Prager yield condition of GE is lost. Taking a 	= b here

will also result in the effective shear and bulk moduli having different dependence on the pressure, but as we

will see in greater detail, both moduli usually have the same dependence on pressure (see, e.g., [55]).

Most importantly, for any anisotropic stress state (i.e. us 	= 0), this modification will not achieve the

desired P 1/2
(
∆1

)
dependence of the elastic moduli. While b = 1 ensures this relationship for isotropic

stress, recall that we require a < 1/2 for realistic yield angles. If us 	= 0, this term will have a lower order

dependence on the strains than the“bulk” term, and since the strains are small, the shear term will dominate,

and the result will remain K,G ∼ ua
ij ∼ P

a
a+1 .

3.5.2 Incorporating dependence on the third strain invariant

Relaxing the requirement that a = b clearly was not helpful in generalizing GE to capture both the

observed nonlinearity in the elastic moduli and the observed range of yield angles; we must seek another
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way. In a more recent paper [63], Jiang and Liu note that GE is a special case of the general form proposed

by Goddard [77]:

F = ∆a+2f

(
u2

s

∆2
,
u3

III

∆3

)
(3.90)

where f is an arbitrary function, and u3
III is the third invariant of the (deviatoric) strain tensor,

u3
III ≡ u0

iju
0
jku

0
ki ≡ det

(
u0

)
(3.91)

For GE, a = 1/2 and f is given by

f = G̃

(
2

5
ξ +

us

∆2

)
(3.92)

A logical extension that incorporates the third invariant is

f = G̃

(
2

5
ξ +

uS

∆2
+ ζ

u3
III

∆3

)
(3.93)

where ζ is another dimensionless constant; we anticipate, then, that the yield angle will be given in terms

of two constants ζ and ξ, potentially resulting in a larger range of allowable values. With a = 1, the free

energy is now given by

F = G̃

(
2

5
ξ∆3 + ∆u2

s + ζu3
III

)
(3.94)

With the free energy given in terms of three, rather than just two, tensor invariants, we expect this will

introduce more stability conditions of the type given in equations 3.31-3.33. But as with us ≡
√
u0

iju
0
ij , the

transformation uIII ≡ 3

√
u0

iju
0
jku

0
ki is not linear. In lieu of a coordinate transformation of the type given in

[63] that would establish the general stability conditions explicitly, we may simply derive the stiffness matrix,

set u1, u3, γ5, and γ6 equal to zero, and solve for the eigenvalues, to establish the stability limits for the

infinite plane problem (see appendix C). The results are the following two stability conditions:

γ2
4

u2
2

≤ 8(−ζ2 + 3ζ + 18)

9ζ2
(3.95)

γ2
4

u2
2

≤ 8(−3ζ2ξ − 5ζ − 15 + 27ξ)

9(2ζ2ξ + 5ζ + 10)
(3.96)

First we must establish which of these is the more stringent condition. As the value of γ2
4/u

2
2 cannot be

negative, and ξ and ζ are positive constants, we can first establish some limits on their values to ensure real

solutions. The first condition does not depend on ξ at all, and it is clear that for the right hand side to be

greater than zero, ζ < 6. The second condition further requires that

−3ζ2ξ − 5ζ − 15 + 27ξ > 0 (3.97)

or

ξ(27 − 3ζ2) > 5ζ + 15 (3.98)
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Figure 3.7. Maximum stable value of γ2
4/u

2
2 for the two stability criteria, equations 3.102-3.103, in the limit

ξ → ∞. Stability is lost at condition two before ever reaching condition one.

Regardless of the value of ξ, this can only be satisfied for ζ < 3; for larger values, the left hand side will be

negative. Then we can also write

ξ >
5ζ + 15

27 − 3ζ2
(3.99)

In order to establish which of the two stability criteria is more severe, we shall first maximize the second

with respect to ξ. Since

∂

∂ξ

(
8(−3ζ2ξ − 5ζ − 15 + 27ξ)

9(2ζ2ξ + 5ζ + 10)

)
=

40(−ζ3 + 27ζ + 54)

9(2ζ2ξ + 5ζ + 10)2
(3.100)

which is positive for 0 < ζ < 3, the second stability condition is an increasing function of ξ. There is no

upper bound on the value of ξ, and

lim
ξ→∞

(
8(−3ζ2ξ − 5ζ − 15 + 27ξ)

9(2ζ2ξ + 5ζ + 10)

)
=

4(9 − ζ2)

3ζ2
(3.101)

So, having chosen ξ to make condition two as lenient as possible, we may rewrite the two conditions as

follows:
3ζ2

4

γ2
4

u2
2

≤ (− 2
3ζ2 + 2ζ + 12) (3.102)

3ζ2

4

γ2
4

u2
2

≤ (9 − ζ2) (3.103)

Figure 3.7 shows that the second condition is more restrictive of the two, even in the limit ξ → ∞. Identifying

once again the ratio of shear to normal forces as the tangent of the yield angle, and substituting the stability

condition 3.96 for the ratio of shear to normal strain (see appendix C), we arrive at an expression for the

yield angle in terms of the two constants ξ and ζ:

φy = arctan




√(
ζ2ξ + 5

2ζ + 5
) (

1
6ζ − 1

)2
(−3ζ2ξ − 5ζ − 15 + 27ξ)

9
5ζ2ξ2 + 3ζξ + 18ξ + 2ζ2ξ + 5ζ + 10 − 1

6ζ3ξ − 5
9ζ2


 (3.104)
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Figure 3.8. The yield angle φy as a function of the constants ξ and ζ. φy decreases rapidly with ζ.

For ζ = 0, this simplifies to the relationship obtained from GE-C:

φy = arctan




√
3
5ξ − 1

3

6
5ξ + 2

3


 (3.105)

Recall that GE-C has a maximum yield angle of ∼ 17◦ at ξ = 5/3. Unfortunately, the preceding generalization

does not allow for higher yield angles. Figure 3.8 shows the yield angle as a function of ξ and ζ. The familiar

shape of φy(ξ) from GE/GE-C is apparent on the ζ = 0 axis, but taking non-zero values of ζ only decreases

the maximum yield angle. The peak of the surface φy(ξ, ζ) occurs at ξ = 5/3, ζ = 0 with the maximum

yield angle still approximately equal to 17◦.

3.5.3 A nonlinear shear model

Drawing ideas from both of the previous models, we shall investigate a potential of the form

F = G̃∆b+2

(
2

5
ξ +

(
u2

s

∆2

)c)
(3.106)

which is equivalent to

F = G̃
(

2
5ξ∆b+2 + ∆aub−a+2

s

)
(3.107)

with a ≡ b+2−2c. This retains the flexibility of two power laws, but combines them in a way consistent with

the form proposed by Goddard (equation 3.90). Both terms are of order b+ 2 in the strains, but the second

term has a variable power law dependence on both the compression and the shear strain, implying a nonlinear

relationship between shear stress and shear strain. This approach maintains the Coulomb condition, though

as a more complicated function of both exponents a and b. As previously, it is given by the cross convexity
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Figure 3.9. The yield angle for GE-NLS, for various values of a. As in GE, there is maximum value of φy,
which decreases with a.

condition, (
∂2F
∂∆2

)(
∂2F
∂u2

s

)
−

(
∂2F

∂∆∂us

)2

≥ 0 (3.108)

which for the new potential (equation 3.106) gives

us

∆
≤

(
2ξ(b+ 2)(b− a+ 1)

5a

) 1
b−a+2

(3.109)

An expression for the yield angle is obtained just as in section 3.3, solving the plane problem and applying

the new stability condition. Defining

ξ̂ ≡ 2ξ(b+ 2)(b− a+ 1)

5a
(3.110)

φy = arctan




√
1

2
ξ̂(

2
b−a+2 ) − 1

3
a

b− a+ 2

(
1

b− a+ 1
ξ̂(

2
b−a+2 ) + ξ̂

)
+

2

3


 (3.111)

For a = b, the general GE form (equation 3.78) is recovered. Now, we may let b = 1, consistent with

experimental data; we are still free to choose a value of a that gives a realistic range of yield angles. The

yield angle as a function of ξ is given for several values of a in figure 3.9. It should be emphasized that our

criterion for choosing a is the maximum theoretical yield angle, not the yield angle itself, which will take

different values for different materials, and is determined by the material constant ξ. There is not a closed

form solution for φy,max (a), though the trend is apparent from figure 3.9; a = b = 1 gives the same curve

as GE-C, with a maximum of about 17◦, and the maximum increases with decreasing a to 90◦ for a = 0.

Figure 3.9 shows that a = 1/4 gives a maximum slightly over 40◦, a reasonable choice.
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So beginning from the free energy, equation 3.106, we have set the exponent b to match the known

pressure dependence of the elastic moduli, and set a based on a theoretical maximum yield angle. a = 1/4

implies that no material may have a yield angle greater than ∼ 41◦. The actual yield angle for a given

material gives the material constant ξ, and the remaining material constant G̃ is just a scale factor, and does

not impact the stress or strain ratio. The non-linear shear model (GE-NLS) appears, then, to successfully

generalize GE in the desired fashion. Unfortunately, it also has significant drawbacks, and seems to predict

unphysical behavior in many situations. The form of the stiffness matrix is complicated, and none of the 36

terms in M are zero; they all depend on the shear strain. The nonlinear relationship between shear stress

and shear strain results in a shear modulus that is a power law function of not only the compression, but

also the shear strain us. Thus, in the absence of shear (i.e. pure (isotropic) compression), the shear modulus

is zero. In this case M is singular,

M =




K K K 0 0 0

K K K 0 0 0

K K K 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




(3.112)

where the bulk modulus K is given by

K =
2

5
ξG̃(b+ 1)(b+ 2)∆b (3.113)

According to the standard relationships between the various elastic constants,

E =
9KG

3K +G
(3.114)

ν =
3K − 2G

2(3K +G)
(3.115)

G = 0 implies a Young’s modulus E = 0, and Poisson’s ratio ν = 1/2. The latter is typically associated with

“incompressibility”, i.e. a diverging bulk modulus, but it is evident in equation 3.113 that the bulk modulus

is well defined here; the vanishing shear modulus is what gives ν = 1/2 in this case (see [92] for some more

interpretation of this issue).

The vanishing shear modulus at isotropic compression in GE-NLS results in a stiffness matrix that is

singular there. This presents numerical difficulties, particularly when the inverse (compliance) matrix is

needed, as it will be in subsequent sections. This will result in some rather unphysical behavior, and there

really is no experimental support for vanishing shear and Young’s moduli at isotropic compression, or a

shear modulus that is a power law function of the shear (see, e.g., [57], and section 4.3.3). So while GE-NLS

does allow for realistic yield angles, in light of these difficulties and the cumbersome nature of the governing

equations, it is unlikely that this model is the best choice for modeling granular statics.
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3.6 The Gibbs Free Energy in Elasticity

Thr rigorous thermodynamic approach to modeling nonlinear elasticity in granular materials has also

found favor in the geotechnical engineering community. Zytynski and colleagues [66] noted in 1978 that many

elastic models employed at the time did not conserve energy. Energy conservation, of course, is guaranteed in

the hyperelastic formulation, which begins with the elastic energy potential. Elastic potentials appropriate

for clays (in which the elastic moduli are taken to vary linearly with pressure) have been investigated by

Houlsby [93] and Borja et al. [94], among others, and a general thermodynamic approach to modeling both

elasticity and plasticity, logically termed “hyperplasticity”, has been formulated by Collins and Houlsby [74]

and later by Houlsby and Puzrin [67, 75]. Hyperelastic forms suitable for our present purposes have been

proposed recently by Houlsby, Amorosi, and Rojas [76] and Einav and Puzrin [73], and will be considered in

what follows.

3.6.1 Thermodynamic potentials and the Legendre transform

One difficulty of GE and its variants considered above is the fact that the elastic moduli are given as

functions of the strains. Experiments invariably describe elastic moduli as functions of stress or pressure. This

problem is not unique to elasticity; it is often preferred to take temperature and pressure as independent

variables. This suggests we begin instead with the Gibbs free energy, whose variables are temperature

and pressure. The change of independent variables is accomplished via the Legendre transform. More

comprehensive discussions of the transform and its properties are given in [91] and [67]; we simply state here

that for complementary potentials X (xi) and Y (yi), where

yi =
∂X

∂xi
(3.116)

and

xi =
∂Y

∂yi
(3.117)

the potentials are related by

X (xi) + Y (yi) = xiyi (3.118)

Our presentation of the elasticity theory in section 3.2 gave the Helmholtz free energy as a Taylor series

in the strains, but the linear elastic material also possesses a Gibbs free energy from which the identical

constitutive behavior can be derived [67, 95]. Recall that the Helmholtz free energy for linear elasticity is

given by

F = 1
2K∆2 +Gu2

s (3.119)

with

P =
−σii

3
=

∂F
∂∆

(3.120)
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and

σs =
∂F
∂us

(3.121)

We seek the negative Gibbs free energy G, such that

∆ =
∂G
∂P

(3.122)

and

us =
∂G
∂σs

(3.123)

According to the Legendre transform, equation 3.118,

G = P∆ + σsus − F = P∆ + σsus − 1
2K∆2 −Gu2

s (3.124)

and equations 3.120 and 3.121 give

P = K∆ (3.125)

and

σs = 2Gus (3.126)

Solving these for ∆ and us,

∆ =
P

K
(3.127)

us =
σs

2G
(3.128)

and substituting into equation 3.124 gives

G =
P 2

K
+

σ2
s

2G
− 1

2
K
P 2

K2
−G

σ2
s

4G2
(3.129)

or

G =
P 2

2K
+

σ2
s

4G
(3.130)

The second derivative of G with respect to the components of stress gives the compliance tensor, and the full

incremental relation is 


δu1

δu2

δu3

δγ4

δγ5

δγ6




=




1
E − ν

E − ν
E 0 0 0

− ν
E

1
E − ν

E 0 0 0

− ν
E − ν

E
1
E 0 0 0

0 0 0 1
G 0 0

0 0 0 0 1
G 0

0 0 0 0 0 1
G







δσ1

δσ2

δσ3

δτ4

δτ5

δτ6




(3.131)

where Young’s modulus E and Poisson’s ratio ν are defined in terms of the bulk modulus K and shear

modulus G by equations 3.114-3.115.

The transformation is straightforward for linear elasticity, but this is not generally the case; for example,

there is no closed form solution for the Gibbs free energy in granular elasticity.
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3.6.2 Model of Einav and Puzrin

Though the Gibbs free energy cannot be obtained from GE, we might apply similar arguments and

propose a modification of the Gibbs free energy of linear elasticity. An analogous form is

G =
P 2−m

B1−m

(
β +

σ2
s

P 2

)
(3.132)

A potential of this type was considered by Einav and Puzrin (EP), who focused on the case m = 1 for clays;

for dry granular materials, we will instead prefer m = 1/2, such that

G =

√
P 3

B

(
β +

σ2
s

P 2

)
(3.133)

where the constant β is dimensionless, and B has units of pressure. The elements of the compliance matrix

will have a P− 1
2 dependence, and the corresponding elastic moduli will have the familiar P

1
2 dependence.

While this is the same sort of argument applied to the Helmholtz free energy in GE, it is similarly not

invertible; the approaches are not equivalent.

Thermodynamic stability requires that the Gibbs free energy be a concave function of the stress [96], or

equivalently that the negative Gibbs free energy G be convex. So we require

∂2G
∂P 2

=
3

4
(BP )

− 1
2

(
β +

σ2
s

P 2

)
≥ 0 (3.134)

∂2G
∂σ2

s

= 2 (BP )
− 1

2 ≥ 0 (3.135)

∂2G
∂P 2

∂2G
∂σ2

s

−
(

∂2G
∂P∂σs

)2

=
3

2
(BP )

−1

(
β +

σ2
s

P 2

)
− (BP )

−1 σ2
s

P 2
=

1

2
(BP )

−1

(
3β +

σ2
s

P 2

)
≥ 0 (3.136)

According to condition 3.135, the constant B must be positive. If we consider the case of pure compression

(σs = 0), condition 3.134 or 3.136 dictates that the constant β must also be positive. Since σ2
s/P

2 is always

positive, G is convex everywhere, and does not possess the thermodynamically unstable region of GE. While

this was identified as a feature of GE, and provided a clear definition of the yield angle, we have seen that the

values obtained were always unrealistic, with no clear method of relaxing that constraint. This analogous

Gibbs free energy potential, lacking such a constraint, may then prove to be a better model for granular

statics.

In GE, the thermodynamic stability condition on the stress invariants was identical to a surface beyond

which there were no elastic solutions whatsoever. While G lacks a similar thermodynamic constraint, it

similarly possesses a region of no solutions outside a Drucker-Prager type yield surface. Identifying

∂G
∂P

= ∆ =
3

2
η

(
P

B

) 1
2

− σ2
s

2BP
3
2

(3.137)

and solving for σs,

σs =

√
3βP 2 − 2∆B

1
2P

3
2 (3.138)
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Figure 3.10. The stress ratio σs/P as a function of pressure, for β = 1 and B =1e12 (arbitrary units).

which we can rewrite in terms of the stress ratio as

σs

P
=

√
3β − 2∆B

1
2

P
1
2

(3.139)

The critical stress ratio is not tangent to the stress paths as in GE, but is approached in the limit:

lim
P→∞

σs

P
=

√
3β (3.140)

Stress paths for various values of ∆ are shown in figure 3.10. The strain paths can be determined by solving

∂G
∂σs

= us = 2σs (BP )
− 1

2 (3.141)

for σs,

σs =
1

2
us (BP )

1
2 (3.142)

and substituting into equation 3.137 to obtain

∆ =
3

2
β

(
P

B

) 1
2

− u2
sB

1
2

8P
1
2

(3.143)

Some strain paths are plotted in figure 3.11, revealing that the Einav-Puzrin (EP) model similarly predicts

shear dilation. Unlike the stress ratio, and lacking the stability condition on the strains of GE, there do not

appear to be values of us/∆ that are strictly off limits.

Having established this limit on the stress invariants, we turn our attention again to the infinite plane

problem (figure 3.4), in order to ascertain what restrictions may be placed on the yield angle. The plane

problem is more complicated in this case, as differentiating the free energy now gives the strains as functions

of the stresses. Defining the stress ratio in terms of the strain ratio will require inverting the system. Consider
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Figure 3.11. EP model strain paths for B = 1e12 and β = 1 (arbitrary units).
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Figure 3.12. The stress ratio τ4/σ2 as a function of the strain ratio γ4/u2 for plane stress in the EP model.
τ4/σ2 approaches the limit

√
5/3 as γ4/u2 becomes large.

the case of plane stress, in which σ3 = τ5 = τ6 = 0 and u3 = γ5 = γ6 = 0; we wish to obtain the ratio τ4/σ2.

Recall that u1 = 0, though σ1 is not; the first step, then, in the solution process is to solve u1 = 0 for σ1,

and substitute into the remaining two equations. There are two solutions for σ1 (see appendix D); one stable

and one unstable (P < 0). The stable solution gives a limiting strain ratio r = γ4/u2 for increasing stress

ratio R = τ4/σ2 (figure 3.12), with

lim
τ4
σ2

→∞

γ4

u2
=

√
2

3
(β + 6) (3.144)

This does not provide any definition of the yield angle. Nevertheless, it is standard praxis in granular

mechanics to impose a yield condition external to the elastic model itself. The simplification provided by

GE, defining the yield angle with the stability condition, has proved too strict for modeling real problems.

The EP model thus far succeeds in providing for non-linearity, thermodynamic consistency, and shear dilation

without this over-constraint, and will be further evaluated in sections 4 and 5.

3.6.3 Model of Houlsby, Amorosi, and Rojas

The final model we will consider is that recently proposed by Houlsby, Amorosi, and Rojas (HAR) [76].

They initially propose three different potentials. The first is a Helmholtz free energy of precisely the form

of GE (equation 3.36). They do not pursue this form any further, nor apparently are they aware of the

previous work of Jiang and Liu [68]. They also consider the EP model; but curiously, they consider the

limiting stress ratio, present in GE, EP, and essentially the defining characteristic of granular materials, to



39

Figure 3.13. ∆ vs. us for α = 1 and P 2/
(
9A2

)
=1e-17 (dot), 5e-17 (dash), and 1e-16 (solid).

be a drawback to this type of model. Citing additionally the desire for ease of manipulation, particularly

the ability to convert between Helmholtz and Gibbs free energy forms, they propose

F = A
(
α∆2 + u2

s

)n
(3.145)

Taking n = 3/2,

F = A
(
α∆2 + u2

s

) 3
2 (3.146)

achieves the desired pressure dependence for dry granular materials. This potential is convex everywhere, has

solutions everywhere, and the complementary energy can be obtained via the Legendre transform [67, 76].

For n = 3/2 it is (see appendix E)

G =
2

3
√

3A

(
1

α
P 2 + σ2

s

) 3
4

(3.147)

Contrary to the GE and EP models, the HAR model allows for pure shear (σs 	= 0 when P = 0) and tensile

solutions. It does, however, feature shear dilation. The relationship is obtained (for n = 3/2) by taking

∂F
∂∆

= P = 3Aα∆
√

α∆2 + u2
s (3.148)

or
P 2

9A2α3
= ∆4 +

1

α
∆2u2

s (3.149)

Some strain paths for varying values of P are shown in figure 3.13. Note that in this model, the constant A

has units of pressure, and α is dimensionless.
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4 Elastic Moduli

4.1 Pressure Dependence

It was noted previously that dry, cohesionless granular materials invariably possess elastic moduli that

vary approximately as P 1/2 [37–57]. This sort of stress dependence is built into the GE-C, EP, and HAR

models by choosing a = 1, m = 1/2, and n = 3/2, respectively. Consider the case of pure compression, in

which σs, us = 0. The bulk modulus is given by

K =
P

∆
=

1

∆

∂F
∂∆

(4.1)

or equivalently
1

K
=

∆

P
=

1

P

∂G
∂P

(4.2)

For the GE-C (equation 3.81), EP (equation 3.133), and either form of the HAR model (equations 3.146 and

3.147), this leads to

K =

√
6ξG̃

5

√
P (4.3)

K =
2
√
B

3β

√
P (4.4)

K =
√

3Aα
3
4

√
P (4.5)

So all three models give a bulk (as well as shear) modulus that indeed varies with the square root of pressure.

However, triaxial tests and other studies [47, 49–52, 55, 56] have identified more specific stress dependence,

which we investigate in this section.

4.2 Stress Induced and Inherent Anisotropy

A defining characteristic of granular materials is anisotropy. They are typically anisotropic in two fun-

damentally different ways, which are “inherent” or “fabric” anisotropy, and stress-induced anisotropy. Fab-

ric anisotropy presumably arises from inhomogeneities in the particle contact network, such that even for

isotropic stress states, the material possesses different stiffness in different directions. This type of anisotropy

depends strongly on the deformation history or sample preparation, e.g. the method of pouring a sandpile

or triaxial specimen. On the other hand, granular materials are observed to become anisotropic under

anisotropic stress conditions, even if initially isotropic under isotropic stress conditions. This is referred to

as stress-induced anisotropy. We may account for fabric anisotropy in linear elasticity by introducing elastic
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σh σh

σv

Figure 4.1. The triaxial test configuration. The stress component into the page is also equal to σh; in the
“true” triaxial test, this third stress component may differ from the other two.

constants for each direction, e.g. a compliance matrix of the form


1
E1

−ν21

E2
−ν31

E3
0 0 0

−ν12

E1

1
E2

−ν32

E3
0 0 0

−ν13

E1
−ν23

E2

1
E3

0 0 0

0 0 0 1
G12

0 0

0 0 0 0 1
G23

0

0 0 0 0 0 1
G13




(4.6)

Stress-induced anisotropy, on the other hand, implies not only that the elasticity is not linear (i.e. the

moduli are functions of stress), but that there is a dependence on individual stress components, not just

the stress invariants or mean stress. Though the free energies under consideration are given in terms of

the invariants, the components of the stiffness matrix (or compliance matrix) indeed exhibit stress-induced

anisotropy; they depend on both the invariants ∆ and us, but also on the individual strains ui. A term-by-

term comparison of the compliance matrix from anisotropic linear elasticity (equation 4.6) and the non-linear

models under consideration may give the specific stress dependence of the elastic moduli. In addition, these

models possess what Einav and Puzrin [73] call stress-induced cross anisotropy. This is evidenced by the

non-zero ∂2G/∂σi∂τj terms present in the non-linear models, which are the source of their shear dilatancy.

The triaxial test serves as an important simplification and test case for non-linear models. In the triaxial

test, beginning from an isotropic stress state, an additional axial load is applied to a cylindrical specimen

(see figure 4.1). All three shear stress components are zero, which eliminates the cross-anisotropic terms

from the nonlinear models. The two horizontal components of stress (σ1 and σ3) are equal, so we may write
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the anisotropic linear elasticity compliance matrix as


1
Eh

−νvh

Ev
−νhh

Eh

−νhv

Eh

1
Ev

−νhv

Eh

−νhh

Eh
−νvh

Ev

1
Eh


 (4.7)

In the absence of shear components, the non-linear compliance matrices similarly simplify to 3 x 3, now

allowing for direct comparison of the terms; the Young’s moduli may be determined directly from the

diagonal terms. Many recent experiments [47, 49–52, 55, 56] have examined the reversible elastic regime in

the triaxial test, and offer a point of direct comparison for the theories presented here, and some insight

into the difference between fabric and stress-induced anisotropy. The experiments find that the Young’s

moduli do not just vary with the mean stress, but with the stress in a particular direction; e.g. the vertical

Young’s modulus is a function of the vertical stress, but is largely independent of the horizontal stress. The

experimental data are well fitted by the following expressions:

Ev = Cvσn
v (4.8)

Eh = Chσn
h (4.9)

where n is never far from 1/2, and here the constants C must have units of P 1/2. Cv 	= Ch implies some

degree of fabric anisotropy, as then Ev 	= Eh even when σv = σh; conversely, if Cv = Ch, the Young’s moduli

are equal if the stresses are equal, but anisotropic stress states induce anisotropy. This is illustrated by

considering the ratio Ev/Eh as a function of the stress ratio σv/σh, as in the data of Hoque and Tatsuoka,

figure 4.2. The hyperelastic models considered here do not incorporate fabric anisotropy, though they do

not preclude doing so. It would be difficult to establish the anisotropic constants with any certainty, as they

appear to depend on the details of the sample formation. Even in the rather simple case of the triaxial test,

where some consistent difference between Cv and Ch might be discernible, there does not appear to be one;

in some experiments [49, 52, 55, 56], Cv > Ch, while in others [47] Ch > Cv.

4.3 Comparison of Theories and Experiment

4.3.1 Young’s Modulus

As a first point of comparison, we note that for Cv = Ch, i.e. an “inherently isotropic”material, the usual

experiment data fits give the following measure of stress-induced anisotropy:

Ev

Eh
=

(
σv

σh

)n

(4.10)
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Figure 4.2. Experiment data from [56] illustrating the difference between “stress-induced” and “inherent”
anisotropy. Here E1v and E1h are constants equivalent to Cv and Ch in equations 4.8-4.9.
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Figure 4.3. The ratio of Young’s moduli Ev/Eh as a function of the stress ratio σv/σh for the GE-C model
(solid line) and the empirical fit (dashed line). Here ξ = 5/3, in order to give the highest possible value of

the yield angle for this model (∼ 17◦). The dotted lines mark the stability limits of GE-C.

The advantage of using a Gibbs free energy formulation for comparison of the Young’s moduli is apparent,

since this relationship is easily obtained by differentiating:

Ev

Eh
=

∂2G
∂σ2

1

∂2G
∂σ2

2

(4.11)

Here the vertical component is σ2 and the horizontal component is σ1. The result for the EP and HAR

models, respectively, is

Ev

Eh
=

(β + 30)
(

σv

σh

)2

+ (4β + 60)
(

σv

σh

)
+ 4β + 54

(β + 6)
(

σv

σh

)2

+ (4β + 36)
(

σv

σh

)
+ 4β + 102

(4.12)

Ev

Eh
=

(
63α2 + 30α + 1

) (
σv

σh

)2

+
(−126α2 + 30α + 4

) (
σv

σh

)
+ 63α2 + 48α + 4

(36α2 + 12α + 1)
(

σv

σh

)2

+ (−72α2 + 12α + 4)
(

σv

σh

)
+ 36α2 + 84α + 4

(4.13)

For GE and related Helmholtz free energy models, the situation is more complicated. Here we have a stiffness

matrix of strain dependent terms, and equations for the stresses σv and σh, also in terms of the strains. There

is not a simple expression for the ratio of the Young’s moduli as functions of stress, but inverting the stiffness

matrix at least gives Ev and Eh in terms of the strains. With both σv/σh and Ev/Eh given as functions of

the strain ratio uv/uh, we may at least plot their relationship parametrically. The result, for GE-C, is shown

in figure 4.3. GE-C matches well near the isotropic stress state, but Ev/Eh falls off sharply with increasing
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Figure 4.4. The ratio of Young’s moduli Ev/Eh as a function of the stress ratio σv/σh for the EP model,
at varying values of β, and empirical fit.

anisotropy. The dotted lines in figure 4.3 mark the loss of stability (convexity) in GE-C; while this stability

condition imposes a severe constraint on the yield angle in the plane problem (φy � 17◦), the limits here are

not unrealistic; the elastic regime is not found to extend far beyond σv/σh ≈ 2.2 [55]. The values given by the

EP model (equation 4.12) and the HAR model (equation 4.13) are shown in figures 4.4 and 4.5, respectively.

In the EP model, Ev/Eh is not strongly influenced by the value of β, and the curves are slightly flatter than

the fit to experiment data, but there are no large discrepancies within the experimentally determined elastic

range 0.4 � σv/σh � 2.5. The HAR model appears reasonable for smaller values of α (∼ 1/3), but has some

rather unphysical implications for higher values of α. In this case, there is a region σv/σh < 1 where the

ratio Ev/Eh has a minimum, and increases with decreasing σv/σh. There is no such trend observable in the

experiment data. This, at least, places some restrictions on allowable values of α.

Another noteworthy aspect of the experiment data fits (equations 4.8-4.9) is the assumption that the

vertical Young’s modulus is a function of only the vertical stress, and similarly the horizontal Young’s

modulus is a function of only the horizontal stress. While there is no discernible relationship between Ev

and σh (or Eh and σv), there is some scatter in the data. Data of Hoque and Tatsuoka [49, 52] sometimes

indicate Ev increasing slightly with σh, sometimes decreasing (figure 4.6). Bellotti et al. [47] actually plot Ev

vs. σh, again finding them to be relatively independent, though perhaps Ev decreases with σh (figure 4.7).

Kuwano and Jardine [55] do not present their data in this fashion, but find∼ 10% variation in their data taken

at different stress ratios, when plotting Ev vs. σv and Eh vs. σh (figure 4.8). This sort of independence is

not apparent in the hyperelastic models, which all appear to depend on all the stress components. A suitable

model should at least possess a weak relationship between the Young’s modulus in a given direction and the
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Figure 4.5. The ratio of Young’s moduli Ev/Eh as a function of the stress ratio σv/σh for the HAR model,
at varying values of α, and empirical fit.

Figure 4.6. Data of Hoque and Tatsuoka, showing no discernible relationship between Ev and σh. On the
left, Ev appears to decrease slightly with σh ([49], reprinted, with permission, from the Geotechnical

Testing Journal, Vol. 19, No. 4, copyright ASTM International, 100 Barr Harbor Drive, West
Conshohocken, PA 19428). On the right, it increases slightly with σh [52].
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Figure 4.7. Young’s modulus as a function of stress as determined by Bellotti et al. [47]. Ev perhaps
decreases slightly with σh (left); there is no clear dependence of Eh on σv (right; note the mislabeling of the

x axis).

Figure 4.8. Data of Kuwano and Jardine [55] showing a ±10% scatter about the data fits; Ev is assumed
to be independent of σh, and Eh independent of σv.
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stresses perpendicular to that direction. Consider, then, the expressions for Ev and Eh resulting from the

various hyperelastic models. For Helmholtz free energy models such as GE and GE-C, once again we have

E, σ in terms of the strains and must resort to parametric plotting (figure 4.9) in lieu of a simple solution

E(σ). For the EP (figure 4.10) and HAR (figure 4.11) models, we have

Ev

B
=

4
√

3
(
2σh

B + σv

B

) 5
2

(β + 6)
(

σv

B

)2
+ (4β + 36)

(
σv

B

) (
σh

B

)
+ (4β + 102)

(
σh

B

)2 (4.14)

Ev

A
=

18α
3
4

(
(6α + 1)

(
σv

A

)2
+ (−12α + 4)

(
σv

A

) (
σh

A

)
+ (6α + 4)

(
σh

A

)2
) 5

4

(36α2 + 12α + 1)
(

σv

A

)2
+ (−72α2 + 12α + 4)

(
σv

A

) (
σh

A

)
+ (36α2 + 84α + 4)

(
σh

A

)2 (4.15)

It is apparent that both the GE-C and HAR models predict large variations in Ev with σh, in stark contrast

with experiment data, in which there is no clear relationship. In the EP model, though Ev is not explicitly

independent of σh, there is very little variation over the entire range of stress ratios in the elastic regime. Of

course, we expect similar independence of Eh and σv; for the EP model,

Eh

B
=

4
√

3
(
2σh

B + σv

B

) 5
2

(β + 30)
(

σv

B

)2
+ (4β + 60)

(
σv

B

) (
σh

B

)
+ (4β + 54)

(
σh

B

)2 (4.16)

and for the HAR model,

Eh

A
=

18α
3
4

(
(6α + 1)

(
σv

A

)2
+ (−12α + 4)

(
σv

A

) (
σh

A

)
+ (6α + 4)

(
σh

A

)2
) 5

4

(63α2 + 30α + 1)
(

σv

A

)2
+ (−126α2 + 30α + 4)

(
σv

A

) (
σh

A

)
+ (63α2 + 48α + 4)

(
σh

A

)2 (4.17)

Figures 4.12, 4.13, and 4.14 indicate that Eh is quite independent of σv in the EP model, but there are

significant variations in the HAR and GE-C models.

Finally, we expect that Young’s modulus should vary approximately with the square root of the in-plane

stress component, as observed in experiments (equations 4.8-4.9). Equations 4.14 and 4.15 for Ev are plotted

against σv in figures 4.15 and 4.16, and the parametric plot for GE-C is shown in figure 4.17. The scaling here

is arbitrary, so it is the shape, not the magnitude, of the curves that is of interest. While none of the models

are exactly linear on the log-log plots, it is clear that the EP model is the best of the three at capturing this

behavior. As noted previously, the HAR model is a worse match to experiment data for increasing values of

α, and once again we have fixed ξ = 5/3 for GE-C in order to achieve the maximum (but still too low) yield

angle ∼ 17◦.
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Figure 4.9. The vertical Young’s modulus Ev as a function of the horizontal stress σh for the GE-C model.
Values are normalized with respect to G̃; σv = 1 and ξ = 5/3. Ev varies substantially with σh, in contrast

with experiment data.

Figure 4.10. The vertical Young’s modulus Ev as a function of the horizontal stress σh for the EP model,
σv/B = 1. Ev varies only slightly with σh, in relative agreement with experiment data, where there is no

clear dependence of Ev on σh.
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Figure 4.11. The vertical Young’s modulus Ev as a function of the horizontal stress σh for the HAR model,
σv/A = 1. Ev varies substantially with σh, in contrast with experiment data. In particular, as noted

previously, results become more unphysical for increasing values of α.

Figure 4.12. The horizontal Young’s modulus Eh as a function of the vertical stress σv for the EP model,
σh/B = 1. Once again, Eh varies only slightly with the out of plane stress σv, in agreement with

experiment data.
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Figure 4.13. The horizontal Young’s modulus Eh as a function of the vertical stress σv for the HAR model,
σh/A = 1. Eh varies substantially with the out of plane stress σv, particularly for larger values of α.

Figure 4.14. The horizontal Young’s modulus Eh as a function of the vertical stress σv for the GE-C
model. Values are normalized with respect to G̃; σh = 1 and ξ = 5/3. Eh varies substantially with σv, in

contrast with experiment data.
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Figure 4.15. Ev vs. σv for the EP model, and experiment fit.

Figure 4.16. Ev vs. σv for the HAR model, and experiment fit.
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Figure 4.17. Ev vs. σv (normalized to G̃) for the GE-C model, and experiment fit.
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Figure 4.18. Measured values of Poisson’s ratio, from [55] (left) and [97] (right). Poisson’s ratio is assumed
to be independent of the isotropic stress, though there is a large amount of scatter in the data.

4.3.2 Poisson’s Ratio

In conducting triaxial tests, many researchers [49, 50, 52, 55–57, 97, 98] have also measured Poisson’s

ratio. Though there is typically a large amount of scatter in these data, two general features are apparent.

First, Poisson’s ratio does not vary significantly with the mean stress (see figure 4.18). Second, there is a

power law relationship between Poisson’s ratio and the stress ratio (figure 4.19), i.e.

νvh ∼
(

σv

σh

)n
2

(4.18)

This trend is deduced from the Young’s moduli, equations 4.8-4.9, and by noting that symmetry in the

compliance matrix (equation 4.6)1 requires
νvh

Ev
=

νhv

Eh
(4.19)

or
νvh

νhv
=

Ev

Eh
=

Cv

Ch

(
σv

σh

) 1
2

(4.20)

This could be satisfied by any number of expressions for νvh and νhv, but it is assumed that [49, 52, 56]

νvh = ν0

(
Cv

Ch

) 1
2
(

σv

σh

) 1
4

(4.21)

νhv = ν0

(
Ch

Cv

) 1
2
(

σh

σv

) 1
4

(4.22)

where ν0 is a constant. For an isotropic material, Cv = Ch, and

νvh = ν0

(
σv

σh

) 1
4

(4.23)

1It is interesting to note that this symmetry is implied by the existence of the free energy, which is pointed out by AnhDan
and Koseki [97]; as the present work has made apparent, the stress-strain relation and elastic moduli also proceed from this
free energy, though this is never considered when choosing forms to fit the experimental data.
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Figure 4.19. Experiment data for Poisson’s ratio vs. stress ratio, from [97] (right) and [49] (left: reprinted,
with permission, from the Geotechnical Testing Journal, Vol. 19, No. 4, copyright ASTM International,

100 Barr Harbor Drive, West Conshohocken, PA 19428).
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νhv = ν0

(
σh

σv

) 1
4

(4.24)

Others observe a stronger dependence of νvh on σv/σh ([97, 98], figure 4.19), νvh ∼ (σv/σh)
1/2

, even when

E ∼ σ1/2. For the hyperelastic models, it is apparent from the form of the compliance matrix (equation 4.6)

that

νij =

∂2G
∂σj∂σi

∂2G
∂σ2

i

(4.25)

Thus, we may similarly obtain analytical expressions for Poisson’s ratio from the Gibbs free energy in the EP

and HAR models. For the GE-C model, we must continue to resort to parametric plotting, as we can only

obtain the stiffness matrix (inverse compliance matrix) and stresses as functions of the strains. In every case,

the scale constants G̃, A, B cancel, so Poisson’s ratio depends only on the stresses and the dimensionless

constants ξ, α, and β. So, for the EP and HAR models, the experimental data on Poisson’s ratio should

give some idea what the appropriate range of values is for β and α; for GE-C, we have already fixed ξ = 5/3

based on yield angle constraints.

For the case of isotropic stress, σ1 = σ2 = σ3, all three models give a constant Poisson’s ratio:

νiso =
18ξ − 5

36ξ + 5
(4.26)

νiso =
8 − β

16 + β
(4.27)

νiso =
6α − 1

12α + 1
(4.28)

for the GE-C, EP, and HAR models, respectively. Some experimental data indicate νiso is as small as

0.1-0.2; if we take νiso = 0.163 [49], this implies ξ ≈ 0.479, for which equation 3.80 indicates there are no

solutions. This is further evidence of the over-constraint resulting from the the convexity requirement of GE

and GE-C. For the EP and HAR models, there are no such restrictions, and we are free to choose β and α

to match experimental values of Poisson’s ratio. The isotropic values given above give some idea what range

of values for α and β are appropriate for real materials. We do not in practice encounter negative Poisson’s

ratios in granular materials, so we do not expect β > 8 or α < 1/6. For isotropic, linear elastic materials,

thermodynamics requires ν < 0.5; there is no such restriction on anisotropic materials [99], and some values

of ν greater than 0.5 have been observed [98]. The isotropic value is typically lower, however, than 0.5. For

the EP model this merely implies β > 0, which is required by thermodynamics. The relationship between

β and νiso is plotted in figure 4.20. νiso is equal to 0.5 in the limit α → ∞ in the HAR model, though it

already reaches a value of 0.44 at α = 2 (figure 4.21). So, 1/6 < α < 2 is probably a reasonable range to

investigate.
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Figure 4.20. The isotropic Poisson’s ratio as a function of dimensionless material constant β in the EP
model.

Figure 4.21. The isotropic Poisson’s ratio as a function of dimensionless material constant α in the HAR
model.
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Figure 4.22. Poisson’s ratio, νvh, as a function of the stress ratio σv/σh, for the EP model.

For anisotropic stress states, νij varies with the stress ratio. From equation 4.25, we obtain

νvh =
(6 − β)

(
σv

σh

)2

+ (48 − 4β)
(

σv

σh

)
+ 18 − 4β

(β + 6)
(

σv

σh

)2

+ (4β + 36)
(

σv

σh

)
+ 4β + 102

(4.29)

for the EP model, and

νvh =

(
18α2 − 3α − 1

) (
σv

σh

)2

+
(−36α2 + 51α − 4

) (
σv

σh

)
+ 18α2 + 6α − 4

(36α2 + 12α + 1)
(

σv

σh

)2

+ (−72α2 + 12α + 4)
(

σv

σh

)
+ 36α2 + 84α + 4

(4.30)

for the HAR model. These are plotted along with observed experimental relationships in figures 4.22 and

4.23. The EP model indicates that νvh has close to a power law variation with σv/σh, except for large

values of β (e.g. β = 6), though such low values of Poisson’s ratio are not observed in practice. The power

law scaling is closer to the value 0.55, observed in some experiments, than 0.25. The HAR model deviates

slightly from this power law scaling, with curves similarly steeper than (σv/σh)
0.25

. They also have a peak for

relatively high values of the stress ratio (∼ 2), after which νvh decreases slightly. No such trend is discernible

from the experiment data.

4.3.3 Shear Modulus

It is apparent from the comparisons of Young’s modulus and Poisson’s ratio that of the three hyperelastic

models considered, the EP model seems to best capture the physics observed experimentally. Finally, we

consider the shear modulus obtained from the models and experiments. This is frequently measured by shear
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Figure 4.23. Poisson’s ratio, νvh, as a function of the stress ratio σv/σh, for the HAR model.
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wave propagation [42, 47, 55], often in a triaxial geometry. The shear modulus is identified as

Gij =
δτij

δγij
=

1

∂2G
∂τ2

ij

(4.31)

according to equation 4.6. This results in a shear modulus for the EP model of

G =

√
BP

4
(4.32)

and for the HAR model,

G =

√
3A

(
1
αP

2 + σ2
s

) 5
4

2
(
τ2
4 + 1

αP
2 + σ2

s

) (4.33)

There is no stress-induced anisotropy in the shear moduli in either case, i.e.

G = G12 = G23 = G13 (4.34)

In the EP model, the shear modulus simply depends on the square root of the mean normal stress P . This,

of course, was the idea behind all the hyperelastic forms presented here, and the shear modulus (just as with

the bulk and Young’s moduli) is indeed found to vary with the square root of pressure [40, 42, 55]. Roesler

[42] and others [47, 55, 57], however, find a more specific relationship between the shear modulus and stress;

they find that the shear modulus does not depend on the normal stress acting on the plane of shear, e.g.

G12 	= f (σ3) (4.35)

This independence is illustrated by the shear wave measurements of Roesler ([42], figure 4.24). More specif-

ically, they find that

G12 ∼ (σ1σ2)
1
4 (4.36)

Thus the shear modulus still varies with the square root of the mean stress (figure 4.25), but the EP model

predicts an equal dependence of the shear modulus on each component of normal stress (figure 4.26). This

is a notable shortcoming of the EP model, but is present also in the HAR model. The HAR model also

gives a shear modulus that is a function of the shear stresses. HongNam et al. [57] have made measurements

where one shear stress component is non-zero, and the normal stresses are isotropic, e.g.

σ ≡ σ1 = σ2 = σ3 (4.37)

τ ≡ τ4 (4.38)

τ5 = τ6 = 0 (4.39)

This gives, for the HAR model,

G =

√
3A

2

(
1
ασ2 + 2τ2

) 5
4(

1
ασ2 + 3τ2

) (4.40)

Figure 4.27 shows that the HAR shear modulus has only a small dependence on the shear stress τ , either

increasing or decreasing depending on the value of α; HongNam et al. find little variation in the shear

modulus with shear stress (figure 4.28).
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Figure 4.24. Shear wave velocities, from [42] (with permission from ASCE), as a function of each of the
normal stresses, here labeled σa, σp, and σs. The shear modulus (∼ vs) is independent of the normal stress

in the planes of shear, σs.
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Figure 4.25. The shear modulus as a function of pressure, for isotropic stress. Here the EP and HAR
models are identical, with σs = 0, and

√
B/4 =

√
3A/2α1/4 = 286.6 MPa1/2. The experiment fit [55] is

Ghh = 286.6σ−0.04
v σ0.53

h .

Figure 4.26. The shear modulus Ghh as a function of the vertical stress σv. Here the EP and HAR models
are identical, with σs = 0, and

√
B/4 =

√
3A/2α1/4 = 286.6 MPa1/2. The experiment fit [55] is

Ghh = 286.6σ−0.04
v σ0.53

h .
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Figure 4.27. The effect of shear stress τ on the shear modulus in the HAR model.

Figure 4.28. The effect of shear stress on the shear modulus [57]. No significant trend is identified; the
decreasing values at larger shear are attributed to increasing plastic deformations. Reprinted, with

permission, from the Geotechnical Testing Journal, Vol. 19, No. 4, copyright ASTM International, 100
Barr Harbor Drive, West Conshohocken, PA 19428.
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5 Stress Distributions

GE has been implemented in finite element codes and employed to calculate stress distributions in sand

piles [25], silos, and granular layers subject to a point load [71], and agrees relatively well with experiment

data. As the EP model provides better analytical results for the elastic moduli, without the over-constraint

on the yield angle of GE, we shall similarly implement it in the finite element code Abaqus [100] and test it

against experiment data and published results of GE, along with the HAR model.

5.1 Abaqus Implementation of Non-linear Elastic Models

One may implement any desired material behavior in Abaqus through the user material (UMAT) sub-

routine. In the present case of non-linear, small strain elasticity, this simply requires providing the stiffness

matrix, and updating the stresses. For GE and HAR, this is straightforward; as both possess a closed form

of the Helmholtz free energy, the stiffness matrix may be obtained by differentiating:

Mijk� =
∂2F

∂uij∂uk�
(5.1)

For the EP model, differentiating the Gibbs free energy gives the compliance matrix,

Cijk� =
∂2G

∂σij∂σk�
(5.2)

The compliance matrix must be inverted to obtain the stiffness matrix for Abaqus, which gives the stiffness

matrix in terms of the stresses, whereas the stiffness matrix obtained directly from the Helmholtz free energy

in GE and HAR is a function of the strains. Either is equally acceptable for Abaqus. The three problems

of interest can all be treated with either plane strain or axisymmetric simplifications, in which there is only

one component of shear stress and shear strain. Additional plane stress and 3D implementations of the EP

model are given in appendices F.4 and F.5. For the axisymmetric case, the EP compliance matrix simplifies

to

Cij =




2τ4

3
√

BP 3

Ĉ 2τ4

3
√

BP 3

2τ4

3
√

BP 3

2τ4

3
√

BP 3

2τ4

3
√

BP 3

2τ4

3
√

BP 3

4√
BP




(5.3)

with

Ĉij =
1

12
√
BP

(
σ2

s

P 2
+

4(σi + σj)

P
+ β + 24δij

)
(5.4)
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and its inverse is

M =
√
BP




τ4(P−σ1)
(3βP 2+σ2

s)

M̂ τ4(P−σ2)
(3βP 2+σ2

s)

τ4(P−σ3)
(3βP 2+σ2

s)

τ4(P−σ1)
(3βP 2+σ2

s)
τ4(P−σ2)
(3βP 2+σ2

s)
τ4(P−σ3)
(3βP 2+σ2

s)

(4τ2
4 +3βP 2+σ2

s)
4(3βP 2+σ2

s)




(5.5)

with

M̂ =




(3(P−σ1)
2+3βP 2+σ2

s)
3(3βP 2+σ2

s)

(6(P−σ1)(P−σ2)−3βP 2−σ2
s)

6(3βP 2+σ2
s)

(6(P−σ1)(P−σ3)−3βP 2−σ2
s)

6(3βP 2+σ2
s)

(6(P−σ2)(P−σ1)−3βP 2−σ2
s)

6(3βP 2+σ2
s)

(3(P−σ2)
2+3βP 2+σ2

s)
3(3βP 2+σ2

s)

(6(P−σ2)(P−σ3)−3βP 2−σ2
s)

6(3βP 2+σ2
s)

(6(P−σ3)(P−σ1)−3βP 2−σ2
s)

6(3βP 2+σ2
s)

(6(P−σ3)(P−σ2)−3βP 2−σ2
s)

6(3βP 2+σ2
s)

(3(P−σ3)
2+3βP 2+σ2

s)
3(3βP 2+σ2

s)


 (5.6)

The Abaqus UMAT subroutine for EP plane strain and axisymmetric stress is given in appendix F.2. For

GE, the stiffness matrix is

M = G̃




38∆2−24∆u1−3u2
s

12∆
3
2

14∆2−12∆(u1+u2)−3u2
s

12∆
3
2

14∆2−12∆(u1+u3)−3u2
s

12∆
3
2

−γ4

2
√

∆

14∆2−12∆(u2+u1)−3u2
s

12∆
3
2

38∆2−24∆u2−3u2
s

12∆
3
2

14∆2−12∆(u2+u3)−3u2
s

12∆
3
2

−γ4

2
√

∆

14∆2−12∆(u3+u1)−3u2
s

12∆
3
2

14∆2−12∆(u3+u2)−3u2
s

12∆
3
2

38∆2−24∆u3−3u2
s

12∆
3
2

−γ4

2
√

∆

−γ4

2
√

∆

−γ4

2
√

∆

−γ4

2
√

∆

√
∆




(5.7)

with the UMAT subroutine given in appendix F.1; for the HAR model,

M = A




−γ4((3α−1)∆−3u1)

2
√

α∆2+u2
s

M̂ij
−γ4((3α−1)∆−3u2)

2
√

α∆2+u2
s

−γ4((3α−1)∆−3u3)

2
√

α∆2+u2
s

−γ4((3α−1)∆−3u1)

2
√

α∆2+u2
s

−γ4((3α−1)∆−3u2)

2
√

α∆2+u2
s

−γ4((3α−1)∆−3u3)

2
√

α∆2+u2
s

1
2 γ2

4+α∆2ls+u2
s

2
√

α∆2+u2
s




(5.8)

where the diagonal terms M̂ii (no summation implied) are given by

M̂ii =

(
18α2 + 1

)
∆2 + (9α + 6)u2

s + 6 (1 − 3α) ∆ui + 9u2
i

3
√

α∆2 + u2
s

(5.9)

and the off diagonal terms by

M̂ij =
(3 − 9α)

(
∆ (ui + uj) − u2

s

)
+ 9

(
uiuj + α∆2 (2α − 1)

)
3
√

α∆2 + u2
s

(5.10)

The HAR UMAT subroutine is given in appendix F.3.

5.2 Abaqus UMAT Benchmarks

As a benchmark for the subroutines, we investigate some constant strain cases, for which analytical results

may be readily obtained (uij = ∂G/∂σij , or σij = ∂F/∂uij) and compare with single-element results from
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σ1 σ2 Analytical Abaqus

1000 500

σ3 = -4.122e2

u1 = -1.424e-5

u2 = -2.127e-6

σ3 = -4.122e2

u1 = -1.425e-5

u2 = -2.129e-6

1000 1000

σ3 = -5.2e2

u1 = -1.034e-5

u2 = -1.034e-5

σ3 = -5.200e2

u1 = -1.035e-5

u2 = -1.035e-5

1000 1500

σ3 = -6.628e2

u1 = -6.796e-6

u2 = -1.687e-5

σ3 = -6.628e2

u1 = -6.801e-6

u2 = -1.689e-5

Table 5.1. Abaqus GE results for a single quadratic, reduced integration, plane strain element.

Abaqus. For the EP and HAR models, α = 1, β = 3 and A = B = 1e11 (arbitrary units), and various normal

forces are applied in each direction. A square element is tested for the plane strain case (tables 5.1, 5.2, and

5.4); a rectangular element for axisymmetric stress (the triaxial test, table 5.3). Abaqus results agree well

with analytical values provided that the loads are applied in reasonably small increments; 0.001-0.0001 of the

total time is used here. Since the stresses and strains are initially zero, 1/P and 1/∆ terms in the stiffness

matrix will result in floating point errors due to division by zero in the first time step, or if tension is present

at any point in the problem. This necessitates restricting P and ∆ to some small, non-zero, positive value.

The value itself does not affect the result provided this initial increment is small; 1e− 6 is used here.

5.3 Sand Piles and the Stress Dip

Next we turn our attention to the sand pile experiments of Vanel et al. [19]. Recall that they found a stress

dip in conical and wedge shaped piles poured from a point source, but not for those poured rain-like from

a sieve. GE reasonably matches the cases without a stress dip [25], so we shall make the same comparison

with the EP and HAR models here. Note that GE produced a stress dip when a non-uniform density was

applied, with a lower density center core; this is a plausible explanation for the stress dip, but quantitatively

the result is not particularly meaningful, as the density distribution was arbitrary. The piles considered by

Vanel et al. are 8 cm high, 26 cm in diameter or width, and 20 cm thick in the case of the wedge. The density

of the material is not reported, and results are normalized with respect to it. Following Krimer et al. [25],

the density is taken here to be 2660 kg/m3, typical of the sand used in experiments [55]. At the bottom of

the pile, the r and z displacements are set to zero. In addition to gravity, a small pressure is applied to the

free surface at the top of the pile. Though analytically stable, at the surface where P = 0, the 1/P and 1/∆

terms in the stiffness matrix diverge. The pressure applied at the surface ensures numerical stability, but does



67

σ1 σ2 Analytical Abaqus

1000 500

σ3 = -1.902e2

u1 = -2.158e-4

u2 = -8.254e-5

σ3 = -1.894e2

u1 = -2.179e-4

u2 = -8.336e-5

1000 1000

σ3 = -2.301e2

u1 = -1.786e-4

u2 = -1.786e-4

σ3 = -2.290e2

u1 = -1.803e-4

u2 = -1.803e-4

1000 1500

σ3 = -2.983e2

u1 = -1.453e-4

u2 = -2.488e-4

σ3 = -2.969e2

u1 = -1.467e-4

u2 = -2.513e-4

Table 5.2. Abaqus EP results for a single quadratic, reduced integration, plane strain element.

σ1 = σ3 σ2 Analytical Abaqus

1000 500
u1 = -1.698e-4

u2 = -6.025e-5

u1 = -1.714e-4

u2 = -6.083e-5

1000 1000
u1 = -1.5e-4

u2 = -1.5e-4

u1 = -1.514e-4

u2 = -1.514e-4

1000 1500
u1 = -1.290e-4

u2 = -2.215e-4

u1 = -1.302e-4

u2 = -2.237e-4

Table 5.3. Abaqus EP results for a single quadratic, reduced integration, axisymmetric stress element.

σ1 σ2 Analytical Abaqus

1000 500

σ3 = -4.286e2

u1 = -3.737e-5

u2 = -4.672e-6

σ3 = -4.286e2

u1 = -3.741e-5

u2 = -4.676e-6

1000 1000

σ3 = -5.714e2

u1 = -2.572e-5

u2 = -2.572e-5

σ3 = -5.714e2

u1 = -2.574e-5

u2 = -2.574e-5

1000 1500

σ3 = -7.143e2

u1 = -1.500e-5

u2 = -4.124e-5

σ3 = -7.143e2

u1 = -1.501e-5

u2 = -4.127e-5

Table 5.4. Abaqus HAR results for a single quadratic, reduced integration, plane strain element.
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Figure 5.1. Experimental (left: reprinted figure with permission from [101], copyright 1999 by the American
Physical Society) and Abaqus (center, right) results for the stress at the bottom of a conical sand pile.

not impact the stress distributions away from the surface in any meaningful way, provided it is sufficiently

small (10-20 Pa is used here). This is the same method employed in calculating stress distributions with GE

[25, 71]. Note, however, that this creates a problem if the objective is to predict yielding in the pile. Say, for

example, that a pile is sufficiently steep that shear stresses exceed a critical fraction of the normal stresses,

and we expect yielding to occur. Application of an additional normal stress at the surface will lower the

stress ratio and provide stability in this case as well. This is particularly problematic in GE, where there is

a thermodynamic limit on the stress ratio; it is worth noting that while the GE yield angle can be at most

26.5◦, the model is applied to 33◦ sand piles without difficulty, presumably due to this additional normal

force.

Unlike GE, in which ξ is fixed by the maximum yield angle, we are free to pick the values of the

material constants α and β. The same applies to A and B, though their values are not relevant for the

current comparison; they scale the strains but do not change the stresses. Lacking any strain measurements

from the current experiments, their value cannot be determined. The stress distribution for conical piles is

shown in figure 5.1 along with experiment data; plane strain results for wedge-shaped piles are compared

to experimental results and GE calculations in figure 5.2. As we are free to choose α and β in the HAR

and EP models, several different values are tried for both conical and wedge-shaped piles. Their values do

not strongly influence the stress distribution at the bottom of the pile in either case. The increase in stress

from the edge of the pile toward the center is quite linear, as opposed to the experiments in which there

is a significant leveling off. GE provides slightly more realistic profiles for both conical and wedge-shaped

piles, though it still slightly overestimates the peak height. Interestingly, none of the non-linear models

is appreciably different from isotropic linear elasticity (ILE) in this case; ILE is similarly independent of

Young’s modulus E, and only weakly dependent on Poisson’s ratio ν. It gives a better match to experiment

data than the EP and HAR models, particularly for the conical pile, though it still overestimates the peak

height. Of course, when poured from a funnel, there is a stress dip at the center; whether due to density

inhomogeneity or some other effect, the flattening of the curves for the sieved piles might be due to a similar,
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Figure 5.2. Experimental (left, points), GE (left, dashed line), and Abaqus (center, right) plane strain
results for the stress at the bottom of a sand wedge. Left figure reprinted with permission from [25].

Copyright 1999 by the American Physical Society.

but less pronounced, effect; without any knowledge of the actual density distribution, it is difficult to draw

any further conclusions from this case.

5.4 The Janssen Silo Problem

A widely used approximate method for stress calculations in cylindrical silos was developed by Janssen

[30]. He assumes that a vertical force applied to a cylindrical slice generates a proportional horizontal force

kJσzz, i.e.

σrr = kJσzz (5.11)

and furthermore that the horizontal wall friction is“fully mobilized”, and takes the maximum possible amount

of static friction,

τrz = µfσrr = µfkJσzz (5.12)

As noted by de Gennes [1] and Duran [14], this is questionable, since the shear may take any value less than

this maximum. Under these assumptions, a horizontal slice of area A is subject to a downward force due to

its own weight of ρgAdz, where we take z = 0 at the top surface of the silo, and upward forces due to the

change in pressure and wall friction of Adσzz and kJµfpσzzdz, respectively, where p is the perimeter of the

silo. So we may write the force balance

Adσzz + kJµfpσzzdz = ρgAdz (5.13)

or
dσzz

dz
= ρg − kJµf

p

A
σzz = ρg − 2kJµf

R
σzz (5.14)

for silo radius R. This leads to a solution for σzz [1, 9, 14]

σzz =
ρgR

2kJµf

(
1 − exp

(−2kJµf

R
z

))
+ σ0exp

(−2kJµf

R
z

)
(5.15)

where σ0 is the vertical stress at z = 0, the top of the silo. In practice this is zero, but again we take a small

normal force to ensure numerical stability. 100 Pa is sufficient for this purpose in the present case, much
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smaller than even the value reported by Bräuer et al. [71]. The analytical form above results in a vertical

pressure saturating with depth, in contrast with the usual “hydrostatic pressure”. The Janssen coefficient kJ

is frequently assumed to obey the empirical formula [31, 102, 103]

kJ = sinφ (5.16)

Bräuer et al. [71] have performed calculations for a silo with wall friction and find the Janssen model

well matched by GE, with σzz saturating for large depths z, and the ratio σrr/σzz becoming approximately

constant; they find kJ ∼ 0.4. With ξ = 5/3 fixed by the yield angle, the Janssen constant is fixed as well,

though it is in practice found to vary by material [104]. The Abaqus implementation of GE produces results

consistent with published values, which are shown in figure 5.3.

The EP and HAR models essentially produce the same behavior, see figure 5.4. Here the silo dimensions

are H = 36 m and R = 1 m, with a wall friction coefficient µf =0.2. This is a very tall, narrow “silo”, but

such dimensions are necessary to observe the “saturating” behavior. The Janssen model for σzz at the top

of each figure is equation 5.15, with the value of kJ taken from the numerical results at the point r/R = 0.5

and z/H = 0.5. There is slightly more variation in kJ = σrr/σzz radially, particularly for the EP model;

note the larger scale in figure 5.4. As reported for GE , the friction coefficient does not strongly influence

the value of kJ , see figure 5.5.

While kJ is fixed at ∼ 0.4 for GE, in the EP and HAR models, we are free to choose β and α. The results

are qualitatively similar to those in figure 5.4, but with kJ dependent on β or α. The relationships (shown in

figure 5.6) are similar to the variation of the isotropic Poisson’s ratio, νiso, obtained analytically (equations

4.27-4.28) and plotted in figures 4.20-4.21. That the Janssen concept of “vertical force redirection” is related

to Poisson’s ratio is perhaps not surprising; indeed, for isotropic linear elasticity, Ovarlez et al. [105] obtain

for large z

kJ =
ν

1 − ν
(5.17)

As isotropic linear elasticity successfully reproduces that Janssen model, perhaps a better test of any

model for granular statics is a variation on the Janssen problem that his model, and ILE, fail to reproduce.

There has been some recent experimental work on the silo problem [101, 105–107], and one such effect has

been clearly identified. Consider the case in which a pressure equal to the saturation stress is applied at

the surface of the silo. The Janssen model, equation 5.15, gives σzz/σsat = 1, independent of z. In the

experiments, there is a significant “overshoot” of the saturated value, up to 20% ([105, 107], figure 5.7).

While ILE similarly produces an overshoot, it is 30-40 times smaller than the one observed experimentally,

what Ovarlez et al. refer to as a “giant overshoot effect” [105]. They go on to speculate that stress-induced

anisotropy may play a role in the overshoot, with a greater stiffness in the vertical direction due to the applied

load. As the hyperelastic models possess stress-induced anisotropy, the EP model in particular producing

stress-induced anisotropy in relative agreement with measurements of stress-dependent elastic moduli, we
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Figure 5.3. Published GE results for silo stresses (left), and Abaqus implementation (right). Note the
published result for the Janssen constant is plotted backwards, from bottom to top. Left figure reprinted

with permission from [71]. Copyright 1999 by the American Physical Society.
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Figure 5.4. Abaqus results for silo stresses using the EP model (β = 3/2, left) and HAR model (α = 1,
right).
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might expect them to reproduce the effect. But the Abaqus results reveal that the overshoot in all three

hyperelastic models is closer to that predicted by linear elasticity than observed in experiments. The GE

and HAR models produce similar results, while in the EP model the decrease to the saturated value is much

more gradual than for any of the other elastic models.

In a subsequent paper, Ovarlez et al. [107]showed that anisotropic linear elasticity (ALE) similarly failed

to account for the magnitude of the overshoot. Thus, it remains an open issue. As with the stress dip in

sand piles, one wonders if density inhomogeneity might play a role here. In particular, it is more likely in this

case that some rearrangement of grains is taking place when a stress equal to σsat is applied to the surface.

Whether non-uniform density in the context of elasticity alone might resolve the discrepancy, i.e. the issue

of whether irreversible, plastic deformations are still safely ignorable in this case, is not known.

5.5 Layer Under a Point Load

The response function or Green’s function of a granular material subject to a localized force perturbation

has been established as a simple test of granular mechanics. Here there was an interest in resolving whether

or not such systems were governed by elliptic, parabolic, or hyperbolic equations. While hyperbolic equations

(such as IFE and FPA) predict a double peaked response function in 2D and a “ring” peak in 3D (as the

forces propagate along characteristics), elliptic equations predict a single peak, with the half width increasing

linearly with depth. Parabolic equations similarly possess a single peak, but with the half width increasing

as
√
h. While hyperbolic behavior can be observed in systems that are highly ordered (i.e. the particles are

arranged in a lattice structure), frictionless, or far from the continuum limit, and parabolic behavior has

been reported for another very particular arrangement, experiments find for frictional, disordered systems

the behavior is invariably elliptic [24, 108–110].

The first point of comparison here is the analytical solution for an infinite elastic half space, due to

Boussinesq [111] and Cerutti [112] (see also[28]). With a force F applied to a point on its surface,

σzz =
3F

2π

h3

(r2 + h2)
5
2

(5.18)

Here and throughout, we report instead the renormalized value

C ≡ h2σzz

F
=

1(
r2

h2 + 1
) 5

2

(5.19)

such that ∫ ∞

0

2πC(r′)r′dr′ = 1 (5.20)

Some experimental data are compared with the Boussinesq-Cerutti solution in figure 5.8. While the behavior

is qualitatively similar, the magnitude of the peak depends strongly on the preparation of the layer.

The Boussinesq-Cerutti solution depends only on the perturbing force and position; it has no dependence

on the elastic constants. A finite system should be qualitatively similar, but will have some dependence on
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Figure 5.7. Experimental data (a) and linear elastic model (b) for the “overshoot” in stress when a load
equal to σsat is applied to the surface of the silo (from [107], with kind permission from the European

Physical Journal (EPL)). Hyperelastic models (right) similarly underestimate the overshoot; the decrease
to the saturated value is much slower for the EP model.

Figure 5.8. Experimental measurements of the response function for granular materials ([109], with kind
permission from the European Physical Journal (EPL)). “Elasticity” here is the Boussinesq-Cerutti solution

for an infinite half space.
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Figure 5.9. Calculations of the response function for GE (left) and linear elasticity (right). Note that the
peak values for GE and ILE reported in [71] are lower than those reported in [109] and in the present work
(see figure 5.10). Left figure reprinted with permission from [71], copyright 1999 by the American Physical

Society. Right figure [109] reprinted with kind permission from the European Physical Journal (EPL).

the elastic constants (i.e. Poisson’s ratio) and the applied boundary conditions. As the shape of the profile

found in experiments indicates elliptic governing equations, there have been attempts to model the problem

using linear elasticity (both isotropic [109, 110] and anisotropic [24]) and GE [71]. Serero et al. [109] find

that the effect of a finite system size is primarily that it narrows the stress response (figure 5.9). The bottom

boundary condition has a significant effect on the peak; in both cases, the z displacement, Uz, is zero, but a

“smooth” bottom (σrz = 0) produces a sharper peak than a “rough” bottom (Ur = 0). Curiously, Bräuer et

al. claim that this boundary condition has little effect [71]; their curve for linear elasticity (figure 5.9) is also

noticeably lower than both cases given by Serero et al. [109]. They find a response function for GE that is

qualitatively similar, and narrower than the ILE and Boussinesq-Cerutti solutions. Of course, with ξ fixed

by the yield angle in GE, there are no parameters to adjust that would affect the shape or height of the

peak. It is not clear then how GE might account for variations of the type observed experimentally, as seen

in figure 5.8. Then again, Serero et al. find that the response function is not strongly influenced by the value

of Poisson’s ratio (see inset, figure 5.9), except for thermodynamically inadmissible values greater than 1/2.

Thus, isotropic linear elasticity was considered ill-suited to describe granular media, though qualitatively the

behavior is indeed elliptic.

Following the problem description given by Bräuer et al., Abaqus results have been obtained for the

response function of the ILE, GE, EP, and HAR models. A small piston of diameter D = 1.456 cm applies

a pressure P1 = 500 Pa at the surface of a granular disc of height h =8 cm. The radius of the disc R need

only be large enough that the presence of the side walls does not significantly influence the response function

at h =8 cm; R = 16 cm is found to be sufficient, and the walls are considered rigid and smooth. In reality,
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Figure 5.10. Abaqus calculations of the response function for GE (left) and ILE (right). The presence of
boundaries increases the peak height, and a frictionless bottom surface results in a higher peak than a

rough surface (glued grains).

the surface of the layer outside the piston is a free surface; but as before, this is problematic in the present

hyperelastic models, where zero pressure boundaries cannot be handled numerically. A surface force P0 =

150 Pa is applied to avoid these issues, and the stress normalized accordingly:

C ≡ 4h2

P1πD2
(σzz − P0 − ρgh) (5.21)

Results for GE and ILE are shown in figure 5.10. The ILE results are in quantitative agreement with those

of Serero et al. [109], the curve narrowing due to finite system size and significantly more so for the smooth

boundary condition. The same effects are evident in the GE calculation, in contrast with the claims of

Bräuer et al. [71]. Both the GE and ILE peaks are higher than their published values.

As the rough bottom boundary more accurately reflects the experiment conditions, this condition is

employed in the EP and HAR calculations. Even so, both the EP and HAR models give peak heights

significantly higher than predicted by GE and ILE, and observed in experiments. The HAR model gives

more reasonable results for increasing values of α, though recall it was smaller values of α that gave more

physical results for the elastic moduli. The EP model dramatically overestimates the peak height, by about

an order of magnitude compared with the dense packing of figure 5.8. Just as the ILE response proved

insensitive to the value of ν, the EP response function varies little over the entire range of allowable values

for β. Recall that β = 0 is a thermodynamic limit for the EP model and corresponds to νiso = 1/2, while

β > 8 implies νiso < 0, which while theoretically admissible is not expected here.

So, of the hyperelastic models considered here, the EP model, which seemed to best capture the type

of stress-induced anisotropy observed in experiments, gives the least accurate response function by a wide

margin. As the shape is relatively insensitive to the only adjustable constant β, there is no obvious way

to resolve the discrepancy. The similar inability of isotropic linear elasticity to account for the range of

observed data has prompted suggestions that fabric anisotropy be included in an anisotropic, linear elastic
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(ALE) model [24, 108, 109]. The simplest case would be a material possessing two Young’s moduli, two

Poisson’s ratios, and a shear modulus. A similar “fabric” anisotropy could easily be incorporated into any of

the hyperelastic models presented here. But the caution of Serero et al. applies equally well here: taking five

constants as fit parameters will almost certainly produce a good match to the experiment data. Without any

reason to prescribe this sort of inherent anisotropy, there is probably little insight to be gained with such a

model.
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6 Summary and Conclusions

Several recently proposed hyperelastic models for granular materials have been investigated and compared

with experiment data. The hyperelastic formalism begins with a scalar free energy function, which ensures

energy conservation and path independence, unlike many “elastic” and “hypoelastic” models for granular

statics. It is also relatively simple; the entire constitutive behavior of the material is given by the free energy,

which gives analytical forms for the stress-strain relation and stiffness matrix by simple differentiation.

As even the quasi-elastic regime of granular materials is non-linear, the hyperelastic forms considered

here are all designed to capture the widely observed dependence of the elastic moduli on the square root of

pressure. The three models considered are the “granular elasticity” (GE) theory of Jiang and Liu [25, 63, 68–

72], with the Helmholtz free energy given by

F = G̃∆a

(
2

5
ξ∆2 + u2

s

)
(6.1)

a similar form based on the Gibbs free energy due to Einav and Puzrin (EP) [73],

G =

√
P 3

B

(
β +

σ2
s

P 2

)
(6.2)

and the model of Houlsby, Amorosi, and Rojas (HAR) [67, 76], which has closed forms of both the Helmholtz

and Gibbs free energy:

F = A
(
α∆2 + u2

s

) 3
2 (6.3)

G =
2

3
√

3A

(
1

α
P 2 + σ2

s

) 3
4

(6.4)

An immediate consequence of incorporating the non-linearity into the free energy is that all these forms

possess a shear-volumetric coupling due to Pσs or ∆us terms. This leads to shear dilatancy, the well known

characteristic of granular materials, which undergo volumetric expansion when sheared.

A“feature”unique to GE is the fact that F is not convex everywhere. In fact, the convex region is enclosed

by a conical surface that is the well known Drucker-Prager variant of the Coulomb yield condition. This turns

out to have some rather unphysical implications for the angle of repose. Considering an infinite granular

layer, the thermodynamic yield condition gives an expression for the yield angle in terms of only the material

constant ξ. The curve has a maximum; taking a = 1/2 to reflect “Hertz contacts” gives φmax ≈ 25.5◦,

implying that no material possesses a higher yield angle, regardless of its value of ξ. This is, of course,

significantly lower than typical values of 30◦-40◦. Perhaps a more logical choice is a = 1, as a large body of

experimental evidence finds this relationship, in contrast with the Hertz theory. Making this change to GE

compounds the aforementioned difficulty with the yield angle, resulting in φmax ≈ 17◦. Two generalizations

proposed by Jiang and Liu similarly fail to resolve this issue. In particular, incorporating a dependence on

the third invariant of the strain tensor results in still lower maximum yield angles.
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Thus, the yield condition supplied by GE in the form of a thermodynamic stability requirement, while

an intuitive description of what amounts to a phase transition, proves to be something of an over-constraint.

Independently (and apparently unaware) of Jiang and Liu, Einav and Puzrin (EP) and Houlsby, Amorosi,

and Rojas (HAR) proposed a similar hyperelastic formalism, though preferring models based on the Gibbs

free energy. This is certainly easier to work with in some situations, as experiment data on granular elastic

moduli invariably describe them as functions of the stresses. Thus, the Gibbs free energy gives analytical

forms for the elastic moduli as functions of the stresses, making for a simple and direct comparison. While

they do not consider convexity explicitly, both forms are found here to be uniformly convex. The EP model,

however, has a limiting value of σs/P beyond which there are no solutions. Curiously, Houlsby et al. cite this

as a drawback of the EP model in motivating their own work, though such a limit is essentially the defining

characteristic of granular materials. The present work indicates that the limit places no similar restrictions

on the yield angle as in GE, and thus it is not likely that any realizable stress states are off limits in the EP

model.

While all three models are designed to have a power law dependence of the elastic moduli on the mean

normal stress, they are found in experiments to have a more specific dependence on the individual components

of stress. In particular, in the triaxial geometry, Young’s modulus in a given direction is found to be a power

law function of the normal stress in that direction, and independent of the other normal stresses; i.e.

Ev = C
√

σv 	= f (σh) (6.5)

While the analytical forms for the Young’s moduli are not explicitly independent of the out-of-plane normal

stresses for any of these hyperelastic models, the EP model approximates this behavior; Ev varies little with

σh, and vice versa. It similarly seems to best match the forms of the ratio Ev/Eh, and the Poisson’s ratios.

We might expect, then, that the EP model would best match experimental data for stress distributions

as well. But this is not the case! Several simple configurations have emerged as benchmarks for models

of granular mechanics, and all three hyperelastic models have been implemented in the finite element code

Abaqus for comparison with these experiments.

The first problem of interest is the stress distribution under a granular pile. This is known to be dependent

on the method of preparation; piles poured from a point source (e.g. a funnel) may possess a dip at the

center, a counter-intuitive result. Rain-like pouring from a sieve, on the other hand, produces a center

peak as expected. All three hyperelastic models predict a center peak, with a value higher than observed

experimentally, even for sieved piles. The peak value and shape of the curve are insensitive to the values of

the elastic constants.

The silo is of obvious industrial importance, and a simple model for calculating stresses therein due to

Janssen has been employed for over a century. The hyperelastic models match the Janssen behavior, with

the vertical stress saturating with depth due to wall friction. But linear elasticity predicts this as well, so this



82

is perhaps not a noteworthy success of these models. If a pressure equal to the saturated value is added to

the surface of the silo, the Janssen model gives σzz/σsat = 1 everywhere, while a substantial “overshoot” (up

to 20%) of the saturated stress is observed in experiments. Linear elasticity predicts a very small overshoot,

less than 1%. All three hyperelastic models give an overshoot of around 2%, closer to the linear elastic case

than reality.

An experiment to determine the “response function” of a granular layer to a point force perturbation

was proposed to settle the issue of whether hyperbolic or elliptic systems governed granular statics. The

experiments clearly support the elliptic (elastic) model for sufficiently large and disordered systems. But the

response function varied significantly based on the layer construction, and was found to be much broader for

more densely packed layers. The finiteness of the layer introduces some dependence on the elastic constants,

but not enough to account for the difference; this was previously found to be the case for linear elasticity,

and the results presented here for all three hyperelastic models are similar. Paradoxically, the EP model,

which gives the best analytical forms for the elastic moduli, grossly overestimates the peak in the response

function, for the entire range of realistic β.

So, while hyperelastic models seem to be better descriptors of granular statics in some ways, they fail to

describe some simple experiments in the same fashion as isotropic linear elasticity. It is clear that the static

behavior of granular materials depends strongly on the preparation of the material, and this is not explicitly

accounted for in the hyperelastic models. Of course, accounting for this preparation dependence is the idea

behind stress-only models such as FPA and the Janssen model, which impose a relationship between stress

components presumed to be “frozen in” at preparation. But these do not extend naturally beyond the simple

configurations they were designed for, and completely ignoring deformations seems an oversimplification in

many cases. In addition, the qualitative features of the response function strongly support the elastic picture.

Rather, we might expect to find these relationships as special cases of a more general theory. Still, this theory

must account in some way for the preparation dependence. Here are a few ways this might be accomplished:

• Explicitly considering density variations. A non-uniform density has been proposed as an explanation

for the stress dip in sand piles. This is plausible, but not verified experimentally. It would be difficult

to do so, and perhaps equally difficult to account for theoretically. A “frozen in” density distribution

might explain some observed behavior, but the distribution would not, in general, be known for complex

problems. More complicated still would be density changes due to applied stresses. These must be

accounted for in the free energy, but are assumed to be small and safely ignorable. It is not clear whether

significant density changes could occur within the quasi-elastic regime. Plastic deformations may

obviously be significant; it is not clear how much plastic rearrangement is occurring in the experiments.

• Fabric anisotropy. This is not included in any of the hyperelastic models, but could certainly be

introduced through a “fabric tensor” of elastic constants. This is best applied with caution; as noted
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previously, ad hoc addition of additional “fit parameters”will certainly allow for good fits to experiment

data. There should be some justification for assumptions made about the fabric, but this is a challenging

problem. For example, in the triaxial tests, in which the specimens are probably prepared in a similar

fashion, the “inherent” stiffness does not consistently favor the horizontal or vertical direction.

• Incorporating dependence on the third tensor invariant. This does not necessarily have anything to

do with preparation, and of course proved to be an unsuccessful generalization of GE. But recall that

experimentally, the shear modulus is independent of one of the normal stresses, while the hyperelastic

models possess no such anisotropy in the shear modulus. It appears that this is always the case for

two-invariant hyperelastic models. It is not clear why the third invariant ought to be included in such

a model, or what its physical significance is, but this a point for further investigation.

Aside from these physics issues, the coupling of elastic, plastic, and flow models (e.g. for the dust pile

mobilization problem) is still unresolved, though some discussion is presented in the appendices. Note also

that this is the subject of a recent dissertation by Kamrin [65], who coupled a plasticity model with GE.

However, the results presented here indicate that the more sophisticated hyperelastic models possess the same

failings as isotropic linear elastiticy, and the latter seems to give comparable or better results for the stress

distribution in some simple configurations. So, despite its known shortcomings, ILE seems an appropriate

choice for engineering models at present, in light of the relative simplicity it affords.

Finally, some comments are in order regarding the proposed coupling for mobilization problems. The

problem is initially one of solid-fluid interaction; the static stress distribution in a granular pile or layer

may be obtained from linear elasticity. At the initiation of a fluid flow in the vicinity of the pile (or some

more general change in forces), the pile will now be stressed in a different manner due to pressure and shear

from the flow. These boundary conditions result in a new static stress distribution, which may or may not

reach the yield surface. In regions where it does, a transition from static to flowing behavior will occur.

It is expected that the type of yield surface employed will strongly influence predicted mobilization; some

examples are given in appendix A.2, though this is not intended to be a comprehensive treatment, and it

is still not known if more complex surfaces will gives better results than a Coulomb yield condition. It

should also be noted that as particles decrease in size, other interactions become important, in particular

cohesive forces; some models for cohesive interactions are presented in appendix G. For micron sized particles

(particularly graphite) of interest in nuclear systems, electrostatic forces will also be important. It is unclear

whether these effects can be appropriately captured by a constant offset to the Coulomb condition 2.1, or

whether some more sophisticated modeling is necessary.
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A Appendix: Granular Flow

A.1 Preliminaries

We return now to the problem of “dust mobilization”. This problem has been considered in previous

fusion safety analyses [113, 114]. Takase performed CFD calculations with discrete particle tracking; the

particles were subject to drag and buoyancy forces. This method gives some indication of how particles

are transported in flows, but it cannot really predict mobilization, as there is no mechanism for particles to

interact with each other, or stick to surfaces. It also does not directly give the aerosol concentration, which

is obviously of interest for safety analyses. These can both be accounted for more naturally in the continuum

approach adopted here.

In the continuum picture, the granular material is static until its stress state reaches the yield surface, at

which point it begins to flow; it continues to deform under constant stress. In conventional solids this is plastic

deformation, and the same terminology is sometimes employed in describing dense granular flows. While

elastic and plastic deformation would be treated concurrently in the conventional solid problem, and some

approaches to granular materials such as Hypoplasticity [80] and Granular Solid Hydrodynamics [82, 115]

aim to do this, it is expected that the transition will be rather abrupt in the mobilization problem. Here the

dust piles are not confined and under heavy loads as would often be the case in soil mechanics. They will

deform elastically up to a point (yield), but beyond yield will possess kinetic, not elastic, energy. Thus in

this case yield is identified as the threshold for mobilization, and constitutive models for granular flows are

employed once the material yields.

Neglecting any “viscoelastic” region, the flowing granular material may be described by the Navier-Stokes

equations,
Dv

Dt
= −1

ρ
∇p+

1

ρ
∇ · T +A (A.1)

with a non-Newtonian constitutive equation chosen to describe the relevant flow regime. Here v is the particle

velocity, ρ is the bulk particle density, p the particle phase pressure, T is the deviatoric stress tensor, and A

the acceleration due to body forces. The four terms are due to inertial, pressure, “viscous”, and body forces,

respectively. A constitutive relation is required to relate the deviatoric stress tensor T to the velocity and

close the system. The form of this relation will differ depending on the granular flow regime; these may be

broadly divided into plastic/frictional and viscous/collisional (Figure A.1). Frictional flows are characterized

by enduring contacts between particles in which friction is the dominant momentum transfer mechanism; this

is the type of slow, dense particle flow that would immediately follow yield. If the particle volume fraction

decreases such that these enduring contacts are lost, momentum transfer is due to particle collisions and the

constitutive equation is determined from kinetic theory. If the particles are separated to the point that even

collisional contributions are small, T may be neglected altogether. It is in this limit that traditional aerosol

and particle tracking methods apply. The relationship between these methods is clarified in section A.5.
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Figure A.1. Comparison of viscous granular flow regimes, from [116].
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A.2 Frictional Regime

Constitutive equations for frictional granular flow are typically of the form derived by Schaeffer [117] and

are frequently employed in describing flow from silos or hoppers [118, 119]. Two assumptions are made: 1)

the stresses are related via the Coulomb yield condition (equation 2.9), and 2) the flow is associated, i.e. the

axes of principal stress and strain rate are aligned. In principal stress space (2D), the Coulomb criterion is

σ1

σ2
=

1 + sin φ

1 − sin φ
(A.2)

which forms a wedge in principal stress space in which static solutions lie. Schaeffer extends this to a cone

in three dimensions; a von Mises yield condition (Figure A.2), defined by

3∑
i=1

(σi − σ)
2 ≤ 2σ2 sin2 φ (A.3)

with

σ =
σ1 + σ2 + σ3

3
(A.4)

Recognizing σi − σ as the deviator of the stress tensor, σ as the granular pressure P , and noting that the

equality holds at yield, this can be rewritten as

√
T : T =

√
2P sin φ (A.5)

where T : T denotes the tensor scalar product (second invariant). The flow rule requires that the principal

stresses and strain rates are coaxial:

S = qT (A.6)

where q is a scalar constant and S is the deviatoric strain rate tensor,

S =
1

2

(
∇v + (∇v)T

)
− 1

3
(∇ · v) I (A.7)

Combining both the yield condition (equation A.5) and the flow rule (equation A.6),
√

S : S

q
=

√
T : T (A.8)

and

q =

√
S : S√

2P sin φ
(A.9)

and the resulting constitutive equation is

T =

√
2P sin φ√
S : S

S (A.10)

It exhibits a zero-order dependence of stress on the strain rate; i.e., scaling the velocities does not change the

stress state. This is an observed behavior of dense granular flows [120]. Note that the flow rule (equation

A.6) also implies incompressibility, since

∇ · v = Tr(S) = qTr(T) (A.11)
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σ1

σ2

σ3

Figure A.2. The von Mises yield cone, or Drucker-Prager yield surface, an extension of the Coulomb
condition (equation 2.9) to three dimensions.
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Figure A.3. Yield loci at two different volume fractions ν1 and ν2 in principal stress space (reprinted from
[118] with permission from Elsevier). Dilation occurs on segments OCi, while compaction occurs on

segments CiVi. The dotted lines define the critical state.

and T is the traceless part of the stress tensor.

There are some practical and physical problems, however, with this approach. Schaeffer [117], following

the derivation, showed that in 2D the equations were ill-posed (similar to the backwards heat equation), but

that this was not the case in fully three-dimensional flows [121] and that compressibility served to damp the

instabilities [122]. The assumption of a von Mises type (conical) yield surface also results in zero dissipation,

an un-physical result considering that momentum transfer is dominated by friction. This motivated the

development of more sophisticated models which include compressibility and alter the yield surface such

that it is convex, ensuring that dissipation is positive and resulting in a yield locus of the type pictured in

figure A.3 [118, 120, 122–128]. This type of model better describes the behavior of real granular materials,

which, when sheared, dilate at low compression but compact at high compression (figure A.4). At the

transition between these two behaviors, deformation occurs at constant volume, and this point is referred to

as the critical state [126].

Compressibility allows for a varying bulk density, in which case another equation is required to close the

system. For frictional granular flows this is invariably an empirical relationship between the pressure and

bulk density, or equivalently, the solid volume fraction. One model originally due to Johnson and Jackson

[129] assumes divergence of the pressure at a maximum packing, taken to be “random close packing” [130],

which for spheres is ∼0.64. This was extended [118] to include a minimum packing fraction below which
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Figure A.4. Generalized yield conditions (reprinted from [128] with permission from Elsevier). At the
critical state, ∂τ/∂σ = 0. At lower pressures, the material dilates; at higher pressures, it compacts.
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frictional effects are assumed to be unimportant:

P = F
(ν − νmin)

r

(νmax − ν)
s (A.12)

with constants F , r, and s equal to 0.05, 2, and 5, respectively, and νmin = 0.5.

A.3 Modeling

Some comments are in order regarding the transition from static to dynamic behavior, and how it might

be modeled. The computational fluid dynamics code Fluent appears capable of handling many of the granular

flow regimes discussed previously, and a general solution procedure will be outlined here.

The first step in the solution procedure is determining the stress distribution in the dust pile, e.g. via finite

element calculations employing the models described here. Regardless of the method ultimately employed

in this calculation, a means of coupling it to the flow calculation will need to be developed. Initially, Fluent

may be used to calculate the shear on the surface of the dust pile, which in this case would be defined as a

wall. This would be input as a boundary condition in the static problem. If yield is not reached, then the

analysis is complete and zero mobilization is predicted. If yield does occur, a transition to the flow problem

will have to be made. Ideally, and in keeping with observed behavior discussed in section B.2, this would

occur only in the yielding portion of the pile, e.g. on a cell by cell basis. The solid/fluid boundary would

change in this case, and yielding solid cells would become fluid cells, with the remainder of the pile stable.

The feasibility of implementing such a scheme will need to be determined.

Aside from the possible difficulties of implementation, there is some ambiguity in the physics of this

transition as well. It is apparent that equation A.10 diverges when the velocity derivatives (i.e. shear rates)

are zero, but this is precisely the condition of the material until the point that it yields. Schaeffer [117]

mentions explicitly in the derivation of the equations that they apply to materials that are deforming and

were previously deforming. This is an issue in any granular flow problem which exhibits regions of little or

no flow and in practice is avoided by adding a constant in the denominator [118, 119]:

T =

√
2P sin φ√
S : S + ε

S (A.13)

This avoids divergence but essentially imposes slow flow on regions that would actually be static [118]. In

principle such regions would transition back to an elastic description.

Farther from the solid-fluid transition region, equation A.10 should apply. The Schaeffer model for the

constitutive equation, with the empirical pressure (equation A.12) attributed to Johnson and Jackson [129],

are both available in Fluent. The User Defined Function (UDF) capability allows implementation of any

constitutive equation that can be cast as a viscosity:

T = µS (A.14)
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The viscosity can depend on any of the flow variables, which are accessed via Fluent macros in the user-

written C code. In this case the “frictional viscosity” in the Schaeffer model is given by

µf =

√
2P sin φ√
S : S

(A.15)

Frictional, collisional, and kinetic models may be used concurrently, in which case their contributions are

simply added (the same approach is used elsewhere, see [116, 118, 129]). The contributions from these terms

become small as the volume fraction decreases, and transition naturally into the aerosol regime described in

section A.5.

All the granular flow models are multi-phase models, and mass, momentum, and energy equations are

solved for each phase. They are assumed to be “inter-penetrating continua”, coupled by a drag force law

(two-way coupling is also possible). A number of drag models are available that are altered to account for

high particle volume fraction. These also may be specified via user defined function.

Without a method to calculate yield and connect it to Fluent’s granular flow models, there is little to be

said at present regarding the accuracy of the various granular flow models in predicting dust transport in

mobilization problems. Fluent has been used, however, in modeling the filling of evacuated vessels, as the

loss of vacuum accident (LOVA) is of particular interest for dust mobilization. These models are presented

alongside experimental and theoretical results in section B.1.

A.4 Kinetic/Collisional regime

Kinetic/collisional closures for the stress tensor are determined by the statistical methods employed in

the Chapman-Enskog theory of dense gases [131], adapted to granular materials by a number of researchers

[89, 116, 132–134]. These will not be considered in detail here. This regime is typical of fluidized beds and

connects the dense frictional regime (ν � 0.5) and the dilute non-interacting regime (ν � 0.1).

A.5 Aerosols and Lagrangian particle tracking

As the particle volume fraction continues to decrease, interactions between particles become insignificant

altogether. Then, the viscous terms in the Navier-Stokes equations (A.1) may be neglected:

Dv

Dt
= −1

ρ
∇p+A (A.16)

Furthermore, as an ensemble of non-interacting particles, the ideal gas law applies; so the pressure term may

be rewritten as follows:

Dv

Dt
= −1

ρ
∇nkT +A (A.17)

Identifying the bulk density as the particle concentration n times the individual particle mass m, and

assuming constant temperature,
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Dv

Dt
= −kT

m

∇n
n

+A (A.18)

The particles are now dispersed and suspended in a gas, and will experience a body force due to drag. Adding

the restriction of low Stokes numbers, where

Stk =
τU

L
(A.19)

and U and L are the characteristic velocity and length scale of the flow, and τ is the spherical particle

relaxation time given by

τ =
ρsd

2

24µ
(A.20)

for fluid viscosity µ, particle diameter d, and solid material density ρs. As a ratio of inertial to viscous (drag)

forces, low Stokes numbers imply negligible inertia, and the inertial terms in equation A.16 can be discarded

accordingly. The drag force is given by Stokes’ law, and

A =
u− v

τ
(A.21)

for the particle velocity v relative to the fluid velocity u. The momentum equation simplifies to

τkT

m
∇n = n(u− v) (A.22)

Here the particle velocity v can be solved for explicitly. Recognizing the Einstein diffusion coefficient D [135],

D =
τkT

m
(A.23)

the particle flux is given by

nv = nu−D∇n (A.24)

Using this expression in the continuity equation,

∂n

∂t
+ ∇ · (nv) = 0 (A.25)

the result is the ‘aerosol dynamic equation’ as used in aerosol transport phenomena [136]:

∂n

∂t
+ v ·∇n = D∇2n (A.26)

Thus the aerosol dynamic equation is a special case of a general particle fluid described by the Navier-Stokes

equations, in which particle interactions and particle inertia are neglected.
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If one neglects diffusion (pressure) rather than inertia (i.e. only inertia and drag force terms are retained),

the resulting system is hyperbolic, and its characteristics are the Lagrangian equations of motion [137]. Thus,

aerosol dynamics and Lagrangian particle tracking treat two opposite dilute flow regimes: purely diffusive

and purely inertial, respectively. Any problem in which both effects may be important (but particles are still

non-interacting) should solve the general case that accounts for both (equation A.16).

The problem of dust transport in a loss of vacuum accident cannot be simplified to either of the two

cases above a priori. Here flow conditions will vary widely in both space and time. The particle relaxation

time varies as the particle diameter squared, and this diameter may span several orders of magnitude.

Furthermore, local velocity gradients (U/L) will be high in regions near the breach, but lower elsewhere, and

will everywhere decrease in time as the vessel fills with air. Rather than selecting a model that may restrict

the ability to consider certain particle sizes, materials, and flow regimes, one can treat the general case.
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B Appendix: Dust Mobilization Experiments

B.1 The Toroidal Dust Mobilization Experiment

The Toroidal Dust Mobilization eXperiment (TDMX) was developed to investigate the mobilization of

dust in fusion-relevant scenarios: Loss of Vacuum Accidents (LOVAs) in a toroidal geometry, using dust

characteristic of that produced in tokamaks. TDMX consists of two acrylic cylinders of 15.24 cm (6 in) and

30.48 cm (12 in) diameter, 60.96 cm (24 in) in height (Figure B.1), reproducing the major and minor radii of

ITER in approximately 1/50 scale. Numerous diagnostic ports are available on the end caps of the cylinder.

Venting occurs through one of two available inlets; a 5.08 cm (2 in) diameter, 50.8 cm (20 in) long tube

extending axially from the top of the annular region, or through a 8.26 cm (3.25 in) diameter tube extending

radially from the axial midpoint of the outer cylinder. The bottom and top end caps are interchangeable,

allowing venting from the top or bottom of the vessel. The end caps can be oriented at an arbitrary angle

to the outer cylinder and radial vent; in the experiments and models described below, they are 180◦ apart,

and venting occurs through the axial inlet. Vacuum (to approximately 130 Pa) is held at the inlet by a disk

which slides free of the opening to allow unobstructed flow through the inlet. The flow rate is limited as

desired for each test by an orifice plate, located at the interface of the inlet tube and annular vessel. The

pressurization rate is measured at the top of the chamber with a capacitance manometer.

B.1.1 Pressurization rate

An analytical solution for vessel pressure as a function of time can be obtained under some simplifying

assumptions [138, 139]. It is assumed that the gas (air) is ideal with constant specific heat, that the air in

the vessel is at rest with spatially uniform thermodynamic properties, and that flow through the inlet is 1-D

and isentropic. The cross sectional area of the inlet is constant, and the contents of the vessel are in thermal

equilibrium with the surroundings. From here one assumes that the process is either adiabatic or isothermal.

Typical vessel filling problems are better approximated by an isothermal solution; for transients on the order

of one second or longer [139], high velocities inside the vessel rapidly transfer heat to the walls, resulting in

little temperature increase in the gas (note the apparent contradiction with the initial assumption of zero

velocity). Flow in TDMX is initially choked since the pressure is well below the critical value, given by

Pr,c =

(
2

γ + 1

)γ/(γ−1)

(B.1)

Here the subscript r denotes a“reduced”quantity, normalized with respect to the pressure of the surroundings.

The specific heat ratio, γ, is equal to 1.4 for air. Time, t, is normalized with respect to a characteristic time,

tchar, which is given in terms of the vessel volume V , inlet cross sectional area A, and sound speed (based

on the temperature of the surroundings) c:

tchar =
V

Ac
(B.2)
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Figure B.1. The Toroidal Dust Mobilization Experiment (TDMX).
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The pressurization rate is linear while flow is choked. For isothermal (superscript I) and adiabatic (super-

script A) solutions, respectively,

P I
r (tr) = Pr,i +

(
2

γ + 1

) γ+1
2(γ−1)

tr (B.3)

PA
r (tr) = Pr,i + γ

(
2

γ + 1

) γ+1
2(γ−1)

tr (B.4)

where Pr,i is the initial reduced pressure in the vessel. Now the time to reach critical pressure, tr,c can be

determined:

tIr,c =

(
2

γ + 1

)1/2

− Pr,i

(
2

γ + 1

) γ+1
2(1−γ)

(B.5)

tAr,c =
1

γ

(
2

γ + 1

)1/2

− Pr,i

γ

(
2

γ + 1

) γ+1
2(1−γ)

(B.6)

Above the critical pressure, the pressurization rate decreases until it reaches zero when the vessel pressure

reaches that of the surroundings:

P I
r (tr) =

[
1 −

[√
1 − P

γ−1
γ

r,c −
√

γ − 1

2γ2

(
tr − tIr,c

)]2
] γ

γ−1

(B.7)

PA
r (tr) =


1 −

[√
1 − P

γ−1
γ

r,c −
√

γ − 1

2

(
tr − tAr,c

)]2



γ
γ−1

(B.8)

and the total vessel filling times (tr,f ) are

tIr,f =

√(
2γ2

γ − 1

(
1 − P

γ−1
γ

r,c

))
+ tIr,c (B.9)

tAr,f =

√(
2

γ − 1

(
1 − P

γ−1
γ

r,c

))
+ tAr,c (B.10)

The times to reach critical and atmospheric pressure are evaluated for TDMX parameters, based on a 5.08

cm (2 in) diameter inlet cross section, in Table B.1.

The filling of TDMX has been modeled in Fluent, in which the evacuated vessel is connected to a

large volume at atmospheric (85 kPa) pressure. In the experiments, the initial pressure may be as low

as 135 Pa; model results presented here were initialized at 1000 Pa to avoid convergence difficulties and

accompanying long computation times that sometimes occur in the Fluent solver at very low pressures.

Since the experimental pressure transient is affected by heat transfer from the vessel, this effect must be

accounted for in the model as well. Therefore, a convection heat transfer coefficient of 8.4 W/m2K is applied

to all chamber walls, derived from the following Nusselt number (Nu) correlation for vertical flat plates:

NuL =


0.825 +

0.387Ra
1/6
L[

1 + (0.492/Pr)
9/16

]8/27




2

(B.11)
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Isothermal Adiabatic

Pi (Pa) 135 135

Pf (Pa) 85000 85000

Ti (K) 293 293

Tf (K) 293 410.2

tchar (s) 0.0434 0.0434

tc (s) 0.0395 0.0282

tf (s) 0.0950 0.0679

Table B.1. TDMX conditions and vessel fill times.

Ra is the Raleigh number and Pr is the Prandtl number. The correlation is valid for cylinders [140] with

diameter D and height L satisfying
D

L
>

35

Gr
1/4
L

(B.12)

where Gr is the Grashof number based on the height L.

Analytical, experimental, and model results for TDMX axial vents (d = 2 in) are compared in Figure

B.2. The model, with a heat transfer coefficient of 8.4 W/m2K, matches closely the isothermal analytical

solution, with a slightly faster fill time. The model predicts one important flow feature from the experiment

that the analytical treatment lacks; oscillating flow after the vessel fills. This feature is of particular interest

since it could result in the release of dust from the vessel, which would contribute to the source term in

an ITER accident scenario. Compared to the experimental data, this case predicts a longer fill time, with

flow oscillations smaller in magnitude, though similar in period. To determine the effect of the applied heat

transfer coefficient on the model transient, two similar cases were run; one adiabatic, and the other with a

heat transfer coefficient of 4.2 W/m2K, half of the original value. The pressure transients for both these

cases were nearly identical; the adiabatic case appears in Figure B.2. This resulted in faster vessel filling,

and also increased the magnitude of flow oscillations.

While these models compare reasonably well with analytical and experimental results, these are very fast

transients (∼0.1 s), and complete mobilization is expected in this case. Of greater interest is the transition

region where only partial mobilization occurs. For piles of 0.5 µm tungsten dust totaling approximately two

grams, this transition regime is shown in Figure B.3. For dust piles directly underneath the vent (0◦ offset),

complete mobilization occurs for vent diameters above 3/16”, with little mobilization occurring below 1/16”.

For piles offset a full 180◦ toroidally, the range of partial mobilization falls between 1/8” and 5/16” entrance

diameters.

Modeling the vessel filling for this range of vent diameters has been less successful due to prohibitively

long computation times. The small flow passage requires small cells in this region, which in turn requires
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Figure B.2. Comparison of analytical (gray), experimental, and Fluent (black) results.
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a small time step; in addition, the fill time for a 1/4 inch diameter vent is more than 50 times longer than

for the 2 inch diameter vent described above. Combined, these effects result in extremely long computation

times. Addition of multi-phase and granular flow models will not help this situation; high performance

computing options will have to be explored if many such models are to be employed.

B.2 Simple pipe mobilization experiment

Given the varied and complex nature of the granular material models that are proposed to model dust

mobilization, it was decided that benchmarking such models would be better served by simpler experiments.

To that end, a horizontal pipe experiment has been constructed to investigate dust mobilization. It consists

of a long acrylic tube, 0.75 inches in diameter, with an approximately ten foot entrance length upstream of a

dust pile to establish fully developed flow. Following this entrance length is the test section, where a portion

of the tube is cut away and dust may be poured in. The tube extends two feet downstream of the test section

and is then exhausted through a HEPA filter. In the present setup, two flow meters in parallel allow for a

maximum of 100 standard liters per minute of helium, equivalent to a Reynolds number of about 930. Two

materials have been tested thus far; 316 stainless steel of 65 µm diameter (Figure B.4), and graphite of 4

µm diameter (Figure B.5).

The latter is a size and material characteristic of dust sampled from tokamaks [4, 5]. The stainless steel

is large for fusion dust, but it is necessary to conduct experiments on cohesionless materials as well, and this

implies larger particles. Both were subjected to flows of helium, which were increased in small step changes

up to the maximum Reynolds number of 930. The behavior of both materials was similar, and consistent

with the “yielding solid” description outlined previously. If the behavior were fluid-like, mobilization would

be continual at constant flow rate, with the rate of mobilization increasing with increasing flow rate. Rather,

the dust pile is stable at Re∼930, sustaining shear with no observable mobilization as flow continues at that

rate. What few changes did occur in the piles were consistent with the idea of yield in a region of the pile;

in a few instances, when a small increase in the flow rate was made, a small section of the pile would be

mobilized (typically near the top on the leading face), with the rest of the pile remaining unchanged.

These observations suggest that at rest and for relatively low stresses, the behavior of dust piles is in

fact solid/elastic; and that mobilization may be identified with yield. But, yield may occur only in small

portions of the pile, and mobilization will be partial in this case, with the rest of the pile remaining in a

stable configuration.
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Figure B.3. Mobilized fraction of 2 gram tungsten dust piles directly underneath the vent (0◦ offset) and
offset 180◦, for a variety of vent sizes.
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Figure B.4. The test section with a pile of 65 µm stainless steel dust following shear by a flow of helium up
to Re = 930. There was no observable mobilization, and the pile remained stable.
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Figure B.5. Piles of 4 µm carbon dust before (top) and after (bottom) shear by a flow of helium up to Re
= 930. While the majority of the pile was stable, some mobilization did occur. Note the irregularity of the

pile due to cohesive and electrostatic effects, and the visible deposition downstream (right) of the pile.
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C Appendix: Maple calculation of eigenvalues for GE-NLS

|\^/| Maple 10 (IBM INTEL LINUX)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2005

\ MAPLE / All rights reserved. Maple is a trademark of

<____ ____> Waterloo Maple Inc.

| Type ? for help.

> with(linalg):

Warning, the protected names norm and trace have been redefined and unprotected

> st:=matrix([[u11,u12,u13],[u21,u22,u23],[u31,u32,u33]]):

> dst:=([[u11-(1/3)*trace(st),u12,u13],[u21,u22-(1/3)*trace(st),u23],

> [u31,u32,u33-(1/3)*trace(st)]]):

> uI:=trace(st):

> uII:=dst[1,1]^2+dst[1,2]^2+dst[1,3]^2+dst[2,1]^2+dst[2,2]^2+dst[2,3]^2+

> dst[3,1]^2+dst[3,2]^2+dst[3,3]^2:

> uIII:=det(dst):

> F:=G*((-uI)^(b+2))*((2/5)*xi+(uII/((-uI)^2))+z*(uIII/((-uI)^3))):

> F:=subs(u11=u1,u22=u2,u33=u3,u12=g4/2,u21=g4/2,u23=g5/2,u32=g5/2,u13=g6/2,

> u31=g6/2,F):

> F:=subs(b=1,F):

> D11:=simplify(diff(diff(F,u1),u1)):

> D12:=simplify(diff(diff(F,u1),u2)):

> D13:=simplify(diff(diff(F,u1),u3)):

> D14:=simplify(diff(diff(F,u1),g4)):

> D15:=simplify(diff(diff(F,u1),g5)):

> D16:=simplify(diff(diff(F,u1),g6)):

> D21:=simplify(diff(diff(F,u2),u1)):

> D22:=simplify(diff(diff(F,u2),u2)):

> D23:=simplify(diff(diff(F,u2),u3)):

> D24:=simplify(diff(diff(F,u2),g4)):

> D25:=simplify(diff(diff(F,u2),g5)):

> D26:=simplify(diff(diff(F,u2),g6)):

> D31:=simplify(diff(diff(F,u3),u1)):

> D32:=simplify(diff(diff(F,u3),u2)):

> D33:=simplify(diff(diff(F,u3),u3)):
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> D34:=simplify(diff(diff(F,u3),g4)):

> D35:=simplify(diff(diff(F,u3),g5)):

> D36:=simplify(diff(diff(F,u3),g6)):

> D41:=simplify(diff(diff(F,g4),u1)):

> D42:=simplify(diff(diff(F,g4),u2)):

> D43:=simplify(diff(diff(F,g4),u3)):

> D44:=simplify(diff(diff(F,g4),g4)):

> D45:=simplify(diff(diff(F,g4),g5)):

> D46:=simplify(diff(diff(F,g4),g6)):

> D51:=simplify(diff(diff(F,g5),u1)):

> D52:=simplify(diff(diff(F,g5),u2)):

> D53:=simplify(diff(diff(F,g5),u3)):

> D54:=simplify(diff(diff(F,g5),g4)):

> D55:=simplify(diff(diff(F,g5),g5)):

bytes used=4000024, alloc=3472772, time=0.05

> D56:=simplify(diff(diff(F,g5),g6)):

> D61:=simplify(diff(diff(F,g6),u1)):

> D62:=simplify(diff(diff(F,g6),u2)):

> D63:=simplify(diff(diff(F,g6),u3)):

> D64:=simplify(diff(diff(F,g6),g4)):

> D65:=simplify(diff(diff(F,g6),g5)):

> D66:=simplify(diff(diff(F,g6),g6)):

> M:=matrix([[D11,D12,D13,D14,D15,D16],[D21,D22,D23,D24,D25,D26],

> [D31,D32,D33,D34,D35,D36],[D41,D42,D43,D44,D45,D46],

> [D51,D52,D53,D54,D55,D56],[D61,D62,D63,D64,D65,D66]]):

> u1:=0:

> u3:=0:

> g5:=0:

> g6:=0:

> S2:=diff(F,u2):

> T4:=diff(F,g4):

> eigvs:=eigenvals(M):

bytes used=8000388, alloc=4455632, time=0.12

> eigv1:=eigvs[1];
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/ 2 2 2 2 1/2\

| z u2 (z u2 + z g4 ) |

eigv1 := |-u2 - ---- + --------------------| G

\ 12 4 /

> eigv2:=eigvs[2];

/ 2 2 2 2 1/2\

| z u2 (z u2 + z g4 ) |

eigv2 := |-u2 - ---- - --------------------| G

\ 12 4 /

> eigv3:=eigvs[3];

4 4 2 2 4 4 2

eigv3 := RootOf(270 _Z + 7776 xi u2 - 1080 z g4 u2 - 720 u2 z + 240 u2 z

2 3 2 2 2 2 2 2 2 2 2

+ 108 xi u2 z g4 - 3240 g4 u2 + 270 z g4 u2 - 648 xi u2 z g4

4 3 4 4 4 2 3

+ 144 xi u2 z - 4320 u2 - 1296 xi u2 z - 864 xi u2 z + (-1260 z u2

2 2 3 2 2 3

- 90 z u2 g4 + 15 z u2 g4 - 540 z u2 g4 - 1296 xi u2 z

2 3 3 2 2 2 2 3

- 864 z u2 xi - 5400 u2 - 324 xi u2 z g4 - 3240 g4 u2 - 120 z u2

3 3 3

+ 15552 xi u2 + 20 z u2 ) _Z + (

2 2 2 2 2 2 2 2

-45 z g4 - 324 xi u2 z - 120 z u2 - 180 u2 z + 9720 xi u2 - 810 g4 )

2 3

_Z + (-45 z u2 + 1944 xi u2 + 1350 u2) _Z , label = _L2) G

> req1:=simplify((solve(eigv1=0,g4)[1])^2);

2 2

8 (-3 z + z - 18) u2

req1 := - ----------------------

2

9 z

> req2:=simplify((solve(eigv2=0,g4)[1])^2);
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2 2

8 (-3 z + z - 18) u2

req2 := - ----------------------

2

9 z

> req3:=simplify((solve(eigv3=0,g4)[1])^2);

bytes used=12000792, alloc=5045348, time=0.19

2 2

8 u2 (15 + 3 xi z + 5 z - 27 xi)

req3 := - ----------------------------------

2

9 (2 xi z + 5 z + 10)

> simplify(diff(req3,xi));

2 3

40 u2 (z - 27 z - 54)

- -----------------------

2 2

9 (2 xi z + 5 z + 10)

> req3_lim:=limit(req3,xi=infinity);

2 2

4 u2 (z - 9)

req3_lim := - --------------

2

3 z

> tan2phi:=simplify((T4/S2)^2);

2 2 2

900 u2 g4 (-6 + z)

tan2phi := -------------------------------------------------------

2 2 2 2 2 2

(-216 xi u2 - 360 u2 - 90 g4 + 40 u2 z + 15 z g4 )

> tan2phi:=simplify(subs(g4=sqrt(req3),tan2phi));
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2 2 2

tan2phi := - 225 (2 xi z + 5 z + 10) (-6 + z) (15 + 3 xi z + 5 z - 27 xi)

/ 2 2 2

/ (2 (-162 xi z - 270 xi z - 1620 xi - 180 xi z - 450 z - 900

/

3 2 2

+ 15 xi z + 50 z ) )

> phi:=(180/Pi)*arctan(sqrt(tan2phi));

/ 2 2

phi := 180 arctan(15 |- (4 xi z + 10 z + 20) (-6 + z)

\

2 / 2 2

(15 + 3 xi z + 5 z - 27 xi) / (-162 xi z - 270 xi z - 1620 xi

/

2 3 2 2\1/2

- 180 xi z - 450 z - 900 + 15 xi z + 50 z ) | /2)/Pi

/

> phimax:=Optimization:-Maximize(phi,xi=0..2,z=0..2);

phimax := [17.0238661849957715, [z = 0., xi = 1.66666667152813352]]

> phi_GEL:=simplify(subs(z=0,phi));

1/2 / -5 + 9 xi \1/2

15 |-----------|

| 2|

\(5 + 9 xi) /

180 arctan(----------------------)

2

phi_GEL := ----------------------------------

Pi

> quit

bytes used=15157824, alloc=5045348, time=0.24
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D Appendix: Plane stress solution for the Einav-Puzrin model

|\^/| Maple 10 (IBM INTEL LINUX)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2005

\ MAPLE / All rights reserved. Maple is a trademark of

<____ ____> Waterloo Maple Inc.

| Type ? for help.

> G:=sqrt(P^3/B)*(b+(Ss/P)^2);

/ 3 \1/2 / 2\

| P | | Ss |

G := |----| |b + ---|

\ B / | 2 |

\ P /

> G:=subs(Ss=sqrt(s1^2+s2^2+s3^2+2*t4^2+2*t5^2+2*t6^2-3*P^2),P=-(s1+s2+s3)/3,G):

> s3:=0:

> t5:=0:

> t6:=0:

> u2:=diff(G,s2):

> g4:=diff(G,t4):

> sx:=solve(diff(G,s1)=0,s1);

2 2 2 2 1/2

3 s2 + b s2 - (45 s2 + 6 b s2 + 6 t4 b + 36 t4 )

sx := - ------------------------------------------------------,

b + 6

2 2 2 2 1/2

3 s2 + b s2 + (45 s2 + 6 b s2 + 6 t4 b + 36 t4 )

- ------------------------------------------------------

b + 6

> s1a:=evalf(subs(b=2,s2=-1000,t4=0,sx[1]));

s1a := 1568.729304

> s1b:=evalf(subs(b=2,s2=-1000,t4=0,sx[2]));

s1b := -318.7293044

> u2:=simplify(subs(s1=sx[2],u2));

bytes used=4000052, alloc=3472772, time=0.08
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2 4 1/2 5 2 3 5 2 5

u2 := - 72 (-3 b s2 %1 + 270 b s2 + 108 t4 s2 + 324 s2 + 45 b s2

4 1/2 2 2 3 2 3 3 5 2 3 3

- 30 b s2 %1 + 66 t4 b s2 + 270 t4 b s2 + 2 b s2 + 4 t4 s2 b

4 2 4 4 3 4

+ 21 s2 t4 b + 36 s2 t4 b + 2 s2 t4 b - 108 s2 t4

2 2 2 1/2 2 2 1/2 2 2 1/2 4 1/2

- 2 t4 b s2 %1 - 6 t4 b s2 %1 + 36 t4 s2 %1 - 36 s2 %1

/

4 1/2 2 1/2 4 1/2 4 1/2 / |

+ 36 t4 %1 + b %1 t4 + 12 b %1 t4 ) 3 / |B

/ |

\

/ 1/2 3\1/2\

1/2 3 2 | (3 s2 - %1 ) | |

(3 s2 - %1 ) (b + 6) |- ---------------| |

| 3 | |

\ (b + 6) B / /

2 2 2 2

%1 := 45 s2 + 6 b s2 + 6 t4 b + 36 t4

> g4:=simplify(subs(s1=sx[2],g4));

/ 2 2 2 2 1/2 3\1/2

1/2 | (3 s2 - (45 s2 + 6 b s2 + 6 t4 b + 36 t4 ) ) |

g4 := 4 3 |- --------------------------------------------------| t4

| 3 |

\ (b + 6) B /

2 / 2 2 2 2 1/2 2

(b + 6) / (3 s2 - (45 s2 + 6 b s2 + 6 t4 b + 36 t4 ) )

/

> r:=simplify(g4/u2);
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1/2 4 / 2 4 1/2 5

r := (3 s2 - %1 ) (b + 6) t4 / (18 (-3 b s2 %1 + 270 b s2

/

2 3 5 2 5 4 1/2 2 2 3

+ 108 t4 s2 + 324 s2 + 45 b s2 - 30 b s2 %1 + 66 t4 b s2

2 3 3 5 2 3 3 4 2 4

+ 270 t4 b s2 + 2 b s2 + 4 t4 s2 b + 21 s2 t4 b + 36 s2 t4 b

4 3 4 2 2 2 1/2 2 2 1/2

+ 2 s2 t4 b - 108 s2 t4 - 2 t4 b s2 %1 - 6 t4 b s2 %1

2 2 1/2 4 1/2 4 1/2 2 1/2 4

+ 36 t4 s2 %1 - 36 s2 %1 + 36 t4 %1 + b %1 t4

1/2 4

+ 12 b %1 t4 ))

2 2 2 2

%1 := 45 s2 + 6 b s2 + 6 t4 b + 36 t4

> r:=subs(t4=R*s2,r);

1/2 4 / 2 4 1/2 5

r := (3 s2 - %1 ) (b + 6) R s2 / (18 (-3 b s2 %1 + 270 b s2

/

2 5 5 2 5 4 1/2 2 5 2

+ 108 R s2 + 324 s2 + 45 b s2 - 30 b s2 %1 + 66 R s2 b

2 5 3 5 2 5 3 5 4 2 5 4

+ 270 R s2 b + 2 b s2 + 4 R s2 b + 21 s2 R b + 36 s2 R b

5 4 3 5 4 2 4 2 1/2 2 4 1/2

+ 2 s2 R b - 108 s2 R - 2 R s2 b %1 - 6 R s2 b %1

2 4 1/2 4 1/2 4 4 1/2 2 1/2 4 4

+ 36 R s2 %1 - 36 s2 %1 + 36 R s2 %1 + b %1 R s2

1/2 4 4

+ 12 b %1 R s2 ))

2 2 2 2 2 2

%1 := 45 s2 + 6 b s2 + 6 R s2 b + 36 R s2

> r:=subs(s2=1,r);
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1/2 4 / 2 1/2 2 2

r := (3 - %1 ) (b + 6) R / (18 (-3 b %1 + 270 b + 108 R + 324 + 45 b

/

1/2 2 2 2 3 2 3 4 2 4

- 30 b %1 + 66 R b + 270 R b + 2 b + 4 R b + 21 R b + 36 R b

4 3 4 2 2 1/2 2 1/2 2 1/2 1/2

+ 2 R b - 108 R - 2 R b %1 - 6 R b %1 + 36 R %1 - 36 %1

4 1/2 2 1/2 4 1/2 4

+ 36 R %1 + b %1 R + 12 b %1 R ))

2 2

%1 := 45 + 6 b + 6 R b + 36 R

> r_max:=simplify(limit(r,R=infinity));

1/2

2 3 (b + 6)

r_max := ---------------

1/2

3 (2 b + 12)

> quit

bytes used=7702360, alloc=4586680, time=0.16
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E Appendix: Legendre Transform of the HAR Model

As the details of obtaining the Gibbs free energy of the HAR model are not given in [67, 76], they are

presented here for clarity. We begin with the Helmholtz free energy,

F = A
(
α∆2 + u2

s

) 3
2 (E.1)

and wish to obtain the (negative) Gibbs free energy G via the Legendre transform,

G = P∆ + σsus − F (E.2)

First we need to solve for ∆, us in terms of the stress invariants. We have

∂F
∂∆

= P = 3Aα∆
(
α∆2 + u2

s

) 1
2 (E.3)

∂F
∂us

= σs = 3Aus

(
α∆2 + u2

s

) 1
2 (E.4)

which can be rearranged to

u2
s =

P 2

9A2α2∆2
− α∆2 (E.5)

α∆2 =
σ2

s

9A2u2
s

− u2
s (E.6)

Substituting α∆2 from the second expression into the first,

u2
s =

P 2

9A2α
(

σ2
s

9A2u2
s
− u2

s

) − σ2
s

9A2u2
s

+ u2
s (E.7)

The u2
s terms cancel from each side, and

σ2
s

9A2u2
s

=
P 2

9A2α
(

σ2
s

9A2u2
s
− u2

s

) (E.8)

Solving for P 2,

P 2 =
σ2

s

9A2u2
s

(
ασ2

s

u2
s

− 9A2αu2
s

)
(E.9)

or

P 2 =
ασ4

s

9A2u4
s

− ασ2
s (E.10)

Solving for us, we obtain

u4
s =

ασ4
s

9A2 (P 2 + ασ2
s)

(E.11)

u2
s =

σ2
s

3A

√
α

(P 2 + ασ2
s)

(E.12)

and

us =
σs√
3A

(
α

(P 2 + ασ2
s)

) 1
4

(E.13)
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Substituting the above expression for u2
s into equation E.6,

α∆2 =
σ2

s

9A2

(
σ2

s

3A

√
α

P 2+ασ2
s

) − σ2
s

3A

√
α

P 2 + ασ2
s

(E.14)

Canceling σs and 3A terms gives

α∆2 =
1

1
3A

√
α

P 2+ασ2
s

− σ2
s

3A

√
α

P 2 + ασ2
s

(E.15)

which may be rewritten

3Aα∆2

√
α

P 2 + ασ2
s

= 1 − ασ2
s

P 2 + ασ2
s

(E.16)

The right hand side simplifies as follows:

1 − ασ2
s

P 2 + ασ2
s

=
P 2 + ασ2

s

P 2 + ασ2
s

− ασ2
s

P 2 + ασ2
s

=
P 2

P 2 + ασ2
s

(E.17)

So,

3Aα∆2

√
α

P 2 + ασ2
s

=
P 2

P 2 + ασ2
s

(E.18)

and

3Aα∆2 =

√
P 2 + ασ2

s

α

P 2

P 2 + ασ2
s

(E.19)

which leads to the solution for ∆,

∆2 =
P 2

3Aα
3
2

√
P 2 + ασ2

s

(E.20)

and

∆ =
P√

3Aα
3
4 (P 2 + ασ2

s)
1
4

(E.21)

We may now insert the solutions for ∆ and us (equations E.12, E.13, E.20, and E.21) into the Legendre

transform, equation E.2:

G = P∆ + σsus −A
(
α∆2 + u2

s

) 3
2 (E.22)

=
P 2

√
3Aα

3
4 (P 2 + ασ2

s)
1
4

+
ασ2

s√
3Aα

3
4 (P 2 + ασ2

s)
1
4

−A

(
αP 2

3Aα
3
2 (P 2 + ασ2

s)
1
2

+
α

1
2 σ2

s

3A (P 2 + ασ2
s)

1
2

) 3
2

(E.23)

=
P 2 + ασ2

s√
3Aα

3
4 (P 2 + ασ2

s)
1
4

−A

(
P 2 + ασ2

s

3Aα
1
2 (P 2 + ασ2

s)
1
2

) 3
2

(E.24)

=

(
P 2 + ασ2

s

) 3
4

√
3Aα

3
4

−A


(

P 2 + ασ2
s

) 1
2

3Aα
1
2




3
2

(E.25)

=

(
P 2 + ασ2

s

) 3
4

√
3Aα

3
4

−A

(
P 2 + ασ2

s

) 3
4

(3A)
3
2 α

3
4

(E.26)
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=

(
P 2 + ασ2

s

) 3
4

√
3Aα

3
4

− 1

3

(
P 2 + ασ2

s

) 3
4

(3A)
1
2 α

3
4

(E.27)

which simplifies finally to the form of equation 3.147,

G =
2

3
√

3A

(
1

α
P 2 + σ2

s

) 3
4

(E.28)
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F Appendix: Abaqus UMAT implementations

F.1 Granular Elasticity - Plane Strain/Axisymmetric Stress

*************************************************************************

** Granular Elasticity umat for abaqus/standard, **

** plane strain and axi-symmetric elements. **

*************************************************************************

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,

& RPL,DDSDDT,DRPLDE,DRPLDT,

& STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,

& NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,

& CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC)

INCLUDE ’ABA_PARAM.INC’

CHARACTER*80 CMNAME

DIMENSION STRESS(NTENS),STATEV(NSTATV),

& DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),

& STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),

& PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3)

parameter (one=1.d0,two=2.d0,three=3.d0,four=4.d0,six=6.d0)

dimension dstress(4), dds(4,4)

double precision A,d,d2,us2

c------------------------------------------------------------------------

c material properties - specify in problem input

A = 5.1d9

c calculate invariants

d = -(stran(1)+stran(2)+stran(3))

d2 = d**two

us2 = stran(1)**two + stran(2)**two + stran(3)**two +

& (stran(4)**two)/two - d2/three

if (d .lt. 1.d-10) then ! ensure positive compression

d = 1.d-10

d2 = d**two

endif

c stiffness matrix

do j = 1,3
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do i = 1,3

dds(i,j)=A*(14.d0*d2 - 3.d0*us2 - 12.d0*d*(stran(i)+stran(j))) /

& (12.d0*d**(three/two))

end do

end do

do i = 1,3

dds(i,i)=A*(38.d0*d2 - 3.d0*us2 - 24.d0*d*stran(i)) /

& (12.d0*d**(three/two))

end do

do i = 1,3

dds(i,4)=-A*stran(4)/(two*dsqrt(d))

dds(4,i)=dds(i,4)

end do

dds(4,4) = A*dsqrt(d)

c stress increment

do i = 1,4

dstress(i)= dds(i,1)*dstran(1) + dds(i,2)*dstran(2) +

& dds(i,3)*dstran(3) + dds(i,4)*dstran(4)

end do

c update stress

do i = 1,4

stress(i) = stress(i) + dstress(i)

end do

c Jacobian

do j = 1,4

do i = 1,4

ddsdde(i,j) = dds(i,j)

end do

end do

return

end
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F.2 EP Model - Plane Strain/Axisymmetric Stress

*************************************************************************

** Einav/Puzrin hyperelastic umat for abaqus/standard, **

** plane strain and axi-symmetric elements. **

*************************************************************************

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,

& RPL,DDSDDT,DRPLDE,DRPLDT,

& STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,

& NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,

& CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC)

INCLUDE ’ABA_PARAM.INC’

CHARACTER*80 CMNAME

DIMENSION STRESS(NTENS),STATEV(NSTATV),

& DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),

& STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),

& PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3)

parameter (one=1.d0,two=2.d0,three=3.d0,four=4.d0,six=6.d0)

dimension dstress(4), dds(4,4)

double precision B,beta,P,P2,Ss2

c------------------------------------------------------------------------

c material properties - specify in problem input

B = props(1)

beta = props(2)

c calculate invariants

P = -(stress(1)+stress(2)+stress(3))/three

P2 = P**two

Ss2 = stress(1)**two + stress(2)**two + stress(3)**two +

& two*stress(4)**two - three*P2

if (P .lt. one) then ! ensure positive compression

P = one

P2 = P**two

endif

c stiffness matrix

do j = 1,3
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do i = 1,3

dds(i,j)=dsqrt(B*P)*(six*(P-stress(i))*(P-stress(j)) -

& three*beta*P2 - Ss2) / (six*(three*beta*P2 + Ss2))

end do

end do

do i = 1,3

dds(i,i)=dsqrt(B*P)*(three*(P-stress(i))**two+three*beta*P2+Ss2) /

& (three*(three*beta*P2 + Ss2))

end do

do i = 1,3

dds(i,4)=dsqrt(B*P)*(stress(4)*(P-stress(i)))/(three*beta*P2+Ss2)

dds(4,i)=dds(i,4)

end do

dds(4,4) = (four*(stress(4))**two + three*beta*P2 + Ss2) *

& dsqrt(B*P) / (four*(three*beta*P2 + Ss2))

c stress increment

do i = 1,4

dstress(i)= dds(i,1)*dstran(1) + dds(i,2)*dstran(2) +

& dds(i,3)*dstran(3) + dds(i,4)*dstran(4)

end do

c update stress

do i = 1,4

stress(i) = stress(i) + dstress(i)

end do

c Jacobian

do j = 1,4

do i = 1,4

ddsdde(i,j) = dds(i,j)

end do

end do

return

end
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F.3 HAR Model - Plane Strain/Axisymmetric Stress

*************************************************************************

** Houlsby/Amorosi/Rojas hyperelastic umat for abaqus/standard, **

** plane strain and axi-symmetric elements. **

*************************************************************************

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,

& RPL,DDSDDT,DRPLDE,DRPLDT,

& STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,

& NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,

& CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC)

INCLUDE ’ABA_PARAM.INC’

CHARACTER*80 CMNAME

DIMENSION STRESS(NTENS),STATEV(NSTATV),

& DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),

& STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),

& PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3)

parameter (one=1.d0,two=2.d0,three=3.d0,four=4.d0,six=6.d0)

dimension dstress(4), dds(4,4)

double precision A,alpha,d,d2,us2

c------------------------------------------------------------------------

c material properties - specify in problem input

A = props(1)

alpha = props(2)

c calculate invariants

d = -(stran(1)+stran(2)+stran(3))

d2 = d**two

us2 = stran(1)**two + stran(2)**two + stran(3)**two +

& (stran(4)**two)/two - d2/three

if (d .lt. 1.d-10) then ! ensure positive compression

d = 1.d-10

d2 = d**two

endif

c stiffness matrix

do j = 1,3
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do i = 1,3

dds(i,j) = A*(9.d0*stran(i)*stran(j) - three*us2 + d2

& + three*d*(stran(i)+stran(j)) - 9.d0*alpha*d2

& + 18.d0*(alpha**two)*d2 + 9.d0*alpha*us2

& - 9.d0*alpha*d*(stran(i)+stran(j)))

& / (three*dsqrt(alpha*d2+us2))

end do

end do

do i = 1,3

dds(i,i) = A*(9.d0*stran(i)**two + six*us2 + d2 + six*stran(i)*d

& + 18.d0*(alpha**two)*d2 + 9.d0*alpha*us2

& - 18.d0*alpha*stran(i)*d) / (three*dsqrt(alpha*d2+us2))

end do

do i = 1,3

dds(i,4) = -A*(three*alpha*d - three*stran(i) - d) * stran(4)

& / (two*dsqrt(alpha*d2+us2))

dds(4,i) = dds(i,4)

end do

dds(4,4) = A*(six*us2 + (three*alpha + one)*d2

& - three*(stran(1)**two + stran(2)**two + stran(3)**two))

& / (two*dsqrt(alpha*d2+us2))

c stress increment

do i = 1,4

dstress(i)= dds(i,1)*dstran(1) + dds(i,2)*dstran(2) +

& dds(i,3)*dstran(3) + dds(i,4)*dstran(4)

end do

c update stress

do i = 1,4

stress(i) = stress(i) + dstress(i)

end do

c Jacobian

do j = 1,4

do i = 1,4

ddsdde(i,j) = dds(i,j)

end do
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end do

return

end
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σ1 σ2 Analytical Abaqus

1000 500
u1 = -2.239e-4

u2 = -8.250e-5

u1 = -2.261e-4

u2 = -8.328e-5

1000 1000
u1 = -1.837e-4

u2 = -1.837e-4

u1 = -1.855e-4

u2 = -1.855e-4

1000 1500
u1 = -1.479e-4

u2 = -2.574e-4

u1 = -1.493e-4

u2 = -2.599e-4

Table F.1. Abaqus results for a single quadratic, reduced integration, plane stress element.

F.4 Einav and Puzrin Model - Plane Stress

F.4.1 Compliance and Stiffness Matrices

In the case of plane stress, we have u3 = γ5 = γ6 = 0, and σ3 = τ5 = τ6 = 0 [141]. Substituting the three

vanishing components of stress into the compliance matrix, it simplifies to

C =




1
12

√
BP

(
σ2

s

P 2 + 8σ1

P + β + 24
)

1
12

√
BP

(
σ2

s

P 2 + β − 12
)

2τ4

3
√

BP 3

1
12

√
BP

(
σ2

s

P 2 + β − 12
)

1
12

√
BP

(
σ2

s

P 2 + 8σ2

P + β + 24
)

2τ4

3
√

BP 3

2τ4

3
√

BP 3

2τ4

3
√

BP 3

4√
BP


 (F.1)

The stiffness matrix M is obtained by inverting C,

M =
√
BP




((3β+30)P 2+σ2
s+6σ2

1−2σ2
2)

4((3β+3)P 2+σ2
s)

−((3β−42)P 2+σ2
s+2(σ2

1+σ2
2))

4((3β+3)P 2+σ2
s)

τ4(2σ1−3P )
(6β+6)P 2+2σ2

s

−((3β−42)P 2+σ2
s+2(σ2

1+σ2
2))

4((3β+3)P 2+σ2
s)

((3β+30)P 2+σ2
s+6σ2

2−2σ2
1)

4((3β+3)P 2+σ2
s)

τ4(2σ2−3P )
(6β+6)P 2+2σ2

s

τ4(2σ1−3P )
(6β+6)P 2+2σ2

s

τ4(2σ2−3P )
(6β+6)P 2+2σ2

s
M33


 (F.2)

M33 =

(
(3β + 9)P 2 + 3σ2

s − 2
(
σ2

1 + σ2
2

))
4 ((3β + 3)P 2 + σ2

s)
(F.3)

Abaqus benchmarks for the plane stress case are shown in table F.1.
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F.4.2 UMAT

*************************************************************************

** Einav/Puzrin hyperelastic umat for abaqus/standard, **

** plane stress elements. **

*************************************************************************

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,

& RPL,DDSDDT,DRPLDE,DRPLDT,

& STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,

& NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,

& CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC)

INCLUDE ’ABA_PARAM.INC’

CHARACTER*80 CMNAME

DIMENSION STRESS(NTENS),STATEV(NSTATV),

& DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),

& STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),

& PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3)

parameter (one=1.d0,two=2.d0,three=3.d0,four=4.d0,six=6.d0)

dimension dstress(3), dds(3,3)

double precision B,beta,P,P2,Ss2

c------------------------------------------------------------------------

c material properties - specify in problem input

B = props(1)

beta = props(2)

c calculate invariants

P = -(stress(1)+stress(2))/three

P2 = P**two

Ss2 = stress(1)**two + stress(2)**two + two*stress(3)**two -

& three*P2

if (P .lt. one) then ! ensure positive compression

P = one

P2 = P**two

endif

c stiffness matrix

dds(1,1)=dsqrt(B*P)*(three*(beta+10.d0)*P2 + Ss2 +
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& six*stress(1)**two - two*stress(2)**two) /

& (four*(three*(beta+one)*P2 + Ss2))

dds(2,2)=dsqrt(B*P)*(three*(beta+10.d0)*P2 + Ss2 +

& six*stress(2)**two - two*stress(1)**two) /

& (four*(three*(beta+one)*P2 + Ss2))

dds(1,2)=-dsqrt(B*P)*(three*(beta-14.d0)*P2 + Ss2 +

& two*(stress(1)**two + stress(2)**two)) /

& (four*(three*(beta+one)*P2 + Ss2))

dds(2,1)=dds(1,2)

do i = 1,2

dds(i,3)=dsqrt(B*P)*stress(3)*(two*stress(i)-three*P) /

& (six*(beta+one)*P2 + two*Ss2)

dds(3,i)=dds(i,3)

end do

dds(3,3) = dsqrt(B*P)*((three*beta+9.d0)*P2+ three*Ss2 -

& two*(stress(1)**two+stress(2)**two)) /

& (four*((three*(beta+one)*P2) + Ss2))

c stress increment

do i = 1,3

dstress(i)= dds(i,1)*dstran(1) + dds(i,2)*dstran(2) +

& dds(i,3)*dstran(3)

end do

c update stress

do i = 1,3

stress(i) = stress(i) + dstress(i)

end do

c Jacobian

do j = 1,3

do i = 1,3

ddsdde(i,j) = dds(i,j)

end do

end do

return

end
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F.5 Einav and Puzrin Model - 3D

F.5.1 3D stress

The full 3D stiffness matrix is obtained by inverting the full compliance matrix,

Cij =




2τ4

3
√

BP 3

2τ5

3
√

BP 3

2τ6

3
√

BP 3

Ĉ 2τ4

3
√

BP 3

2τ5

3
√

BP 3

2τ6

3
√

BP 3

2τ4

3
√

BP 3

2τ5

3
√

BP 3

2τ6

3
√

BP 3

2τ4

3
√

BP 3

2τ4

3
√

BP 3

2τ4

3
√

BP 3

4√
BP

0 0

2τ5

3
√

BP 3

2τ5

3
√

BP 3

2τ5

3
√

BP 3
0 4√

BP
0

2τ6

3
√

BP 3

2τ6

3
√

BP 3

2τ6

3
√

BP 3
0 0 4√

BP




(F.4)

with

Ĉij =
1

12
√
BP

(
σ2

s

P 2
+

4(σi + σj)

P
+ β + 24δij

)
(F.5)

The stiffness matrix is

M =
√
BP




M̂ M̂CA

(4τ2
4 +3βP 2+σ2

s)
4(3βP 2+σ2

s)
τ4τ5

(3βP 2+σ2
s)

τ4τ6

(3βP 2+σ2
s)

M̂T
CA

τ5τ4

(3βP 2+σ2
s)

(4τ2
5 +3βP 2+σ2

s)
4(3βP 2+σ2

s)
τ5τ6

(3βP 2+σ2
s)

τ6τ4

(3βP 2+σ2
s)

τ6τ5

(3βP 2+σ2
s)

(4τ2
6 +3βP 2+σ2

s)
4(3βP 2+σ2

s)




(F.6)

where

M̂CA =




τ4(P−σ1)
(3βP 2+σ2

s)
τ5(P−σ1)
(3βP 2+σ2

s)
τ6(P−σ1)
(3βP 2+σ2

s)

τ4(P−σ2)
(3βP 2+σ2

s)
τ5(P−σ2)
(3βP 2+σ2

s)
τ6(P−σ2)
(3βP 2+σ2

s)

τ4(P−σ3)
(3βP 2+σ2

s)
τ5(P−σ3)
(3βP 2+σ2

s)
τ6(P−σ3)
(3βP 2+σ2

s)


 (F.7)

and

M̂ =




(3(P−σ1)
2+3βP 2+σ2

s)
3(3βP 2+σ2

s)

(6(P−σ1)(P−σ2)−3βP 2−σ2
s)

6(3βP 2+σ2
s)

(6(P−σ1)(P−σ3)−3βP 2−σ2
s)

6(3βP 2+σ2
s)

(6(P−σ2)(P−σ1)−3βP 2−σ2
s)

6(3βP 2+σ2
s)

(3(P−σ2)
2+3βP 2+σ2

s)
3(3βP 2+σ2

s)

(6(P−σ2)(P−σ3)−3βP 2−σ2
s)

6(3βP 2+σ2
s)

(6(P−σ3)(P−σ1)−3βP 2−σ2
s)

6(3βP 2+σ2
s)

(6(P−σ3)(P−σ2)−3βP 2−σ2
s)

6(3βP 2+σ2
s)

(3(P−σ3)
2+3βP 2+σ2

s)
3(3βP 2+σ2

s)


 (F.8)

is the same as for the axisymmetric case. Abaqus benchmarks for the 3D case are shown in table F.2.
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σ1 σ2 σ3 Analytical Abaqus

500 750 1000

u1 = -6.895e-5

u2 = -1.267e-4

u3 = -1.844e-4

u1 = -6.963e-5

u2 = -1.279e-4

u3 = -1.862e-4

1000 1000 1000

u1 = -1.5e-4

u2 = -1.5e-4

u3 = -1.5e-4

u1 = -1.514e-4

u2 = -1.514e-4

u3 = -1.514e-4

1000 1100 1200

u1 = -1.380e-4

u2 = -1.570e-4

u3 = -1.761e-4

u1 = -1.393e-4

u2 = -1.586e-4

u3 = -1.778e-4

Table F.2. Abaqus results for a single quadratic, reduced integration, 3D stress element.
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F.5.2 UMAT

*************************************************************************

** Einav/Puzrin hyperelastic umat for abaqus/standard, 3D elements. **

*************************************************************************

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,

& RPL,DDSDDT,DRPLDE,DRPLDT,

& STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,

& NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,

& CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC)

INCLUDE ’ABA_PARAM.INC’

CHARACTER*80 CMNAME

DIMENSION STRESS(NTENS),STATEV(NSTATV),

& DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),

& STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),

& PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3)

parameter (one=1.d0,two=2.d0,three=3.d0,four=4.d0,six=6.d0)

dimension dstress(6), dds(6,6)

double precision B,beta,P,P2,Ss2

c------------------------------------------------------------------------

c material properties - specify in problem input

B = props(1)

beta = props(2)

c calculate invariants

P = -(stress(1)+stress(2)+stress(3))/three

P2 = P**two

Ss2 = stress(1)**two + stress(2)**two + stress(3)**two - three*P2

& + two*stress(4)**two + two*stress(5)**two + two*stress(6)**two

if (P .lt. one) then ! ensure positive compression

P = one

P2 = P**two

endif

c stiffness matrix

do j = 1,3

do i = 1,3
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dds(i,j)=dsqrt(B*P)*(six*(P-stress(i))*(P-stress(j)) -

& three*beta*P2 - Ss2) / (six*(three*beta*P2 + Ss2))

end do

end do

do i = 1,3

dds(i,i)=dsqrt(B*P)*(three*(P-stress(i))**two+three*beta*P2+Ss2) /

& (three*(three*beta*P2 + Ss2))

end do

do j = 4,6

do i = 1,3

dds(i,j)=dsqrt(B*P)*(stress(j)*(P-stress(i)))/(three*beta*P2+Ss2)

dds(j,i)=dds(i,j)

end do

end do

do j = 4,6

do i = 4,6

dds(i,j)=dsqrt(B*P)*stress(i)*stress(j)/(three*beta*P2+Ss2)

dds(j,i)=dds(i,j)

end do

end do

do i = 4,6

dds(i,i) = (four*(stress(i))**two + three*beta*P2 + Ss2) *

& dsqrt(B*P) / (four*(three*beta*P2 + Ss2))

end do

c stress increment

do i = 1,6

dstress(i) = dds(i,1)*dstran(1) + dds(i,2)*dstran(2) +

& dds(i,3)*dstran(3) + dds(i,4)*dstran(4) +

& dds(i,5)*dstran(5) + dds(i,6)*dstran(6)

end do

c update stress

do i = 1,6

stress(i) = stress(i) + dstress(i)

end do

c Jacobian
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do j = 1,6

do i = 1,6

ddsdde(i,j) = dds(i,j)

end do

end do

return

end
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G Appendix: Extension to cohesive materials

It is readily observable that as particle size decreases, cohesive effects become important in the behavior

of granular materials, a point not considered in the preceding analysis. In GE and EP, tension is strictly

forbidden due to
√

∆ and
√
P terms; in ILE and HAR, the material has the same behavior under both

tension and compression. In the Mohr-Coulomb yield criterion (equation 2.9), the cohesive force is taken to

be a constant, c. Jiang and Liu [69, 72] point out that addition of a term linear in the compressive strain ∆

to the free energy of GE gives precisely this form:

F = G̃
√

∆(
2

5
ξ∆2 + u2

s) + c∆ (G.1)

Then the pressure P = ∂F/∂∆ increases by a constant c and the shear (equation 3.48) is unchanged,

resulting in the cohesive form of the Coulomb yield condition; this effectively changes the reference point

for zero stress to some non-zero value of strain, and does not change the form of the stiffness matrix. The

constant cohesion is understood to apply to wet granular materials; for dry powders, there may be cohesive

effects for sufficiently small constituent particles, but it is not clear that the physics should be similar

(others have questioned the assumption of constant cohesion, see [142]). As the Hertz problem is instructive

in understanding non-linearity in bulk granular materials, a generalized particle interaction that includes

adhesion may be a starting point in extending the theory to cohesive materials. The present state of such

models will be briefly reviewed here.

G.1 Particle interaction models

Generalization of the Hertz model to incorporate attractive forces has been an area of active research for

the last thirty years. Several generalized models have been presented, the differences being where (Figure

G.1), and at what distance (Figure G.2), adhesive forces are assumed to act. The most general method spec-

ifies some interaction potential between particles. However, this approach results in analytically intractable

integral equations [143], which are not suitable for present purposes. Alternately, a stress distribution may

be specified in the contact region [143]; it is models of this type that will be considered here.

Bradley [145], considering adhesive forces between rigid spheres of radius R, determined the adhesive

force to be 2πRγ based on an exact solution for the potential between spheres. Here γ is a “surface energy”,

with units of force/distance. The first extension of the elastic theory of Hertz was given by Johnson, Kendall,

and Roberts [146], and is referred to as the JKR theory. Assuming that a surface energy −πa2γ acts in the

contact area (and neglecting interactions outside the contact area), the Hertz equations are modified:

a =

(
R

K

)1/3
(√

3

2
πRγ +

√
F +

3

2
πRγ

)2/3

(G.2)



131

Figure G.1. Particle interaction models, from [28]. The Hertz model considers only elastic deformation. In
the JKR theory, surface forces act only inside the contact circle. In the Bradley and DMT theories, van der

Waals forces act outside the contact area. The DMT theory also includes elastic deformation; Bradley
considers only rigid spheres.

Figure G.2. A comparison of particle interaction models (reprinted from [144] with permission from
Elsevier). The JKR theory (c) assumes short (infinitesimal) range forces, while in the DMT theory (d) they
act over longer distances. In the transition regime, Schwarz proposes a superposition of the JKR and DMT

models (f); Maugis uses a Dugale model (e).
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Figure G.3. Map of the various particle interaction models and there range of applicability (reprinted from
[150] with permission from Elsevier). The elasticity parameter λ = 1.16µ, with the Tabor parameter µ

defined in equation G.6.

and

δ =
a2

R
−

√
8πγa

3K
(G.3)

Here the pull-off force is (3/2)πRγ, seemingly in contradiction with Bradley’s result. An alternate theory

was subsequently introduced by Derjaguin, Muller, and Toporov (the DMT theory [147]), which did not

result in analytical expressions. An approximation by Maugis [148] results in the DMT-M theory, which is

somewhat the opposite of the JKR theory; the stress inside the contact area is assumed to Hertzian (i.e., no

adhesive forces act there), but van der Waals forces acting outside the contact result in a constant offset to

the applied force:

a =

(
R (F + 2πRγ)

K

)1/3

(G.4)

and

δ =
a2

R
(G.5)

Tabor [149] showed that these were limiting cases, with the transition governed by the parameter

µ ≡
(

4Rγ2

3K2z3
0

)1/3

(G.6)

with K defined in equation 2.18 and z0 the effective range of surface forces. The JKR limit applies for

µ � 5, while the DMT limit applies for µ � 0.1 (Figure G.3). Thus, the JKR limit is understood to apply

to “large, compliant spheres” and the DMT limit to “small, stiff spheres” [150]. Considerable effort has

since been devoted to modeling the transition region, whether via approximate [144, 148] or exact numerical

calculations using the Lennard-Jones potential [151].
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While the displacement-force relationship δ(F ) cannot be inverted for the JKR model, the DMT model

results in the following:

F = KR1/2δ3/2 − 2πRγ (G.7)

This is the Hertz model with a constant offset, consistent with a constant cohesion. In addition, identifying

the strain ε in terms of the displacement δ and particle radius R,

ε =
δ

R
(G.8)

the force is given by

F = KR2ε3/2 − 2πRγ (G.9)

The weaker dependence of the adhesive term on R (linear vs. quadratic) indicates that adhesion becomes

important for small particle radii, as is observed for granular materials. Thus, a simple constant cohesion

may be justified by individual particle models. Addition of this effect to hyperelastic models is trivially

simple and would provide at least a useful starting point for considering cohesive materials.
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[25] D. O. Krimer, M. Pfitzner, K. Bräuer, Y. Jiang, and M. Liu, “Granular elasticity: General considera-

tions and the stress dip in sand piles,” Physical Review E, vol. 74, p. 061310, 2006.

[26] H. Hertz, “On the contact of elastic solids,”Journal für die Reine und Angewandte Mathematik, vol. 92,

pp. 156–171, 1881.

[27] L. D. Landau and E. M. Lifshitz, Theory of Elasticity. Oxford: Butterworth-Heinemann, 2nd ed.,

1986.

[28] K. L. Johnson, Contact Mechanics. Cambridge: Cambridge University Press, 1985.

[29] V. V. Sokolovski, Statics of Granular Media. Oxford: Pergamon Press, 1965.

[30] H. A. Janssen, “Versuche über getreidedruck in silozellen,” Z. Ver. Dt. Ing., vol. 39, pp. 1045–1049,

1895.

[31] J. Jaky, “Earth pressure in silos,” in Proceedings of the 2nd International Conference on Soil Mechanics

and Foundation Engineering, pp. 103–107, June 1948.

[32] J. P. Bouchaud, P. Claudin, M. E. Cates, and J. P. Wittmer, “Models of stress propagation in granular

media,” in Physics of Dry Granular Media (H. J. Herrmann, J.-P. Hovi, and S. Luding, eds.), pp. 97–

121, Dordrecht, The Netherlands: Kluwer Academic Publishers, 1998.

[33] F. Cantelaube and J. D. Goddard, “Elastoplastic arching in 2d granular heaps,” in Powders and Grains

‘97 (R. P. Behringer and J. T. Jenkins, eds.), pp. 231–234, Rotterdam, The Netherlands: Balkema,

1997.

[34] F. Cantelaube, A. K. Didwania, and J. D. Goddard, “Elastoplastic arching in two dimensional granular

heaps,” in Physics of Dry Granular Media (H. J. Herrmann, J.-P. Hovi, and S. Luding, eds.), pp. 123–

127, Dordrecht, The Netherlands: Kluwer Academic Publishers, 1998.

[35] S. B. Savage, “Problems in the statics and dynamics of granular materials,” in Powders and Grains ‘97

(R. P. Behringer and J. T. Jenkins, eds.), pp. 185–194, Rotterdam, The Netherlands: Balkema, 1997.

[36] J.-P. Bouchaud, P. Claudin, D. Levine, and M. Otto, “Force chain splitting in granular materials: A

mechanism for large-scale pseudo-elastic behaviour,”European Physical Journal E, vol. 4, pp. 451–457,

2001.



137

[37] B. O. Hardin and F. E. Richart, “Elastic wave velocities in granular soils,”Journal of the Soil Mechanics

and Foundations Division, Proceedings of the American Society of Civil Engineers, vol. 89, no. SM1,

pp. 33–65, 1963.

[38] B. O. Hardin and W. L. Black, “Vibration modulus of normally consolidated clay,” Journal of the Soil

Mechanics and Foundations Division, Proceedings of the American Society of Civil Engineers, vol. 94,

no. SM2, pp. 353–369, 1968.

[39] V. P. Drnevich and F. E. Richart, “Dynamic prestraining of dry sand,” Journal of the Soil Mechanics

and Foundations Division, Proceedings of the American Society of Civil Engineers, vol. 96, no. SM2,

pp. 453–469, 1970.

[40] F. E. Richart, J. R. Hall, and R. D. Woods, Vibrations of Soils and Foundations. Englewood Cliffs,

New Jersey: Prentice-Hall, 1970.

[41] S. N. Domenico, “Elastic properties of unconsolidated porous sand reservoirs,” Geophysics, vol. 42,

no. 7, pp. 1339–1368, 1977.

[42] S. K. Roesler, “Anisotropic shear modulus due to stress anisotropy,” Journal of the Geotechnical Engi-

neering Division, Proceedings of the American Society of Civil Engineers, vol. 105, no. GT7, pp. 871–

880, 1979.

[43] P. Yu and F. E. Richart, “Stress ratio effects on shear modulus of dry sands,” Joural of Geotechnical

Engineering, vol. 110, no. 3, pp. 331–345, 1984.

[44] B. O. Hardin and G. E. Blandford, “Elasticity of particulate materials,” Joural of Geotechnical Engi-

neering, vol. 115, no. 6, pp. 788–805, 1989.

[45] T. G. Thomann and R. D. Hryciw, “Laboratory measurement of small strain shear modulus under K0

conditions,” Geotechnical Testing Journal, vol. 13, no. 2, pp. 97–105, 1990.

[46] S. Shibuya, F. Tatsuoka, S. Teachavorasinskun, X. J. Kong, F. Abe, Y.-S. Kim, and C.-S. Park, “Elastic

deformation properties of geomaterials,” Soils and Foundations, vol. 32, no. 3, pp. 26–46, 1992.

[47] R. Bellotti, M. Jamiolkowski, D. C. F. Lo Presti, and D. A. O’Neill, “Anisotropy of small strain stiffness
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Géotechnique, vol. 54, no. 7, pp. 429–439, 2004.

[57] N. HongNam, J. Koseki, and T. Sato, “Effect of specimen size on quasi-elastic properties of Toyoura

sand in hollow cylinder triaxial and torsional shear tests,”Geotechnical Testing Journal, vol. 31, no. 2,

pp. 1–10, 2007.

[58] L. Bonneau, B. Andreotti, and E. Clément, “Surface elastic waves in granular media under gravity and

their relation to booming avalanches,” Physical Review E, vol. 75, p. 016602, 2007.

[59] P. A. Vermeer, “Non-associated plasticity for soils, concrete, and rock,” in Physics of Dry Granular

Media (H. J. Herrmann, J.-P. Hovi, and S. Luding, eds.), pp. 163–195, Dordrecht, The Netherlands:

Kluwer Academic Publishers, 1998.

[60] J. A. Yamamuro and V. N. Kaliakin, eds., Soil Constitutive Models: Evaluation, Selection, and Cali-

bration. Reston, Virginia: American Society of Civil Engineers, 2005.
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