
•

W I S C O N SI N

•

F
U

S
IO

N
•

TECHNOLOGY
• IN
S

T
IT

U
T

E

FUSION TECHNOLOGY INSTITUTE

UNIVERSITY OF WISCONSIN

MADISON WISCONSIN

CAD Based Monte Carlo Method: Algorithms for
Geometric Evaluation in Support of Monte Carlo

Radiation Transport Calculation

Mengkuo Wang

August 2006

UWFDM-1353

Ph.D. thesis.

CAD Based Monte Carlo Method: Algorithms

for Geometric Evaluation in Support of Monte

Carlo Radiation Transport Calculation

Mengkuo Wang

Fusion Technology Institute
University of Wisconsin
1500 Engineering Drive

Madison, WI 53706

http://fti.neep.wisc.edu

August 2006

UWFDM-1353

Ph.D. thesis.

http://fti.neep.wisc.edu/

CAD based Monte Carlo Method
Algorithms for geometric evaluation in support of Monte Carlo

radiation transport calculation

By
Mengkuo Wang

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy
(Nuclear Engineering and Engineering Physics)

at the
UNIVERSITY OF WISCONSIN – MADISON

2006

i

Abstract

In particle transport computations, the Monte Carlo simulation method is a widely used

algorithm. There are several Monte Carlo codes available that perform particle transport

simulations. However the geometry packages and geometric modeling capability of Monte

Carlo codes are limited as they can not handle complicated geometries made up of complex

surfaces. Previous research exists that take advantage of the modeling capabilities of CAD

software. The two major approaches are the Converter approach and the CAD engine based

approach. By carefully analyzing the strategies and algorithms of these two approaches, the

CAD engine based approach has been identified as the more promising approach. Though

currently the performance of this approach is not satisfactory, there is room for improvement.

The development and implementation of an improved CAD based approach is the focus of this

thesis.

Algorithms to accelerate the CAD engine based approach are studied. The major

acceleration algorithm is the Oriented Bounding Box algorithm, which is used in computer

graphics. The difference in application between computer graphics and particle transport has

been considered and the algorithm has been modified for particle transport.

The major work of this thesis has been the development of the MCNPX/CGM code and

the testing, benchmarking and implementation of the acceleration algorithms. MCNPX is a

Monte Carlo code and CGM is a CAD geometry engine. A facet representation of the

geometry provided the least slowdown of the Monte Carlo code. The CAD model generates

the facet representation. The Oriented Bounding Box algorithm was the fastest acceleration

ii

technique adopted for this work. The slowdown of the MCNPX/CGM to MCNPX was reduced

to a factor of 3 when the facet model is used.

MCNPX/CGM has been successfully validated against test problems in medical physics

and a fusion energy device. MCNPX/CGM gives exactly the same results as the standard

MCNPX when an MCNPX geometry model is available. For the case of the complicated

fusion device – the stellerator, the MCNPX/CGM’s results closely match a one-dimension

model calculation performed by ARIES team.

iii

Acknowledgements
 I want to extend my sincere gratitude and appreciation to the many people who helped make

this dissertation possible and in many other ways helped my Ph.D endeavor. First, I am deeply

indebted to my advisors, Professor Douglass Henderson and Professor Tim Tautges. That this

dissertation project occurred and could be completed is due in large part to the enlightenment and

support from Prof. Henderson and Prof. Tautges. Their guidance, help, and training in many aspects

during my Ph.D study will have a long-term influence on my future career.

 I also want to thank Prof. Paul Wilson, for his insightful advices on this research and his

kindness answering many questions throughout my Ph.D study here in Madison.

 Special thanks are also due to Prof. Laila El-Guebaly, Prof. Mohamed E. Sawan for supporting

me and providing valuable feedback at the early stages of this dissertation research.

 Special thank you is owed to my friends in our university, including Jiankui Yuan, Po Hu,

especially Qiguang Zhu. Their friendship and kindness help has made my research and life in

Madison a wonderful experience.

 Words cannot express my deepest gratitude to my family. Without my father’s vision and my

mother’s unconditional support, I would not have been going on this far away from home.

 Finally, I want to thank my wife, Feng Qi for her constant support and optimism. In many

ways, the graduate student life has been a mixture of stress, pain, and success. I thank Feng for

helping me through all the difficult times, for sharing my happiness, and for always being there.

https://www.cae.wisc.edu/horde/imp/message.php?index=1128

iv

Abstract ...i

Acknowledgements ..iii

Chapter 1

Introduction..1

1.1 Deterministic and Statistical methods ..2

1.2 Monte Carlo Method ...3

1.3 MCNP Introduction ...6
1.3.1 Modeling..10
1.3.2 Performance...17

1.4 Complex device...18

1.5 Motivation...21

Chapter 2

Literature review ..24

2.1 Monte Carlo codes ...24

2.2 CAD...26
2.2.1 CAD/Geometry Engines ..28
2.2.2 CAD Tools ...29
2.2.3 The Imprint/merge process ..30
2.2.4 Faceting algorithm ...31

2.3 Converter approach ...32
2.3.1 GUI converter ..32
2.3.2 MCAM 3.0...33
2.3.3 Other converter ..34
2.3.4 Limitation ..34

2.4 CAD based Transport Approach ..35
2.4.1 ACIS based work ...36

2.5 Computer Graphics ...37

v
2.5.1 Ray-Object intersection ...38

2.5.1.1 Bounding Volume ..39
2.5.1.1.1 Distance limit of bounding volume..40
2.5.1.1.2 Shape of bounding volume ..41

2.5.1.2 Spatial subdivision...43
2.5.1.2.1 Nonuniform subdivision ..44
2.5.1.2.2 Uniform Subdivision..46

2.5.1.3 Direction Techniques ...47
2.5.1.3.1 Light buffer ..48
2.5.1.3.2 Ray Coherence...49
2.5.1.3.3 Ray Classification ..50

2.5.1.4 OBB and OBB tree..52
2.5.1.5 Comparison and Combination ...55

2.6 Summary of previous work ...57

Chapter 3

Overall Approach and implementation ..59

3.1 CAD geometry engine based implementation and its benefits ...59

3.2 Implementation details ..60
3.2.1 Initialization and changes ..61
3.2.2 Monte Carlo simulation and changes...62
3.2.3 Tally ...63
3.2.4 Code modifications ..64

Chapter 4

Run-time Accelerations ...65

4.1 Ray Tracing accelerations ...66
4.1.1 Bounding box for object or bounding box for surface ...66
4.1.2 Axis-aligned bounding boxes (AABB)..68
4.1.3 Oriented bounding box (OBB) tree..69

4.1.3.1 Calculate OBB...70
4.1.3.2 Faceting and enlarge OBB...71
4.1.3.3 Ray-OBB intersection test ...74
4.1.3.4 OBB tree building..79
4.1.3.5 RAPID...82

4.1.4 Sorting distance ...82
4.1.5 Distance limit...83

vi
4.1.6 Implementation ..85

4.2 Other Geometric Accelerations...86
4.2.1 Surface traversal ..86
4.2.2 Determine Region of Source Particle...87

4.3 Facet Model ..88
4.3.1 Implement and ray triangle test..89

Chapter 5

Applications ...92

5.1 Simple Comparison and Benchmark ...92
5.1.1 Test Problem 1: Three cylinders ..92
5.1.2 Test Problem 2: Cobalt...95

5.2 Advanced Test...100

5.3 Real application (ARIES-CS Compact Stellerator) ..101
5.3.1 Modeling..103
5.3.2 The Monte Carlo simulation ..106

5.4 Conclusion .. 112

Chapter 6

Performance Analysis ... 113

6.1. Ray-tracing acceleration effectiveness ... 113
6.1.1. No acceleration case and AABB case.. 113
6.1.2. OBB tree acceleration effectiveness .. 117
6.1.3. Acceleration effectiveness on the cobalt source test problem..120

6.2. Accuracy of facet VS CAD models ...122

6.3. Discussion and Benefit ...128

Chapter 7

Summary and Future Plan...133

References..136

vii

List of figures:

Figure 1.1. MCNP flow diagram 8
Figure 1.2. Monte Carlo particle transport diagram 9
Figure 1.3. 3 cylinders generate by MCNP 14
Figure 1.4. Complex device a clothespin 19
Figure 1.5. A Stellerator magnetic fusion device 20
Figure 2.1. CUBIT user interface 30
Figure 2.2. Converter approach diagram 32
Figure 2.3. MCNP Visual Editor and Converter 33
Figure 2.4. Bounding Volume 40
Figure 2.5. Different Bounding Volumes 42
Figure 2.6. Multiple Bounding Volumes 43
Figure 2.7. Nonuniform Spatial Subdivision 44
Figure 2.8. Using Nonuniform Subdivision to Accelerate Ray-Object Intersection Calculation 45
Figure 2.9. Uniform Spatial Subdivision 46
Figure 2.10. Direction Cube 47
Figure 2.11. Ray Coherence 49
Figure 2.12. Ray classification 51
Figure 2.13. The OBB 53
Figure 2.14. The OBB tree 53
Figure 3.1. MCNPX/CGM flow chart 60
Figure 4.1. Bounding to surface and bounding to object 67
Figure 4.2. Worst case of the AABB 68
Figure 4.3. AABB of cylinder surface 69
Figure 4.4. Example of facet object 72
Figure 4.5. Enlarge bounding box to include CAD object 73
Figure 4.6. Box at the center 76
Figure 4.7. The ray test with the upper edge 77
Figure 4.8. Building the OBB tree 80
Figure 4.9. In this case we need to use the second longest axis to subdivide 81
Figure 4.10. Best and worst case scenario 83
Figure 4.11. Ray triangle test 90
Figure 4.12. Pseudo code of ray triangle test 91
Figure 5.1. MCNPX plot of three cylinders problem 93
Figure 5.2. CGM/Cubit view of three cylinders problem 94
Figure 5.3. Tally spectrum of three cylinders problem 95
Figure 5.4. MCNPX plot of cobalt device 97
Figure 5.5. MCNPX/CGM view of cobalt device 98
Figure 5.6. Tally spectrum of cobalt problem 99
Figure 5.7. Clothespin model 101
Figure 5.8. The image of pinhole projection 101

viii
Figure 5.9. ARIES-CS Compact Stellerator and magnetic coils 103
Figure 5.10. Seven layer Stellerator device 104
Figure 5.11. Seven layer Stellerator internal structure 105
Figure 5.12. 72 cross sections of plasma surface 106
Figure 5.13. Peak neutron wall loading computational model 107
Figure 5.14. Neutron wall loading 108
Figure 5.15. Name of each layer 109
Figure 5.16. Seven layers of the computational model 110
Figure 6.1. Accuracy of facet model 126
Figure 6.2. The ARIES-CS Compact Stellerator 127

ix

List of tables:

Table 1.1 The surfaces that can be represented by MCNP 11
Table 1.2 Sample MCNP input for geometry 13
Table 2.1 The geometry types provided by FLUKA 25
Table 3.1 MCNPX input file 62
Table 3.2 Modifications to MCNPX 64
Table 5.1. Material of each layer 110
Table 5.2. Comparison of the one-dimensional results and three-dimensional simulation results 111
Table 6.1. The Results of the AABB study 114
Table 6.2. The results of OBB tree study 118
Table 6.3. Computation result of the cobalt source problem 121
Table 6.4. Results of a facet model for the 3 cylinder problem 123
Table 6.5. Computational results of the facet model of the cobalt source problem 124

1

Chapter 1

Introduction

Particle transport is used in many disciplines including Nuclear Engineering and Medical

Physics. Researchers first became interested in this topic when they studied radiation

shielding. Later the knowledge of particle transport was applied to nuclear reactor design and

dose calculation in the field of Medical Physics. The typical problem is that in a given system,

the radiation source characteristics are specified (location, energy and angular dependence)

and one is interested in the particle behavior in the surrounding domain in order to compute a

reaction rate or determine a response. For example in a Medical Physics application, a cobalt

- 60 source is used to treat cancerous tissue. The goal is to give a prescribed dose to the

diseased tissue and spare the surrounding normal tissue. In order to provide the correct dose

we need to perform a photon transport simulation. In a shielding problem, for example, in a

nuclear reactor, the reactor and human working area are separated and the human working area

should be a safe environment. Neutron and photon transport simulations are required to

quantify the radiation environment in the working area. If the dose is too high we need to

redesign the shield to reduce the dose in that area. Although experiments are one way to

obtain the dose or particle flux, a computational transport simulation provides these quantities

in a less expensive, easier and faster way.

2

In applications of particle transport, the correct modeling of the geometry is an important factor.

In computational transport simulations, we hope the geometry model used is the same as in the

real application. However, many current computational transport simulation codes only

provide a limited geometry modeling capability and hence only an approximation of the

realistic geometry configuration is available. Inevitably an inaccurate geometry model will

affect the accuracy of the simulation result. There is some previous research on this topic but

the computational performance is not satisfactory. In this work some techniques that speed up

the computation are presented in Monte Carlo radiation transport code application.

1.1 Deterministic and Statistical methods
Two primary methods are used to compute radiation transport solutions. One is the

deterministic method and the other is the statistical method.

Deterministic methods usually deal with the solution of a differential equation with appropriate

boundary conditions and for time-dependent problems, an initial value. The domain of

interest is subdivided into a computational grid. In particle transport, continuous time, space

and energy radiation transport equations are discretized and the solution is on grids over the

space, angle, energy, and possibly time domains. That is to say: we need to solve an algebraic

system based on discrete differential equations. There is always an error associated with the

solution. The grid size is carefully chosen as a compromise between the large relative error

(mesh too coarse) and long computational time (mesh too fine). The grid should also be chosen

3

carefully to best represent the boundary conditions.

A statistical method models the problem on an individual particle basis and simulates the

behavior of a particle as it traverses the medium. Interactions of particles with the medium

are determined by probabilities of interaction. Therefore, theoretically, a differential equation

for the system is not required. Only probability density functions (pdf’s) are needed to

describe the system, which is related to the physical problem being modeled. According to

the law of large numbers, the solution is the average of many simulated particles. The more

particles we simulate, the more accurate the solution. In addition the statistical algorithm

complexity is largely geometry independent. This means the algorithm complexity does not

change when applied to various geometric configurations, which makes the statistical method

especially suitable for three-dimensional problems.

1.2 Monte Carlo Method
The Monte Carlo method is a statistical method, which has been in existence for many years

[1]. The computational speed to arrive at a highly accurate solution using this method can be

very slow since the accuracy is directly related to the square root of the number of particles

simulated. Because a large number of particles must be simulated, it is nearly impossible for

a human being to solve a problem by this method. Only after computer science and special

computational techniques were invented, could this method be widely used in many fields, and

mostly in complex applications. To understand this method, we need to know the content of

4

the method.

The major components of a Monte Carlo method are the pdf’s, random number generator,

sampling, tallying (scoring), and error estimation. The details of each component can be

found in reference [1].

The Monte Carlo method repetitively simulates the physical process of a particle traveling

through material. Each simulation is called a “history”. In each simulation, the source

particle has a PDF function to describe energy, position and the direction distribution. Each

physics interaction has a PDF function to describe energy and the direction distribution of

outgoing particles. A Random number generator is used in sampling these PDF functions.

The desired result is the average of the number of histories.

The random number generator is an important component of a Monte Carlo method. In

Monte Carlo codes, all the random numbers are just pseudo-random numbers. A good

random number algorithm produces a uniform, unbiased random number with a long period.

Hammersley and Handscomb give a detailed discussion on this topic [1]. The random

number and its generator are the basis of all sampling in a Monte Carlo code. All samplings

from distributions are begun with a random number generator.

The pdf function is another important component. It is the statistical description of the

5

physical system and describes the statistical behavior of a large sample of particles. A large

database is needed to store a particle’s statistical information, such as the probability of various

interactions, the probability of a particle’s energy after an interaction, and the probability of a

particle’s direction after an interaction. Only if the pdf is a precise representation of the

particle’s physical behavior, can the result of a Monte Carlo simulation be accurate.

The Monte Carlo method constructs a tally by averaging contributions in specific places over

all simulation histories. Therefore a statistical error is generated as the variance of histories.

To improve the tally accuracy, the statistical error must achieve a given small error.

According to the central limit theory, the statistical error is proportional to the reciprocal of the

square root of the history number:

N
R 1∝

. (1)

In equation (1), R is the statistical error and N is the history number. Hence, in order to obtain

a highly accurate solution a large number of histories are required. This translates into a high

computational time expense. For most cases we need to wait hours or even days to obtain an

accurate result. Therefore, the Monte Carlo method is considered a slowly converging

method.

The Monte Carlo method requires a continuous representation of the domain and a discretized

grid is not needed. It can be applied to an arbitrary 3-D geometric configuration and many

realistic systems can be readily simulated. These realistic systems can be quite complicated

6

geometries. Modeling of increased geometrical complexity will prolong the computational

time of current Monte Carlo codes and will make the problem setup more difficult and time

consuming.

1.3 MCNP Introduction

MCNP is a widely used Monte Carlo code and it will be used as an example to introduce a

current Monte Carlo code used for particle transport simulations.

MCNP is “a general-purpose Monte Carlo N-Particle code that can be used for neutron, photon,

electron, or coupled neutron/photon/electron transport, including the capability to calculate

eigenvalues for a critical system” [2]. For neutrons, the code uses the evaluated pointwise

cross-section data. For photons, it takes account of incoherent and coherent scattering,

photoelectric absorption, the possibility of fluorescent emission after photoelectric absorption,

pair production, annihilation radiation after pair production, and bremsstrahlung. For

electrons, it uses a continuous slowing down model which includes positrons, k x-rays, and

bremsstrahlung. Besides those physics applications, MCNP has some important features that

make it useful in a number of situations: a powerful general source; surface and body sources;

geometry and output tally plotters; many kinds of variance reduction techniques; a flexible

tally structure; and an abundance of cross-section data.

7

MCNP was developed by the Transport Methods Croup (Group XTM) at Los Alamos National

Laboratory. This group also improves and maintains MCNP by releasing a new version every

two to three years. The current highest version of MCNP is MCNP5 [3].

MCNPX [4] is a major extension of the MCNP code. It can track several particles (neutrons,

photons, electrons and general charged particles) through a very large energy range (TeV to

µeV). Geometry, basic tally and graphical capabilities of MCNPX are the same as the

standard MCNP. MCNPX has a feature that is not available in the MCNP5 code. It is the

pin-hole projection tally and it will be discussed and used in Chapter 5. My developmental

research utilizes the framework of MCNPX.

MCNPX is composed of about 360 subroutines. The code can be divided into 3 parts – code

initialization, run time and output, as shown in Fig 1.1.

Initialization

Monte Carlo run

Output

8
Figure 1.1. MCNP flow diagram

The initialization part includes problem initiation and cross section processing. The code will

read the input file, setup the problem, process the source, process tallies, process the material

specifications, and calculate the cell volumes and surface areas. The geometric information,

such as surface, cell, and point, are also initialized here. One thing to note is that initialization

is just a one-time job and requires little run time when compared to the actual Monte Carlo run

time.

Execution performs the particle transport executing the number of histories requested by the

user. Each history starts with a source particle by sampling its position, direction and energy

of a source particle. Then MCNP tracks this particle as it transports through the domain, until

it is absorbed or leaves the system.

The execution stage is similar in all Monte Carlo transport codes and involves geometry

evaluation. The common situation is that one particle can be in only one cell at any given

time. For the case of neutrons and photons, particles travel in a straight line and will cross (hit)

the boundary of the current cell unless a collision with the material has occurred. However,

for charged particles like the electron, they will experience the coulomb force and change

direction all the time. Therefore, a charged particle track is a curve. In a Monte Carlo code,

a curve is usually subdivided into many small line segments. In every segment, the

description above still holds.

9

5
4

3

2

1

Cell 3 Cell 2 Cell 1

Figure 1.2. Monte Carlo particle transport diagram

Figure 1.2 shows a Monte Carlo particle transport diagram. MCNP first determines the

distance to the boundary along the direction of travel, and the boundary surface number. In

Fig. 1.2, for point 1, MCNP will find point 2, and for point 3 MCNP will find point 5. It then

obtains a cell number, which is on the other side of the surface. Then MCNP will sample the

distance to the next collision. If this distance is greater than the distance to the boundary,

MCNP will move the particle just across the boundary and start the process again. That is the

case of point 1 and point 2. The particle is in a new cell. That is because MCNP defines a

cell as a region with uniform material properties and once a particle enters a new cell, there

will be a new material and re-sampling of the distance to a collision is needed. Therefore we

can only move the particle a distance L across the surface. It makes the distance to boundary

necessary for particle transport. If the distance to a collision is less than the distance to the

10

boundary (that is the case of points 3, and 4) MCNP will move the particle that distance along

the current direction and the particle will have a collision there. After a collision, the particle

will have a new energy and new direction, MCNP will continue these processes until the

particle leaves the system or is removed due to variance reduction.

During execution, MCNP will repeat the history many times until the run time or run history

reaches the limit set by a user. To obtain a better accuracy, the user must set a high run time or

history limit. The “find the distance to the boundary” function should also be efficient

because it is used in a very high frequency.

In the output part, MCNP gathers the information saved during computation time and

periodically writes an output file which contains summary tables and tallies; for example, the

following information is written: the surface flux, surface current, and energy deposition

within cells.

Although MCNP is already widely used in the areas of Nuclear Engineering and Medical

Physics, the geometry domain of MCNP is limited. These limitations have already restricted

the application of MCNP on some problems with very complicated geometry. In section 1.3.1,

the geometry limitations are discussed. In 1.3.2, the execution time limitations are discussed.

1.3.1 Modeling

11

MCNP can treat “an arbitrary three-dimensional configuration of materials in geometric cells

bounded by first- and second-degree surfaces and fourth-degree elliptical tori”. The

geometric module within MCNP performs this task. The process of constructing the

geometry configuration is called geometric modeling.

MCNP [2] uses an input file to input geometric information, which describes geometric

surfaces and cells as Boolean combinations of surfaces. MCNP defines the geometry by

defining surfaces first. Then it uses the surfaces to construct cells. The cells can be used in

Boolean expressions to define other complicated cells. Surfaces are defined by providing the

coefficients to the analytic surface equations.

A total of 29 mnemonics can help the user define various types of surfaces. The user will

assign a surface number for every defined surface. Table 1.1 presents the surface types that

can be represented by MCNP.

Table 1.1 The surfaces that can be represented by MCNP [2]

12

A cell is defined by surfaces. One important concept is the “sense” of a point to a surface.

Suppose the surface function is f(x,y,z)=0, then a given point is (x0,y0,z0). If f(x0,y0,z0) > 0,

the given point is on the positive side of the surface; it is denoted as “positive sense”. If

13

f(x0,y0,z0) < 0, the given point is at the negative side of the surface, it is denoted as “negative

sense”. Therefore every surface divides the space into two subspaces, one positive, and

another negative. The cell can be defined by Boolean of these subspaces. And the user will

assign a cell number to every defined cell. Boolean includes intersection (AND), union (OR)

and complement (NOT). A blank space is the symbol of intersection. A “;” is the symbol of

union. A “#” is the symbol of complement. For example, “1 0 1 -2 -3” defines a cell. The

last three numbers mean the cell is the positive side of surface 1 intersecting with the negative

side of surface 2 and intersecting with the negative side of surface 3. A 0 means there is no

material in this cell. The first 1 is the cell number assigned by the user. The cell can also be

defined by combining (AND, OR, NOT operations) on existing cells. For example, “4 0 #3;

#2” means cell number 4 is composed by the space either not belonging to cell 3 or not

belonging to cell 2.

MCNPX use the same geometry-modeling package as MCNP.

Table 1.2 is an example of a MCNP input file which constructs three cylinders; the geometry

produced by this input is shown in Fig. 1.3

Table 1.2 Sample MCNP input for geometry

Testprob – n p

1 1 -0.675 -1 2 -3

2 0 -4 5 -6

3 0 -7 8 -9 #1 #2

4 0 7:-8:9

14
c surface card

1 cz 20

2 pz 10

3 pz 50

4 cz 5

5 pz 60

6 pz 70

7 cz 30

8 pz -5

9 pz 75

Figure 1.3. 3 cylinders generate by MCNP

However, there are some limitations of the geometry input portion of MCNPX. The input

method is tedious. A user needs to draw many sketches to define the surface and cell.

Thereafter, the MCNPX input file is typically written. MCNPX provides a feature to plot the

geometry. But it can only be plotted after the input file is ready. For a complicated

geometric configuration, it is hard to let the user check the correctness of all surface and cell

number assignments. Using this input method, it is hard to model complex geometries.

Once a complex geometric configuration is set up in MCNP, it is hard to modify [5].

15

There is no geometry analysis at the initialization stage. MCNP only stores the basic

geometry information provided in the input file; such as surface number, cell number, and type

of surface and sense. Therefore it actually requires each user to know every detail of

geometry. Although there is an intensive internal check on geometry, only the basic and

low-level errors such as no surface to construct a cell are reported. Higher-level errors such

as cell overlap and gap can be detected only with lots of user effort. Because MCNP requires

every point in the space to belong to one and only one cell or be the boundary of one or more

cells, if there is a gap between the cells, the particle will be lost in this gap. If two cells

overlap, the particle in the overlap region will belong to two cells, which is an unacceptable

situation. MCNPX does not provide a built in feature to detect these errors. A user needs to

run a zero material interaction case to examine those errors.

There is no compatibility of the MCNP geometry format with other graphics or geometry

generating systems. There are many graphics or geometry software packages that can

generate and modify the geometric configuration and store it on the computer in some format.

But MCNP’s geometry is incompatible with other kinds of geometry file formats. Even if the

user wanted to run a problem on a geometric configuration, which has already been established

by other software, the user will still need to generate MCNP’s geometric configuration. (There

have been efforts for translating CAD models into MCNP input, these efforts are described in

Chapter 2.)

16

There are no advanced geometric features in MCNP such as discrete or facet based surface and

B-spline surface. Facet based surface is widely used in representing some realistic or

non-analytic surfaces. Many patches compose a facet-based surface. The patch normally is

a polygon and is the basic unit of the total surface. All patches are connected to each other to

represent the original object. Because the complicated object is subdivided into patches and

every patch is relatively small and simple when compared to the original object, the surface is

accurate enough and the analytic properties are easy to calculate.

We are interested in a facet based surface representation because (1) we can use it to represent

a real geometry for which a solid geometry model does not exist, such as a scanned organ in

Medical Physics; (2) we can use it to substitute a complicated solid model and then the

geometry evaluation is much easier because we use plane (facet) to substitute the high order

curve surface; and (3) we can use it as a flexible approximation of solid model because we can

change the facet size to obtain a coarse or fine approximation.

The B-spline is also an important feature in geometric modeling. It can subdivide a

complicated curve into pieces but still keeps some degree of continuity. Therefore B-splines

are used extensively in CAD modeling for real parts such as blending objects. MCNP cannot

generate a B-spline. If the user wants to use it, the user will have to input every part of a

B-spline as a normal first-order or second-order curve or surface.

17

1.3.2 Performance

During execution, as mentioned before, MCNP performs the following sequence: “find the

distance to the boundary, obtain the hit surface number and get the cell number on the other

side of the hit surface”. It is a purely geometry problem. Therefore if necessary, the MCNP

runtime geometry can be substituted by another geometric package.

In MCNP, to implement the “find the distance to boundary”, the “minimized positive distance

principle” is used. It calculates the distance to each bounding surface along the particle

direction. The surface with the minimum positive distance is the surface that is hit. This

distance will be compared with the distance to a collision later.

To obtain a good performance, the “find the distance to the boundary” algorithm is simple. For

example, in each cell, the boundary surface type can be directly obtained. Therefore MCNP

can calculate the distance to the each infinite surface. If the cell is a convex object (or in the

terminology of MCNP, an object is totally on the one side of each boundary surface), the

minimum distance is the distance to the boundary. If the cell is concave (or in the

terminology of MCNP, an object is not totally on the one side of each boundary surface),

MCNP only needs to test the hit distance and compared to the ranked order from the minimum

distance, then second minimum, third minimum until the last one. If a hit point is located on

the surface portion, the part of the bounding surface of object and not the extension of

18

bounding surface, this distance is the distance to the boundary.

Therefore, MCNP does use simple techniques to speedup the computation. But there is still

room left for optimization or acceleration. Because MCNP does not implement any advance

acceleration techniques, it just simply compares the distances to all the bounding surfaces,

which means we always need to calculate distances to every surface. It is not an efficient

method. An example is that of charge particle transport; a particle can cross the bounding

surface only when it is near the bounding surface (how near the distance depends on particle

energy, material and so on). If the particle is not “near” to the surface, we won’t need to

calculate the distance to the surface. It can save a lot of computation time. Unfortunately,

this feature is not provided in MCNP. In addition, the “find the distance to surface” is called

“ray-object intersection” in the area of computer graphics. A lot of research has been done on

this topic and a lot of good algorithms are available. But MCNP does not use the latest or best

algorithms from among them. This will be discussed later.

In theory, a facet based surface can be input into MCNP by inputting each facet patch. But in

fact, it is difficult for the user to input every patch, and even if every patch is already input, it is

very inefficient to calculate it in MCNP because MCNP will calculate every patch for

minimized distance to find a single hit. It will be extremely slow to use and is unacceptable.

1.4 Complex device

19

Usually a real object is not simple geometry. Fig 1.4 depicts a clothespin with a match

clinched between its jaws. The spring is moved out of normal position to illustrate the

complicated geometries, which make up this real object. This model cannot be analyzed with

the MCNP geometric package because of the complicated helical surface of the spring.

Figure 1.4. Complex device a clothespin

More complex nuclear engineering or medical physics devices and applications are being

designed. For example, a Stellerator device, depicted in Fig 1.5, is a complex fusion machine

currently being investigated as a proposed design for a fusion power plant.

20

Figure 1.5. A Stellerator magnetic fusion device

In order to design a Stellerator fusion power plant, multiple neutronics related parameters and

structures must be analyzed such as the neutron wall loading, average and peak dpa, the tritium

breeding ratio, neutron induced radioactivity, magnet damage and energy/heat extraction

blanket. However, because its curved surface is very complicated and is best modeled using a

B-spline patch surface, the Stellerator cannot be directly modeled by current Monte Carlo

transport codes.

21

There are also other complex devices, for example ITER, which has many (~1000 or more)

cells. Usually these complex devices are designed with CAD software and can be precisely

represented only in CAD software. These devices would all benefit from a Monte Carlo code

for which the geometry could be read directly from CAD representations.

1.5 Motivation
The Monte Carlo method can be applied to many physical problems and there is no restriction

on the geometric configuration. Modern computational geometry tools with all there

extensions can deal with complicated geometric configurations and provide the analytic

properties of them. If we merge the Monte Carlo method and modern computational

geometry generation tools, we can apply the Monte Carlo method to physics problems with

complicated geometries

However, usually an approximate model is used to substitute for the real geometry because it is

not easy to model complicated geometries in current Monte Carlo codes. In addition the

computational performance is low when Monte Carlo codes are running on a complicated

geometry.

We can also take advantage of work performed in the “computer graphics” area involving

“ray-object intersection” algorithms. High performance “ray-object intersection” algorithms

22

can speed up the execution time of the Monte Carlo codes. Thus, when we obtain the benefit

of working on a physics problem with complicated geometry, execution time will not need to

be sacrificed.

Because of the difficulty of modifying existing Monte Carlo codes, individuals have focused

on writing GUI (Graphical User Interface) driven geometric converters. Converters read and

analyze the geometry, rewrite the geometric configuration in Monte Carlo code’s geometry

primitive types and save it in the Monte Carlo code’s input file format. This work helps the

user when using existing Monte Carlo codes but it does not add or extend the geometric

functions in Monte Carlo codes. Therefore it still has the geometric restrictions that are part

of the current Monte Carlo code, such as missing facet base surface representation capabilities,

missing high order curve surface and missing ray-object intersection acceleration techniques.

My research project is to:

1. Merge the Monte Carlo method and CAD based geometry engine by performing the Monte

Carlo simulation directly on the CAD geometry model.

2. Take advantage of ray-object intersection algorithms in computer graphics to speed up the

ray intersection inside the CAD geometry engine.

3. Make use of a generic geometry interface so that different types of geometric models (solid

models, facet-based, etc.) can be evaluated through the same interface in Monte Carlo

codes.

23

This research will be performed within a general purpose Monte Carlo code, MCNPX, which

can be applied to complicated geometric configurations and has a reasonable execution time.

24

Chapter 2

Literature review

In this chapter, we will review the current research on how to improve upon the geometric

limitations of current Monte Carlo codes. First, taking advantage of CAD software is a

common solution. However, there are two approaches to take advantage of CAD software.

One is a converter approach and the other is CAD based Monte Carlo transport approach.

Each has its own limitations. The limitations can be solved by techniques in the computer

graphics area. The approachs and limitations will be reviewed in this chapter.

2.1 Monte Carlo codes

Because the convergence speed of the Monte Carlo method does not depend on the dimensions

of problem, the Monte Carlo codes are fast becoming the preferred particle transport

simulation tool. Besides MCNP mentioned in Chapter 1, there are many other Monte Carlo

codes. EGS (Electron Gamma Shower) is a general purpose Monte Carlo code, which is

famous for its coupled transport of electrons and photons. It can deal with “an arbitrary

geometry and the energy of particles can be from a few keV up to several TeV” [6]. But to use

it, the user needs to write a “user code” to setup the problem and input the geometric

25

information. The main part of the “user code” is the function “how_far”. This function

takes as input the current particle position and direction, and returns the distance to the

boundary of a current cell along the particle direction. The advantage is that EGS4 has almost

no restriction on geometry. But the disadvantage is that it requires the user not only to have

the ability to write a code, but also a working knowledge of the algorithms dealing with the

geometry calculation. It is also an error-prone method and is hard to debug. There is a user

code called EGSNRC BEAM that allows simulation of most of the geometry associated with

radiation therapy. But it will involve limitations on geometries.

FLUKA [7] is another Monte Carlo code. It transports hadrons, muons, neutrons, electrons,

photons and neutrinos. The FLUKA geometry input is achieved by the “combinatorial

geometry package” [7]. It provides 20 kinds of basic geometry types, and the user can

combine these to generate a geometry model (Table 2.1). The advantage is the user can input

geometric information much easier than for EGS. But the disadvantage is the geometric is

limited to the types that the “combinatorial geometry package” provides and can construct.

Table 2.1 The geometry types provided by FLUKA [7]

26

Code Meaning

RPP Rectangular Parallelepiped

BOX General Rectangular Parallelepiped

SPH Sphere

RCC Right Circular Cylinder

REC Right Elliptical Cylinder

TRC Truncated Right Angle Cone

ELL Ellipsoid of Revolution

WED or RAW Right Angle Wedge

ARB Arbitrary Convex Polyhedron of 4, 5, or 6 sides

XYP, XZP, YZP Infinite half-space delimited by a coordinate plane

PLA Generic infinite half-space

XCC, YCC, ZCC Infinite Circular Cylinder parallel to a coordinate axis

XEC, YEC, ZEC Infinite Elliptical Cylinder parallel to an axis

In general, the geometric modeling capability of existing Monte Carlo codes, such as EGS [6],

MCNP [2] and FLUKA [7], is not satisfactory. Actually the existing Monte Carlo codes focus

more on the physics of the problem than on geometric modeling. The focus is on more kinds

of particles, a wider energy range, more interactions, and better physics models.

2.2 CAD

27

CAD means using computer technology to design parts and rendering them on the computer.

For example, many mechanical parts are designed in a three-dimensional computer model.

The basic capabilities are representations and operations on three-dimensional geometries.

The features include creating, storing and modifying a geometric configuration. Current

CAD software also has some powerful features such as overlap/gap detection, mesh generation,

and multi-mode three-dimensional display. Some current CAD software include

ProEngineer[8], SolidWorks[9] and Unigraphics[10].

The current CAD software usually has two primary components - geometric engine and user

interface structure. The geometric engine will implement the basic geometric functions such

as create functions, which can create a simple geometric unit like a sphere, cylinder, plane and

high order surface/object; modify functions, which can move, expand/reduce or Boolean the

geometry; evaluate functions, which can obtain the topology information, test a point whether

inside a body and ray-object intersection; and I/O functions which can import the geometry

from the other systems and export the geometry to other systems. Some geometric engines,

such as ACIS [11] and Parasolids [12], are widely used in CAD software. The user interface

will be built on the top of the geometry engine. It will provide powerful interactive

abilities/features and provide a user-friendly interface.

An important contribution of current CAD software was to allow parametric modeling –

construct models, which can be changed by changing values of parameters. This feature

28

changes the design process and most complex designs are developed by this feature.

Usually CAD software uses a Boundary Representation, or BREP, to represent the basic

geometry. BREP models use a boundary to construct the geometry object. BREP will

involve the notion of vertex, edge, surface and cell. BREP is different with feature-based

modeling where, feature-based modeling refers to construct geometries as a combination of

form features like holes and slots.

In summary, the current CAD software represents the achievement made on geometric

modeling. The CAD software normally focuses on the ability/feature issue; its focus is on

overall efficiency and performance than the optimization of a single function.

2.2.1 CAD/Geometry Engines

The Common Geometry Module (CGM) is a “code library, which provides geometric

functionality used for mesh generation and other applications” [13]. CGM is built upon the

ACIS geometric modeling engine, but it includes additional geometry capabilities beside those

in ACIS. ACIS is a solid modeling engine used by hundreds of software developers in many

industries worldwide, including CAD/CAM/CAE. Therefore, CGM is compatible with

software that is compatible with ACIS. CGM can be used as a code library to provide

geometric functions, and it also allows the geometric model to be used as the basis of another

application, such as mesh generation.

29

The geometric functionality of CGM includes that commonly found in solid modeling engines

of CAD software, like geometry creation, query and modification. CGM also includes

capabilities not commonly found in solid modeling engines, like geometry decomposition

tools and support for shared material interfaces. The geometry functionality not found in

ACIS includes non-manifold geometry and virtual geometry. One example of “non-manifold

geometry” is a single surface shared between volumes. Therefore, CGM is not simply a

wrapper on ACIS; it is rather a set of tools providing added capabilities on top of ACIS, an

interface to ACIS and other solid modeling engines and a mesh-based representation,

providing facet-based surfaces.

2.2.2 CAD Tools

We will use CUBIT as an example of CAD tools. CUBIT is a two- and three-dimensional

finite element mesh generation toolkit for solid models [14]. CUBIT provides a lot of

geometry capability with a user-friendly graphics interface (see Fig. 2.1).

30

Figure 2.1. CUBIT user interface

CGM (Common Geometry Module) provides most of the geometry functionality required by

CUBIT. Therefore CGM can be considered as the geometric engine of CUBIT.

2.2.3 The Imprint/merge process

CUBIT provides two important features: the imprint and merge process. By these two

processes we can convert manifold geometry into non-manifold geometry. If we still use the

example of non-manifold geometry as a single surface shared between volumes, the manifold

geometry is two volumes having partial or total overlapping boundary surfaces. What imprint

does is find the overlap portion for both volumes. It splits and generates surfaces for both

31

volumes, which are totally overlapped. What merge does is merge two totally overlapped

surfaces into a single surface shared by volumes, which is a non-manifold geometry.

CUBIT provides graphical interaction with the model, which is important to verify results of

the imprint/merge process. CUBIT can also save and restore a geometry model in an

imprinted/merged state. CGM, as the geometric engine of CUBIT, can also restore the exact

state saved by CUBIT. Therefore any application of CGM has this feature.

2.2.4 Faceting algorithm

Usually CAD software provides the functionality called faceting algorithm. The algorithm is

to generate a set of triangles or facets, which approximates the surface. The most common

application of this algorithm is graphics display. Because it is difficult to display all kinds of

curve surfaces, it is easier to just display the triangles. When many facets are used, the

faceted surface can be a good approximation of the real curved surface.

This algorithm is standard in the CAD field and provides a parameter to control how fine the

faceting surface is. The idea of using a faceted surface to represent a real surface and then use

unified display techniques on any surface is very important. The faceted representation can

also be used as an approximation of a surface for other purposes including ray tracing. This is

discussed in more detail in a later section.

32

2.3 Converter approach
To take advantage of CAD software in a Monte Carlo code, the most straightforward idea is to

write a converter, which translates the CAD representation to geometry input accepted by the

Monte Carlo code. This approach is depicted in Fig. 2.2:

MCNP

Input file

Converter

CAD file

Figure 2.2. Converter approach diagram

The converter usually provides the feature that defines materials and material properties of

cells.

2.3.1 GUI converter

Schwarz, Carter and Manke [15] developed a visual editor of MCNP (see Fig. 2.3). This

editor has a GUI interface and the user can create and modify the geometry. After that, the

user can save the geometry in MCNP input format. The latest update is a CAD to MCNP

conversion tool, which currently works on circles and planes and arcs. It can read

two-dimensional AutoCAD (dxf format) and three-dimensional ACIS geometry (SAT format)

33

then convert and save it in MCNP format.

Figure 2.3. MCNP Visual Editor and Converter

2.3.2 MCAM 3.0

Wu [16] and his team developed MCNP Auto- Modeling Tools called MCAM. It is a CAD

tool. The user can generate the geometry with MCAM and MCAM can exchange data with

other CAD software like STEP, IGES or ACIS (.SAT) formatted files. Then MCAM can

convert the CAD geometry model into a MCNP geometry model. Like CGM, MCAM is also

34

based on the ACIS geometric engine, however it only uses the ACIS engine to translate ACIS

geometry into MCNP format.

2.3.3 Other converter

TOPACT[17] (Automated Translation from CAD to Combinatorial Geometry) is developed by

Raytheon. TOPACT can automate the translation of CAD geometry to combinatorial

geometry representations used by some Monte Carlo codes, such as MCNP. It is the most

recent of converter-based approach efforts.

H Tsige-Tamirat also has a tool called McCAD[18] to convert CAD models into MCNP

models. It was used with MCAM together in A Serikov’s work [19] in ITER.

2.3.4 Limitation

The problem or limitations of an editor or a converter is they need to be updated to stay abreast

with the rapid progress of CAD software and new geometry types and renderings. In addition,

they did not remove any geometry limitations of the Monte Carlo code. Even if current CAD

software supports many new geometry types, the converter converts to limited MCNP

geometry types. Therefore this conversion is not a loss-less conversion, which means that the

converter will perform an approximation to change advanced CAD geometry types to

primitive Monte Carlo geometry types. There will be an algorithm to perform these

approximations. Usually it will use many small analytic surface pieces to represent the CAD

35

surface. It is hard to decide which algorithm can achieve a better approximation. Even if a

user puts that approximate geometry into a Monte Carlo code, the Monte Carlo code will test

each small piece for collisions and the computational performance will be low. And this

approximate model is different from the CAD model. The differences are called translation

artifacts and are inevitable for this translation approach. The CAD – Monte Carlo geometry is

different from CAD – CAD geometry translation. Because CAD supports advanced

geometry types, we can represent complicated geometries on either CAD platform with minor

translation artifacts. This translation is still difficult and is the subject of much work.

Fortunately, this work is included in the CAD geometry package.

The converter approach is limited by the modeling limitation of the Monte Carlo code.

Although converters reduce the user time for constructing a geometric model, they do not deal

with the performance of the ray-object intersection algorithm. The computational time is still

high if a converter uses many small analytic surfaces to substitute for a complex surface. And

converters are also needed to overcome robustness problems and lack of automation problems.

2.4 CAD based Transport Approach
Another idea is to couple the Monte Carlo code directly to a CAD engine. The particle will

still undergo the Monte Carlo simulation within the Monte Carlo code. For example, the

source sampling, collision interaction and outcome particle, energy, direction sampling, tally

36

are still within Monte Carlo code portion. All other geometry-relevant calculations will be

performed within the CAD geometry engine. For example, geometry configuration setup, ray

surface intersection, and finding the next cell when a particle crosses the boundary are

performed within CAD geometry engine.

2.4.1 ACIS based work

Franke, Kensek and Warren [5] used the ACIS solid model geometry engine as the geometry

engine of a Monte Carlo code. Therefore they obtain the full geometry representation

capability of the CAD software. They have implemented bounding box acceleration, a simple

ray-object intersection acceleration technique. But they still suffered from the low

performance of ray-object intersection function of the CAD software. The Monte Carlo code

used in the work was ITS (integrated TIGER series) [20]. Without any acceleration

techniques, their performance was 120 times slower than the unmodified ITS code. After

implementing the bounding box, their performance improved to 30 times slower than the

standard ITS code.

Franke, Kensek and Warren’s work proved the applicability of CAD based transport approach.

However, performance is a major problem. They have not published an updated paper on

their performance improvements.

37

2.5 Computer Graphics
The term “computer graphics” describes any use of computers to create or manipulate images.

The major techniques include modeling, rendering and animation. The modeling deals with

the “mathematical specification of shape and appearance properties in a way that can be stored

on the computer” [21]. Rendering deals with the creation of images from three-dimensional

computer models. Animation deals with the creation of an illusion of motion through

sequences of images.

“Ray tracing” is an important method to generate the image. The basic idea is to trace the

light ray from the light source. The ray will experience reflection and refraction as it

encounters material interfaces. If the ray intersects and hits the eye, this means that there is a

visible point. All visible points will compose the image. “Ray-object intersection” is an

important topic in “ray tracing” because only when a ray hits an object can reflection or

refraction occurs. A ray is a vector in space. It includes an origin and a direction. An

object is a three-dimensional object in the space. The “ray-object intersection” will answer

the question “Will this ray hit the object?” and “If it is hit, how long will this vector travel?”

These are basic questions and people use “ray-object intersection algorithm” to solve them. A

lot of high performance algorithms exist and this area is still undergoing rapid development.

The “ray-object intersection” algorithms are also useful for the Monte Carlo method. As the

38

particle travels in a straight line, it can be considered a ray. Therefore the “ray-object

intersection algorithm” can be applied to “find the distance to boundary” within a Monte Carlo

code. Monte Carlo codes are very sensitive to the computational time of this function, since it

is used extensively in computing particle histories.

2.5.1 Ray-Object intersection

The basic techniques of “ray-object intersection” are the same as the ones in computational

geometry, which is to find the first object hit by a given ray with given position and direction.

However some advanced ray-object intersection acceleration techniques have been invented in

the area of computer graphics. That is because efficiency is the greatest challenge in ray

tracing. However, there is a slight difference in ray tracing as applied to the Monte Carlo

method. In the standard ray tracing usage, a ray would only interact with an object at a

surface (reflection and refraction) and an image point needs to be tested to determine whether

or not the point is in the shadow area of the other object. In a Monte Carlo analysis, the

particle may interact with the medium, in which case its intersection with the next surface is

not needed. Therefore some ray tracing techniques need to be modified before

implementation within a Monte Carlo code. Arvo and Kirk classified ray-object intersection

techniques as “faster ray-object intersections” and “fewer ray-object intersections” [22].

Faster ray-object intersections techniques try to optimize the actual computed intersections.

Fewer ray-object intersections try to rule out intersections with actual objects. In the

39

following section, I will discuss the techniques including bounding volume, spatial subdivision

and direction techniques.

2.5.1.1 Bounding Volume

The bounding volume is a fundamental and ubiquitous technique. “It is a volume which

contains a given object and permits a simpler ray intersection check than the object.” [22] This

technique uses a very efficient intersection calculation to determine if there will be an

intersection with objects when a ray comes near the bounding volume. When a ray intersects

the bounding volume we need to check the object itself for intersection. If the ray comes near

to an object and hits its bounding volume, it will increase the computation. But usually rays

that come close and hit the bounding volume are only a small fraction of total rays and

checking the intersection of object is computational expensive. We still obtain a significant

net gain in efficiency. This approach will use many if-then loops which can not be pipelined

efficiently on some old CPU hardware architectures. New CPU architectures usually come

with “branch predictor” feature. With this feature, if-then loops will have much better

pipeline efficiency. However, bounding volume does not decrease the number of “ray-object

intersections”, it is only a quicker way of determining if a ray hits an object.

Decreasing the number of “ray-object intersections” is the purpose of hierarchical bounding

volumes. Rubin and Whitted [23] introduced this concept and the time complexity is

logarithmic in the number of objects instead of linear. Hierarchical bounding volume

40

encloses a number of bounding volumes within a larger bounding volume. If a ray does not

intersect the outer parent volume, we do not need to test the inside bounding volumes or

objects.

2.5.1.1.1 Distance limit of bounding volume

An advantage of a bounding volume is if a point of intersection has been found with an object, all

objects or bounding volumes which intersect the ray beyond this bound can be ignored. Therefore

an intersection infers an upper bound of the distance. When a ray hits the bounding volume, if the

distance is greater than the bound, we still do not need to test the content of bounding. This will

reduce the computational time.

Figure 2.4. Bounding Volume[22]

Figure 2.4 depicts this situation. If the intersection with object O1 is found first, the contents

of volume V2 need not be tested. In computer graphics, the upper bound can be obtained only

by calculating the ray object intersection because the ray is an infinite ray. However in a

Monte Carlo simulation, there is an upper bound, which is the collision distance. The

41

distance from the ray origin to the intersection point is to be compared with the distance to

collision. If the distance to collision is larger, we need to move the particle to the boundary,

which is the distance to intersection. However if the distance to intersection is larger, we only

use distance to collision. Therefore the distance to collision is an automatic upper bound of

the distance to intersection. In the best scenario, even though a ray may hit many bounding

volumes, if the distance to collision is less than the distance to the nearest bounding volume,

we do not need to test any content (object). This scenario applies to the case in which the

mean-free-path is very small. To take advantage of the distance to collision is a new strategy

in nuclear particle transport Monte Carlo simulations because a particle can go inside of an

object. We call this algorithm “distance limit”.

2.5.1.1.2 Shape of bounding volume

If the bounding volume is a rectangular parallelepiped, it is called a bounding box. The

bounding volume can also be a sphere or any other kind of geometric form. There is a

trade-off between two competing factors: tightness of fit and cost of intersection. If a

bounding volume tightly encloses the object, we will decrease the case that a ray hits the

bounding volume but does hit the object. It will save computational time by reducing the

number of ray-object intersection calculations. But a tight bounding volume will involve a

complicated bounding volume and result in a higher cost of ray-bounding volume intersection

calculations. Although some computational techniques exist like lookup table to speed up, it

will involve approximations.

42

Figure 2.5. Different Bounding Volumes[22]

Figure 2.5 shows the different cost/fit ratio. Volume (b) gives the worst fit, however the

bounding surface is an axis-aligned plane, which provides a fast ray-bounding intersection

calculation. Volume (a) gives a better fit, but a spherical surface is a second order surface and

the ray-bounding intersection is more costly than for an axis-aligned plane. We can use

look-up table for square root function to speed up, but look-up table function is approximation

function. Volume (c) gives the best fit, but the bounding surface is a transformed plane,

which will involve trigonometric functions. According to Arvo and Kirk [22], if the object is

complex, the additional cost of ray-bounding can be paid back by a significant reduction in

number of ray-object intersections calculations. Case (c) brings forth the idea of OBB

(Oriented Bounding Box), this will be discussed more in later section. Note these bounding

surfaces work are ideal for individual particle track length simulation. Other routines and

models will need to be employed for simulations such as the condensed model for electron

transport.

Furthermore, we can use multiple bounding volumes for a single object. This can result in a

better fit, but it also increases the cost of testing the bounding volume.

43

Figure 2.6. Multiple Bounding Volumes[22]

Figure 2.6 depicts this situation. For a ray, we need to test two bounding volumes ((a) and

(b)) or 6 planes (c) for an object. The OBB tree algorithm addresses cases where there are a

number of ray bounding surface tests as in case (c). This will also be discussed more in

section 2.5.1.4.

If a particle is inside the object, the bounding box of the object will fail because the ray will

always hit the object. However if we apply the bounding box to a surface, this algorithm will

work again. This issue will be discussed in Chapter 4.

2.5.1.2 Spatial subdivision

Three-dimensional spatial subdivision is based on the observation that “the further an object is

from the path of a ray, the less work we can afford to do in eliminating it from consideration”

[22]. It is a kind of divide-and-conquer approach that divides the space surrounding the

objects and finds the good candidates for intersection. Therefore this method can obtain

“fewer ray-object intersections”.

We need to partition a volume bounding the environment into non-overlapping cuboids pieces.

44

Each piece will be labeled as totally or partially or not occupied by objects. Therefore a

pre-processing step is required. The only objects that need to be tested are those that intersect

the piece pierced by the ray. If we process the pieces in the order in which they are

encountered along the ray, we need not test any remaining pieces when an intersection has

been found.

2.5.1.2.1 Nonuniform subdivision

The spatial subdivision algorithms include nonuniform subdivision and uniform subdivision.

The nonuniform subdivision means that the sizes of cuboid pieces are variable and cuboids

pieces can be adaptive to the object. Usually the octree is used in this subdivision. Octree

means subdividing the rectangular volumes into eight subordinate octants until the leaf cuboids

meet some criterion.

Figure 2.7. Nonuniform Spatial Subdivision[22]

45

Figure 2.7 shows a two-dimensional analogy of a sphere and the octree. The shaded areas are

the candidate list of ray-sphere intersection.

Figure 2.8. Using Nonuniform Subdivision to Accelerate Ray-Object Intersection
Calculation[22]

Figure 2.8 shows an example of the nonuniform spatial subdivision implementation. First, we

need to construct the octree. The criterion used were subdividing the cuboids that have two or

more intersection candidates and subdividing no more than three levels deep. By this

subdivision process cuboid pieces are obtained. Second, we process the ray and obtain the

cuboids that the ray crosses. These cuboids are shown as shaded cuboids in Fig 2.8. Third,

we obtain the objects that intersect the shaded cuboids. These objects are shown as shaded

objects in Fig 2.8. These shaded objects are the objects that are tested for intersections. It is

46

clear to see that we only need to test 3 of a total 8 objects.

In the Monte Carlo simulation, after the distance to collision is obtained, we know the

beginning point and the end point of a ray, therefore there are even less cuboids to be tested

than for the infinite ray case.

2.5.1.2.2 Uniform Subdivision

Fujimoto [24] introduced a different spatial subdivision approach using cuboid pieces that are

uniform in size. Each cuboid piece will be marked as “empty” or “full” or “part occupied”

during pre-processing. The spatial subdivision is easier than nonuniform subdivision. But

there will be more cuboid pieces in the space, which requires more memory, and the ray will

cross more pieces.

Figure 2.9. Uniform Spatial Subdivision[24]

Figure 2.9 shows the same environment and objects as Fig 2.8. By using the uniform spatial

47

subdivision process, the number of cuboid pieces increases from 25 to 64; the number of

cuboids requiring testing increases from 5 to 14. However, only one object needs to be tested.

2.5.1.3 Direction Techniques

The directional technique is a recent category to emerge in ray-object intersection techniques

than the first two algorithms. It exploits the direction information at a level above that of

individual rays. The purpose is trying to eliminate the consideration of objects that are not in

the direction of the rays.

Figure 2.10. Direction Cube[25]

Figure 2.10 shows a direction cube which is used in the light buffer algorithm [25]. A

direction cube is an axis-aligned cube centered at a ray origin with an edge length of 2. The

ray will hit one of these six surfaces. In Fig 2.10 the ray hits the plane y=1. We call the +Y

axes as the “dominant axes” of the ray. The hit point also generates two-dimensional

48

coordinates on the plane y=1. The dominant axes and two-dimensional coordinates can

represent a ray’s direction.

The direction cube allows easy subdivision of the solid angle. The surface of the direction

cube can be uniformly subdivided ((b) in Fig 2.10) or nonuniformly subdivided ((c) in Fig

2.10). For a nonuniform subdivision, the quadtrees or BSP (Binary Space Partitioning) tree

can be applied. Each rectangular on each plane represents a solid angle which is a “direction

pyramid” in three-dimension.

2.5.1.3.1 Light buffer

Haines and Greenberg [25] introduce the light buffer algorithm for shadow calculation of a

point light source. But it can be directly applied to a Monte Carlo code for the point source

case. We only need to preprocess the direction cube, find the intersection candidate list of

each direction pyramid. In the Monte Carlo computation, after we sample the direction of a

source particle, we can find the corresponding direction pyramids. The intersection

candidates are then known. The nonuniform direction cube subdivision applies to the

non-isotropic point source or non-uniform distribution of objects that can be intersected; but

we need to determine the subdivision, which best fits the source direction distribution or object

distribution. The uniform direction cube subdivision can be applied to the isotropic point

source and for the first collision, though the direction pyramids may not have the same solid

angle.

49

The pre-processing step will require some computational overhead (time). But this is not a

big problem. For the case of a non-isotropic source, some direction pyramids will have no

particle going through them. We will waste memory storing it. The solution can be “lazy

pre-processing”. This means we will process the direction pyramids when a real particle goes

through it. This method will allow the use of the uniform direction cube subdivision

technique for the non-isotropic source case.

The restriction of the light buffer algorithm is that it can only be applied to a point source and

only for the first collision. That is because there are infinite points in a cell and it is

impossible to construct a direction cube for infinite points. The ray coherence algorithm

solves this problem and it can also be applied to cell source.

2.5.1.3.2 Ray Coherence

Ohta and Maekawa [26] introduced the “ray coherence theorem” in 1987.

Figure 2.11. Ray Coherence[26]

Figure 2.11 shows the ray coherence algorithm [27]. There are two objects. S1 and S2 are

50

the spherical bounding volumes of these two objects. O1 and O2 are the center of the

bounding spheres. r1 and r2 are the radii of the bounding spheres. Any ray that begins in a

point in S1 and ends in a point in S2 will define an angle (θ) with the line through the sphere

centers. The maximum of θ will satisfy:

tan(θ) < (r1+r2)/||O1-O2||. (1)

The meaning for a cell source is; if the sampled angle is greater than the θmaximum, we do not

need to test the intersection. We note for real applications, there may be many objects, each

object will construct a θmax with respect to the source cell. Therefore we will construct a

spatial direction cube of the source cell, each direction pyramid will store the intersection

candidate list. Here the candidate list means for a source particle with its direction inside the

current direction pyramid, if the particle can hit an object when the origin of this particle is

variable inside the source cell, the hit object will be put in the candidate list of the current

direction pyramid.

We note that not only can a particle go from source cell to another cell, the particle can go

between any two objects. Therefore we can construct a direction cube with any object.

However, the storage requirements are large, therefore it is a typical space-time trade off.

Fortunately, the Monte Carlo codes are usually execution time bound, not memory-bound.

2.5.1.3.3 Ray Classification

51

Another algorithm can be considered as a synthesis of spatial subdivision and direction

techniques. It is called “ray classification” algorithm and was introduced by Arvo and Krik

[22]. This algorithm is based on the observation that a three-dimensional ray has five degrees

of freedom. Therefore a ray is a point in five-dimensional space. We can subdivide this

space into many non-overlapping five dimensional cells. A cell encapsulates the space

similarity and direction similarity of the ray in three-dimensional space. We can place the

intersection candidate list into the five-dimensional unit cell by pre-processing.

A five-dimensional cell is hard to understand and hard to illustrate. Figure 2.12 depicts the

two-dimensional and three-dimensional explanation of the ray classification algorithm.

Figure 2.12. Ray classification[22]

Figure 2.12(a) depicts the two-dimensional case. The set of rays with the same origin but

directions inside some range describes an angle. But when the origins of the rays are varied,

the set become the shape of a beam. The three-dimensional case is shown in Fig 2.12(b).

The set of rays with the same origin but directions inside some range describes a direction

52

pyramid. But when the origins of the rays are varied, the set becomes a three-dimensional

beam. A ray inside this three-dimensional beam is a point in the five-dimensional cell. The

candidate list is all objects, which intersect this beam.

The ray classification algorithm is similar to the ray coherence algorithm. They both change

the direction pyramid into a three-dimensional beam. The difference is the starting region of

the three-dimensional beam. For the ray coherence algorithm, the starting region is in the

object; while for the ray classification algorithm, the starting region of the three-dimensional

beam can be any cuboids in a three-dimensional space. Therefore the cuboids can be inside of

an object, which gives the object a further subdivision.

2.5.1.4 OBB and OBB tree

The idea of oriented bounding box (OBB) was mentioned in Fig 2.5 (c). The algorithm is to

find a space oriented bounding box that best fits the object. This is depicted in Fig 2.13. The

OBB computational procedure is discussed in Chapter 4.

53
Figure 2.13. The OBB

The oriented bounding box (OBB) tree [28] is an extension of OBB. The algorithm is to

apply the hierarchical bounding box process to OBB. The idea of the OBB tree is shown in

Fig 2.14.

Figure 2.14. The OBB tree[28]

The OBB and OBB tree were developed in the computer graphics field for collision detection.

Collision detection is a test performed to detect if there is contact between two spatial objects.

The typical approach is: 1) any object in system is composed of a list of polygons, or in simple

form, a list of triangles; 2) build an oriented bounding box for each object and 3) at runtime,

traverse the tree of each object to test the overlap, if leaf node bounding box is still overlapped,

directly test the object (triangle) itself.

In Cottschalk, Lin and Manocha’s paper [28], they developed a software package to prove the

OBB tree algorithm called RAPID (Rapid and Accurate Polygon Interference Detection). This

54

software is for collision detection purposes in computer graphics. It is to detect whether there

is contact or overlap between two objects. Each object is inputted as a list of polygons. This

software generates an OBB tree for each object and performs collision detection between the

objects. Bounding box – bounding box test performs the collision detection. To begin it

uses a root bounding box for both OBB trees of objects. When there is contact, it will go

through the tree until it reaches a leaf node. In the case contact exists, it will return the

contact pair of leaf nodes.

Cottschalk, Lin and Manocha’s group is continuing research on this algorithm. Their major

focus is on development of a fast tree building algorithm. The reason for this lies in the

application of computer animation. In animation the shape of an object changes; for example,

when a man is walking, the body shape changes. Therefore, from time to time, the OBB tree

needs to be rebuilt.

This algorithm can be applied to surface objects found in Monte Carlo particle transport and

therefore it can be used to accelerate the Monte Carlo simulation. The only problem is

usually the object modeled is not a polygon object.

The OBB tree plays an important role in my research because it can be applied to any geometry

and can achieve the tightest fit bounding box. Further review and discussion will be in

Chapter 4.

55

2.5.1.5 Comparison and Combination

All these ray object intersection acceleration algorithms have storage and time trade-offs.

They all store the information in a pre-processing step and this information helps the ray object

intersection during execution time. The more information we store, the more help we obtain

but the more storage space is required. Therefore the storage space will be a key aspect to

consider during implementation.

Besides the storage space consideration, these three groups of ray object intersection

acceleration algorithms focus on different aspects. The spatial subdivision algorithm focuses

on space, especially the space pierced by the ray. If the space is sparse this algorithm would

not outperform the bounding volume because it will deal with too many empty space cuboids.

The bounding volume algorithm focuses on objects; if there are a large number of objects this

algorithm must deal with too many bounding volumes that are not intersected. Therefore it

would not outperform the spatial subdivision algorithm. The direction techniques focus on

the direction of the ray. The idea of this algorithm is the ray with different direction will hit

different objects. If there are a number of objects for which each inside object is encircled by

an outer one and the ray is from the innermost object, this algorithm will totally fail.

Snyder and Barr [27] compared the performance of uniform three-dimensional spatial

subdivision, octree-based nonuniform subdivision and bounding volume hierarchies. Each

56

algorithm has its favorite scenarios. For example, they observed that for large numbers of

homogeneously distributed objects of similar scale, a regular grid outperforms octree methods

because for a regular grid, voxel walking is more efficient. And due to large number of

homogeneously distributed objects of similar scale, there are many voxel walking calculations.

Also, because these ray-object intersection algorithms focus on different aspects, they can be

combined together to achieve a performance that is better than any single one. For example,

the bounding volume method can be combined with direction techniques that put the direction

cube in the volume. Then a ray coming out of the object can use the candidate list of direction

cube. Actually, the ray classification algorithm can be considered as the combination of

spatial subdivision and ray coherence. In combining optimizations, the storage space will be

more important because combining optimizations will require an increase in memory greater

than the usage of any single one. Kirk and Arvo [22] give a general mechanism for

combining optimizations. They encapsulated acceleration techniques then present the same

interface for pre-defined primitive objects. Now an acceleration technique becomes an

aggregate object. Because they have a uniform interface for all aggregate objects, they can

create meta hierarchies that include a cadre of algorithms like octree, uniform grid and

bounding volume hierarchies. Their work focused on how to choose or compare from

different combinational approaches. Their goal was to achieve the best performance in a

complicated environment that contains millions of objects. From Kirk and Avro’s work one

notes that research on combinational approaches requires thorough research on all single

57

algorithms.

2.6 Summary of previous work

To summarize all the previous work, to take advantage of CAD software is the right approach

because it can fully take advantage of the powerful features, tools and shape rendering in CAD

software. A CAD substitution would get rid of geometry modeling limitation of current

Monte Carlo codes. There are two approaches on how to utilize CAD; the converter approach

and the CAD based transport approach. In the converter approach, the Monte Carlo

simulations still suffers from the limitation on geometry modeling and the computation

performance of the original code. In the CAD based transport approach, the geometric

modeling of the simulation has been improved, however, computational performance becomes

the main issue (problem) and the ray tracing function becomes the bottleneck.

In the field of computer graphics, there are many ray-object intersection acceleration

techniques. However, ray tracing acceleration algorithms in computer graphics need to be

adapted for use in particle transport Monte Carlo. The major differences between ray tracing

and Monte Carlo transport are:

(1) A particle track can pierce into an object while a ray will not.

58

(2) When a particle is inside an object, it has the possibility of colliding with any boundary

segment. We can obtain the distance to collision from physics sampling. This will be a

benefit for most ray-object intersection algorithms.

(3) In computer graphics, there is an environment and objects. A ray only traverses the

environment, which is outside of the object. However in a Monte Carlo particle transport,

the rays only travel inside a cell, though it may be an empty cell.

(4) In ray tracing, people prefer a large number of objects (for example 1000 or more) but each

object is simple (such as a triangle, sphere or box). But in Monte Carlo transport, there

are also cases that there are not many objects (for example less than 100), however each

object is composed of many surfaces (for example 100 surfaces). Therefore in a

simulation, there is interest in not only, which object the ray intersects, but also which

surface of the object is hit.

(5) In computer graphics, the distance to an object needs to be known. In Monte Carlo

simulations, the distance to surface intersection is compared with the distance to collision.

In the case where the distance to the collision is smaller, the exact distance to a surface

intersection is not necessary.

59

Chapter 3

Overall Approach and implementation

In this chapter, our approach and implementation will be described in detail. It includes the

motivation and the benefits of our approach, the implementation of the CGM geometry engine,

changes to the MCNPX code and the difference of usage of the MCNPX/CGM and the

standard MCNPX codes.

3.1 CAD geometry engine based implementation and its

benefits
By providing both CGM and CUBIT, we have both the geometry constructing software

(CUBIT) and its geometric engine (CGM). By using CUBIT we can easily create and edit a

geometry configuration. Finally we can save it in a CAD geometric format. The next

question is how to combine the CAD software/engine to obtain the most benefit from the CAD

capabilities.

Our approach is called “engine based implementation”. We use CGM to substitute all the

geometric functions in MCNPX. The particle physics interactions are still performed within

MCNPX, but the particle transport (or “ray tracing” in computer graphics terminology) is

performed within the CAD engine. Because the CAD geometry engine is part of

60

MCNPX/CGM, the MCNPX/CGM can directly read CAD geometry files and perform the

Monte Carlo simulation within it. This approach not only allows the user to easily create

geometry configurations, and to provide a compatible interface between MCNPX and the CAD

software, but also allows complicated geometries to be modeled with MCNPX. The structure

of the MCNPX/CGM code is shown in Fig 3.1.

 CAD CAD geometry file Physics input file

Geometry

engine

CAD geometry

engine

MCNPX/CGM

Monte

Carlo

Code
Ray object
intersection

Figure 3.1. MCNPX/CGM flow chart

3.2 Implementation details
The implementation idea is to modify the MCNPX code to incorporate calls directly to CGM

and to incorporate the ray-tracing acceleration techniques to speedup the code. The combined

code is called MCNPX/CGM.

As stated in the introduction, the MCNPX execution can be subdivided into the initialization,

61

Monte Carlo simulation and tally stages. Our implementation involves these three stages.

3.2.1 Initialization and changes

There are two major changes in the initialization, one is to use CGM to read the geometric

information of the problem and perform a geometry analysis. The other is to get rid of all the

geometric information from the MCNPX input file.

The first one is achieved by implement a C++ main function for MCNPX. This is required

when calling C++ functions. This function performs:

1. Initialization of the CGM geometry engine.

2. Reads in the geometry file. (ACIS format)

3. Geometry pre-processing.

4. Calls MCNPX to begin the Monte Carlo simulation.

The geometry pre-processing, task 3, includes obtaining the total cell numbers, total surface

numbers, surface faceting and OBB tree building. The surface faceting and OBB tree

building are used for ray-tracing acceleration techniques. This will be discussed in detail in

Chapter 4.

The other modifications are within the MCNPX code. We need to input the geometry

information into the code; like the total surface number and the total cell number into MCNPX

62

code MCNPX will have the cell and surface numbers, but the geometry information, like the

surface type, will only be available in the CAD geometry engine portion.

After these modifications, the MCNPX part of the code will require a geometry input. In the

MCNPX input file, the geometry information is left blank and the previous example input file

(Table 1.2 and Fig 1.3) will become:

Table 3.1 MCNPX input file

testprob - n p

1 1 -0.675

2 0

3 0

4 0

c surface card

1

2

3

4

5

6

7

8

9

In this example the cell description section only contains material and density information. The

surface Boolean information has been eliminated. In the surface description section, only the

surface number is kept. No surface type and position information input is required.

3.2.2 Monte Carlo simulation and changes

63

In the modified Monte Carlo simulation code, all the geometric computations, such as

“ray-object intersection” and “finding the cell when a particle crosses the boundary”, are

performed by CGM functions.

Originally “ray-object intersection” was performed by the MCNPX function “track”. Now it

is performed with the CGM function “cgmtrack”. The ray-tracing acceleration techniques are

also inside this function. This function will be described in detail in Chapter 4.

Another function being substituted for is the “finding the cell when a particle crosses the

boundary” function. The MCNPX function “newcel” is substituted by the CGM function

“cgmnewcel”. This function will also be described in detail in Chapter 4.

3.2.3 Tally

Usually the MCNPX tally involves a specific surface or cell. In the unmodified MCNPX, the

tally is assigned at some surface or cell number, for example, the current on surface 1 or,

energy deposition in cell 2. Originally the surface and cell numbers were provided to

MCNPX via the input file. Now all geometric information is provided to the CAD geometry

engine. There are also surface and cell numbers for each surface and cell. These numbers

can be passed to MCNPX during the Monte Carlo simulation. Therefore, the tally section of

the modified MCNPX input file contains cell or surface numbers, which are obtained from the

64

CAD geometry engine or CAD software. In MCNPX, when a particle crosses the tally

surface or enters the tally cell, a tally of this particle is automatically generated as in the

unmodified MCNPX case. After the MCNPX simulation is completed, the modified

MCNPX will generate the tally report just like the original MCNPX. The tally report format

has the same format as before.

3.2.4 Code modifications

Table 3.2 presents the modifications to the MCNPX functions. Major changes mean that the

whole function has been rewritten. Minor changes mean that only a few lines of the function

have been commented out, changed or have been added. As can be seen, there are not many

changes to original code.

Table 3.2 Modifications to MCNPX

Minor changes Major changes
Hstory.F
Imcn.F
Mcnp.F

Rdprob.F
Surface.F
Transm.F

Main.cpp
Track.F

Newcel.F
Chkcel.F

65

Chapter 4

Run-time Accelerations

From the literature review we can see that most Monte Carlo codes do not take full advantage

of modern modeling software for their computational geometry. Focusing primarily on the

physics side, their current geometry engines just implement a small set of functions and do not

provide complex surface modeling. In contrast CAD software implements a much greater set

of functions that allow for complex surface modeling. They provide powerful, advanced

geometric functions and abilities. A better approach would be to use CAD software as the

geometric engine of the Monte Carlo code. It allows the new CAD based Monte Carlo code

to obtain all the geometric merit from the CAD software. And some generic interfaces to

CAD, like CGM, even provide some non-CAD geometry modeling capabilities like

facet-based and virtual geometry. It will be shown that a CAD based Monte Carlo code can

be used effectively and efficiently for complicated geometries.

However, in Chapter 2 Franke, Kensek and Warren’s [5] work showed that performance will

be the major problem in CAD based transport. My research will focus on this problem.

In my research, MCNPX represents the Monte Carlo code and CGM represents the CAD

software. In Chapter 3 we described the implementation of MCNPX/CGM. We have already

66

accomplished a CGM based MCNPX. But without ray tracing acceleration techniques,

MCNPX/CGM will have performance issues similar to Franke’s efforts. This chapter will

show the detail of several ray tracing acceleration techniques. It includes OBB tree, sorted

distance and distance limit algorithm on CAD geometry models and OBB tree, sorted distance

and distance limit algorithm on facet models and source particle region determination.

4.1 Ray Tracing accelerations

4.1.1 Bounding box for object or bounding box for surface

The bounding box is the most easily and wildly used ray-tracing acceleration technique. It

uses a box to enclose a given object and a simpler check for ray intersection with the box than

the object to eliminate unnecessary ray object intersection. The first decision made in this

work was to use a bounding box on an object or on a surface.

In the computer graphics field, bounding boxes on objects are typically used because in an

environment, there are many objects, and a ray usually starts from the outside of the object.

The use of a bounding box on an object can easily filter out objects whose boxes are not hit by

the ray.

However, there are some problems with application of a bounding box. First, if a ray point is

inside an object, the bounding box is useless. Because when the start point is inside an object,

67

the ray coming from this point will always hit the bounding box. Second, to obtain the best fit

ratio, at times requires the use of a sphere, cylinder or other higher order shape as the bounding

volume. In the worst case, we need to use multiple bounding volumes on one object. This

not only requires a more complicated algorithm to generate bounding volumes, but also

requires more ray-volume test time because a second order bounding volume surface is being

used. This issue was also discussed in Section 2.5.1.1.

2D(a) 2D analog of Bounding on surface analog Bounding on surface (b) 2D analog of Bounding on

Figure 4.1. Bounding to surface and bounding to object

As mentioned before, the situation in Monte Carlo particle simulation is different from that in

computer graphics. A particle is always inside some object and this object could be very

complicated. Therefore we decided to apply the bounding box to each surface. This is

depicted in Fig 4.1. Figure 4.1(a) shows a bounding box on each surface. When a particle is

68

inside the object, it still can take advantage of the bounding when the test is with a surface.

Figure 4.1(b) shows the bounding on the object. Any particle inside the object is inside

bounding box. There is no benefit in the application of the bounding test for the surface.

4.1.2 Axis-aligned bounding boxes (AABB)

The AABB is the simplest bounding box. The axis-aligned means the surfaces of the

bounding box are always parallel to the x,y,z coordinate planes. Therefore, the AABB is very

easy to calculate. And because the bounding box algorithm is easy to implement, most CAD

geometry engines already include it in their ray-tracing algorithm.

However, the simple AABB has a limitation: because the bounding box planes are always

parallel to the coordinate planes, the bounding box is sometimes not a tight fit to the object.

Figure 4.2 depicts an example of this.

Figure 4.2. Worst case of the AABB

Because the AABB is axis-aligned, boxes can be much larger than the object, which as seen,

depends on the object’s orientation. The performance of the AABB will be

69

problem-dependent. In the computer graphics area, a non-tight fitting bounding box will have

many cases where the ray hits the bounding box but does not hit object. This degrades the

performance of the bounding box algorithm.

This limitation is even worse for a Monte Carlo simulation because a particle is always inside a

cell. Figure 4.3 depicts the worst case of AABB on for a surface. Because the surface is a

cylinder, the AABB of a cylinder enclose the object in it. The particle inside the cylinder

surface is always inside the bounding box. The AABB of cylinder surface provides no benefit.

In this case, AABB on surface will be same as AABB on object.

Figure 4.3. AABB of cylinder surface

4.1.3 Oriented bounding box (OBB) tree

Cottschalk, Lin and Manocha [28] introduced the OBB tree algorithm to solve the limitations

of the AABB. It is widely used in the computer graphics area, especially for collision

detection. There is some similarity between the collision detection application and the Monte

Carlo particle simulation. The idea of this algorithm can be applied to particle Monte Carlo

70

transport, but the algorithm requires modification to be of better use.

4.1.3.1 Calculate OBB

The central idea of the OBB algorithm is: the bounding box will not need to be parallel to

coordinates axis. The algorithm will find the x´, y´, z´ axes and construct the bounding box

aligned to these new axes to make a tightly fitted bounding box to the object. The purpose of

OBB is to obtain a bounding box as small as possible. However a coordinate transformation

needs to be performed before a ray-bounding box intersection test is made.

The first step is to calculate the OBB for a triangular object, or in particle Monte Carlo

transport, faceting object. In Cottschalk, Lin and Manocha’s paper [28], present the algorithm

to generate OBB as follows: suppose we have a list of triangles, numbered from 1 to n. The

coordinates of the vertices of the i´th triangle are vectors and
ii qp , ir . If written in scalar

form: and . The 1, 2, 3 here represent the three

coordinate directions. The mean, µ, is equal to:

),,(),,,(321321
iiiiii qqqppp),,(321

iii rrr

∑
=

++=
n

i

iii rqp
n 1

1111)(
3
1µ

 (1)

∑
=

++=
n

i

iii rqp
n 1

2222)(
3
1µ

 (2)

∑
=

++=
n

i

iii rqp
n 1

3333)(
3
1µ

 (3)

Therefore the µ is the center of the object. Then the covariance matrix C is equal to:

71

∑
=

++=
n

i

i
k

i
j

i
k

i
j

i
k

i
jjk rrqqpp

n
C

1
)(

3
1

 (4)

Where vector µ−= ii pp , µ−= ii qq , and µ−= ii qr . is a scalar. All the

for j from 1 to 3 and k from 1 to 3 compose a 3 by 3 covariance matrix.

jkC jkC

The eigenvectors of this matrix are mutually orthogonal because the covariance matrix is a

symmetric matrix [29]. We normalize it and use it as a basis. That is also the orientation of

the bounding box. The matrix of eigenvectors also forms a rotation matrix, which rotates the

bounding box from local coordinates to world coordinates. Then the extreme vertices along

each axis of the basis are found, which is the size of the bounding bo. It also defines the

maximum and minimum coordinates in the bounding box’s local coordinates.

4.1.3.2 Faceting and enlarge OBB

In a CAD geometry configuration, there are many kinds of objects or surfaces other than

polygon or facet surfaces. The faceting algorithm mentioned in Chapter 2 will generate a

faceting surface for any surface. To use faceting surface is because ray facet intersection test

is more efficient than ray intersection with any other high order surface. Figure 4.4 shows an

example of a faceting surface.

72

Figure 4.4. Example of facet object[28]

The faceting algorithm is controllable. The major input parameter is the distance tolerance

(See Fig. 4.5).

Tolerance

Figure 4.4. Defining the tolerance

By inputting a larger or smaller tolerance, we can control the coarseness or fineness of the

73

faceting surface. Tolerance also means the maximum difference between facet surface and

real object surface.

However, the faceting surface is only an approximation of the real object surface. We can

only generate bounding boxes on facet surfaces and the real object surface may not fall

completely inside the bounding box. This means that the bounding box is not the correct

bounding box. But by the conclusion drawn before, the maximum difference between the

faceting surface and the real object surface is the tolerance. A simple modification can solve

this problem: we only need to enlarge each bounding box by a distance equal to the tolerance in

each coordinate. This will guarantee that the real object surface is inside the bounding box

(See Fig 4.6).

Enlarged bounding box

Bounding box of facet

CAD object

Facet surface

Figure 4.5. Enlarge bounding box to include CAD object

The faceting surface is an approximation of a real surface by many first order surfaces.

Therefore there is a trade-off if we use a second order surface to approximate the real surface.

74

If we use a second order surface, we can have a better approximation for curved surface.

However, a more complicated algorithm is needed to generate second order surface. The ray

second order surface test is more expensive than the ray facet test. Since a tolerance is

already being used because of the accuracy requirement to generate a faceting surface, we

therefore choose the first order surface – facet to approximate real surface.

4.1.3.3 Ray-OBB intersection test

We will use the OBB tree to test the ray-surface intersection. This will require the use of the

ray-bounding box test algorithm. However in RAPID mentioned in Chapter 2, the OBB tree

is applied to the object-object collision detection, therefore, it is only a bounding box-bounding

box test algorithm. We require a ray bounding test algorithm, which we will develop for the

CAD/MCNPX code

The first question is how to test a ray to a spatial oriented box. We recall our ray, bounding

box and whole system are in a “world coordinates” with x, y, z axis. Each oriented bounding

box is stored with the origin, dimension and direction of x´, y´, z´ axis. We call the x´, y´, z´

axis as “local coordinates” of each oriented bounding box. It is harder to test the collision of a

ray and a spatial oriented box in world coordinates because we need to test 6 spatial oriented

surfaces. A better idea is to transform the ray into the oriented box’s “local coordinates”.

Then we obtain the benefit that the bounding box is an axis aligned symmetrical box.

To transform an object from one coordinate system to another, we need to do a “rotation” and a

75

“shift” operation. The shift is the origin of bounding box and the rotation is a matrix

composed by x´, y´, z´ vectors. An OBB can be considered as a rotation and a shift of an

AABB whose origin is at the coordinate’s origin. To test a ray and an oriented box, we need

to inverse transform the ray to the oriented box’s local coordinates. In this process, we need

to use the computational expensive matrix inversion operation. However, the rotation matrix

is an orthogonal matrix. The inverse matrix is just the transpose of the matrix, which is trivial

in computation. That is:

The eigenvector matrix of the covariance matrix is ……………………(5) jkC A

A is an orthogonal matrix. Therefore TAA =−1 [30] ……(6)

After the transformation, we face a simple computational geometry problem: we have a spatial

ray with a spatial point as origin and a spatial direction, we also have a axial aligned box which

is centered at the origin of the coordinate system. The question is whether or not the ray hits the

box and if hits it, what is the distance to the box.

There are many ways to achieve this. The most straightforward way is to test the ray with 6

axis paralleled plane. I will use a two-dimensional analog to illustrate it.

76

Figure 4.6. Box at the center

The general ray function is: . (7) 



+=
+=

vdyy
udxx

0

0

The point (x0,y0) is the origin of the ray. u and v are the direction vectors and d is the distance

of the point (x, y) from the point (x0,y0).

For a box centered on the origin, the box area is described as:

 2
lx ≤

, 2
wy ≤

 (8)

where l and w are the length and width of the box, respectively. Note that the box can be

written in this form only if box is axis aligned and centered at the origin.

To test the ray box intersection, we need to test 4 edges of the box. For example the top edge:

77

Figure 4.7. The ray test with the upper edge

Let yw =2 and put it into (7)

vdyw += 02
)2(1

0yw
v

d −=⇒
 (9)

Substituting (9) into (7), the corresponding x coordinate is:

)2(000 yw
v
uxudxx −+=+= (10)

We need to test if 2
lx ≤

 (11)

Therefore put (10) into (11):
2)2(00

lyw
v
ux ≤−+

 (12)

If this condition (12) is satisfied, it means there is a hit. Then the distance d is a candidate.

We test all 4 edges and find the minimal distance d, which is the distance to the bounding box.

In (12), 2
l

 and 2
w

can be pre-computed and stored, therefore there is no division operation in

the ray-bounding box test. But the vectors, u,v are changed for a ray test with a different box.

That is because we transfer the ray from world coordinate into each bounding box’s local

coordinate. Fortunately we can change the condition (12) into:

78

vlywuvx
2

)2(00 ≤−+ (13)

The difference between (13) and (12) is that there is no division operation in (13). Therefore

(13) has a better, more efficient performance of the ray bounding box test than (12).

The three-dimensional version of equation (12) and (13) are respectively:

2)2(00
azc

w
ux ≤−+ and 2)2(00

bzc
w
vy ≤−+ (14)

wazcuwx
2

)2(00 ≤−+ and wbzcvwy
2

)2(00 ≤−+ (15)

The length, width and height of bounding is a,b,c respectively.

When testing the ray with the bounding box of root and intermediate (non-leaf) node of the

OBB tree, the algorithm will only return if the ray hits the bounding box, no distance

information will be calculated. We will use condition (15) to test. When testing the ray with

the leaf node-bounding box, the algorithm will return whether it is a hit and the distance if it

does hit. Therefore we use (9) to calculate the distance d and use condition (14) to test.

The reason to have two version of the ray bounding box test algorithm is: for each hit in the

leaf node, there are many ray intermediate nodes tests. There are also many cases where the

ray bounding box algorithm tests many intermediate nodes but does not hit a leaf node.

Therefore overall there are many more ray intermediate node tests than ray leaf node tests.

Therefore, we need a higher performance ray bounding box test algorithm here than for the ray

leaf node bounding box test.

79

There is another difference in our non-leaf ray bounding box test: once a ray hit with one of the

bounding planes of the bounding box is found, we don’t need to continue testing other planes

because we only need to test if there is a hit. This modification will also improve the

performance of ray intermediate bounding box test algorithm.

Condition (15) is only for one surface of the bounding box, the test conditions for all

surfaces in the box are:

wazcuwx
2

)2(00 ≤−+ and wbzcvwy
2

)2(00 ≤−+ (16)

or wazcuwx
2

)2(00 ≤−−+ and wbzcvwy
2

)2(00 ≤−−+ (17)

or ubxavuy
2

)2(00 ≤−+ and ucxawuz
2

)2(00 ≤−+ (18)

or ubxavuy
2

)2(00 ≤−−+ and ucxawuz
2

)2(00 ≤−−+ (19)

or vaybuvx
2

)2(00 ≤−+ and vcybwvz
2

)2(00 ≤−+ (20)

or vaybuvx
2

)2(00 ≤−−+ and vcybwvz
2

)2(00 ≤−−+ (21)

4.1.3.4 OBB tree building

If we combine the concept of an OBB and the hierarchical bounding box discussed in Chapter

2, we obtain the OBB tree. In computer graphics, an object is represented by a list of

polygons. The root node-bounding box will be the bounding box for whole object. The leaf

node-bounding box will be the bounding box for a single polygon. The ray bounding box test

is started from root node. If a ray does not hit a bounding box in a level, all ray bounding box

80

tests below this level are not needed.

To build an OBB tree, Cottschalk, Lin and Manocha, recursively partition the bounded

polygons and calculate the bounding box for each group [28].

Figure 4.8. Building the OBB tree

They first calculate the bounding box for whole object, which is the root of the OBB tree. Then

the longest axis of a bounding box is split partitioning the polygons according to the vertices

points lying on the side of split plane. If the subdivision line crosses a polygon, we can use

the mean point of that polygon to determine which side this polygon belongs to. If the longest

axis is subdivided, we cannot obtain a two-polygon group (see Fig 4.10), we will try the second

longest axis. The reason to begin with the longest axis is that it is most likely to successfully

subdivide into a two-polygon group (See Fig 4.9). If it still cannot be subdivided, we will try

the shortest axis. If all three axes cannot be subdivided, this means the current bounding box

is the leaf node of the OBB tree.

81

Bounding box

Facet object

Subdivision line

Figure 4.9. In this case we need to use the second longest axis to subdivide

Given a object with n triangles, the overall time to build the tree is O(nlog(n)). The recursion

is similar to the quick sort algorithm in sorting theory. The depth of the tree is O(log(n)),

which means O(log(n)) ray bounding box tests to find a hit.

Although building an OBB tree requires computational resources, the geometry configuration

will not change because the configuration is time-independent. Therefore the OBB tree

construction only happens once. Hence for particle Monte Carlo simulations, we do not

worry about the time required to build a tree.

To test an OBB tree, we start from top level bounding box and do a ray bounding box high

performance test. If there is a hit to the boxes, we will go through the tree. Because the tree

is pre-computed and stored, we just need to retrieve two children node-bounding boxes and

82

continue applying the high performance bounding box test algorithm. If not, it means there is

no hit to the objects. As to the leaf node, we will just use the regular version ray bounding

box test algorithm to test if there is a hit and return the hit distance if the ray does hit the

bounding box.

4.1.3.5 RAPID

This RAPID software package mentioned in Chapter 2 already provides some

functionality we need, such as the OBB tree building functions. It also provides some

functions, which are very similar to what we want, such as the bounding box –

bounding box test, which can be modified for a ray bounding box test.

4.1.4 Sorting distance

In the previous section, we show the case when a cell is concave. For this case there is the

possibility that the ray will have more than one hit. We have a solution that takes advantage

of the hit distance to the bounding box. In the best scenario, the first ray-trace calculation on

the CAD surface is also the closest hit and all the other hits to bounding box have a larger hit

distance than the hit distance to CAD surface. We can still achieve one CAD surface test per

ray. However, in the worst scenario, the closest hit to the CAD surface is the last ray-trace

performed. We still need to do CAD surface test for each ray-bounding box hit. In this case,

we do not obtain any benefit from the distance to the bounding box returned from ray bounding

box test function. Figure 4.11 depicts the best and the worst case scenarios.

83

1
3

2
2

1
3

Best case scenario Worse case scenario

Figure 4.10. Best and worst case scenario

How to make the best scenario always happen? Our approach is after finding a hit to the

bounding box, we do not instantly perform a ray CAD surface test. We just store the hit

surface and hit distance to bounding box, then continue testing the ray with the bounding box

tree of other surfaces. After testing all the surfaces, we have a list of stored hit surface and

corresponding hit distance to bounding box. We sort this list by the hit distance in ascending

order. Then we can always test the CAD surface from minimum ray bounding box hit

distance, and not test boxes whose hit distances are greater than the closest CAD surface hit.

Because the bounding box is different from the object, the bounding box with the minimum hit

distance is not necessarily the bounding the surface with the minimum hit distance. Therefore

this algorithm does not always give ideal results, but when the faceting is very fine, the

bounding box closely approximates the real surface. Hence, this algorithm also closely

approximates the ideal case.

4.1.5 Distance limit

84

The accelerations above can be implemented strictly inside the geometry engine without

regard for the application (Monte Carlo). However, there are also acceleration techniques that

take advantage of both geometry and application.

In particle transport, particles will undergo interactions with materials. The Monte Carlo code

will sample a distance to collision. Only if this distance is less than the distance to boundary,

that is to say, the collision point is inside current cell, will a collision happen. We find the

distance to boundary is just for comparison with distance to collision. Only if distance to

collision is larger do we need a precise distance to the boundary. This is because this particle

will cross the boundary. If the distance to collision is less, we do not need a precise distance

to boundary. We can just use an approximate distance and if we can make sure the distance to

collision is smaller, this accuracy level of distance to surface is enough for us.

The OBB trees give exactly this approximation to us. The leaf node bounding-box is an

approximation of the CAD surface. And when a particle is outside of the bounding box, the

distance to the bounding box is always smaller then distance to CAD surface. If the distance

to bounding box is already larger than distance to a collision, the distance to surface is

guaranteed to be larger than the distance to collision. In this case, we do not need to calculate

distance to surface because particle will undergo collision instead. Then we can save

computation time. We call this algorithm “distance limit”.

85

After implementing this step, we believe on average a particle will need < 1.0 ray CAD surface

test per cell. The amount of benefit we can obtain depends on physics of the problem. In a

cell with dimensions much larger than a particle’s mean free path, this algorithm will have a

big benefit because most of the time a particle will undergo an interaction.

This algorithm is possible only because the OBB tree provides a good approximation of the

surface (actually the leaf node of OBB tree of a facet surface is a triangle, the bounding box of

a triangle is degraded to a square. Even if we consider enlarging the bounding box, one

dimension of bounding box will be very small.) and we can obtain the distance to a collision

from the physics portion of the Monte Carlo code. This algorithm is unique in particle

transport.

4.1.6 Implementation

We use the software package RAPID to perform the OBB tree building and the ray-bounding

box test [28]. This approach can save a lot of time for software developing. But as

discussed in subsection 4.1.3.2, some modifications are necessary. We keep the OBB tree

building but in the ray-bounding box test algorithm, we only need to build an OBB tree for one

object. We also implement a ray-object intersection test based on the OBB tree. It will read

in the facet surface generated by CAD geometry engine, generate the OBB tree for each facet

surface and store it. In the Monte Carlo particle simulation, a ray is inputted and determines if

86

the ray hits the OBB tree, if a leaf node bounding-box is hit, the distance to it is also returned.

In the case that a facet model is used, a ray-triangle test is performed in the leaf node and the

distance is returned if there is a hit.

To implement the sorting distance algorithm, we use an “insert sort” algorithm. We have a list

to store the hit distance and hit surface sorted on distance. If there is a new distance to insert,

we will find a place in this list and insert it.

To implement a distance limit algorithm, we change the order of calculation in MCNPX. It will

now calculate the distance to a collision first and pass it to the ray surface test functions. We

compare this distance with the sorted hit distance list. If the distance to the bounding box is

larger than the distance to collision, we stop the calculation and return “the particle will not hit

the surface”.

4.2 Other Geometric Accelerations

Besides the ray tracing, there are some other geometry evaluations in MCNPX. Some of

them can be very costly in computational time. Our approach is to either use the functionality

provided by the CAD geometry engine or to use a simple approach to improve performance.

4.2.1 Surface traversal

87

After a particle hits the boundary, the next question is what the cell number on the other side of

the boundary is. This is a topology question. The feature “non-manifold geometry” we

mentioned in Section 2.2 can be used to solve this problem. The “non-manifold geometry”

means there will be a single surface shared for two bodies. The CGM has a function called

“merge” which changes the manifold geometry to a non-manifold geometry.

The benefit of using a non-manifold geometry in MCNPX is applicable for any surface.

There is either one cell or are two cells on each side of a surface. For an outmost surface,

there will be only one cell on one side of it. For an internal surface, there will be two cells

that share it. We can use the functionalities provided by CGM to retrieve the one or two cells

bounded by this surface; combining this with the current cell number, we can know the other

cell number or the particle leaves the system. This approach also improves performance by

eliminating one ray-surface testing each time a particle crosses a surface. This optimization

was not in Franke’s work.

4.2.2 Determine Region of Source Particle

In MCNPX, there is a function to determine the cell number of a source particle, given a source

particle’s position. A user will not need to input the start cell number. However, in a

complicated geometry configuration, this “determine source particle cell” function will be as

expensive as or even more expensive than calling the ray tracing function. We can apply ray

tracing acceleration techniques like spatial subdivision for source positions, but for most cases,

88

a user would know which cell the source particle comes from. Therefore we just let the user

input the start cell information and bypass the function in MCNPX. The performance of this

approach will be analyzed in Chapter 6.

4.3 Facet Model

In the previous approach, the surface faceting is only for the purpose of generating the OBB

tree. Although for each level of an OBB tree there is a faceted surface,, we never do any ray

faceting surface test. When we need the distance to surface, we always use the CAD surface

to test.

However, the faceting algorithm can obtain an approximate surface with controllable accuracy.

When we use a very small tolerance to generate the faceting surface, we can obtain a very

accurate approximation of the surface with just the facets. Therefore we provide the option to

just use the facet-based surface, completely bypassing the ray CAD surface test.

The direct benefit is that we do not need to perform an expensive ray CAD surface test.

Hence, there is a huge improvement in computational performance. The major problem is it

is just an approximate model. The computational results are questionable. However, in

Chapter 6 we will see that because the facet model is a high accuracy approximation model, the

computation result achieved are sometimes identical to CAD model results.

89

4.3.1 Implement and ray triangle test

Implementation is straightforward because a lot of work has already been done in previous

steps. We need to modify the software package RAPID [28]. In the CGM ray tracing

function, there is a flag set to indicate whether a CAD model or a facet model is used. For the

case of a facet model, the ray bounding test will not add the tolerance to the bounding box

dimension because the facet model is used directly. And for the leaf node test, we do not use

the ray bounding box test with distance return function, we use the ray triangle test function

with distance return. We still sort the hit distance in a list. In the forgoing case, if the ray hits

a leaf node bounding box, a ray CAD surface test is performed. In the latter case, the

minimized hit distance to triangle along with hit surface number is returned directly.

The ray triangle test algorithm basically is to find the barycentric coordinates of the hit point.

By definition, the barycentric coordinates are (α, β, γ). When 0<α<1, 0<β<1, 0<γ<1 and

α+β+γ=1, the point is inside the triangle.

The ray triangle test algorithm we used is from Ref [21]. It is high performance algorithm

where at most there is one division operation. The algorithm is:

the triangle’s three vertices are , , .),,(zyx aaa),,(zyx bbb),,(zyx ccc

The ray origin is (and the ray direction is .),, zyx ppp),,(zyx ddd

90

),,(zyx aaa

),,(zyx bbb

),,(zyx ccc

),,(zyx ppp

Figure 4.11. Ray triangle test

We should solve . [21] (22)
















−
−
−

=
































−−
−−
−−

zz

yy

xx

zzzzz

yyyyy

xxxxx

pa
pa
pa

tdcaba
dcaba
dcaba

γ
β

On the condition t>0, β>0,γ>0, β+γ<1, the triangle is hit.

We rewrite the equation as:
















=

































L
K
J

tIFC
HEB
GDA

γ
β

. (23)

Then Cramer’s rule gives us:

M
EGDHLDIGFKHFEIJ)()()(−+−+−

=β
; (24)

M
KCBLGALJCHJBAKI)()()(−+−+−

=γ
; (25)

91

and M
KCBLDALJCEJBAKFt)()()(−+−+−

=
 (26)

where

)()()(KCBLDALGFBHFEIAM −+−+−= . (27)

The pseudo code is [21], the code use “if – then” structure will not hurt performance too much

because current CPUs are usually designed with a “branch predict” feature:

double raytri(ray r, vector a, vector b, vector c)

compute t

if(t<0) then return -1

computeγ

if(γ<0) or (γ>1) then return -1

computeβ

if(β<0) or (β+γ>1) then return -1

return t

Figure 4.12. Pseudo code of ray triangle test

92

Chapter 5

Applications

In this chapter, we will run benchmark test problems to show the correctness of our

MCNPX/CGM and its applicability to complicated geometries. The complicated geometry is

a real fusion device – the ARIES-CS compact stellerator. The neutronics parameters

simulated by MCNPX/CGM are used to guide the design and analysis of this device.

5.1 Simple Comparison and Benchmark
We will run two simple test problems. They are problems one may encounter in a nuclear

engineering analysis or medical physics application. A comparison with the standard

MCNPX is performed and it is shown that MCNPX/CGM generates identical results with the

standard MCNPX version.

5.1.1 Test Problem 1: Three cylinders

The first test problem is the “three cylinders” case and is considered a simple nuclear analysis

problem. We have a point neutron source which irradiates an object. A detector is located

on the far side of the object and we want to measure the gamma photon spectrum, which is

induced by the interactions of neutrons with the object. The problem diagram is shown below.

Figure 5.1 depicts the standard MCNPX two-dimensional model of the problem. Figure 5.2

93

depicts the CGM geometry. The CGM rendering of the computational geometry is much

better than the standard MCNPX plot.

With reference to the CGM model, the red cylinder is the outer boundary of the problem. The

green cylinder is the object being irradiated and is made of carbon. The yellow cylinder is the

detector. The space between boundary, object and detector is a vacuum. The 11 MeV neutron

source is a point source and located below the green cylinder but inside the red cylinder.

Figure 5.1. MCNPX plot of three cylinders problem

94

A

f

c

e

3

1

2

Figure 5.2. CGM/Cubit view of three cylinders problem

 tally was set on the three surfaces of the green cylinder. It is the F1 (surface current) tally

or neutrons. Surface 1 is the circular plane surface near the source. Surface 2 is the

ylindrical side surface. Surface 3 is the circular plane surface near to the detector. The

nergy distribution spectrum is shown below.

95

Figure 5.3. Tally spectrum of three cylinders problem

The spectrum is computed by both the standard MCNPX and MCNPX/CGM. Since the

sampling and physics functions were not modified and if the particle tracking algorithms were

modified and implemented correctly a particle in MCNPX/CGM will experience the exact

same tracks and interactions as in the standard version. The MCNPX/CGM routines

cgmtrack() and cgmnewcel() return the exact same values as MCNPX’s routines track() and

newcel() and the tallies are exactly the same. In Fig. 5.3 above, each spectrum curve is

actually two spectra, one from each of the codes, which totally coincide.

5.1.2 Test Problem 2: Cobalt

96

This is an application in the area of medical physics for cancer therapy. The device is a 60Co

(Cobalt-60) gamma photon cancer therapy unit where 60Co is the photon source. 60Co is

radioactive and emits two photons per disintegration with energies of 1.17 and 1.33 MeV,

respectively. Lead (Pb) is used as the surrounding shield material. The device is constructed

to obtain a controllable therapeutic beam on the patient. The diagram of the device is shown in

Fig. 5.4 (MCNPX plot) and Fig. 5.5 (Cubit).

In the CGM diagram, the big red sphere is the Pb shielding material. Its outer surface is also

the outer boundary of the problem. The larger green cylinder is the source container and the

small green cylinder is the gamma source. For the test problem, the 60Co gamma source was

simplified to be a point source located on the center of the top surface of the small green

cylinder. The four jaws are movable to control the dose and the projected area of the beam.

If the jaws move into the beams path, part of the gamma photon beam will be scattered while

the other part will be absorbed. The overall effect is that the dose to the patient decreases.

The beam exits the device at the red solid circle on the top of the Pb shield.

97

Figure 5.4. MCNPX plot of cobalt device

98

Figure 5.5. MCNPX/CGM view of cobalt device

The scoring tally for the problem was the F1 tally (surface current) for photons crossing at the

red circular plane. MCNPX running mode is mode P. Two cases were run: the base case

(jaws open) and the case when the jaws are moved inside to half close. When the jaws are

moved inside, there will be increased photon scattering out of the primary beam, decreasing

the dose to the patient.

The tally results are shown in Fig. 5.6.

99

Figure 5.6. Tally spectrum of cobalt problem

As in the previous test case, the tally results for MCNPX/CGM are exactly the same as those

from the original MCNPX. In Fig. 5.6, each spectrum curve is actually two spectra, one from

each code, which totally coincide. Note the two source energy peaks at 1.17 and 1.33 MeV.

Regarding the absence of the 0.511 MeV peak, to observe this peak the particle mode setting in

the MCNPX run would have had to be Mode P E. The E signifies electron transport. With

this option turned on the code would track the pair production electrons and the annihilation of

the positrons, which leads to the production of the 0.511 MeV gammas. The absence of the E

flag leads to an absence of the 0.511 MeV tally peak.

100

5.2 Advanced Test
The previous simple comparison tests demonstrated the correctness of MCNPX/CGM. This

test will show that MCNPX/CGM can be applied to complicated geometries.

In Fig 5.7, a clothespin model with a match clinched between its jaws is depicted as an

example of a complicated model test problem for MCNPX/CGM. Note that the spring has

been purposely offset from its normal position to highlight its complicated geometry/structure

(it was also shown in Chapter 1). This object would be quite hard to nearly impossible to model

with the standard MCNPX code. Although there are only 4 parts/objects, this model has many

plane surfaces and curved surfaces (112 surfaces in total). This model was provided by

LANL. It was originally drawn with Pro/Engineer and was translated to ACIS.

101
Figure 5.7. Clothespin model

The problem setup is that the clothespin is being imaged by a point gamma source located

behind it. Figure 5.8 depicts the resulting image. We use the point source and the Fi5

(Pinhole image projection) tally features of MCNPX/CGM A pinhole image projection

means a point is defined in space that acts like the hole in a pinhole camera. It is used to focus

an image onto a grid, which acts like a film. This tally only exists in MCNPX [4].

Figure 5.8. The image of pinhole projection

From this illustration we can see that MCNPX/CGM can be applied to complicated geometries.

This increased geometric modeling can be important for neutron and photon simulations or

nuclear reactor designs.

5.3 Real application (ARIES-CS Compact Stellerator)

102

A Stellerator is a plasma fusion energy device for future fusion power plants. The main

components of the complicated toroidally shaped device are the vacuum vessel and large

poloidal magnetic coils. Figure 5.9 depicts the complex magnetic coils and plasma shape.

The vacuum vessel is surrounds a region called a blanket, which is composed of a tritium

breeding zone, coolant region and neutron and gamma photon shield. A depiction of the outer

layer of the blanket is given in Fig. 5.10 and in a CAD representation it is composed of many

B-spline curve surfaces.

103
Figure 5.9. ARIES-CS Compact Stellerator and magnetic coils[31]

It would be quite hard to create a standard MCNPX geometry input file even if a CAD model

were available. Before MCNPX/CGM, we could only use an approximate model, which is

composed by planes or simple curve surfaces and the computational tally obtained would not

be an accurate solution. In addition, it is quite difficult to construct such an approximate

model by the user requiring many man-months of work. Even for the previous simpler design

by ARIES team, the approximation model is the only choice to perform a Monte Carlo

simulation. However, if we use MCNPX/CGM, we can directly use the existing solid model

generated by the CAD program. Because the CAD model provides a more accurate

representation, the computational results are also more dependable.

5.3.1 Modeling

The Stellerator model we used is a 7 layered torus shaped object. Figure 5.10 depicts the

outer most blanket layer.

104

Figure 5.10. Seven layer Stellerator device

To depict the internal structure of the Stellerator, Fig 5.11 provides a cross sectional cut at a

given toroidal position and shows only the silhouette lines of each layer.

105

Figure 5.11. Seven layer Stellerator internal structure

To construct this geometry model, we have source data, which represents 72 cross sections of

the inner most layer – the plasma surface. This is depicted in Fig 5.12.

106

Figure 5.12. 72 cross sections of plasma surface

CUBIT is used to generate the B-spline curve boundary surface, which is the plasma surface.

Then the “offset” feature of CUBIT is used to generate the cross sections for each layer.

These cross sections are then used to generate the surface of each layer. The equation for the

plasma cross sections was provided by Princeton Plasma Laboratory [32]. They are:

)cos(),(φθ nnmmnrbcR p−= ∑ (1)

)sin(),(φθ nnmmnzbsZ p−= ∑ (2)

where zbs and rbc are a series of fourier harmonics constant coefficient, n is from -6 to 6, m is

from 0 to 10, θ is the poloidal angle, φ is toroidal angle and is period number,. For

thecurrent model, =3.

pn

pn

Because we use a CAD geometry model directly as the calculational model in the Monte Carlo

simulation, the CAD model should be carefully constructed and should be error free. If the

CAD geometry configuration has errors in it, for example, regions of tiny gaps or overlaps,

though outwardly the representation may look good, it will cause the Monte Carlo simulation

to fail.

5.3.2 The Monte Carlo simulation

The first calculation is to find the peak neutron wall loading at the first wall surface. Figure

107

5.13 shows the computational model.

Figure 5.13. Peak neutron wall loading computational model

This model is just the first and the second layers of the model shown in Fig 5.10 and Fig 5.11.

Layer 1 is the plasma source (not shown). Layer 2 is the first wall surface (yellow shape).

There is no material in this model. The nine circles on first wall surface are tally surfaces.

Their centres are located at midplane and they are spaced at intervals of 7.5 degrees toroidally.

The F1 (surface flux) tally is used on these 9 circles. The results are shown in Fig 5.14.

108

)

Neutron Wall Loading (~1% Statistic error)

3.500E+0

 3.000E+0

N
W

L (M
W

/m
^2

2.500E+0

Γ pea= 2.97MW/m
2.000E+0

Γ av = 1.95MW/m
pea/Γ

Γ =1.500E+0
1.52av

1.000E+0 Loading at Plasma Surface
N

5.000E-0

 0.000E+0

7.5 52.5 22.5 37.50 1 3 4 6
 Midplane Toroidal position along half field period (Degree)

Figure 5.14. Neutron wall loading

The red (square) line in Fig 5.14 is the neutron wall loading at the tally circles. This graph

clearly shows the peak wall loading is at the 0 degree toroidal position. The value is 2.97

MW/m². This result can be used to estimate the life span of first wall. It is also very

important for the design of whole fusion reactor system.

109

The second calculation uses all 7 layers. Figures 5.15 and 5.16 depict the layers and name of

each layer.

185
3.8 54.3 5 18

5

M
an

ifo
ld

s

Sh
ie

ld

FW

B
la

nk
et

B
ac

k
W

al
l

Pl
as

m
a

Figure 5.15. Name of each layer

110

Figure 5.16. Seven layers of the computational model

The material composition of each layer is shown in Tab. 5.1[31]:

Table 5.1. Material of each layer

111

Homogeneous Composition:

FW 34% FS Structure
 66% He Coolant

Blanket 79% LiPb (90% enriched Li)
 7% SiC Inserts (95% d.f.)
 6% FS Structure
 8% He Coolant

Back Wall 80% FS Structure
 20% He Coolant

FS Shield 15% FS Structure
 10% He Coolant
 75% Borated Steel Filler

Manifolds 52% FS Structure
 24% LiPb (90% enriched Li)
 24% He Coolant

Multiple neutronics parameters are required for the Stellerator design and are calculated by

MCNPX/CGM. Also the ARIES team performs a one-dimensional approximation

calculation for these parameters [31]. A comparison of the one-dimensional results and our

MCNPX/CGM three-dimensional simulation results is shown in Tab. 5.2:

Table 5.2. Comparison of the one-dimensional results and three-dimensional simulation
results

112

 1-D 3-D
Local TBR 1.285 1.316 ± 0.61%
Energy multiplication (Mn) 1.14 1.143 ± 0.49%
Average dpa rate (dpa/FPY) 26 29.5 ± 0.66%
Peak dpa rate (dpa/FPY) 40 39 ± 4.58%
FW/B lifetime (FPY) 5 5.1 ± 4.58%
Nuclear heating (MW):
 FW 156 145 ±1.33%
 Blanket 1572 1590 ±1.52%
 Back wall 13 9.8 ±6.45%
 Shield 71 63 ±2.73%
 Manifolds 18 19 ±5.49%
 Total 1830 1820 ±0.49%

From the table above we can see that the three-dimensional simulation matched well with the

one-dimensional results. This is another proof of the correctness of our MCNPX/CGM

implementation especially on a complicated geometry. One additional point, the parameters

selected above can be simulated using a one-dimensional approximation. For other

parameters like energy space distribution, the MCNPX/CGM code is the only tool available

that can obtain the results.

5.4 Conclusion
Through the simple test problems, we have shown that the MCNPX/CGM’s implementation

yielded the same results as the standard MCNPX code. We have also shown that

MCNPX/CGM can perform Monte Carlo simulations on complicated geometries, which

validates our approach and algorithm implementation. Another question to consider is the

performance issue. This will be discussed in Chapter 6.

113

Chapter 6

Performance Analysis

In this chapter we will focus on the computational performance of the MCNPX/CGM code.

The performance analysis is based on the problems used in Chapter 5. First, we will show the

effectiveness of the ray-tracing acceleration techniques on a simple geometry. Second, we

will explore the validity and performance of a facet model. Finally we will analyze the

effectiveness of other acceleration techniques and the execution time profile of the current

code.

6.1. Ray-tracing acceleration effectiveness

First we will show the effectiveness of OBB compared to AABB using the simple 3 cylinders

model. The geometry configuration and all other computational conditions are the same as

described in Chapter 5. We will show the effectiveness of sorting distance and the distance

limit. Finally we will apply the algorithms on the cobalt source test problem.

6.1.1. No acceleration case and AABB case

We begin with the no acceleration case. It will allow us to study the performance of CAD ray

tracing function. This will be compared to the AABB case. This will demonstrate the

114

effectiveness of bounding box, and also show the limitation of the AABB.

Table 6.1. The Results of the AABB study

MCNPX/CGM

Axis aligned bounding box (AABB)

 MCNPX

No
acceleration
techniques

Bounding box
only

Use bounding
box and take
advantage of
distance to
bounding box

Sorted distance
to bounding box

Total Track ray
tracing (Multiple of
MCNPX time)

0.034min
(1)

1.18min
(34.7)

1.09min
(32.1)

1.05min
(30.9)

1.03min
(30.3)

Number of calls to
ray tracing

194198 194198 194198 194198 194198

Number of hits on
bounding box

 0 387095 387095 387095

Number of CAD
surface tests

 1370556 387095 377133 373421

Ratio of the number
of CAD surface
tests to the number
of calls to ray
tracing

 7.06 1.99 1.94 1.92

In table 6.1, the second row is the total numbers of MCNPX calls to the ray tracing function.

This function is given a particle position, direction and current cell and it will return which

surface this particle will hit and the distance to hit surface. We can see the numbers in this

row are same for all the cases. This is because MCNPX/CGM does not change the function

calling the ray trace function. A particle in MCNPX/CGM will undergo exactly the same

physics as in MCNPX. The first row is the total time spent on this function, which is the total

ray tracing time. The third row is the total number of cases that a ray hits a bounding box.

115

The forth row is the total number of times that a ray CAD surface test is performed. We need

to perform a ray CAD surface test only if the ray hits the bounding box. And for some cases

using distance-limiting techniques, the ray CAD surface test number can be less than the

number of ray hits to the bounding box. This is what is seen in row 4. The ratio in fifth row

is the number of ray CAD surface tests to the number of ray tracing function calls. The last

row is the ratio of the total run time of MCNPX/CGM to that of MCNPX.

We analyzed 5 cases. The first column contains the standard MCNPX results. For the

second column, the CAD geometry engine was implemented, but no ray-tracing acceleration

techniques were implemented. We can see that the ray CAD surface test lowers the

performance considerably. At this stage the MCNPX/CGM code will be approximately 34

times slower than the standard MCNPX code. That is because the CAD software is

concerned more with the functionality but not the performance of each function. This is the

price that is paid for the added functionality and complexity. These results are not unexpected.

In B.C.Franke’s work [5], they experienced a larger slowdown with their CAD based Monte

Carlo.

From the comparison of the standard MCNPX and the non-accelerated MCNPX/CGM, it is

noted that the ray CAD surface test is a very low performance calculation. Therefore one of

the goals of our acceleration techniques is to minimize the number of ray CAD surface test.

116

The third column is MCNPX/CGM with only the AABB algorithm. We can see in this

algorithm, for all the cases a ray hits the bounding box, ray CAD surface test is performed.

Thus the third row number 387095 is equal to fourth row number. The reason the number of

CAD surface test is larger than number of ray tracing call is because each ray tracing call is actually

a ray-body test. This requires multiple ray-surface tests to find the minimized distance to the

surface. We have already obtained some acceleration by implementing the AABB. However,

in contrast with the big difference in ratio (from 7.06 to 1.99), the performance improvement is

rather small (from 1.18min to 1.09min). We believe this is because the AABB is a simple and

well-known acceleration technique and that the AABB algorithm is already built into the basis

of CGM – ACIS. The performance improvement we gained is primarily because our ray

bounding box test algorithm is more efficient than the one in ACIS and we may not need to go

through layers of code to reach ACIS’s AABB test.

In fourth and fifth column, we take advantage of the distance to bounding box. The fourth

column only compares the current distance to the surface with distance to bounding box. We

can see there is an improvement in performance and the ratio is reduced to 1.94. For the fifth

column, the sorting algorithm was used. We can see there is another small improvement and

ratio is 1.92.

Further analysis on this case revealed that of the total 387095 times a ray hits the bounding box,

61.6% of the time the ray is inside the bounding box. This means that the AABB is not a tight

117

fit because for a tightly fitting bounding box on a surface, a particle will seldom be on the

inside of the bounding box. In this case the bounding box algorithm will have no effect. For

the remaining outside situation, only 3.5% of the cases are eliminated by our sorting distance

algorithm. This is because in many cases, a ray hits the bounding box but does not hit the

surface. We need to go through the sorted hit bounding box list to find a real hit. This also

demonstrates that the AABB is not a tight fitting bounding box because if a ray were to hit a

tightly fitted bounding box it will have a high chance to hit the real surface inside.

Our experiment is consistent with our analysis of the AABB in Chapter 4. The AABB is not a

tightly fitted bounding box and we need a better performing bounding box algorithm. This

leads to the computational experiment with the OBB tree.

6.1.2. OBB tree acceleration effectiveness

For this computational study the 3 cylinders test problem is also used. A tolerance of 10e-4 is

used to generate the faceting surface. The computational conditions are the same as for the

AABB calculation. Recall that the cylinder is 40 inches in height and 20 inches in radius,

therefore a 10e-4 tolerance gives a fine facet. The computational results are presented in table

6.2.

118
Table 6.2. The results of OBB tree study

MCNPX/CGM
Axis align bounding
box (AABB)

Oriented bounding box tree (OBB tree)
 MCNPX

Sorted Bounding
Box

Sorted Bounding
Box

Sorted Bounding Box And
Distance Limit

Total ray tracing
Time (OBB
time)

0.035 1.03 0.83
(0.10)

0.72
(0.10)

Ratio of the ray
tracing time to
MCNPX

1 32.3 24.4 21.2

Number of calls
to the ray tracing
function

194198 194198 194198 194198

Number of hits
to the bounding
box

 387095 258620 258620

Number of CAD
surface tests

 373421 202632 171088

Ratio of the
number of CAD
surface tests to
the number of
calls to ray
tracing

 1.92 1.04 0.88

Total run time
(Multiple of
MCNPX time)

0.04min
(1)

1.36min
(34)

1.16min
(29)

1.05min
(26.3)

Table 6.2 is similar to table 6.1. The last row is total run time of the MCNPX/CGM code and

the ratio to MCNPX. Though surface faceting and OBB tree building require some

computational time, when discussing performance, the ray tracing time will be used. In

Section 6.3 I will discuss why the ray-tracing time is a more meaningful metric. In first

column, The standard MCNPX is used. In second column, AABB algorithm with the best case

119

we achieved – sorting distance is referenced. In third column, a new case is added: the OBB

tree is used to find the hit and we sort the distance to the OBB tree of each surface hit. We can

see there is a dramatic difference with the AABB case. First, the number of bounding box hits

drops from 387095 to 258620. This clearly demonstrates that the OBB tree is a tighter

bounding box. Second, the number of CAD surface test drops to 202632 and the ratio is

almost 1. This can be achieved only by: 1) having a very tight bounding box so that for

almost all cases when a ray hits the bounding box, the ray does hit the surface and 2) our

sorting distance algorithm is very effective and eliminates all the non-nearest hit cases. The

ratio close to 1 is desirable, because for a ray originating from within a volume will need at

least 1 hit of CAD surface to make it outside of the volume. The ratio is close to 1, which

means our algorithm is very close to this lower limit.

In the fourth column, the distance limit algorithm has been implemented. We can see the

number of CAD surface tests is even lower than the number of ray tracing function calls. The

ratio drops down to 0.88. The effect of this algorithm relates the particle’s mean free path to

the cell’s dimension. The mean free path of a particle is the average distance traveled to the

next collision and is computed as follows:

σρ
λ

)(AN
A

= (1)

where A is the atomic weight, is Avogadro’s constant, AN ρ is the material density, σ is

total interaction cross section and λ is mean free path.

If we have a high density material cell, the mean free path will be less than the cell’s dimension,

120

which means this algorithm will have an even better performance improvement.

However, noting the total ray tracing time from row 1, even with the distance limit algorithm,

we can only achieve a time of 0.72 minutes, which is 20 times slower than standard MCNPX.

However, we also found the OBB time, which is the time spent to traverse the OBB tree and

perform a ray bounding box test. This time is 0.10 minutes. Therefore the ray CAD surface

test time is 0.72 – 0.10 equals 0.62 minutes. This shows that the ray CAD surface test is a

very slow calculation but the ray OBB tree test has a very high performance, because for every

surface in each cell, a ray OBB tree test is performed. Suppose we use a high accuracy facet

model and do not perform any ray CAD surface test, we can still obtain a benefit. This idea

will be explored and described in Section 6.2.

6.1.3. Acceleration effectiveness on the cobalt source test problem

Now we will test our acceleration techniques on a slightly more complicated test problem, the

cobalt source problem. In this geometry configuration, there are more cells and larger variety

of surfaces. The result of this study is presented in table 6.3.

121
Table 6.3. Computation result of the cobalt source problem

MCNPX/CGM
Axis aligned bounding box (AABB) Oriented bounding box tree

(OBB tree)

 MCNPX

Bounding
box only

Sorted
bounding
box

Sorted bounding box
and distance limit

Sorted
bounding
box

Sorted
bounding
box and
distance
limit

Total ray tracing
time (OBB
time)

0.03 0.63 0.54 0.54 0.47
(0.060)

0.33
(0.057)

Ratio of the ray
tracing time to
MCNPX

1 21 18 18 15.7 11

Number of calls
to the ray
tracing function

91700 91700 91700 91700 91700 91700

Number of hits
to the bounding
box

 170643 170643 170643 101582 101582

Number of CAD
surface tests

 170643 168085 164658 98839 61418

Ratio of the
number of CAD
surface tests to
the number of
calls to ray
tracing

 1.86 1.83 1.80 1.08 0.67

Table 6.3 presents a similar content as tables 6.1 and 6.2. It also shows that the acceleration

techniques are very effective. If we compare table 6.3 with table 6.2, there are two

differences. First, one is for the AABB only algorithm, the -3-cylinder model is 34 times

slower then the standard MCNPX. However, the cobalt source model case is only 0.63/0.03 =

21 times slower. This is because for the cobalt model case, there is a spherical surface, a

122

cylindrical surface and a cone surface. For this case the standard MCNPX will perform a bit

slower on ray surface test, therefore the CAD geometry engine approach will perform

relatively better for complicated geometry configurations. After implementation of the

acceleration techniques, the performance will be universal better for the cobalt model than for

the 3-cylinder model. Second, the ratio for the OBB tree with distance limit algorithm is

different. The ratio of 0.67 for the cobalt model is better than the 0.88 for the 3-cylinder

model. That is because in the cobalt model we have a large shield where the particle’s mean

free path is much less than the size of the shield cell. Our distance limit algorithm has a

bigger benefit in this case.

6.2. Accuracy of facet VS CAD models

In section 6.1.2 we mentioned the idea of using a facet model as an approximation model and

that it may have a huge improvement on computational performance. Table 6.4 presents the

comparison of a facet model with CAD model. A tolerance of 10e-4 is used in generating the

faceting surface.

123

Table 6.4. Results of a facet model for the 3 cylinder problem

MCNPX/CGM
Axis align bounding
box (AABB)

Oriented bounding box tree (OBB tree)
 MCNPX

Sorted Bounding
Box

Sorted Bounding
Box

Facet model

Total ray
tracing Time
(OBB time)

0.034 1.03 0.83
(0.11)

0.11
(0.084)

Ratio of the
ray tracing
time to
MCNPX

1 30.3 24.4 3.2

Number of
calls to the ray
tracing
function

194198 194198 194198 194198

Number of hits
to the
bounding box

 387095 258620 250150

Number of
CAD surface
tests

 373421 202632 0

Ratio of the
number of
CAD surface
tests to the
number of
calls to ray
tracing

 1.92 1.04

In table 6.4, the last column presents the facet model results. First we note that the total ray

tracing time is only 0.11 minutes, which is only 0.11/0.034 = 3.3 times slower than the original

MCNPX calculation. This is a comparable performance to the original MCNPX. The

124

number of hits to the bounding box (third row) is 250150 now, which is a little less than the

previous case. That is because we use a facet model, in the leaf node of OBB tree, the object

to be enclosed by the bounding box is a triangle; we do not need to enlarge our bounding box to

enclose the CAD surface. So for the facet model case, the bounding box is a little bit smaller

than the bounding box in CAD model case; therefore the number of hits to the bounding box is

also smaller.

Table 6.5. Computational results of the facet model of the cobalt source problem

MCNPX/CGM
Axis aligned
bounding box
(AABB)

Oriented bounding box tree (OBB tree)
 MCNPX

Sorted bounding
box and distance
limit

Sorted bounding
box

Facet model

Total ray tracing
time (OBB time)

0.030 0.54 0.47
(0.060)

0.074
(0.049)

Ratio of the ray
tracing time to
MCNPX

1 18 15.7 2.5

Number of calls
to the ray tracing
function

91700 91700 91700 91700

Number of hits to
the bounding box

 170643 101582 94146

Number of CAD
surface tests

 164658 98839 0

Ratio of the
number of CAD
surface tests to
the number of
calls to ray
tracing

 1.796 1.078

125

Table 6.5 depicts the facet model results of the cobalt source problem. For this case we also

find a huge improvement in the computational performance and fewer hits to the bounding

boxes. If we compare these results to the 3-cylinder problem, we find that the cobalt source

problem is 0.074/0.030 = 2.47 times slower than the original MCNPX. This is because for a

more complicated geometry configuration, the MCNPX/CGM acceleration techniques have a

better performance.

While there is a huge improvement in the computational performance, because a facet model,

which is an approximation, is used, the correctness or accuracy of the model will be a concern.

We find that if we use very coarse facet (tolerance is relatively big), the computational result

will be slightly different from that of the CAD model. For example, for 10k source particles

in the 3-cylinders problem, the source particles will experience 3194 collisions. If we use a

very coarse facet (tolerance 0.1), those particles will experience 3156 collisions and some of

the tally bins will have some differences compared to the CAD model tally bins. However if

we shrink down the tolerance (1e-4 in our case), the particles will experience 3194 collisions

again and the computational result will be exactly the same as for the CAD model.

The reason for this is that the difference between facet model and CAD model is very small.

Only if a ray hits the area, which belongs to a cell in the facet model that is different than for

the CAD model, will the computational results differ by 1 particle. We can conjecture the

computational result as follows: if we allow for an infinite computational time and during this

126

time a ray experiences a hit in this area, the difference in the computational result between the

facet model and the CAD model will be equal to shadow area divided by the total area (see Fig.

6.1). That is to say, the difference will be proportional to square of tolerance (in the

two-dimensional case, for the three-dimensional case it will be the cube of tolerance). Given

a limited computational time (which is the real case), the probability a ray will hit the shadow

area is very small and hence it is highly unlikely that a ray will hit the shadow area (ray 1 in Fig

6.1). That is why we can still have identical computational results with CAD model.

1
2

Figure 6.1. Accuracy of facet model

Even if the computational result is different from that of the CAD model, the computational

result is second order convergent (or third order for the three-dimensional case) with tolerance.

The above is just speculation. In the research, we just find for a certain amount of

computational time, that a tolerance for which the computational result is identical to CAD

case can always be found. The detailed research to investigate the convergence of the facet

model results with tolerance to the CAD model will be part of the future work.

Because for a certain number of histories’ computed, the computational result of the CAD

127

model will not change, however the computational result of the facet model could change with

respect to different tolerances chosen. One way to handle this would be to shrink down the

tolerance from a relative big number. Once the tolerance reachs a level for which the

computational result does not change, this means that our calculational result is identical to the

CAD model case. The benefit of this method is we do not need to perform a CAD model

simulation.

Figure 6.2. The ARIES-CS Compact Stellerator

The ARIES-CS Compact Stellerator is a torus shaped object with layers. The innermost layer

has only 1 surface. The other layers have only two surfaces. Our OBB tree used with the

CAD model algorithm will have no effect on the innermost layer because there is only one

surface and will have a limited effect on other layers. The more serious problem is that the

128

ray CAD surface test is extremely expensive on this complicated curved surface. To perform

a neutron wall loading calculation, it took 10 days’ of computational time and only achieved a

10% statistic error. Therefore, the performance of any algorithm that still performs a ray

CAD surface test is not satisfactory. In this case facet model is the only choice.

For the computation of ARIES-CS Compact Stellerator model, we choose a tolerance equal to

1e-2 because the Stellerator is a much larger object than the 3-cylinders and the cobalt source

geometry. Still for the neutron wall loading calculation, the facet model with the OBB tree

algorithm achieves a 1% statistical error in only a 1-hour calculation. That is about 24000

faster than if the CAD model is used!

6.3. Discussion and Benefit

There is some computational overhead with the faceting and OBB tree building algorithms.

For the test problems considered, the total time in these algorithms range from a few seconds to

4 minutes depending on geometry and the tolerance. However as mentioned before, because

our geometry and system are static, the faceting and OBB tree building operation are

preformed once prior to the Monte Carlo simulation. For a complicated geometry system, if a

low statistical error for the computational result is required, then a long computational time

would be necessary. In this case, the fixed overhead of faceting and OBB tree building is

relatively small. The ratio of the time spent on ray tracing of MCNPX/CGM to MCNPX’s

total time is approximately equal to the ratio of total running times of both codes.

129

Then overall, the CAD geometry engine level implementation has many benefits. First, the

user will use existing CAD tools to generate the geometry configuration; for example CUBIT,

in our case. Making use of the user-friendly interface of CAD tools, it is much easier to

generate a geometry configuration than using MCNPX geometry package, especially for a

complicated geometry. Second, because most CAD tools can usually read in or save to

multiple CAD formats, the compatibility issue is simplified. Even if a new geometry format

is developed and becomes available, we do not need to worry about it because the CAD

software developers will implement the new format in the new version of the CAD tools

(system). Third, complicated geometries can be simulated in Monte Carlo code without any

approximation, the CAD model, or use the faceted model with a small approximation error.

Fourth, in this approach, the physics portion is totally separated from the geometry portion

allowing the nuclear engineer, the physicist or the scientist to focus on the physics and

interaction science like new particles, new interactions, variance reduction techniques, and

setup and problem modeling. The geometry modeling will automatically take advantage of

the latest progress in CAD software.

The benefits of faceting the surface and applying the OBB tree are:

1. A Facet surface can be very close approximation to a CAD surface. Therefore we can

obtain an approximate model with arbitrary accuracy. In the implementation side, the CAD

geometry engine provides the surface faceting algorithm and the functionality. We do not

130

need worry about this or put an effort into this.

2. The Oriented bounding box on facet surface gives the tightest fitted bounding box. This

means the ray is seldom inside the bounding box, which means the bounding box is almost

always an effective ray tracing acceleration technique.

3. However, using one OBB for each facet will generate many bounding boxes for one surface.

The finer the surface faceting, the larger the number of bounding boxes. Testing each

bounding box for a possible hit will make computation quite inefficient. The OBB tree

algorithm solves the computational cost problem. It only requires O(log(n)) tests to find a hit,

where n is the number of facets, which means we can afford a very fine surface faceting.

For a convex object, using the surface faceting and OBB tree, we can expect that the ray

surfaces test will find only one hit. The exception is the case where the ray exactly hits an

edge or vertex. This is a trivial case. Although there may be many surfaces in a CAD convex

cell, we only need to do one ray-CAD surface test to obtain the distance to a hit. Here we

already see a large acceleration in comparison to the “minimal positive distance principal”

used in MCNPX. MCNPX needs to test every surface in a cell to find the hit and the distance.

In the case a cell is concave, it is possible that the ray will hit more than one surface, or even

that one surface is hit more than once.

131

The benefit of the sorted distance algorithm is that only one ray CAD surface test is required

for convex and concave cells. That is the theoretical lower limit for a pure computational

geometry acceleration algorithm, because a ray inside a cell will always hit a surface. To

obtain an accurate hit distance to the surface, we require at least one ray CAD surface test.

Having one ray CAD surface test also means we do not need to implement other ray-tracing

acceleration techniques from the computer graphics area, because there is no additional benefit

to be gained.

The benefit of the distance limit algorithm is that in some cases we do not need to perform a

ray-CAD surface test, that is, on average a particle will need less than one ray CAD surface test

per cell. The amount of benefit obtained depends on the physics of the problem. In a cell

whose dimensions are much larger than the simulated particle’s mean free path, the algorithm

will have a large benefit because most of time the particle will undergo an interaction.

The benefits of using a facet model are:

1. The computational performance is high because it eliminates the ray CAD surface test.

2. This approach can be applied to any kind of surface because it converts any CAD surface

type into only one surface type – a faceting surface. Further research will only focus on

the ray faceting surface test.

132

3. Because the OBB tree algorithm performance scales as O(log(n)) for the ray bounding box

test to find a hit, a high accuracy faceting surface, will not face a large computational time

increase. For the case of a complicated CAD surface, such as B-spline surface, the ray

test of a high accuracy faceting surface will still have a better computational performance

than the ray CAD surface test.

4. Because the faceting surface is controllable, we can easily generate approximate models

with different levels of accuracy. The coarse approximation can be used as a fast

estimation. The finest model can be used as a substitute of the CAD model. Also going

from the coarse model to the finer model, the computational results will have fewer

differences because the computational result converges to the CAD model case. We can

know the computational accuracy without direct comparison with the CAD model case by

observing the rate of convergence with finer and finer facets.

133

Chapter 7

Summary and Future Plan

In summary, this research addresses the problem that current Monte Carlo codes can not

perform a high accuracy and high performance simulation on complex, complicated

geometries. The research develops a CAD based Monte Carlo code that has an execution

time that is competitive with the original code for the simple problems investigated. It

involves the implementation of CGM into MCNPX and uses ray-object intersection

acceleration techniques to speed up the execution of the Monte Carlo code. The origin of

MCNPX/CGM includes:

1) Integrate a general-purpose solid model engine of CAD software into a general-purpose

three-dimensional, multi-particle transport code. The MCNPX/CGM will have the broadest

application field because it can be applied to a transport problem with any complex solid

geometry model. Also, we can use the most recent geometry functions that will be updated

by the CAD software developer instead of writing and maintaining our own geometry

functions.

2) Review the ray-object intersection acceleration techniques in the area of computer graphics

and select the one which can be applied to the Monte Carlo code, investigate the nature of the

134

coupling between the Monte Carlo calculation and geometry evaluation, and optimize and

explore the best ray-object intersection acceleration techniques for the Monte Carlo code.

3) Take advantage of the advanced features of the CAD software; provide advanced geometry

construction ability such as facet based geometry. The user can use facet-based geometry to

construct different levels of approximation of the solid model. Also use of this feature, allows

for an efficient implementation of the geometry evaluation for the ray-object intersection

acceleration technique; the OBB tree.

However, the current MCNPX/CGM is still a research code. There are still things that can be

done to make it better.

One research area was mentioned before --- the computational result of facet model converges

to the CAD model when the tolerance becomes small. This requires further research.

Another useful upgrade would be to combine the CAD geometry and the MCNPX geometry.

CAD tools are good at constructing complicated geometries. However MCNPX is good at

generating simple geometries. If we can combine the benefits of both, the future

MCNPX/CGM would have more features and would be even easier to use. Especially in cases

where the geometry is only used to obtain a specific tally such as the surface tally subdivision.

Combining the CAD geometry and the MCNPX geometry will be very useful for this case.

135

There are some features that are available in MCNPX but are not available in MCNPX/CGM.

For example the F2 (surface current) tally requires surface area information. The current

MCNPX/CGM code does not pass the surface area information to MCNPX. Therefore this

feature is missing. Future work should make all features provided by MCNPX available in

MCNPX/CGM.

Because MCNPX/CGM requires a non-manifold geometry, a user needs to imprint and merge

the CAD geometry to make it compatible with MCNPX/CGM. If we could eliminate this

requirement by letting MCNPX/CGM perform these operations inside the code, it would be

much easier for users to construct complicated geometries.

Other upgrades to be considered include:

1) Pass material properties to the geometric model. This would make the user see the cell and

then allow the user to input the material information directly into the cell.

2) Make a parallel version of the MCNPX/CGM code. Then MCNPX/CGM could take

advantage of the computational power of a cluster.

(Rock: How would you do this? Would you algorithm be able to speed up more than linear?

There is probably a lot more that you can say here.

Mengkuo:

136

References
1. Hammersley, J.M., and Handscomb D.C., 1964. Monte Carlo Methods. Fletcher & Son Ltd,

Norwich, ISBN 0 412 15870 1

2. Briesmeister, Judith F., Editor March 1997. MCNP - A General Monte Carlo N-Particle

Transport Code Version 4b, LA-12625-M, Version 4B Manual

3. http://mcnp-green.lanl.gov/manual.html

4. Waters, Laurie S., Editor November 14,1999. MCNPX USER’S MANUAL version 2.1.5 Los

Alamos National Lab. TPO-E83-G-UG-X-00001

5. Franke, B.C., Kensek, R.P., Schriner, H.K., Lorence, L.J., Gelbard, F., and Warren, S., 2001

Adjoint Charge deposition and CAD Transport in ITS. M&C 2001 Salt Lake City, Utah,

USA, September 2001.

6. Electron Gamma Shower (EGS) Monte Carlo Radiation Transport Code, Online manual,

http://www.slac.stanford.edu/egs

7. FLUKA Online manual, http://www.fluka.org

8. Lewis, D., Pro/Engineer, Online manual, http://caesar.sdsu.edu/proe/

9. Planchard, D.C., and Planchard, M.P., Engineering Design with SolidWorks 2001

10. CAEN Technical Note, university of Michigan. Introduction to Unigraphics. Online manual

http://www.engin.umich.edu/caen/technotes/unigraphics.pdf

11. ACIS http://www.spatial.com/

12. Parasolids http://www.theorem.co.uk/docs/fs_int.htm

13. Tautges, Timothy J., 2001. CGM: a Geometry Interface for Mesh Generatoin, Analysis and

http://www.slac.stanford.edu/egs
http://www.fluka.org/
http://caesar.sdsu.edu/proe/
http://www.engin.umich.edu/caen/technotes/unigraphics.pdf
http://www.spatial.com/
http://www.theorem.co.uk/docs/fs_int.htm

137

Other Applications. Engineering with Computers, 17:299-314 (2001)

14. CUBIT http://sass1693.sandia.gov/cubit/

15. MCNP Vised http://www.mcnpvised.com

16. Liu X P, Tong L L, Luo Y T and Wu Y C, Development & Application of MCNP

Auto-Modeling Tool: MCAM 2.0, 7th China/Japan Symp. on Materials for Advanced Energy

Systems and Fission and Fusion Engineering, Lanzhou, July 31-Aug.2, 2

17. TopAct: Automated Translation from CAD to Combinatorial Geometry for Radiation

Transport Analysis, Manson, Steven J; Williams, Eric K; Triggs, Brian P

Space 2005; Long Beach, CA; USA; 30 Aug.-1 Sept. 2005. 8 pp. 2005

18. Tsige-Tamirat H, Fischer U, CAD interface for Monte Carlo particle transport codes. The

Monte Carlo Method: Versatility Unbounded in a Dynamic Computing World; Proc.of the

Conf., Chattanooga, Tenn., April 17-21, 2005

19. A Serikov1, 3, U Fischer1, R Heidinger1, K Lang1, Y Luo2, H Tsige-Tamirat1,. 2005,

Radiation shielding analyses for the ECRH launcher in theITER upper port, Journal of

Physics: Conference Series 25 (2005) 181–188

20. J. A. Halbleib, R. P. Kensek, T. A. Mehlhorn, G. D. Valdez, S. M. Seltzer, and M. J.Berger, ITS

Version 3.0: The Integrated TIGER Series of Coupled Electron/Photon Monte Carlo Transport

Codes, Sandia report SAND91-1634 (1992).

21. Shirley�Peter., 2002. Fundamentals of Computer Graphics. A K Peters, Massachusetts.

22. Glassner, Andrew., Editor. 1989. An Introduction to ray tracing, Acadimic, London

Arvo, J., and Kirk, D., Chapter 6: A survey of Ray Tracing Acceleration Techniques

http://sass1693.sandia.gov/cubit/

138

P201-P262

23. Rubin, S. and Whitted, T., July 1980. A three-dimensional representation for fast rendering of

complex scenes. Comput. Graph. 14(3), 110-116

24. Fujimoto, A., Tanaka, T. and Iwata, K., April 1986. ARTS: Accelerated Ray-Tracing System.

IEEE Comput. Graph. Appl. 6(4), 16-26

25. Haines, E.A. and Greenbery, D.P., September 1986. The light buffer: a shadow testing

accelerator. IEEE Comput. Graph. Appl. 6(9), 6-16

26. Ohta, M. and Maekawa M., 1987. Ray coherence theorem and constant time ray tracing

algorithm. Computer Graphics (Proc. of CG International ’87) (ed. T.L. Kunni), pp.303-314

27. Synder, J.M. and Barr, A.H., July 1987. Ray tracing complex models continning surface

tessellations. Comput. Graph. 21(4), 119-126

28. S. Gottschalk , M. C. Lin , D. Manocha, OBBTree: a hierarchical structure for rapid

interference detection, Proceedings of the 23rd annual conference on Computer graphics and

interactive techniques, p.171-180, August 1996

29. Eric W. Weisstein. "Symmetric Matrix." From MathWorld--A Wolfram Web Resource. http://

mathworld.wolfram.com/SymmetricMatrix.html

30. Eric W. Weisstein et al. "Orthogonal Matrix." From MathWorld--A Wolfram Web Resource.

http://mathworld.wolfram.com/OrthogonalMatrix.html

31. L. El-Guebaly, R. Raffray, S. Malang, J. Lyon, and L.P. Ku (invited), "Benefits of Radial

Build Minimization and Requirements Imposed on ARIES-CS Stellarator Design," Fusion

Science & Technology, 47, No. 3, 432 (2005). Also, University of Wisconsin Fusion

http://mathworld.wolfram.com/
http:// mathworld.wolfram.com/SymmetricMatrix.html
http:// mathworld.wolfram.com/SymmetricMatrix.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/OrthogonalMatrix.html

139

Technology Institute Report, UWFDM-1233.

32. S. P. Hirshman, W. I. van Rij, and P. Merkel, "Three-Dimensional Free

Boundary Calculations Using a Spectral Green's Function Method," Computer

Physics Communications, 43(1986) 143-155.Ogawa, K., Takahashi, S., and Satori, Y., 1997.

Description of an Object in Monte Carlo Simulations. IEEE Transactions on Nuclear Science,

VOL 44 No.4 August 1997

33. Wang, H., Jaszczak, R.J., and Coleman, R.E., 1992 Solid Geometry-Based object Model for

Monte Carlo Simulated Emission and Transmission Tomographic Imaging Systems. IEEE

Transactions On Medical imaging, VOL.11 No.3 September 1992

