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Abstract  
 

Developments in computer architecture and neutronics code capabilities have enabled high-resolution analysis of 

complex 3-D geometries.  Thus, accurately modeling 3-D source distributions has become important for performing 

nuclear analyses.  In this work two methods are described which generate and sample such 3-D sources based 

directly on the plasma parameters of a fusion device and which facilitate the ability to update the neutron source 

following changes to the plasma physics configuration.  The cylindrical mesh method is useful for toroidally 

symmetric machines and utilizes data in a standard file format which represents the poloidal magnetic flux on an R-Z 

grid.  The conformal hexahedral mesh method takes plasma physics data generated in an idealized toroidal 

coordinate system and uses a Jacobian transformation and a functional expansion to generate the source.  This work 

describes each methodology as well as associated test cases.  The cylindrical mesh method was applied to ARIES-RS 

and the conformal hexahedral mesh method was applied to a uniform torus and to ARIES-CS.  The results of these 

test cases indicate that the improved source definitions can have important effects on pertinent engineering 

parameters, such as neutron wall loading, and they should therefore be used for high-resolution nuclear analyses of 

all toroidal devices. 



1. Introduction 

The advent of high fidelity three-dimensional neutronics analysis of complex geometries for fusion energy 

systems has drawn attention to the need for improved representations of the neutron source distribution.  These new 

analysis methodologies are being enabled by improved simulation tools and are being driven by an increasing desire 

to couple the results, particularly fine-resolution nuclear heating, to other types of engineering analysis.   

Previous analysis methodologies have relied on approximations to the geometry and/or coarse-resolution output 

quantities and only in some cases were the results strongly dependent on the spatial distribution of the source.  For 

example, when considering nuclear heating in a fusion blanket or shield for a toroidal machine, a one-dimensional 

approximation in a cylindrical geometry yields suitable results [1], although the source distribution introduces some 

error in the first few centimeters of the first wall [2].  

CAD-based, continuous energy Monte Carlo calculations are being combined with high resolution output to give 

more detailed understanding of the behavior of neutrons (and the photons they generate) in these systems [3].  As the 

level of detail in the output increases, effects of the neutron source distribution become more important. 

This work explores different representations of the neutron source distributions to capture the spatial variations 

calculated by plasma physics simulations.  As a secondary benefit, these methods will introduce approaches to more 

closely couple the results of plasma physics simulations as the source term for neutronics analysis to the analysis 

itself. 

Most modern magnetic fusion energy systems, such as tokamaks and spherical tori, exhibit a toroidal symmetry 

in which the source is distributed uniformly in the toroidal angle and with some variation in the poloidal and radial 

directions.  There are important exceptions, e.g. stellarators, which also need to be accommodated in any general 

approach to modeling neutron source distributions.  For toroidally symmetric machines, two-dimensional plasma 

physics simulations are typically sufficient, and a standard file format exists to represent the poloidal magnetic flux 

on an R-Z grid.  This is combined with profile data that tabulates the plasma parameters as a function of the poloidal 

magnetic flux to arrive at the fusion power density and neutron source density using the Bosch-Hale formulation [4].  

For such systems a simple quadrilateral grid can be used for sampling the source position in R and Z, and then 

uniformly sampling in the toroidal angle.  Although this approach is not novel [3], in Section 2 this work will 

compare this approach to other alternatives and introduce the direct coupling to plasma physics simulations. 

For more complicated source distributions, the plasma physics simulations are often carried out in an idealized 

toroidal coordinate system.  A Jacobian transformation from the idealized plasma coordinate system to a real-space 
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cylindrical coordinate system can be expressed by a functional expansion in the idealized poloidal and toroidal 

angles for each of a discrete set of flux surfaces.  By defining a uniform hexahedral grid in the idealized coordinate 

system and transforming it to the real coordinate system, a structured mesh representation of the neutron source 

distribution can be generated for use in random sampling of the position of the neutron source.  In Section 3, this 

work will describe the details of generating and sampling this mesh to capture first-order variations in the source 

distribution. 

In both cases, the neutron wall loading distribution (NWL or Γ) will be used as the basis for establishing the 

importance of these advanced source representations and comparing their accuracy.  The NWL is an important 

measure of the effect of the source distribution since it is more strongly affected by the source than other design 

parameters. NWL is often used to normalize the magnitude of other engineering responses through the blanket and 

shielding module.   

 

2. Cylindrical Mesh 

The first approach is based on the two-dimensional representation expressed in the community-standard 

“geqdsk” format [5].  Given information from these codes, this method generates a source density distribution on a 

cylindrical mesh which is used by MCNPX to create the probability density function (PDF) and cumulative 

distribution function (CDF) for source sampling.  This method was applied to the ARIES-RS tokamak [6] and 

compared to simplified one- and three-region source distributions specified using the general source description 

available in MNCPX (i.e. the SDEF card) [7].  Following a description of the method, results showing a comparison 

in the calculated NWL will be presented.  The results of the three region source agree well with the results of the new 

approach. The source computed with the new cylindrical mesh method, hereafter designated the “actual source”, is 

recommended for more accurate future analysis.  

The neutron source density, S,  is a function of ion temperature, Ti, and density, ni, which are defined as 

functions of the poloidal magnetic flux, ψ, which is in turn defined on an R-Z grid.  This information is given as 

output from the plasma physics simulations, so the expansion itself is not required for this method.  Thus, 

 ( ) ( ) ( ) ( ) ( ){ }, , , , , ,i i i iS R Z S T R Z n R Z S T R Z n R Zψ ψ    = =     ,  . (1) 

In addition to the geqdsk file defining the magnetic flux on the R-Z grid, temperature and density profiles are defined 

on an arbitrary number of flux surfaces.  For each point on the R-Z grid, the magnetic flux is used for a spline 
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interpolation of the temperature and density profiles and the resultant Ti and ni are used to calculate the neutron 

power using the Bosch-Hale formulation.  This calculation assigns a value for the source density at each vertex of the 

cylindrical mesh.  The relative probability for each cell, Di,j, is computed by integrating the source density over the 

volume of the mesh cell assuming a linear variation of the source density between adjacent vertices.  If indices i,j are 

used to represent a point (Ri,Zj), 
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The PDF, Pi,j, is found by normalizing these Di,j, such that N
D

P ji
ji

,
, =  and ∑=
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jiDN

,
, , and the CDF is 

the cumulative sum of the PDF.  To find the source cell a linear search through the CDF is carried out in the Z 

dimension and then in the R dimension.  The location within this cell is sampled uniformly in volume: uniformly in Z 

and the toroidal angle, and linearly in R.  The source is emitted isotropically.  

This method was used to compute NWL for an interim design of the ARIES-RS tokamak with a power of 1881.5 

MW, a 5.12 m major radius, a 1.28 m minor radius, and a 55 cm magnetic shift.  The machine is symmetric about the 

midplane and the divertor is broken into three regions: an inner plate, an outer plate, and dome [6].  Analysis of this 

power plant was originally done in 1996, comparing the NWL distribution from a source modeled as three uniform 

regions to that of a source modeled as a single uniform region.  The source was specified using MCNP’s general 

source capability (SDEF) and the three regions were weighted to represent the real source distribution [6].  Figure 1 

shows the three region source and first wall; the one region source is comprised of the three regions combined into 

one.  The segmenting around the inner wall allowed for the NWL to be computed with a resolution consistent with 

the 1996 analysis.  This work compares the NWL calculated with the one region uniform source, the three region 

weighted source, and the cylindrical mesh.  

The peak NWL (Γ) values for the inboard, outboard, and the average Γ  are given in Table 1 for each source 

type.  The average is calculated by taking the area-weighted average of the NWL values on each segment.   
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Table 1.  Comparison of results from three source types for ARIES-RS neutron wall loading 
 One Uniform Region Three Uniform Regions Actual Distribution 
Peak Inboard Γ 3.2  MW/m2 3.8  MW/m2 4.1  MW/m2 

Peak Outboard Γ 4.8  MW/m2 5.3  MW/m2 5.3  MW/m2 

Average Γ 3.1  MW/m2 3.1  MW/m2 3.1  MW/m2 

 

 

Figure 1.  ARIES-RS geometry illustrating the three region source and the inner wall segmenting. 
 

 

Comparing this to the simple machine average Γ, which is (neutron power)/(first wall area including the divertor), 

provides a confirmation that the different methods have the same absolute normalization.   

For the outboard and divertor cases, the three region source matched the actual source quite well.  For the 

inboard case the three region source was about 8% lower at the midplane, had shallower curvature, and was ~10% 

higher near the top and the bottom than the actual source, as can be seen in Figure 2.  These results indicate that the 

actual distribution should be used for future analysis because the three region source slightly underpredicted the peak 

inboard NWL, resulting in underprediction of radiation damage and neutron power deposition.   

 

3. Conformal Hexahedral Mesh 

For systems in which the neutron source density varies in all three dimensions, a more complex source 

representation is necessary.  If the plasma physics simulation is simplified by solving on an idealized toroidal 

coordinate system, it is necessary to provide a Jacobian transformation to the real coordinate system.  One common 

representation of this Jacobian transformation uses a functional expansion, such as the functional expansion for 

ARIES-CS [8] where the data are output from the plasma physics simulation in a complex set of coefficients [9].   
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Figure 2.  Inboard neutron wall loading results vs. vertical distance. 

 

The coefficients can be transformed into cylindrical coordinates (r,z,φ) using Equations 5-7; m is the poloidal and n 

is the toroidal Fourier mode [10].  

)cos(),,( ,, φθφθ nm
m n

snm aaRsr −= ∑ ∑   (5) 

)sin(),,( ,, φθφθ nm
m n

snm aaRsz −= ∑ ∑   (6) 
φφθφ =),,( s   (7) 

In this section a methodology is developed to use the expansion coefficients to define the source on a set of 

known flux surfaces.  Then, through a process of meshing, coordinate transformation, and numerical integration a 

source PDF is computed and its corresponding CDF can be sampled for Monte Carlo transport.  The method can 

capture first-order variation of the source distribution within each hex.  First the method will be discussed, and then 

the results of application to two test problems will be presented. 

Instead of an R-Z grid in real space, this method begins with a structured hexahedral mesh (hex-mesh) in the 

idealized toroidal coordinate system of magnetic flux surface, ψ, poloidal angle, θ, and toroidal angle, φ.  A set of 

expansion coefficients is provided on a discrete set of flux surfaces, { ψi }, so the hex-mesh should be defined on 

these same points to avoid additional interpolations and maximize the accuracy of the methodology.  These  

coefficients are used to transform this to an (R,Z,φ) cylindrical mesh in real space as discussed above.  Although it 

may be distorted, because the hex-mesh is structured it is straightforward to determine the value of the magnetic flux, 

ψ, at each vertex in the mesh and to use that to determine the ion temperature, Ti, and density, ni, based on profiles 
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similar to those described in the previous section.  Again using the Bosch-Hale formulation with these plasma 

parameters, the source density at each mesh vertex can be determined. 

As with the cylindrical mesh methodology above, the source must now be integrated over each hex to arrive at 

the relative probability.  Due to the mesh distortion, it is helpful to borrow from standard finite-element approaches 

to accomplish both the integration and, later, the random sampling in space [9].  Each hex is mapped onto the so-

called natural coordinate system, (ξ,η,ζ), which is an idealized hexahedron on [(-1,-1,-1) , (1,1,1)], using shape 

functions (Na).  The average source at each vertex is then found by numerical integration using a six-node Gaussian 

quadrature.  The process for mapping the coordinates and source values to any point in natural space is detailed in 

equations 8-10, where ξ are the (ξ,η,ζ) coordinates of that point in natural space and a subscript of a or l refers to 

the ath vertex or the lth quadrature point, respectively.  

The values of x,y,z, or the source density, S, at any point (ξ,η,ζ) can be found in a similar manner to the following 

calculation of  x: 
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Once the source densities at the quadrature points, lξ , have been found, they are numerically integrated over 

the hex, using equations 11-15, to get the relative probability for that hex, Di,j,k.  The PDF, Pi,j,k, is found by 

normalizing these Di,j,k, such that N
D
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The Jacobian determinant used here, ( )lj ξ
r

, is not related to the Jacobian used to map the plasma coordinates 

to real space, and represents the amount of real space per unit of space in the natural coordinate system.   

The cell to be sampled is determined using a hierarchical linear search.  A uniformly sampled random variable is 

compared against the CDF values in the last hex in each toroidal slice, the last hex in each radial ring of that toroidal 

slice, and finally the contiguous values for poloidal angle for each hex in the selected radial ring.  Once the hex cell 

is identified a source location with the hex is found using rejection sampling.  Three random variables are used to 

sample a point uniformly in the natural coordinates.  The product of the source density and the Jacobian determinant, 

S.j, at this point in the natural coordinates is calculated using equations 8-10, and accepted if 

( )max)]([ jSjS ⋅≤⋅⋅ ξµ
r

, where µ is a random variable sampled uniformly between 0 and 1.  Thus the source 

locations within the hex are selected based on the first order variation of the source within the hex.  

This method was applied to two different systems.  The first problem used an ideal torus with a uniform source 

to verify the implementation of the method by comparison with a solution which can be easily calculated using 

MCNPX’s built-in general source.  The second system was the ARIES Compact Stellarator (ARIES-CS), which has 

a sufficiently complex geometry and source distribution to require this method.  Previous work modeled the ARIES-

CS source with a 0th-order predecessor to this method in which the relative probability of each hex was based on the 

volume of the hex and a simple average of the vertex source densities, and the source location inside the hex was 

sampled uniformly in the natural coordinate system [10].  The 1st-order method should allow a more accurate 

representation for a fixed number of flux surfaces, or a similar accuracy with fewer flux surfaces.  In this work, the 

1st-order results are first compared to a uniform source to demonstrate the need for such improved source 

representations.  Then the 1st-order results are compared with 0th-order results, each generated using a large number 

of flux surfaces.  With a fine mesh, the difference between 0th- and 1st-order results should be small, thus validating 

correctness of the 1st-order method for a geometrically distorted system.   

Several metrics were used to evaluate the performance of this method.  First the sampling efficiency of the 1st-

order conformal hexahedral mesh method was computed with several different resolutions to investigate both the 

magnitude of the efficiency and how it changes with increased resolution of the mesh.  It is expected that improving 

the mesh resolution will increase the efficiency.  It should be noted that the 0th-order method will have a sampling 
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efficiency of 100% as no rejection is employed.  Ratios of the source PDFs and the hex volumes were then compared 

as indicators of the differences between the 1st- and 0th- order sources.  Finally, the NWLs of the 1st-order, 0th-order, 

and uniform source were compared. 

3.1 Uniform Torus 

The first test case was a finely segmented torus developed to verify the method implementation.  A uniform 

source was generated with this new hex mesh method for a uniform torus with a 5 m major radius and a 1 m minor 

radius.  These results were compared to those from a source defined using the SDEF card in MCNPX.  The 

segmentation of the geometry, 288 surfaces on a quarter torus, enabled a detailed comparison of the neutron current 

across each surface.  

The comparison of the results generated with the SDEF source and those generated with the new source provide 

confirmation that the new method is generating and sampling the source properly.  The conformal hexahedral mesh 

source was generated using 80 flux surfaces, 60 toroidal increments, and 50 poloidal increments.  To ensure small 

statistical error, 108 particles were used for each case.  The ratio of the results was calculated for each of the surfaces.  

The average ratio was 0.9999 with a standard deviation of 2.5 x 10-3 and a maximum relative difference of 7.7 x 10-3.  

An average ratio very close to 1 confirms that the normalizations were consistent.  By propagating the statistical error 

of the results to the ratios, we find that the ratios had a maximum statistical error of 2.9 x 10-3 and an average 

statistical error of 2.4 x 10-3.  The standard deviation of the ratios is the same order of magnitude as the statistical 

error in the ratios, indicating that any discrepancies are dominated by statistical error.  These metrics indicate that 

this 1st-order methodology is implemented correctly. 

3.2 ARIES Compact Stellarator 

The second test case was ARIES-CS, a stellarator with three field periods, an average major radius of 7.75 m, an 

average minor radius of 1.7 m, an aspect ratio of 4.5, and a fusion power of 2400 MW [8].  The neutron source 

volume of ARIES-CS can be seen in Figure 3.  This system was originally analyzed using both a uniform source and 

a 0th-order source [8]. 

The sampling efficiency for the ARIES-CS problem ranged between approximately 75% and 85%.  The 

sampling efficiency for each hex can be found by taking the ratio of S.j to S.jmax for that hex.  The overall sampling 

efficiency is the sum of these efficiencies weighted by the probability of selecting each hex.  Changing the mesh 

resolution in the toroidal (srcDimT) and poloidal (srcDimP) directions improves the efficiency, but quickly 

approaches an asymptote so little improvement could be gained from further refinement (see Figure 4).  Increasing  
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Figure 3.   The source region for the ARIES-CS machine. 

 
Figure 4. Conformal hexahedral mesh sampling efficiency as a function of toroidal (srcDimT) and poloidal 

(srcDimP) mesh refinement. 49 flux surfaces were used. 
 

 
the number of flux surfaces improved efficiency as well, but also approached an upper bound.  When 12 toroidal and 

24 poloidal increments were used the efficiency with 49 surfaces was 0.7713, with 98 surfaces was 0.8482, and with 

147 surfaces was 0.8772.  In general, increasing the number of increments of the source definition increases the 

source sampling efficiency, but good (i.e. > 80%) efficiency can be obtained without an unwieldy number of 

increments.  

The ratio of the 1st-order to 0th-order source PDFs ranged from 0.9562 to 1.0082 and the ratio of the volumes 

ranged from 0.9539 to 1.0104.  These ratios were taken from data using 49 flux surfaces, 12 toroidal increments and 

24 poloidal increments.  When the resolution was increased to 147 flux surfaces, 24 toroidal increments and 48 
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poloidal increments the range of the source PDF ratio became 0.9863 to 1.0025 and that of the volumes became 

0.9839 to 1.0029.  The 1st-order method calculated slightly higher values for both the source and the volume on the 

outboard portion of the plasma and lower values toward the magnetic axis.  The difference between the source 

densities computed by the 1st-order and the 0th-order was not large (<5% for 49 flux surfaces and <2% for 147 flux 

surfaces), but depending on the resolution of the source mesh, could have an important impact on NWL.  As coarser 

meshes are used the difference between the PDFs becomes more pronounced and the resulting difference in analysis 

will become correspondingly more pronounced.   

A uniform volume source is the most rudimentary source distribution that could be used for ARIES-CS, and 

previous work has demonstrated the inadequacies of this model for a 3-D neutronics calculation [8].  The conformal 

hexahedral mesh source distribution was generated on 147 flux surfaces and the uniform on 49 flux surfaces.  Each 

distribution had 24 toroidal increments and 48 poloidal increments.  One third of the geometry was segmented into 

352 surfaces for detailed analysis.  The ratio of the 1st-order NWL to uniform NWL ranged between 0.2445 and 

1.914.  The average ratio was 0.9789 with a standard deviation of 0.365 and an average relative error of 5.4 x 10-3.  

Even though 108 particles were used, 4 surfaces were excluded from the analysis due to high statistical error.  These 

surfaces had very small areas so their contribution to the total NWL is quite small and their implication for the 

comparison is therefore insignificant.  A plot of the relative difference between the 1st-order and uniform results 

against the 1σ statistical error is shown in Figure 5, with lines showing the points where the relative differences are 

1, 2 and 3 times the statistical error.  Almost all data points are above the 3σ line indicating that the results are 

statistically different.  A comparison between the 0th-order and uniform NWLs has the same trend.  These results 

confirm that the uniform case is not a good approximation to the real source and the use of higher order methods will 

be more accurate.  

The 0th-order method was introduced as an improvement upon the uniform source distribution.  The ratio of the 

1st-order NWL to 0th-order NWL ranged between 0.9793 and 1.019.  The average ratio was 0.9998 with a standard 

deviation of 7.4 x 10-3 and an average relative error of 6.5 x 10-3.  Both of these sources were created with 147 flux 

surfaces, 24 toroidal increments and 48 poloidal increments.  Again 108 particles were used and the same 4 surfaces 

were excluded due to error.  A plot of the relative difference between the 1st-order and 0th-order results against the 1σ 

statistical error is shown in Figure 6.  The bulk of data points all fall within 1σ, almost all within 2σ, and all but one 

within 3σ.  This indicates that there is little statistically significant difference between the 1st and 0th-order results and 

thus confirms that the 1st-order case is correct in distorted geometries, which are the cases of interest for this method.  
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Figure 5.  Relative difference between the 1st-order and Uniform vs. the statistical error of the ratio. One, two, and 
three sigma boundary lines are shown. 

 

 

Figure 6.  Relative difference between the 1st-order and 0th-order vs. the statistical error of the ratio. One, two, and 
three sigma boundary lines are shown. 

 

While the intent here was to show that with a fine mesh the 1st- and 0th-order methods are consistent, it is not 

always convenient to use such high resolution.  In the case of coarser meshes it is anticipated that the 1st-order case 

will be superior to the 0th-order case.  The 1st-order method will more accurately calculate the hex source PDF and, 

more importantly, it will allow better sampling of each hex through the rejection sampling method that accounts for 

source variations within the hex.  A limiting case illustration of this would be when using only one flux surface.  In 
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this scenario the 0th-order would simply be a uniform case while the 1st-order would capture some source variation.  

Future work will be to perform studies in which the number of flux surfaces is varied, illustrating the differences 

between the 1st- and 0th-order methods.  

The application of this method to the ARIES-CS machine illustrated that the conformal hexahedral mesh can be 

used for geometries and sources which are sufficiently complex to prohibit accurate source definition using standard 

MCNPX methods.  The comparison of this method with a uniform source motivates why a better source is required 

and a comparison with a 0th-order source confirms that the 1st-order method can correctly capture the source 

behavior.   

 

4. Summary and Conclusions 

This paper described two different representations of neutron source distributions for use in high fidelity three-

dimensional neutronics analyses of complex geometries for fusion energy systems.  This work was motivated by the 

increased importance of the effects of the neutron source distribution which has been driven by the ability to use 

CAD-based continuous energy Monte Carlo calculations in combination with high resolution output.  These methods 

capture spatial variation of the source better than previous approximate representations and can be closely coupled to 

the results of plasma physics simulations.  

The cylindrical mesh method can be used for toroidally symmetric machines, such as tokamaks and spherical 

tori, and uses the standard “geqdsk” format for plasma source information.  This method uses a quadrilateral grid and 

samples the source uniformly in R and Z, and then uniformly in toroidal angle.  The conformal hexahedral mesh 

method can be applied to more complicated machines, such as stellarators, and uses plasma source data generated in 

an idealized toroidal coordinate system.  This method uses a structured hexahedral mesh and samples the source in a 

manner which captures first-order variations of the source within each hex element.  Each method was used to 

analyze a representative real machine where neutron wall loading was used as the basis for the comparisons.  

The cylindrical mesh method was applied to the ARIES-RS machine which demonstrated that using a source 

generated by this method instead of a standard Monte Carlo source is necessary.  While a source that is well defined 

using the MCNP general source, like the three region source used in the past, is capable of capturing many of the 

effects of the real source in some cases, it may not be accurate enough for detailed calculations in general. In ARIES-

RS, the disagreement for the inboard results (± 10%) suggests that the source from the cylindrical mesh method 

should be used in future analysis. 
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The conformal hexahedral mesh was applied to both a uniform torus and the ARIES-CS machine.  Because the 

hexahedral mesh method results matched the standard MCNPX results for the uniform torus, it can be concluded that 

this new method is valid.  The analysis of ARIES-CS showed that reasonable sampling efficiency can be obtained 

without requiring a highly refined source mesh.  The source density and volume of each hex calculated by the 0th-

order and 1st-order methods approach one another as the source mesh is refined.  Comparison of the conformal 

hexahedral mesh method with a uniform source in ARIES-CS highlighted the need for good source definitions.  

Examining the new method with respect to a 0th-order method for a finely resolved source further verified that the 

conformal hexahedral mesh method is correct in complex geometries.  Overall, this case illustrated that this method 

can be used for complicated geometries and that it should be used when detailed engineering parameters, such as 

neutron wall loading, are needed accurately.  Future work will investigate the distinction between when the 0th-order 

method is sufficient and when the 1st-order method would be desirable.  

As a secondary benefit, both of these source modelling strategies provide a mechanism for more tightly binding 

the neutronics calculations to the plasma physics simulations.  The neutronics codes can be adapted to directly read 

the plasma physics simulation output, whether the geqdsk format or the set of coefficients for a 3-D Jacobian 

transformation.  This has a benefit during design iterations where changes to the machine design can impact the 

plasma conditions and the source distribution. 

These new source generation methods are an improvement over previous source models for fusion energy 

systems.  They are able to capture the true source behavior more accurately and can be closely coupled with plasma 

physics codes.  For these reasons the new methods should be used for high resolution neutronics calculations in 

toroidal fusion machines. 
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