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Abstract

In a high load capability vertical shock tube, a series of experiments have been carried out

to characterize the interaction of a planar shock wave with discrete gas inhomogeneities.

Eleven scenarios have been considered covering the Atwood (A = (ρ2 − ρ1)/(ρ2 + ρ1))

and Mach (M) number ranges −0.8 < A < 0.7 and 1.3 < M < 3.5, where the test

gas volume is contained inside a large spherical soap bubble. The shock wave strength,

leading to a post-shock compressible regime, allows the study of instability development

in an intermediary regime between low Mach number shock tube experiments and high

Mach number laser-driven experiments that has not been investigated previously. Flow

visualizations are obtained using planar laser diagnostics. The imaging technique used

here takes advantage of the atomization of the liquid bubble film by the incident shock

wave, and up to five shocked bubble images are captured per run, enhancing the in-

vestigation of the evolution of the instability during a single experiment. Quantitative

analysis of the experimental data include the vortex velocity, and subsequent circula-

tion calculations, along with a new set of relevant geometrical length scales. As the

planar shock passes over the bubble, intense vortical and nonlinear acoustic phenomena

are observed, including vortex ring formation, mixing, and growth of turbulence-like

features. At late-times, experimental images show the presence of secondary features

in the flow field at high Mach numbers, some of which were predicted previously but,

until now, not confirmed experimentally. In the case of a low Atwood number, the late

time flow field is dominated by coherent vortical structures while, in the case of a high

Atwood number, the shocked bubble is effectively reduced to a small core of compressed
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fluid, which trails behind a plume-like structure indicative of a well-developed mixing

region. Dimensionless analysis of trends in the bubble length scales and other features

shows that no universal timescale exists, but for each feature, a unique velocity scale is

appropriate as a basis for timescaling arguments.
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Chapter 1

Introduction

1.1 Shock-Bubble Interaction

The evolving flow field generated by the interaction of a shock wave with a density

inhomogeneity involves the strong coupling of several types of fluid dynamic phenom-

ena, including, shock wave refraction and reflection, vorticity production and transport,

and turbulence. This interaction results in a complex pattern of shock waves (focusing

and scattering), while simultaneously resulting in the formation of characteristic vor-

tices, and often, enhancing the mixing of the ambient gas with the gas inhomogeneity.

This is a problem of fundamental interest, which can be used as a “building block”

to develop understanding of more complicated problems involving shock propagation

through random media characterized by inhomogeneities in density, temperature, or

other thermodynamic variables. The shock-bubble interaction (SBI) is a fundamental

configuration for studying shock accelerated inhomogeneous flows (SAIF), i.e., an exten-

sion of the Richtmyer-Meshkov instability (RMI). Here, the problem of shock-accelerated

inhomogeneous flows is considered in a particularly simple configuration: the interaction

of a planar shock wave with a single spherical gas bubble in an otherwise uniform gas

medium.

The phenomenon of SBI takes place in a wide variety of energy- and spatially- scaled
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applications. It can be applied to study the fragmentation of gallstones or kidney stones

by shock waves [14, 16, 19] as well as to study the interaction of supernova remnants

with interstellar clouds [25, 32]. It also finds application in atmospheric sonic boom

propagation [12], “high-energy-density” systems such as inertial confinement fusion de-

vices [39], supersonic combustion [40, 72], and shock mitigation in foams and bubbly

liquids [4, 9, 13]. Further, in the interaction of a shock wave with a single bubble, analo-

gies may be drawn to the well-known development of Richtmyer-Meshkov instabilities

of perturbations on impulsively accelerated fluid interfaces.

1.1.1 Astrophysical systems

The dynamics of interstellar medium (ISM) in spiral galaxies is significantly affected by

the strong shock waves generated by supernovae explosion, stellar winds, expanding HII

regions, and spiral density waves [32]. It is universally accepted that the generated shock

waves significantly alter the morphology of the cloud (a region of higher density) and

lead to turbulent exchange of material and energy between interstellar gases of different

temperatures and densities. The bright eastern knot of the Puppis A supernova remnant

is responsible for distorting a shock front due to a cloud-shock interaction as seen in

images from the Chandra X-ray telescope [25]. The issues of mass stripping from the

cloud, transfer of energy and momenta to the shocked cloud, and instabilities created

by shocks at the cloud boundary can be analyzed with laser laboratory experimental

results from SBI studies [32, 22].
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1.1.2 Inertial confinement fusion

The emergence of inertial confinement fusion (ICF) as a potential power source in the late

1960’s provided a significant impetus for investigating shock-accelerated inhomogeneous

flows. In ICF, a tiny amount of fusion fuel [39] is compressed to a high density and heated

to a very high temperature, in order to initiate a very rapid and efficient thermonuclear

burn. In laser- heavy-ion- or Z-pinch-driven ICF targets, compression is accompanied by

fluid instability growth and understanding this instability is fundamental for achieving

ignition and yield from the target. The surface of the deuterium-tritium (DT) target

becomes unstable due to Rayleigh-Taylor and Richtmyer-Meshkov growth where vortic-

ity is generated baroclinically at the interface, resulting in interface deformation and

allowing the materials to mix after the shock wave has passed. The turbulent mixing

between the DT fuel and the ablator surface, along with the asymmetry associated with

the compression, can severely degrade the fusion yield.

1.1.3 Supersonic combustion

The Richtmyer-Meshkov instability plays a positive role in the field of supersonic com-

bustion. In the case of a scramjet engine, the RMI-induced turbulent mixing improves

the combustion process by enhancing the mixing of the air and the fuel in the short burn

time available [40, 72]. In his classic experiment, Markstein [42] showed how combustion

wave enhancement followed the acceleration of an initially curved flame surface by a

shock wave. Curved flame fronts, when accelerated by a shock wave, undergo heavy dis-

tortions such as shape reversal and spike formations, and the volumetric rate of burning

is amplified after the shock interacts with the flame.
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1.1.4 Shock mitigation

The physics associated with SAIF are also encountered in shock-mitigation and energy

exchange mechanisms where bubbly liquids and aqueous foam barriers are used to re-

distribute the impulse of the shock waves [4, 9, 13]. The dissipation is attributed to

interphase heat transfer and small-scale internal processes within the foam. Aqueous

foams exhibit high acoustic impedance and low sound speed, so that shock waves/blast

waves are subject to refraction and partial transmission at foam/air interfaces and are

delayed within the foam [4]. Shock mitigation is of great concern in the case of protection

mechanisms for ICF chamber walls.

1.2 Scope, Approach, and Organization

To elucidate the physics of shock-accelerated inhomogeneous flows, the present study

is undertaken, where simplified experiments are being conducted in a high structural

capacity vertical shock tube. The test gas is contained inside a large spherical soap

bubble. Soap bubbles represent the simplest form of gas enclosure with their naturally

spherical shape- ideal for a three-dimensional problem. The soap membrane is thin and

tenuous which keeps the film nonuniformities to a minimum. In this configuration, the

effects of surface tension, phase changes, ionization, chemical reactions, and interactions

between multiple inhomogeneities are removed, and the mechanisms of shock-induced

acceleration, vorticity production, and mixing can be studied independently. The post-

shock evolution of the bubble is captured using planar laser diagnostics.

The objectives and anticipated outcomes of this thesis are fourfold. The first goal is

to generate a large database of experimental results diagnosing the SBI, which will lead
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to several qualitative and quantitative parameters, that can be used to understand the

underlying physics, and for code validation efforts. The SBI is an ideal problem for code

validation as the flow field exhibits several types of fluid dynamic phenomena, including

shock wave refraction and reflection, vorticity production and transport, and turbulence.

Recently, the existing numerical database has been extended by the three-dimensional

numerical study performed by John Niederhaus [47]. This provides the opportunity to

utilize these three-dimensional simulation in concert with the experiments to understand

the evolving vorticity dynamics and subsequent turbulent mixing.

The second goal is to develop scaling laws from the acquired experimental data.

Several features observed in the shock-bubble interactions are correlated across the pa-

rameter space, in order to evaluate the different scaling laws. These features include

the axial and lateral extents of the bubble, translational velocities of the bubble and

associated vortex rings, volume, and the circulation which is deduced from the ring’s

velocity defect.

The third goal is to understand the evolution of the hydrodynamic instability in the

post-shock compressible limit. It is believed that, at Mach numbers where the particle

velocity behind the incident shock wave becomes supersonic, there are compressibility

effects that may alter the rate of distortion of the inhomogeneity. The shock wave

strength, leading to a post-shock compressible regime, allows the study of instability

development in an intermediary regime between low Mach number shock tube experi-

ments [21, 35, 36] and very high Mach number laser-driven experiments [31, 60] that has

not been investigated previously. Qualitative and quantitative comparisons are made

with the laser-driven very- high- Mach-number experiments.
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Recently, the computational study conducted by Niederhaus et al. [48] showed par-

ticularly distinct effects from the SBI for air-R12 at M = 2.5 and 5.0. In those two

scenarios, at high-M and high-A conditions, the SBI leads to the development of a re-

gion of intense mixing. The fourth goal of this study is to conduct experiments in the

parameter space M > 2.5 and A > 0.6 in order to study the distortion of the bubble

by the shock wave. This regime is important, as the computational studies have shown

that shock focusing can drastically alter the flow field.

The scope of this dissertation is limited to the spherical-bubble scenario. It is an-

ticipated that the completion of this project will lead to a better understanding of the

flow field in a regime which has not been studied previously. The results may provide

validation to various numerical claims made in the past. It will also provide a detailed

analysis of the effect of the accumulation of soap film (excessive mass) near the bottom

of the bubble on the flow field at late-time, which is important in the field of astrophysics

where inhomogeneities are rarely uniform.

The organization of this dissertation is as follows. Chapter 2 discusses the physics

of the shock-bubble interaction, and the previous related experimental, theoretical and

numerical work appearing in the literature. Chapter 3 presents a detailed description of

the Wisconsin Shock Tube, the experimental setup, the related instrumentation for data

acquisition, and flow visualization technique. Chapter 4 presents a detailed qualitative

description of the flow features observed in the experiments. Chapter 5 provides a

detailed analysis of quantitative measurements obtained from the experimental data.

Finally, conclusions and future work are presented in Chapter 6.



7

Chapter 2

Literature Review

The presence of non-linear acoustic effects (shock refraction, diffraction, and reflection)

along with interface instability, including non-linear growth and transition to turbulence,

combine to make the Richtmyer-Meshkov instability a most challenging problem in fluid

dynamics. Several approaches to study RMI exist: astronomical observations (ISM),

laboratory experiments, analytical theory, and numerical simulation. Over the last four

decades a rich database of literature has been developed in the study of the RMI. The

complexity of the problem strongly slows down the progress in the analytical approach,

especially for the case of shock-bubble interaction. Although the focus of this work is

on spherical geometry, it is imperative to begin by discussing the work related to planar

geometry.

2.1 Richtmyer’s Theory

Richtmyer [59] considered the problem of the instability of a two-dimensional, single

wavelength, sinusoidal interface between two semi-infinite, compressible fluids, when

accelerated by a shock wave passing from the light fluid to the heavy fluid as shown

in Fig. 1. In developing his impulsive model, he assumed that, for weak shocks, the

perturbation velocities are not comparable to the speed of sound. He proposed that, by

the time the transmitted and reflected shock wave have traveled a long distance from
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the interface, comparable to the wavelength of the perturbation, the subsequent motion

of the interface may be considered incompressible.

M

∆ 

∆ 

p

y

x

Fluid 1

Fluid 2

λ

η

ρ

Figure 1: Basic configuration for the Richtmyer-Meshkov instability in rectangular ge-
ometry. Two fluids, 1 and 2, initially at rest and having different properties (such as
density ρ and ratio of specific heat γ, for example), are separated by an interface that has
an initial perturbation (wavelength λ and amplitude η); a normal shock wave, traveling
from top to bottom from Fluid 1 into Fluid 2 is about to accelerate the interface [6].

In 1950, Taylor [66] studied the problem of the instability between two immiscible

incompressible liquids of different densities under the gravitational acceleration g. Ac-

cording to the linear theory developed by Taylor, the differential equation governing the

amplitude growth is

d2η(t)

dt2
= kgAη(t), (2.1)

where η is the amplitude of the small single-mode sinusoidal perturbation on a discon-

tinuous interface between incompressible fluids; k is the wavenumber of the perturbation

defined as 2π/λ, λ being the wavelength of the perturbation; A is the Atwood number

of the interface defined as A ≡ (ρ2 − ρ1)/(ρ2 + ρ1). Assuming the subsequent motion at

the interface is within the incompressible regime, Richtmyer modified Taylor’s analysis
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to describe the evolution of the shock accelerated interface. In particular he replaced

the constant acceleration term in Taylor’s analysis with an impulsive one g = [u]δD(t),

in Eq. 2.1, where δD(t) is the Dirac delta function and [u] is the jump in the interface

velocity induced by the refraction of the incident shock. Substituting the values of g in

Eq. 2.1 yields

d2η(t)

dt2
= k[u]δD(t)Aη(t). (2.2)

Integrating Eq. 2.2 once with respect to time, Richtmyer obtained the impulsive growth

rate relation

dη(t)

dt
= k[u]Aη0, (2.3)

where η0 is the initial amplitude. Equation 2.3 is valid as long as the perturbation

amplitude is small enough to remain in the linear regime (ηk << 1).

Richtmyer also solved the linearized equation for the RMI problem numerically for

the light/heavy configuration (A > 0) and strong incident shock waves. He found that

the growth rate of the perturbations agreed with the impulsive model Eq. 2.3, within 5%-

10%, if the post-shock values of the initial amplitude and Atwood number are used in the

impulsive model instead of the pre-shock values. The corrected Richtmyer’s impulsive

model is thus given as

dη(t)

dt
= k[u]A′η′0, (2.4)

where η′0 and A′ are the post-shock perturbation amplitude and Atwood number respec-

tively. The impulsive model neglects viscosity and surface tension since its validity is

restricted to early time behavior and gas-gas interfaces.
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2.2 Single Mode Two Dimensional Interface

One of the greatest challenges in performing RMI experiments is the preparation of the

initial interface. Meshkov [44] was the first experimentalist to study a shock-accelerated

gas-gas interface, and the experiments were inspired by the theoretical work done by

Richtmyer [59] in 1960. Meshkov used a thin nitrocellulose membrane to separate the

test gases, a technique that has been commonly used in many subsequent experiments.

The interface was given an initial sinusoidal shape and it was shown to be unstable

regardless of whether the shock passed from a heavy gas to a light gas or from a light

gas to a heavy gas. The amplitude of the disturbance increased linearly with time in the

first approximation in agreement with Richtmyer’s theory. However, there are several

well-documented problems with using membranes: first, the strength of the membrane

and the supporting wires used to impose the perturbation can weaken the transmitted

shock wave; second, post-shock fragments of the film and wires affect the fluid flow; and

third, the same fragments hinder diagnostic and imaging techniques.

Innovative preparation methods have been used to eliminate the membrane and

create a continuous interface. Brouillette and Sturtevant [7] and Bonazza and Sturte-

vant [5] used a thin, flat, sliding plate in a vertical shock tube to separate two gases

in a light-over-heavy configuration. The physics of plate retraction provided the ini-

tial perturbation between the vertically stratified gases. The initial conditions in this

case are non-linear and multiple valued due to vortex shedding off of the plate. This

technique generates a relatively thick, diffuse interface, which significantly reduces the

growth rate. Oakley [49] and Puranik et al. [54] used a sinusoidally formed plate to

separate the two gases (initially arranged in the gravitationally unstable configuration)
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and allow the Rayleigh-Taylor instability to create the initial perturbation. In a cross-

sectional view perpendicular to the direction of plate retraction, the initial condition

was quasi two-dimensional; however, due to disturbances in the direction of the plate

retraction, the interface had three-dimensional characteristics.

Jacobs et al. [28] used a contoured jet or gas curtain entering from one wall of the

test section and exiting from another side to create two continuous interfaces. In this

method, the biggest challenge is to maintain the stability of the jet. It has been docu-

mented that upstreamdownstream asymmetry between perturbation amplitudes of the

initial conditions could produce either upstream mushrooms or downstream mushrooms,

depending on whether the initial upstream or downstream perturbations were greater,

respectively. This interface creation technique is currently in extensive use at Los Alamos

National Laboratory [53].

Another membrane-free scheme has been implemented by Jones and Jacobs [29] who

used a downward flow of light gas and upward flow of heavy gas that meet at a desired

interface location to create a relatively thin continuous flat interface. A stagnation plane

at the interface location is created by this technique which reduces the diffusion thickness

because of the gas-outflow slots in the side-walls of the shock tube. The vertical shock

tube was then oscillated in the lateral direction to create the initial perturbation. At

the University of Wisconsin-Madison, Motl et al. [45] have implemented the technique of

membraneless interface formation by Jones and Jacobs [29] in the high capability vertical

shock tube. An oscillating rectangular piston system (see Fig. 2) has been added to the

shock tube to create the initial perturbation once the flat interface is formed. This new

technique allowed them to study the growth of instability for higher Mach numbers.

There have been several review papers summarizing the state of the field. Zabusky [73]
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Figure 2: The University of Wisconsin oscillating piston setup.
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in 1999, reviewed the vortex models and numerical simulation studying the RMI, in the

classical configuration. Brouillette [6] in 2002, summarized the state of the field in his

review paper which focussed on the basic physical processes underlying the onset and

development of the RMI in a simple configuration.

2.3 Cylindrical and Spherical Interfaces

Experimental investigations of the interaction of shock waves with curved interfaces have

been inspired by the pioneering works performed by Markstein [42, 41] and Rudinger [61],

who studied the interaction of a shock wave with a flame front having a roughly spherical

shape. The primary focus of the study was to quantify the effect of the shock on the

volumetric rate of burning. The interaction of pressure waves with density gradients

is a fundamental source of long-lived vorticity in fluids and is particularly important

in combustion, since the release of the chemical energy produces both pressure and

density disturbances in the fluid. These disturbances then interact, producing significant

vorticity in the flow field.

In his classic experiment, Markstein [42] showed how combustion enhancement fol-

lowed the acceleration of an initially curved flame surface by a shock wave. Curved flame

fronts, when accelerated by a shock wave, undergo heavy distortions such as inflection

and spike formation. The volumetric rate of burning is amplified after the shock interacts

with the flame. Markstein also studied the interaction of a shock wave with an initially

roughly spherical flame and Fig. 3 shows schlieren images from one of Markstein’s ex-

periments. A weak shock passes through a roughly spherical flame approximately 15-cm

from the bottom of the combustion chamber, which contains a stoichiometric mixture
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of n-butane and air. In Fig. 3(a), the shock wave appears to be less than 1-cm from the

flame boundary (the flame actually appears more oblong than spherical). In Fig. 3(b),

one can clearly see the compression of the flame front and an upward moving curved

rarefaction wave. The central spike of unburned gases traverses the lower portion of the

flame front (see Fig. 3(c)) leading to the formation of a vortex ring. This enhanced flow,

due to the vortex ring, leads to the formation of a very fine-grained turbulent burning

zone.

(a) (c) (d)(b)

Figure 3: Interaction of a shock wave and a flame of initially roughly spherical shape.
Pressure ratio of incident shock wave 1.3; stoichiometric butane-air mixture ignited at
the center of the combustion chamber, 8.70 ms before origin of time scale [61]. Time
relative to initial shock wave impact: (a) 0.00 ms; (b) 0.10 ms; (c) 0.40 ms; (d) 0.70 ms.

To analyze the fluid dynamic aspects of vorticity generation, the problem may be

more fundamentally studied in a non-reactive medium. If the flame is not a continuous

surface but contains discrete pockets of burned or unburned gas surrounded by gases of

different density, such as may exist around evaporating fuel droplets, another mechanism
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to increase the volumetric burning rate may come into play. The response of such isolated

regions of different density to impulsive acceleration was studied in 1960 by Rudinger

and Somers [62] without the complications of the combustion process.

Rudinger and Somers [62] studied the more fundamental problem of the interaction

of a plane shock wave with light-or heavy-gas spherical or cylindrical inhomogeneities,

produced using either a spark discharge or small jets of H2, He, or SF6. They showed

that, after acceleration by a shock wave, the small regions in a flow where the density

was different than that of the surrounding gas, moved faster or slower than the latter,

depending on whether their density was lower or higher than that of the main flow.

The interaction of a shock wave with a cylindrical or spherical gas inhomogeneity has

become more commonly known as the shock-bubble interaction. Inspired by the seminal

work of Rudinger and Somers [62], the last two decades have provided a rich database

of literature for the study of the shock-bubble interaction.

2.4 Physics of the Shock-Bubble Interaction

The propagation of a shock wave through a spherical or cylindrical bubble of a different

density than the surrounding medium involves the phenomena of shock wave reflection,

refraction, diffraction, and in the case of a heavy bubble, focusing. These effects were

first highlighted by Markstein [42] and Rudinger [61] for shock-flame interaction and

later experimentally documented by Haas and Sturtevant [21].

The shocked interface system consists of five different regions as shown in Fig. 4:

region 1 is unshocked ambient gas, region 2 is unshocked bubble gas, region 1′ is shocked

ambient gas, region 2′ is shocked bubble gas after passage of the transmitted shock, and
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Figure 4: Schematic diagram of shocked interface system in case of shock bubble inter-
action: (a) pre-shock; (b) post-shock.

region 1′′ is shocked ambient gas after passage of both the initial shock and the reflected

shock or rarefaction wave. Flow variables are identified using a subscript 1 for the

surrounding fluid or 2 for the bubble fluid to indicate the fluid being described, and

primes are used to denote the number of shock or rarefaction waves that have passed

over the fluid. Hence, p1 and p2 represent the pre-shock pressures of the ambient and

bubble fluids, respectively, and p′1 and p′2 represent the pressures after the passage of

first shock.

2.4.1 Shock compression and acceleration

The passage of a shock over a bubble leads to compression of the bubble and a sudden

jump in fundamental thermodynamic quantities such as pressure, temperature, and den-

sity. The bubble pressure, temperature, and density, as well as its translational velocity,

must all increase, according to the Rankine-Hugoniot conditions, as the transmitted

shock wave passes through the bubble. Considering the flow across the shock wave is
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adiabatic (i.e, no heat addition or removal at the boundary), the sudden jump in funda-

mental quantities can be derived from the conservation of mass, momentum, and energy

equation. In the shock wave reference frame, the normal shock relations are stated as:

ρW = ρ′ (W − u′) , (Continuity) (2.5)

p + ρW 2 = p′ + ρ′ (W − u′)2
, (Momentum) (2.6)

h +
W 2

2
= h′ +

(W − u′)2

2
, (Energy) (2.7)

where W indicates shock wave velocity, u′ denotes velocity of the fluid behind the shock

wave, and h (h′) defines enthalpy of the fluid ahead (behind) of the shock wave. For a

calorically perfect gas with a known specific heat ratio γ, we can add the thermodynamic

relations

p = ρRT (2.8)

h =
γRT

(γ − 1)
, (2.9)

where R is the specific gas constant. Equations (2.5) through (2.9) constitute five equa-

tions with five unknowns. Hence, they can be solved algebraically to obtain the shocked

state variables.

2.4.2 Nonlinear-acoustic effects

The second aspect of shock-bubble interaction deals with “nonlinear-acoustic effects”,

which refer to the refraction, reflection, and diffraction of the incident shock wave by

the bubble. The bubble alters the shape and propagation pattern of the shock wave

by nonlinear-acoustic mechanisms associated with the interface curvature and acoustic
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impedance mismatch at the interface. Due to the acoustic impedance mismatch at the

bubble boundary, the bubble acts like a diverging or converging lens. The acoustic

impedance, R = ρc, is defined as the product of the density of the gas and the sound

speed (c) in that medium. The acoustic impedance is a thermodynamic property, and

is peculiar to the propagation medium. The acoustic impedance is a measure of the

stiffness of a material, in the sense that it is a proportionality constant between impressed

velocity and applied pressure (the usual elastic moduli however correspond to ρc2) [69].

The change in acoustic impedance between two media is known as the “impedance

mismatch,” δR = R2 − R1. Neglecting the curvature of the bubble interface, shock

passage over the bubble surface can be analyzed easily using a one-dimensional approach.

1' 21

W

ρ'

u'

p'

1

1

1

ρρ

i

21

1

ρ
1

1'

Wtr

0

  reflected 

shock wave

 transmitted 

    shock 

    wave

Wt

2

ρ''
1

ρ'
2

ρ'
1

ρ
2

Wr

u''  = u'
2 2

p''  = p'
2 2

1'' 2' 1

ρ
1

1'

Wtr

0

  reflected 

rarefaction

 transmitted 

    shock 

    wave

Wt

2

ρ''
1

ρ'
2

ρ'
1

ρ
2

Wr

u''  = u'
2 2

p''  = p'
2 2

1'' 2' 1

ρ
1

(a) (b) (c)

Figure 5: Schematic diagram of one-dimensional shock wave transmission and reflection
in a gas slab: (a) pre-shock; (b) post-shock, R2 > R1; (c) post-shock, R2 < R1.

Figure 5 shows shock wave transmission and reflection in a gas slab labeled as fluid

2. Two different post-shock scenarios are analyzed based on the sign of the impedance

mismatch term (δR) at the interface. If δR > 0, the shock wave decreases in speed after

transmission, and in order to maintain the mechanical equilibrium at the interface, the
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initial gas must contract. Therefore, in this scenario the reflected wave is a shock wave

as shown in Fig. 5(b). Conversely, if δR < 0, the shock wave increases in speed after

transmission, and in order to maintain the mechanical equilibrium at the interface, the

initial gas must expand. Thus, in this scenario the reflected wave is a rarefaction wave

as shown in Fig. 5(c). The transmitted wave is always a shock wave being independent

of the impedance of the medium and shape of the interface. Figure 6 shows the wave

diagram for both cases.
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Figure 6: Wave diagram of one-dimensional shock transmission and reflection in a gas
slab: (a) R2 > R1; (b) R2 < R1. Solid double lines indicate shock waves, dashed lines
indicate fluid interfaces, and triple diverging solid lines indicate rarefaction waves [47].

Shock propagation through the bubble can be considered as an extension of the

gas slab problem. Lets consider the case where medium 2 in the gas slab scenario

is replaced by a cylindrical or spherical bubble. Figure 7 highlights the effect of the

bubble interface curvature, on the shock refraction pattern for two different impedance

mismatch scenarios. Figure 7(a) shows the shock refraction pattern for δR > 0. This

situation is commonly referred as “convergent geometry”. The transmitted shock wave
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Figure 7: Schematic representation of shock-bubble interaction flowfield and shock re-
fraction patterns in (a) convergent (δR > 0) scenario, and (b) divergent (δR < 0)
scenario, shortly after initial shock wave transit. Incident shock wave propagation is
left-to-right [47].

is concave in shape, and runs behind the unrefracted incident shock, and the reflected

wave is a shock. Figure 7(b) highlights the shock refraction pattern for the “divergent

geometry” where δR < 0 at the interface, and the reflected wave is a rarefaction. In this

situation, at low angles of incidence, regular refraction occurs where the transmitted

wave and incident wave intersect the interface at the same point. At higher angles,

various aspects of irregular refraction are observed [23, 24]. A transmitted shock wave

quickly transits the bubble, and a Mach stem, precursor shock, and triple point form

just outside the interface. Such features are absent in the case of the divergent geometry.

In the case of convergent geometry, for high density contrast, irregular refraction of the

shock wave leads to shock focusing. As depicted in figure 8, a portion of the shock wave

front sweeping around the bubble periphery is diffracted, meaning it is turned toward the

axis so that the surface of discontinuity remains nearly normal to the interface [21, 48].



21

The diffracted shock wave then meets at the downstream pole. Figure 8 shows the

different stages of shock refraction in the case of convergent geometry, leading to the

shock focusing at the downstream end of the bubble. The diffracted shock wave collision,

along with the focusing of the transmitted shock wave, produces an intense pressure

jump and initiates additional baroclinic vorticity deposition. Secondary shock waves are

generated due to shock focusing, which can lead to dramatic changes in the observed

flow field at late times. This effect can be compared to a reshock phenomenon, familiar

from Richtmyer-Meshkov flows in shock tubes.

Figure 8: Representative, schematic view of shock focusing in the case of convergent ge-
ometry. The arrow in the diagram indicates the location of the shock focusing. Incident
shock wave propagation is top-to-bottom.

2.4.3 Vorticity production and transport

The third and probably most important aspect of shock-bubble interaction is the vor-

ticity deposition due to the misalignment of the pressure and the density gradients.

Vorticity is defined as

ω ≡ ∇×U. (2.10)

If one takes the curl of the momentum equation for a compressible Navier-Stokes fluid,

then one obtains the vorticity transport equation given as:



22

Dω

Dt
= (ω · ∇)U− ω (∇ ·U) +

1

ρ2
(∇ρ×∇p) + ν∇2ω. (2.11)

The first term on the right (ω · ∇)U is the vortex stretching term, which is essential

for discussion of three-dimensional turbulence and mixing. This term represents the

stretching, as well as, the turning and tilting of the vortex lines by gradients in the

velocity field. Vortex stretching also reflects the principle of conservation of angular

momentum. Stretching decreases the moment of inertia of fluid elements that comprise

a vortex line, resulting in an increase of their angular speed. The vortex stretching and

tilting term is absent in two-dimensional flows, in which ω is perpendicular to the flow.

The second term on the right ω (∇ ·U) represents the vortex dilatation term, which

is important only in the case of highly compressible fluids. The last term on the right

ν∇2ω represents the rate of change of ω due to molecular diffusion of vorticity, in

the same way that ν∇2U represents the acceleration due to the diffusion of velocity.

Dissipative effects can be neglected in our discussion here because of the low physical

viscosities of the fluids considered in this dissertation. The third term on the right

(∇ρ×∇p) /ρ2 is a baroclinic term, which represents the rate of generation of vorticity

due to baroclinicity in the flow. It shows that the misalignment of the local pressure

and density gradients leads to the generation of vorticity in the flow field.

In the case of a shock-bubble interaction, initially ω= 0 everywhere. Therefore, the

vortex stretching and dilatation term in Eq. 2.11 drop out. In the absence of dissipative

effects, Eq. 2.11 reduces to

Dω

Dt
=

1

ρ2
(∇ρ×∇p) , (2.12)

suggesting that baroclinicity is the only source for vorticity production in the flowfield at

time zero. The vorticity distribution at the early stage of the shock-bubble interaction
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is shown in Fig. 9.
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Figure 9: Schematic representation of baroclinic vorticity distribution in the early phase
of shock-bubble interaction.

Vorticity is deposited locally on the fluid interface during the shock wave propagation

across the bubble. The magnitude of the vorticity deposited locally is determined by the

non-collinearity of ∇ρ and ∇p. The maximum misalignment is at the diametral plane,

and the maximum vorticity is deposited at this location. This leads to the formation

of a primary vortex ring near the diametral plane. The rotation of the primary vortex

ring is driven by the orientation of the density gradient at the bubble interface. Figure 9

shows the direction of rotation in the case of convergent and divergent geometry of the

bubble, and the primary vortex ring is the dominant feature of the flow.

The features observed in the flow field are similar to those found in the Richtmyer-

Meshkov instability. Although the shock refraction pattern is dictated by the impedance

mismatch at the interface, this phenomenon only exists during the early phase of the

flow. After several shock-passage times (D/W ), the features observed in the flow field

are dominated by the vortical motion. Therefore, the Atwood number will be used in this

dissertation to indicate the effect of density contrast at the bubble interface rather than
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the impedance mismatch. For the gas pairs considered here, A > 0 refers to convergent

geometry (δR > 0), and A < 0 refers to divergent geometry (δR < 0). It is well known

that in some unusual conditions, it is possible to have convergent refraction (δR > 0),

even if A < 0, and vice versa. This is possible if the effect from the specific heat ratios

offsets the changes in density, and such cases do not appear in this study.

The three underlying physical processes outlined above are nonlinearly coupled to-

gether. Their simultaneous action in shock-bubble interaction leads to the development,

in many cases, of highly complex regions of strong, disordered rotational motion and

mixing. This has been a challenge to experimentalists, theorists, and computer model-

ers alike. Over the last four decades a rich database of literature has developed studying

shock-bubble interaction, outlined below in Sec. 2.5- 2.7.

2.5 Shock Tube Experiments

In 1987, Haas and Sturtevant [21] reported on experiments conducted in a horizontal

shock tube studying the interaction of a light or heavy gas bubble subjected to a pla-

nar shock wave. The spherical shapes were produced using soap bubbles filled with

either a light or a heavy gas, while the cylindrical inhomogeneities were encapsulated in

thin nitrocellulose membranes. The wavefront geometry and the deformation of the gas

volume were visualized by shadowgraph photography. Wave configurations predicted

by geometrical acoustics, including the effects of refraction, reflection, and diffraction,

were compared to the observed flow field. It was shown that, in the case of a cylin-

drical or spherical volume filled with a heavy (low-sound-speed) gas, the wave which

passes through the interior focuses just on the downstream pole of the cylinder. On the
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other hand, the wave which passes through a light (high-sound-speed) volume strongly

diverges. The distortion of the helium cylinder in an air environment at large times

showed that the interaction of a shock wave with a gas lighter than its surrounding

develops into a pair of vortices which move faster than the ambient fluid. In the case of

a helium sphere at late times it was observed that the primary vortex ring splits off from

the main structure and propagates along the axis of symmetry. No vortex ring could

clearly be resolved in the images (see Fig. 10) obtained from the heavy bubble, however

its existence was inferred from the velocity measurements.

(a) (b)

Figure 10: Shadow-photographs from Haas and Sturtevant [21] experiments of a R22
sphere (3.5 cm high, 2.5 cm wide) after interaction with a M=1.25 shock wave moving
from right to left; (a) t = 507 µs, (b) t = 1.56 ms.

In the early 1990’s, Jacobs [27, 28] implemented a new technique, in which a lam-

inar jet was used to produce the gas cylinder, eliminating the need for a membrane

to encapsulate the heavy or light gas [21]. The shortcomings of shadowgraphy were

eliminated in the experiments by utilizing planar laser induced fluorescence (PLIF). In

these experiments SF6 or helium was seeded with a small amount of biacetyl and then
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made to fluoresce with a laser sheet. The technique was utilized for obtaining excellent

visualizations of the flow and quantitative characterization of mixing.

In 2003, Tomkins et al. [70] reported on the evolution and interaction of two shock-

accelerated, heavy-gas (SF6) cylinders as an extension to the single-cylinder problem.

Planar laser imaging was utilized for flow visualization. An intensified camera, aligned

normal to the laser sheet was used to capture the light scattered from the bubble gas

(seeded with a small amount of glycol/water fog droplets) during the evolution phase,

and velocity measurements were performed using digital particle image velocimetry. The

visualization revealed that the flow morphology is highly sensitive to the initial separa-

tion between the cylinders. Later in 2005, the two-cylinder system was extended to a

three or more cylinders configuration by Kumar et al [33], with one of five different con-

figurations of heavy-gas (SF6) cylinders surrounded by air being impulsively accelerated

to produce one or more pairs of interacting vortex columns. The flow was visualized

using planar laser-induced fluorescence in the plane normal to the axes of the cylinders,

and it was found that the number, configuration, and orientation, of gaseous cylinders

affects the shock-induced mixing in terms of the generation of interfacial area.

More recently Layes et al. [35, 36] have reported experiments studying the interac-

tion of a planar shock wave with a spherical gas inhomogeneity (soap bubble). These

experiments were conducted in a horizontal shock tube with the bubble supported by

a holder and subjected to a M < 1.3 shock wave in air. Different gas bubbles (helium,

nitrogen, and krypton), were introduced in air at atmospheric pressure. The bubble

distortion was visualized via a multiple exposure shadowgraph diagnostic as shown in

Fig. 11. A primary vortex ring was observed in the case of the helium bubble. No

particular deformation was observed in the case of the nitrogen bubble, except the weak
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compression of the bubble and, due to the presence of the bubble holder, some per-

turbations were generated on the bottom part of the bubble. For the krypton bubble

scenario, one can clearly visualize the shock focusing on the downstream pole of the

bubble. The deformation pattern was significantly different than that observed in the

case of the helium bubble. It was shown that the gaseous mixing length is linear in time

after the compression phase of the bubble.

2.6 Theory and simulation

Rudinger and Somers [62] developed a simplified theoretical model for the interaction of

a shock wave with a bubble which leads to the calculation of the initial bubble velocity Vb

and final vortex velocity Vv. The model assumes that the bubble is initially accelerated

by the shock to a velocity Vb, different from the shocked ambient gas velocity u′1. For

the early phase they treated the bubble as if it were a solid particle. The calculation

assumes an impulsive, essentially incompressible acceleration. The impulse per unit

volume I transmitted by the shock to the gas bubble is precisely that which the ambient

gas would have experienced,

I = ρ′1u
′
1 = ρ′2Vb + kρ′1 (Vb − u′1) , (2.13)

where ρ′2 is the post shock bubble gas density while ρ′1 denotes post shock ambient

gas density. The term ρ′1k(Vb − u′1) represents the impulse transmitted to the ambient

gas around the bubble due to the bubble motion and k is the inertial coefficient or

apparent additional mass fraction. For a spherical bubble, k=0.5, and for an infinitely

long cylinder moving at right angles to its axis, k=1.0 [34]. From Eq. 2.13 the bubble
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Figure 11: Shadowgraph frames of the interaction between a shock wave moving in
air and a gaseous bubble for (a) helium bubble, (b) nitrogen bubble, and (c) krypton
bubble [35]. The incident shock wave is moving from right to left and two consecutive
images are separated by 70µs.
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velocity immediately after the passage of the shock wave is given by

Vb =

(
1 + k

σ + k

)
u′1, (2.14)

where σ = ρ′2/ρ
′
1 is the post-shock density ratio. The second step of the analysis deals

with the transformation of the gas bubble into a vortex, where the energy absorbed by

the vortex is provided by the kinetic energy of the initial motion, which leads to the

decrease of the relative velocity

Vv − u′1 = β (Vb − u′1) . (2.15)

Using a calculation by Taylor [67] for the generation of a vortex ring by the impulsive

acceleration of a disk, they arrive at the vortex velocity given as

Vv =

(
1 + β

1− σ

σ + k

)
u′1, (2.16)

where β=0.436 [67] for the vortex ring (spherical bubble scenario) and β=0.203 [62] for

the infinitely long vortex pair (cylindrical bubble scenario).

The first detailed numerical investigation of the shock-bubble interaction in two di-

mensions was performed by Picone and Boris in 1988 [51], who modeled the experiments

conducted by Haas and Sturtevant [21] for both cylinders and spheres. The results were

in reasonable agreement with the experiments. They captured the development of the

vortical features which were observed in the experimental work of Haas and Sturte-

vant [21]. They also presented a model for the calculation of the late-time bubble veloc-

ity, and the magnitude of the vortex strength, or circulation, Γ. The velocity model was

intended to capture the motion of the entire volume of shocked bubble fluid, but it will

be shown later in this dissertation that it provides a good agreement with the bubble

vortex velocity. The circulation Γ is a scalar quantity having considerable importance in
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the description of the vortical flows. The circulation Γ is defined around a simple closed

curve C as a line integral of the velocity given as:

Γ =

∮

C

U · ds. (2.17)

It follows from Stokes’s theorem that the circulation around a reducible curve is equal

to the flux of vorticity through an open surface A bounded by the curve [63], that is,

Γ =

∫

A

ω · dS. (2.18)

The circulation model provided by Picone and Boris is based on the initial properties

of the shocked gas, unshocked ambient gas, and the bubble. They utilized Eq. 2.18

to obtain the circulation in one half of the bubble, with the only source term for the

vorticity being the baroclinic term. The circulation model by Picone and Boris may be

written as

ΓPB ≈ 2u′1

(
1− u′1

2Wi

)(
D

2

)
ln

(
ρ1

ρ2

)
, (2.19)

and the vortex velocity by

Vv ≈ u′1 +
ΓPB

2πDv

, (2.20)

where Dv is the major diameter of the vortex ring, and D is the initial diameter of the

bubble.

Yang, Kubota and Zukoski (henceforward, YKZ) in 1994 [72], investigated the shock-

cylinder interaction numerically and worked along the same path as Picone and Boris

to calculate the circulation. The circulation predicted by the YKZ model is

ΓYKZ ≈ 2D

Wi

p′1 − p1

ρ′1

(
ρ2 − ρ1

ρ2 + ρ1

)
. (2.21)

In 1996, Quirk and Karny [55] reported a detailed numerical study of the shock-bubble
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interaction utilizing a sophisticated adaptive mesh refined algorithm, with a noncon-

servative shock capturing scheme. The adaptive mesh refinement technique enabled

them to produce high resolution results at low cost, and the simulations successfully

resolved the shock refraction pattern and vortical features observed by Haas and Sturte-

vant. Several additional numerical studies have been carried out in the past, which were

also motivated by the experimental work of Haas and Sturtevant [21]. In 1989, Cow-

perthwaite [10] produced two-dimensional simulations of the distortion and motion of

an initially spherical mass of Freon 12 gas suspended in a lighter gas (air or helium) sur-

rounding. The simulations were carried out to late-times and the velocity of the center

of mass of the bubble was calculated as a function of time. A simple model, based on

the concepts of drag, added mass, and entrainment, was shown to give a good agreement

with the bubble velocity observed in the simulation.

In 1994, Samtaney and Zabusky produced an in-depth analysis of the baroclinic

vorticity deposition on a planar interface using shock polar analysis. This was extended

to the spherical case using a “near-normality” condition, which in our notation is written

as

ΓSZ =
(
1 +

π

2

) (
2

1 + γ

) (
1− χ−

1
2

) (
1 + M−1 + 2M−2

)
(M − 1) (D/2) c1, (2.22)

where χ defines the density ratio across the interface. The model shows that for large

χ, circulation is independent of the density ratio, and for high Mach number flows, it

shows that circulation has a linear behavior in M . This model has been shown to be

effective for the convergent geometry shock-bubble interaction. Zabusky and Zeng [74]

in 1998 reported on numerical investigations of the interaction of planar shocks with a

Freon 12 axisymmetric spherical bubble in air. In this paper, they extended the early

axisymmetric simulations by Picone and Boris to high Mach numbers up to M = 5 and
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observed the formation of a secondary vortex ring at the apex of the bubble for shock

strengths M= 2.5 and 5.0. The formation of the secondary vortex ring was attributed

to secondary shocks which can arise in the higher shock strength scenario. Levy et

al. [38] used an interface-tracking two-dimensional ALE hydrodynamic code to simulate

the shock-bubble interaction and was motivated by the experimental work performed

by their group. They extended the circulation model of Samtaney and Zabusky to the

scaling of the velocity field and showed that the velocity of the bubble is independent of

the bubble radius, and also, that the scaling of the velocity failed for M > 2.

The experiments of Layes et al. [35] have been simulated numerically by Giordano

and Burtschell [17], and Layes and LeMétayer (2007) [37] and both displayed good

agreement with the experiments. The numerical schlieren image of a krypton bubble

accelerated by a M=1.7 shock showed a small secondary vortex ring at the apex of the

bubble [17]. Giordano and Burtshell also presented an analytical approach to evaluate

the final volume of the inhomogeneity after the shock interaction. Numerically, exten-

sive work has been done to study the shock-cylinder interaction. The experiments of

Haas and Sturtevant [21] have also been simulated recently by Marquina and Mulet [43],

using very high spatial resolution, showing the growth of distinctive turbulent features

in the flow field at late-times. Greenough et al. [20] implemented a high- order Godunov

method in an adaptive mesh refinement environment to study this problem, and suc-

cessfully resolved many of the fine scale details of the complex, highly vortical flow field

observed in Jacobs’s experiments. Zoldi [75] has also proposed a numerical study of her

own experiments, and showed that, at late-times, waviness appears along the interface

with a characteristic length scale much smaller than that associated with the primary

vortex structure. Bagabir and Drikakis [3] have studied the influence of incident shock
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strength on the cylindrical behavior with the same geometrical characteristics as Haas

and Sturtevant’s experiments.

More recently, a parameter study for shock-bubble interactions has been carried out

by John Niederhaus [47] using a series of three-dimensional multifluid Eulerian simula-

tions. This work included a detailed analysis of various integral features of the shock-

bubble interaction, and it was shown that, although this problem shows a very complex

flow field, features like mean density, and bubble velocity can be scaled over a wide

range of M for a fixed A using quantities calculated from one-dimensional gasdynamics.

Notable differences from the typical shock-bubble interaction morphology have been re-

ported recently by Niederhaus et al. [48] for scenarios with M > 2 and A > 0.5. In these

scenarios the flow field mostly contains a diffuse turbulent plume at late time rather

than coherent vortex structures.

2.7 Laser-Driven Experiments

Several shock-driven experiments for a spherical inhomogeneity have been carried out

successfully at high Mach number (M ∼ 10) using both the Omega laser at the Labora-

tory of Laser Energetics [60, 22] and the NOVA laser at LLNL [30, 31]. Klein et al. [30]

utilized the NOVA laser to generate a strong shock wave (M = 10) which traveled within

a miniature beryllium shock tube, 750 µm in diameter, filled with a low-density plas-

tic. Embedded in the plastic was a copper sphere 100 µm in diameter. Its morphology

and evolution, as well as the shock trajectory, were diagnosed via side-on radiography.

Beryllium was used for the shock tube wall material since it is essentially transparent

to the X-rays that are used to diagnose the target evolution. The experiments showed
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the initial distortion of the copper sphere into a vortex ring structure. Klein et al. [31]

compared the experimental results [30] to detailed two- and three-dimensional radiation

hydrodynamic simulations which showed the initial distortion of the bubble into a vor-

tex ring and later the breakup of the vortex ring due to the azimuthal bending mode

instability.

Robey et al. [60] conducted a similar set of experiments on the Omega laser. They si-

multaneously performed side-on and face-on radiography to construct the three-dimensional

topology of the interaction. This enabled them to visualize both the initial distortion

of the copper sphere into a double vortex ring structure and the onset of the azimuthal

instability. The paper also included a detailed numerical study of the described ex-

periments using a three-dimensional Eulerian adaptive mesh refinement code, which is

also the same code later used by John Niederhaus [47] to perform a parametric study

for the shock-bubble problem. The numerical study showed that two-dimensional codes

are completely inadequate in resolving the observed azimuthal mode structures. The

numerical study showed a good agreement with the observed distortion of the copper

sphere. The breakup of the vortex ring due to the onset of bending-mode instabilities

was also captured in the simulations.

In 2007, Hansen et al. [22] took the Omega experiments a step further by replacing the

area radiography technique used by Robey et al. [60] with a point-projection radiography

technique, and this vastly increased the number of photons that illuminated the shock

tube, resulting in a better signal to noise ratio. The images obtained with this technique

allowed them to estimate the cloud mass as a function of time. In these experiments

they also replaced the copper sphere used previously by other experimenters with an

aluminium sphere, to study the faster hydrodynamic evolution, for the lighter material
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so distortion could be studied for a longer time. Hansen et al. showed that the cloud mass

as a function of time followed a model of turbulent-mass stripping, strongly suggesting

that turbulence play an important role in the development at late times. They also

showed that the cloud distortion compared quite well quantitatively with the shock tube

experiments reported by Ranjan et al. [56] (the work described in Ranjan et al. [56] was

performed as a part of this dissertation) for the scaled lengthwise growth of the bubble.

To summarize, the experimental, computational, and theoretical research effort study-

ing the RMI has been mainly directed towards determining the interface growth rate.

There has been relatively little experimental effort devoted to the shock interaction with

a spherical interface, and the regime between the low Mach number shock tube exper-

iments and the high Mach number laser-driven experiments has not been investigated

yet. This regime is of great importance in order to understand the compressibility effects

in the shock accelerated flows where a transition can occur when the particle velocity be-

hind the shock has become supersonic. The present study is an effort to bridge this gap.

Experimental results along with the use of numerical simulation and theoretical models

will be utilized to understand this phenomenon over a wide range of conditions. The

experimental data can be used for code validation and development of new theoretical

models.
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Chapter 3

Experimental Apparatus

The shocked-bubble flow field is visualized experimentally using a large shock tube with a

uniquely designed test section in the Wisconsin Shock Tube Laboratory (WiSTL) at the

University of Wisconsin-Madison. This facility is used for various experimental programs

that are applicable to fusion energy research and astrophysics with the majority of

experiments related to the Richtmyer-Meshkov instability [2, 45, 49, 54]. This facility

has also been used to perform experiments on the shock loading of a solid cylinder and a

cylinder bank to model the cooling tubes in an inertial fusion energy reactor. Recently,

this facility has also been used to perform shock mitigation studies, for example, shock

wave interactions with water layers and foams. This chapter deals, in detail, with various

aspects of the experimental setup including the shock tube facility, injector system,

bubble formation, and flow visualization.

3.1 Wisconsin Shock Tube

The centerpiece of the WiSTL facility is a 9.2 m, vertical, closed duct of 0.254 × 0.254 m

square internal cross section, shown in Fig. 12, designed with an impulsive load capability

of 25 MPa to accommodate static and dynamic loads associated with strong shocks. The

shock tube has a modular construction, which allows for the rearranging of the shock

tube for different experimental configurations. The large internal cross-section allows
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Figure 12: Schematic representation of Wisconsin shock tube.
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for minimizations of boundary layer effects. A downward-moving shock wave is released

by discharging two boost tanks, through a fast-opening valve, into the driver section,

pressurized to about 95% of the diaphragm rupture pressure which allows control of shock

release time to within ± 20 ms. Piezoelectric pressure transducers are flush-mounted

along the inside and end walls of the shock tube to measure the dynamic pressure inside

the tube at a sampling frequency of 1 MHz. One of these pressure transducers is also

used to trigger the data acquisition system which records the pressure data and for

triggering the laser pulses for imaging of the shocked-bubble flow field. Details of the

imaging system will be discussed later in this chapter. A detailed description of the

WiSTL facility has been reported by Anderson et al. [2], and for convenience, a very

brief description is included here.

3.1.1 Driver section

The driver section is 2.08 m long, made from 0.472 m internal diameter chrome-plated

carbon steel pipe with a wall thickness of 0.019 m. Two boost tanks (shown in Fig. 13)

are connected via fast-acting pneumatic valves (FAV) to the driver section . At the top

end, the driver section is closed by a 0.083-m thick flange with provisions for three gas

inlet/outlet ports, a pressure gauge, and a thermocouple gauge as shown in Fig. 14. In

order to change the diaphragm, the driver section is lifted using an overhead crane.

3.1.2 Diaphragm section

The diaphragm section is located directly below the driver section and holds the di-

aphragm and the cutting device. A shock wave is created in the driven section by plac-

ing a metal diaphragm between the driver and diaphragm sections, bolting the sections
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Figure 13: Photograph of the driver section of the shock tube.
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Figure 14: Photograph of the top-cap of the driver section.

together, and then pressurizing the driver until the diaphragm ruptures. The section is

0.35 m long and has an inner diameter of 0.42 m. A sharp knife-edged cruciform blade

(see Fig. 15) is located right below the diaphragm, and is used to ensure consistent rup-

ture of the diaphragm. Due to higher pressure on the driver side, the diaphragm bulges

against the blades, and ruptures in the form of four petals which remain attached to the

outer circumference as shown in Fig. 16.

3.1.3 Driven section

The driven section is 6.41 m long and consists of all the various modular shock tube

sections that are located below the diaphragm section. The driven sections of the shock

tube have an internally square cross-section formed using four 0.0095 m thick stainless

steel plates, which are welded together. The volume between the steel plate and the
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Figure 15: Knife-edged cruciform blade in the diaphragm section.

Figure 16: A thick steel (16 gauge) diaphragm ruptured when the driver pressure reaches
2.75 MPa absolute.



42

inside of the tube wall is filled with concrete to provide structural support to the steel

plates. A schematic view of the cross-section of the shock tube driven section is shown

in Fig. 17. The driven section segments are also equipped with access ports at various

Figure 17: Schematic view of the cross-section of the shock tube driven sections.

locations where pressure transducers can be mounted to measure the speed of the shock

wave. The sealing between segments is provided by an O-ring placed in a groove on the

top part of each flange. There are twenty-four bolts connecting the flanges of different

sections. The interface section (where the bubble is created) and the test section (where

the post shock images are acquired) are combined on the same modular piece of the

shock tube as shown in Fig. 18. The key features of this section are four overlapping

large window ports, and seven variably sized ports on the section faces that are per-

pendicular to the large window ports. The large window ports are used for the imaging

windows, while the side ports can be used for housing the injector system as well as for
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a shadowgraph photography system.

(a) (b)

Figure 18: Photographs of the interface/test section: (a) open ports; (b) closed ports
and instrumentation.

3.2 Development of Retractable Injector System

An initial experimental study was conducted using a stationary bubble system [58]. For

the first set of experiments, a light bubble (air) was prepared in the test section filled

with argon as shown in Fig. 19(a). This setup only allowed for the study of the early

(compression) phase of the shock-bubble interaction. At later post-shock times, the

injector used to support the bubble in this experimental series would have obstructed

the view of the bubble and significantly altered the flow field. Thus a different initial

geometry was used, with a bubble hanging from an L-shaped injector (plastic tube),
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facing downwards as shown in Fig. 19(b). In this configuration, buoyancy would have

(a) (b)
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Figure 19: Injector system for stationary bubble experiments: (a) for early-time shock-
bubble interaction; and (b) for late-time experiments.

the adverse effect of pushing the bubble upwards, into the injector, therefore, a bubble

contains the heavy gas (argon) and the driven section is filled with nitrogen. The L-

shaped injector system was still not an ideal system as leaving the injector present in

the flow field disrupts the incident shock wave. Also, this setup only allows one to study

the shock-bubble interaction for heavy bubbles. Therefore a new injector was designed

as shown in Fig. 20 which can provide a free-rising or a free-falling bubble inside the

shock tube [56, 57].

A cable connects the injector to a pneumatic piston, which is controlled via a solenoid

valve. The inner wall of the injector plug sits flush with the shock tube wall. In each

experiment, a bubble is formed on the stainless steel injector, which is then pneumatically

retracted at high speed into a slot in the shock tube side wall in order to release the

bubble. It takes 240-260 ms to completely retract the injector. This setup results in
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Figure 20: Photograph of the retractable bubble injector showing the front/side view of
the injector plug.
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Figure 21: Photograph of the retractable bubble injector showing the back side of the
injector plug.

clean experiments where the bubble is in free fall or free rise, and the disruption to the

planar shock (that would occur if a holder was left in the flow cross-section) is minimized.

Figures 20 and 21 highlight the important features of the retractable injector system.

3.3 Optical Diagnostics

3.3.1 Initial Condition

To characterize the bubble evolution, it is essential to have a precise knowledge of the

shape and size of the bubble before shock interaction. In the case of the stationary

bubble experiments, a planar-Mie-scattering image is generated by shining a laser sheet

(at 532 nm) from a pulsed Nd:YAG laser (Continuum Surelite II) through the midplane
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of the bubble to obtain the initial condition of the bubble. The image is captured either

with a LaVision camera or Andor DV434-BU2 CCD camera. Both of these cameras have

the capability of storing multiple exposures on the same CCD array. Figure 22 shows

the initial condition for a hanging bubble filled with argon created using the L-shaped

injector system.

Figure 22: Initial condition for stationary bubble filled with Ar hanging from the L-
shaped injector. The shape deviates from a sphere due to sag from both the Ar being
heavier than the N2 driven gas and also the small accumulation of fluid visible at the
bottom of the bubble.

In the case of the retractable injector system, the release and free fall, or free rise,

of the bubble are recorded at 250 fps with a CCD camera (DALSA CA-D1-0256A) and

front lighting. This allows for imaging the evolution of the bubble during its release from

the holder and provides an initial condition image of the bubble prior to (within 10 ms)

shock interaction. Figure 23 shows a sequence of injector retraction and the early time

oscillation of the bubble after retraction. After release, the bubble oscillates on a time

scale of 100 ms, remaining nearly spherical as shown in Fig. 24. The sequence of images

in Fig. 25 shows that just before shock wave interaction, the bubble is nearly spherical

in shape. It is also evident from the images that the bubble does not deviate from its

free fall trajectory.
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Figure 23: Sequence of images showing the retraction of the injector and early time free
fall of an Ar bubble in the driven section of the shock tube filled with N2. The first
image shows the bubble being held by the injector prior to retraction and arrival of the
shock wave. The bubble is slightly elliptical immediately after the retraction as seen
in the next three images. The last image shows the injector is retracted into the slot
present in the shock tube.
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Figure 24: Measurement of oscillation of a heavy bubble with respect to time, after
release, from the retractable injector system. D is the initial diameter of the bubble.

Figure 25: Sequence of images showing the free fall of an Ar bubble in the window
directly below the injector system after retraction. The last image is just prior to the
shock wave interaction and shows the bubble has regained its near-spherical shape.
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3.3.2 Post-Shock Imaging

The evolution of the flow structures is captured using planar laser imaging. The flow

is illuminated with a pulsed Nd:YAG laser (Continuum Surelite II) and two Lambda

Physik excimer lasers (LPX210).

Figure 26: Photograph of the optic setup for the laser sheet imaging.

The Nd:YAG laser is capable of two pulses separated by a minimum of 100 ns with a

pulse width of 10 ns duration. The wavelength of light generated by the Nd:YAG laser is

532 nm, while for excimer laser it is 248 nm (ultraviolet). Individual beams are steered

into the driven section, using appropriate optics, through a 7.62 cm thick quartz window

in the bottom of the shock tube. The beams are formed into sheets, using cylindrical

lenses, before entering the driven section vertically through the end wall, and passing



51

through the mid-plane of the bubble as shown in Fig. 26.

The imaging technique used here takes advantage of the atomization of the liquid

bubble film as the incident shock wave passes through it. The size of the atomized

droplets is dependent on the shock wave strength and the average droplet size is esti-

mated to be on the order of 1 µm for a bubble accelerated by a M=2.88 shock [8, 56].

At lower Mach numbers, it may be noted that, because of the lower energy deposited

by the shock on the bubble film, the atomization is less efficient, resulting in an average

droplet size on the order of 30 µm for a bubble accelerated by a M=1.33 shock. A

detailed description of the bubble breakup mechanism is included later in this chapter.

Three 1024×1024 pixel array Andor (model 434) CCD cameras are used to capture

the Mie-scattered light resulting from the laser interaction with the atomized soap-film.

Comparisons have been made with the images obtained by seeding the bubble gas with

smoke in the case of a stationary bubble and the Mie-scattered signal from the soap

film is much brighter compared to that from the smoke particles . The flow structures

observed with and without seeding were similar, therefore, seeding of the bubble gas was

concluded to be unnecessary in further experiments. This maintains the purity of the

bubble gas and allows precise knowledge of the density ratio between the bubble and

ambient gases. Two images are recorded on a single CCD frame in dual-exposure mode

in the compression phase of the bubble. These two images are the Mie-scattering signal

resulting from the interaction of the Nd:YAG laser pulses with the atomized soap film.

For later times, a UV lens is used to focus the signal obtained from the interaction of

the excimer laser and atomized soap film onto the CCD array.

Since it is required to know precisely the location of the laser sheet with respect to

the bubble, a shadowgraph image is taken at a selected location, perpendicular to the
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(a) (b)

Figure 27: Post-shock shadowgraph images of an argon-filled bubble accelerated by an
M = 1.4 shock wave in N2 indicate: (a) no bubble deviation from the tube’s mid plane
after departure from the injector, and (b) slight bubble deviation to left. The bright line
in the images indicates the location of the laser sheet.

laser sheet using a collimated beam from a Xenon arc lamp. The image is captured using

a LaVision (Flowmaster3) camera, providing one of the post shock images of the bubble

in the compression phase as shown in Fig. 27. The viewing cross-section of this image

port is only 0.08×0.08 m. We can only acquire images during the shock compression

phase as the height of the bubble needs to be less than 0.08 m. The main purpose of

the shadowgraph image is to confirm the location of the bubble relative to the plane of

the laser sheet, since it is possible that the bubble’s trajectory can cause it to deviate

from the tube’s mid-plane after departure from the injector. The bright vertical line

in the center of the image indicates the location of the laser sheet. Figure 27(b) shows

that the bubble has slightly deviated towards the left side of the shock tube. For 90%

of the experiments performed, the bubble did not deviate a measurable amount from its

trajectory. In summary, the optical system is designed to acquire five post shock images,
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including four using planar laser imaging and one using the shadowgraph technique. This

allows for the study of the bubble distortion and development of the instability from

a single experiment. Figure 28 shows a simple schematic overview of the experimental

system used to study the shock wave interaction with a heavy bubble. In the case of

the light bubble experiments, the retractable injector was inverted so that the bubble

could rise freely once released from the injector without hitting the injector itself (see

Fig. 29).

3.4 Initial Condition Characterization

Although the soap bubble is the simplest way of preparing an interface between two

gases of different density, efforts were made to characterize every parameter in the initial

condition which could have an effect on the flow field at late-times.

3.4.1 Bubble Film Thickness

In the case of the heavy bubble, the soap film is estimated to be 0.5 µm thick with a slight

increase in thickness at the bottom of the bubble due to gravitational flow of the liquid

soap film. This estimation is based on the wave nature of light [26, 46], as the brilliant

colors observed in soap bubbles occur because of interference of light reflected from the

outer and inner surfaces of the bubble. Therefore, at any stage during bubble formation,

the thickness of the bubble is on the order of magnitude of the wavelength of visible light.

In addition, there is a stage in the life of bubbles referred to as “black bubbles”. This

occurs when the thickness of the bubble film is less than the wavelength of visible light,

but still a coherent film. When that happens, the bubble seems to disappear, but its
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Figure 28: Schematic view of experimental setup (not drawn to scale), showing the
configuration (1) before and (2) after retraction of the bubble injector for the heavy
bubble scenario.
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Figure 29: Schematic view of the experimental setup (not drawn to scale), showing
the configuration (1) before and (2) after retraction of the bubble injector for the light
bubble scenario.
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existence is known because droplets can be observed when the bubble pops. Sometimes,

during the bubble free fall, the upper hemisphere of the bubble appears to disappear;

although one can clearly see the lower hemisphere of the bubble. This suggests that

during the free fall or free rise, gravitational flow of the soap film leads to the thinning

of the upper half of the bubble.

The film thickness was also estimated by carefully measuring the mass of a film. This

was done using an isolated electronic balance (model ER-182 A). A 0.05 m diameter

bubble was created and popped carefully on a filter paper. The mass of the filter paper

was recorded before and after collecting the popped film. This process was carried out

twenty times to obtain the average mass of the film. The average mass of the film, used

to create a 0.05 m diameter bubble was found to be 9.0±0.4 milligrams. The density (ρ)

of the film solution was measured to be 1013 kg/m3. The film thickness (δ) was then

calculated to be

δ =
m

πD2ρ
≈ 1.0 µm. (3.1)

3.4.2 Flow Field Inside the Bubble

The velocity field inside the bubble, just before retraction, is an important parameter

which can affect the growth of the bubble at late times. It is believed that residual

circulatory motion inside the bubble can lead to the growth of small-scale features at

late time. Figure 30 shows a sequence of images during the bubble blowing process and

the bubble was seeded with smoke particles for flow visualization. The concentration of

the smoke seeding particles was sufficient to obtain the velocity field inside the bubble

by cross-correlation between two successive frames. Figure 31 shows the late time flow

field inside the bubble after the bubble blowing process was completed. It can be noted
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Figure 30: Sequence of images showing the flow field inside the bubble during the bubble
blowing process.

Figure 31: Sequence of images showing the flow field inside the bubble, thirty seconds
after completion of the bubble blowing process
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that there is a strong circulation during bubble blowing, but it clearly dies out as seen

in Fig. 31.

Figure 32 shows the velocity field inside the bubble during and after the blowing

process. The maximum velocity was seen on the vertical axis of the bubble during the

blowing process and was measured to be 0.015 m/s. During a shock tube experiment, the

bubble is left to sit on the injector for two to three minutes before retraction, wherein,

the velocity field inside the bubble decays considerably, after completion of the blowing

process. It is estimated that the maximum velocity inside the bubble was 0.005 m/s

after completion of the blowing process. The particle speed behind the shock wave for

a high Mach number experiment is on the order of 750 m/s and this suggests that the

velocity field inside the bubble is insignificant compared to the post-shock velocity. The

residual bubble-inflation flow only contributes perturbations with relative magnitudes

on the order of 10−5 to the post velocity field. Therefore, for all the practical purposes,

the velocity inside the bubble is assumed to be zero during interaction with the shock

wave and the subsequent shock-induced distortion of the bubble.

3.4.3 Bubble Breakup Mechanism

It is very important to understand the bubble breakup mechanism after shock inter-

action. It is a common experience that the process of rupture is rapid and driven by

surface tension; the energy released by the surface reduction is converted into kinetic en-

ergy, and partly dissipated. In 1990, Pandit and Davidson [50] reported on experiments

studying the hydrodynamics of the rupture of thin liquids films. Since then, extensive

experimental and theoretical work has been performed to understand this phenomenon.

During the early stage of this dissertation, one of the experimental ideas was to rupture
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(a)

(b)

Figure 32: Velocity field inside the bubble: (a) during the bubble blowing process, (b)
30 seconds after completion of the bubble blowing process.
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the soap film before the shock wave arrival which would have provided a filmless spher-

ical three-dimensional continuous interface between two gases. To fully utilize this idea,

one had to ensure that the interface was not distorted by the film rupture. To study the

effect of the film rupture on the initial interface, careful experiments were performed by

creating a helium bubble on a stainless steel pipe. Helium was doped with acetone to

perform planar laser induced fluorescence (PLIF) visualization using a Lambda Physik

excimer laser, emitting light at 248 nm wavelength. The rupture was initiated by passing

a Nd:YAG laser beam through the bubble.

Figure 33 shows a sequence of images depicting the rupture of the bubble. The

timing between consecutive frames is 1 ms. One can clearly see two circular holes grow

in the bubble after 1 ms, and the circular “rupture rims” following a nearly spherical

paths. The rim is subjected to the varicose instability, which leads to the shedding of

the droplets from the rim in flight, and is clearly visible in the experimental images

after 3 ms. Also, one can clearly see that the upper part of the left and right rims

have merged by the end of 3 ms. At this point, small-scale features are evident on the

continuous interface between helium and air. This led to the conclusion that the idea of

breaking the film before the shock arrival to obtain a clean continuous three-dimensional

interface was not feasible at this point. The moving rim velocity from the experiments

was estimated to be on the order of 10 m/s. The last image shows that the circular rims

have completely merged with each other, and the excess film material is collected at the

bottom of the bubble. Also evident at this stage is development of small ligaments on

the merged rim due to the varicose instability. This finally leads to the breakup of the

rim into fine droplets. Rayleigh [65] calculated a limiting velocity of vrim =
√

4σ/ρδ

from the surface tension (σ), the density (ρ) of the liquid, and the film thickness (δ),
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Figure 33: Sequence of images showing the bubble rupturing after being hit by a Nd:YAG
laser beam. The times after puncture of the film are stated on the image frames.



62

under the assumption that all released surface energy is converted into kinetic energy.

From the more general momentum balance, Cullick [11] and Taylor [68] derived the rim

velocity to be vrim =
√

2σ/ρδ and independently retrieved a missing dissipation term in

the model. This formulation is valid for the rim surrounding a hole in a spherical bubble

case and is estimated to be:

vrim =
√

2σ/ρδ =
√

2 ∗ 0.07281/1013 ∗ 1e− 6 ≈ 11.5 m/s. (3.2)

The breakdown of the bubble in the case of very low Mach number experiments is

similar to the one shown in Fig. 33. The shock wave propagation leads to the growth of

the circular holes, and such holes are clearly visible in the experimental image (Figure

9) of Haas and Sturtevant [21]. It has been postulated that these holes are probably

triggered by the Rayleigh-Taylor instability induced by the transmitted shock wave. At

low Mach number the vrim is comparable to the particle speed behind the shock wave.

As the shock strength is increased, more holes are created and consequently they grow

to a smaller diameter before merging.

Figure 34 shows that, in the case of moderate Mach number experiments (M ≈2.0),

the film looks immediately fragmented as a very dense patterns of holes are created. It is

evident that, due to immediate atomization of the bubble film, no small-scale structures

are visible on the bubble surface.

3.4.4 Drop Size Estimation

The size of the atomized film droplets after shock wave interaction is estimated here

using the model proposed by R. Cohen [8]. This is a statistical model (based on energy

and entropy principles), which describes the shattering of a single spherical liquid drop



63

M � 1.4 in nitrogen M � 2.0 in nitrogenM =1.4 in nitrogen M = 2.0 in nitrogen

Figure 34: Experimental images indicating the immediate atomization of the bubble
film after shock wave interaction. The atomization looks much more efficient for the
high Mach number case.

after being subjected to a blast wave in air. The first step in our calculation is to

approximate liquid film as lying within a solid sphere of equivalent mass. This is used

to calculate the diameter of the equivalent spherical liquid drop Deq as shown below:

m = πD2ρδ =
πρD3

eq

6
(3.3)

Deq =
3
√

6D2δ. (3.4)

The second step is to calculate the energy of impact (ET ) transferred to the drop. This

can be expressed as

ET =
1

2
ρ1u

′2
1

1

6
πD3

eq, (3.5)

where u′1 is the particle speed of the carrier gas. The Sauter mean diameter, D32, of the

atomized particles can be calculated from the following relation

D32

Deq

= 1.78ÊT

−0.946
, (3.6)

where the dimensionless impact energy, ÊT , is defined as

ÊT =
ET

σπD2
eq

. (3.7)
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Figure 35: Sauter mean diameter of spherical droplets produced in shock wave atom-
ization of a spherical drop having the same mass as the experimental film layer, plotted
against the Mach number of the incident shock wave.

The droplet diameter in this theory has an inverse dependence on the shock wave

strength, as shown in Fig. 35. The average droplet size is estimated to be on the order

of 1 µm, for a bubble accelerated by a M=2.88 shock wave. At lower Mach numbers, it

may be noted that, because of the lower energy deposited by the shock on the bubble

film, the atomization is less efficient. The average droplet size is estimated to be on the

order of 30 µm, for a bubble accelerated by a M=1.5 shock wave.

3.5 Experimental Procedure

This section describes the sequence of events in the experiment studying the interaction

of an M ≈ 2.03 shock wave in nitrogen with a heavy bubble filled with argon in free

fall. Before an experiment is conducted we construct a wave diagram (x-t plot) using

the one-dimensional gas dynamics approach [1], and then study the feasibility of the
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Figure 36: Wave diagram for a M = 2.03 shock wave in nitrogen.

experiment. Figure 36 shows a wave diagram for a M = 2.03 shock wave in a driven

section filled with nitrogen. Since the bubble occupies a very small region of the shock

tube driven section, we neglect its presence while constructing the wave diagram. In the

wave diagram, the red line on the left denotes the contact surface while one on the right

denotes the interface (the location of top of the bubble) which travels at the particle

velocity. Note that we are interested in studying a singly shocked bubble at this time.

The wave diagram shows that we can study this phenomenon during the time range

3.8 < t < 4.5 ms. The shocked bubble is unaffected by the driver rarefaction and the

reflected shock wave during this range. The sequence of events in the experiment is

stated below.
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1) A metal diaphragm is chosen which has a rupture pressure corresponding to

the pressure needed for the required shock strength. Then, the metal diaphragm

is placed between the driver and diaphragm section. The two sections are bolted

together using all the twenty-four bolts.

2) All imaging windows are cleaned and bolted to the shock tube. The tip of

the bubble injector is also cleaned at this time. Pressure transducer settings are

verified at this point.

3) The delay times for laser pulses are calculated from the one-dimensional gas

dynamics results, and the experimental history correlating the size of the bubble

to the free-flow time. The delay times are then preset in the experiment control

program.

4) The driver and driven sections are evacuated to 4800 Pa. The driver section

is then pressurized to 95% of the diaphragm rupture pressure with nitrogen. The

driven section is filled with nitrogen to atmospheric pressure and the two boost

tanks are filled with helium to 10 MPa.

5) Pre-shock background images are acquired with and without laser pulses.

6) A soap bubble is created with the stainless steel injector system by first displac-

ing any nitrogen in the injector with argon, then placing a layer of soap film on

the tip of the bubble injector, and finally, using a pneumatic cylinder of prescribed

volume to blow an argon bubble, approximately 5 cm in diameter.

7) The bubble is released from the injector by fast retraction of the injector into
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the slot located in the shock tube wall. After a delay of 250-350 ms, a downward-

moving shock wave impacts the bubble, having been released by discharging the

boost tanks, through fast-opening solenoid valves. The retraction process, fast-

opening solenoid valve, and the cameras are triggered by computer control program

based on the LabView software. Generally, the camera shutters remain open for

the entire process.

8) The retraction and free fall of the bubble is imaged with a fast framing camera

using front white lighting.

9) When the shock wave passes by a predetermined pressure transducer, the data

acquisition system is triggered, which records the pressure data, and also triggers

the laser pulses for imaging of the shocked-bubble flow field.

10) The acquired images are then saved and the pressure transducer data shown

in Fig. 37, are used to calculate the actual shock wave speed.

11) The initial location of the bubble just prior to shock wave interaction is noted

and it is used in conjunction with the measured shock wave speed to obtain the

age of the shocked bubble.

3.6 Experimental Study Scenarios

Eleven scenarios are considered, covering the Atwood and Mach number ranges −0.8 <

A < 0.7 and 1.3 < M < 3.5. The experimental scenario is designed to facilitate

the objectives stated in Chapter 1. In this study, the previous works of Haas and
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Figure 37: Pressure transducer traces acquired during the experiment.
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Sturtevant [21] and Layes et al. [35, 36] are extended to higher Mach numbers. An

overview of the experimental scenario is included as Table 1.

Scenario # Bubble gas Ambient gas M A u′1/c
′
1 Injector system

1 Helium Air 1.45 -0.757 0.515 Free Rise
2 Helium Air 2.08 -0.757 1.007 Free Rise
3 Helium Nitrogen 2.95 -0.750 1.346 Free Rise
4 Air Argon 2.13 -0.160 0.828 Stationary
5 Argon Nitrogen 1.33 0.176 0.438 Free Fall
6 Argon Nitrogen 2.03 0.176 0.980 Free Fall
7 Argon Nitrogen 2.88 0.176 1.326 Free Fall
8 Argon Nitrogen 3.38 0.176 1.449 Free Fall
9 Freon 22 Nitrogen 2.03 0.516 0.980 Free Fall
10 SF6 Nitrogen 2.07 0.681 1.002 Free Fall
11 SF6 Nitrogen 3.00 0.681 1.359 Free Fall

Table 1: Experimental study overview. M is the Mach number of the incident shock
wave; A is the pre-shock Atwood number at the bubble surface. u′1 and c′1 represent the
flow speed and the sound speed, respectively, of the shocked ambient gas.

3.7 Numerical Simulation

Several of the experimental configurations described above were simulated numerically

in three-dimensions by John Niederhaus using an adaptive-mesh refinement, Eulerian

hydrodynamics code called Raptor. The results are included in this dissertation for

comparison purposes, as well as to understand the evolving vorticity dynamics and sub-

sequent turbulent mixing. A detailed description of the numerical method and problem

setup has been reported by John Niederhaus in his doctoral thesis [47] and a very brief

description is included here.

Calculations for the shock-bubble interaction using Raptor are set up on a Cartesian
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mesh subtending a quadrant of a typical shock tube flow field, including a quarter-

spherical bubble of radius R = 2.54 cm. A coordinate system is defined whose y-axis

is coincident with the shock tube long axis, with physical dimensions 12.7×84.7×12.7

cm, and a base grid of 42×280×42 cells. Two levels of AMR are applied in the region

surrounding the bubble, with a refinement ratio of 4 each yielding a resolution of 134

cells for the bubble radius. The mesh is updated dynamically during the simulation,

maintaining all regions with nonzero bubble-fluid volume fraction, and regions in the

immediate neighborhood, at the highest level of spatial resolution. Symmetry conditions

are applied on the transverse boundaries to enforce quarter-symmetry and allow wave

reflections at the shock tube side walls. Inflow/outflow conditions are applied on the axial

boundaries to maintain constant driving pressure and allow waves to exit the domain

smoothly (no endwall is included).

In the initial condition, a planar shock wave with a specified density, velocity, and

pressure jump approaches the bubble. The shock moves in the +y-direction, and the

bubble is centered on the y-axis. The interface at the surface of the bubble is created

carefully in the initialization process by using a subgrid volume-of-fluid model to suppress

“stairstep” density features associated with realizing a curved interface in a Cartesian

mesh. The development of the flowfield is tracked at closely-spaced time intervals during

and after the impact of the shock on the bubble. In the case of an argon bubble, a third

fluid is added to the simulation to represent the thin liquid film layer enclosing the

bubble. However, this fluid is placed in a one-cell-thick layer (on the finest AMR level),

rather than in a layer representing the true film thickness, which is unresolvable here.

Therefore, this fluid is given a corresponding reduced density, so that the correct total

mass of the bubble film is present in the simulation. As an additional step in modeling
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the film, excess material is added on the lower extremity of the bubble, on both the inner

and the outer surfaces. This excess mass represents tiny exterior droplets (on the order

of D/25 in size) that form as a result of the technique used to produce the bubble and

quickly release it in the shock tube. This excess mass was observed in the experiments

for the argon bubble scenario.
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Chapter 4

Visualization Results

A series of snapshots showing the bubble development during and after interaction with a

shock wave is presented in this chapter. The experimental images illustrate the primary

and secondary flow features induced by shock interaction. It is shown that the bubble

distortion is completely different for the light bubble compared to the heavy bubble.

Also, Mach number effects are investigated for the heavy (convergent-geometry) and

light (divergent-geometry) bubble cases.

4.1 Divergent-Geometry: Mach Number Effects

Visualizations of shock-bubble-interaction flow fields from both simulations and exper-

iments are shown in Figs. 38-40 for a shocked helium bubble in air or nitrogen. Ex-

perimental images show Mie-scattered light from the midplane of the shocked bubble,

as described in Sec. 3.3.2. Numerical images show a slice through the dataset at an

angle of θ = π/6 to the x = 0 plane. The total density field is plotted, with an overlaid

contour indicating the isosurface of the helium volume fraction, f = 10−6; the vorticity

magnitude field ω= |∇ ×U| is plotted alongside the density field as a reflection about

the y-axis. The transverse width of the field of view is 8 cm in the experimental and nu-

merical images, and shock wave motion is downward. The time is non-dimensionalized

as τ = t/t′. The characteristic time t′ = D/(2Wt), is defined as the cloud crushing
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time, where D is the initial diameter of the bubble and Wt is the velocity of the shock

wave transmitted in the bubble. The value of Wt is computed from the one-dimensional

gasdynamics of a shock wave-slab interface interaction based on the value of incident

shock wave speed (Wi) measured from pressure transducer data.

4.1.1 Helium bubble in air, M=1.45

Visualizations of shock-bubble interaction flow fields for M = 1.45 are shown in Fig. 38.

At this relatively low Mach number, atomization of the soap film layer by the shock wave

is poor. Therefore, the soap film particles in the post-shock flow are larger and have

greater inertia than at higher Mach numbers. These larger particles are not as easily

entrained into the helium bubble fluid during shock passage, but appear to remain on

the interface. This can be seen clearly in Fig. 38(a-b), where the compressed bubble is

outlined by soap film material. Further, as time progresses, a cloud of large soap film

particles is left behind the shocked bubble due to their larger inertia. Such a cloud is

seen in Fig. 38(d-f ), and can be perceived also in the experimental shadowgraph images

of Haas and Sturtevant [21] and Layes et al. [35]. This cloud provides a strong Mie

scattering source in the present experiments, and a significant absorption region for

shadowgraphy diagnostics. However, it is not a feature of the shock-bubble interaction

itself, and is therefore not included in measurements of the streamwise and lateral length

scales of the shocked bubble.

Disregarding the distribution of soap film material, which is not included in the

numerical simulations, we observe that the patterns of deformation undergone by the

bubble in the simulations strongly resemble those seen in experiments. The bubble is

initially compressed axially during the transit of the initial shock wave, seen in Fig. 38(a).



74

(a) (b) (c)

triple 

point

triple 

point triple 

point

(a ′) (b ′) (c ′)

(d) (e) (f )

ω (s-1)
     ρ 

(kg/m3)

0.2

2.3

-5  104

5  104

(d ′) (e ′) (f ′)

Figure 38: Flowfield evolution of a He bubble in air, M = 1.45. Numerical images show
the total density on the left with the isosurface of f = 10−6 plotted in red, and vorticity
magnitude on the right. Dimensionless times τ are (a) 2.4, (a′) 2.4, (b) 2.5, (b′) 4.8, (c)
11.5, (c′) 7.7, (d) 21.6, (d′) 21.8, (e) 38.7, (e′) 38.9, (f) 57.9, (f ′) 57.9. The width of the
field of view in each image is 8 cm. The characteristic time is t′ ≈ 15.3 µs, for a bubble
initially of diameter 3.81 cm.
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Vorticity generated by the baroclinic mechanism of Eqs. 2.11-2.12 causes the upstream

surface of the bubble to deform and “cave in” toward the downstream surface [57], as

seen in Fig. 38(b-c). The caving-in portion of the upstream surface impinges on the

downstream surface, and vorticity generated during shock passage rolls up and draws

the bubble fluid into a characteristic primary vortex ring, as seen at the downstream

end of the bubble in Fig. 38(d). This “caving-in” or inversion process is a well-known

feature of divergent-geometry shock-bubble interactions, as observed in Refs. [21], [35],

and [57]. This caving in is analogous to the phase reversal observed in a single-mode

RMI experiment with the heavy gas above the light.

Meanwhile, some of the bubble fluid departs from the primary vortex ring and forms

a large trailing annular lobe of helium, which carries half or more of the bubble fluid

volume. The separation between the downstream and upstream volumes is first seen

in Fig. 38(d), where the upstream lobe is visible as a tear-shaped body between the

primary vortex ring and the bright cloud of soap film particles. In Fig. 38(e-f), this

trailing lobe continues to separate from the primary vortex ring, and the deforming

bubble thus elongates axially. Simulations show that this lobe is composed of pure,

unmixed helium, and although a faint shear layer is visible surrounding it in Fig. 38(f ′),

the vorticity magnitude is insufficient for the layer to cause the lobe to form a vortex

ring. Figure 38(d-f) illustrates the mass transfer from the helium lobe to the primary

vortex ring, and during this period, the primary vortex ring grows in size while the

trailing helium lobe continues to shrink.

One curious feature seen at late times (τ = 38.7) in Fig. 38(e) is a strong downstream-

oriented axial jet at the head of the shocked bubble. This feature is not seen in sim-

ulations, and is explained as an artifact of the soap-particle-based flow visualization
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technique. When the upstream portion of the bubble surface impinges on the down-

stream surface, strong induced velocities associated with the primary vortex ring draw

the impinging fluid into the vortex core. However, the film particles, due to their larger

inertia, continue their axial motion and subsequently run ahead of the primary vortex

ring. A jet of film material preceding the head of the shocked bubble is also seen in

the experimental images of Layes et al. [35] for air-helium shock-bubble interactions at

M = 1.25. This effect is absent at high Mach numbers due to more effective atomization

of the soap film layer.

4.1.2 Helium bubble in air, M=2.08

Experimental and numerical visualizations of air-helium shock-bubble interaction flow

fields for M = 2.08 are shown in Fig. 39. Here we see that, due to the higher Mach

number, the size of the atomized film particles has decreased, and the particles are more

effectively swept into the helium bubble fluid by the shock wave and the associated

post-shock velocity field. Thus, the flow diagnostic of the bubble fluid improves as the

Mach number increases.

In the M = 2.08 experiments and simulations, we again see the same processes

of shock-induced compression, primary vortex ring formation, and axial elongation as

observed at M = 1.45. The bubble is compressed during the transit of the initial shock

wave, as seen in Fig. 39(a-a′), and the inversion of the upstream surface is observed also

in Fig. 39(b-b′). At later times, for M = 2.08, however, we see the development of well-

defined vortical features at the upstream extremity, which are not seen at M = 1.45.

In Fig. 39(c′) the slip surface surrounding the trailing upstream lobe has rolled up

into a vortex ring, rotating in the opposite direction to the primary vortex ring, and
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Figure 39: Flowfield evolution of He bubble in air, M = 2.08. Numerical images show
(on the left) the total density with the isosurface of f = 10−6 plotted in red, and (on
the right) vorticity magnitude. Dimensionless times τ are (a) 2.0, (a′) 2.2, (b) 6.6, (b′)
5.8, (c) 41.7, (c′) 37.9. The width of the field of view in each image is 8 cm. The
characteristic time is t′ ≈ 12.3 µs, for a bubble initially of diameter 3.81 cm.
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will be referred to as the secondary vortex ring. A similar, counter-rotating feature is

apparent in the experimental image in Fig. 39(c). The mechanism for the development

of this feature is discussed in detail in the description of the M = 2.95 experiments

(Sec. 4.1.3). It is also apparent that the volume of bubble fluid carried by the trailing

lobes dramatically decreases as the Mach number increases. For M = 2.08, most of the

helium bubble fluid is entrained in the primary vortex ring, rather than the trailing lobe.

Finally, another notable difference between the M = 1.45 and M = 2.08 evolution

is the appearance of a small region of complex, disordered motion in the near-axis area

just downstream from the location of the secondary vortex ring in Fig. 39(c′), which

is not found at the lower Mach number. Small-scale vortical fluctuations appear, as

well as regions where the two fluids are strongly intermingled. These features do not

appear in two-dimensional simulations, and are the manifestation of three-dimensional

vorticity transport modes (vortex stretching) that are absent in two-dimensional vorticity

dynamics, and grow here because of the strong shear and vorticity introduced at high

Mach numbers.

4.1.3 Helium bubble in nitrogen, M=2.95

Experimental and numerical visualizations of He-N2 shock-bubble interaction flow fields

for M = 2.95 are shown in Fig. 40. In this high-Mach-number scenario, the size of

atomized film particles in the post-shock flow is very small, which allows them to follow

the flow much more closely. The decreased inertia of the soap film particles makes it

possible to visualize the shock-bubble interaction flow field without the interference of

a cloud of poorly-atomized film material in the upstream region.

In Fig. 40, several features of the flow field are observed to be noticeably altered from
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Figure 40: Flow field evolution of He bubble in N2, M = 2.95. Numerical images show
(on the left) the total density with the isosurface of f = 10−6 plotted in red, and (on
the right) vorticity magnitude. Dimensionless times τ are (a) 1.3, (a′) 1.3, (b) 4.0, (b′)
4.1, (c) 7.7, (c′) 7.7, (d) 11.4, (d′) 11.5, (e) 11.6, (e′) 11.8, (f) 23.8, (f ′) 23.6. The width
of the field of view in each image is 8 cm. The characteristic time is t′ ≈ 9.7 µs, for a
bubble initially of diameter 3.81 cm.
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the lower-Mach-number scenarios. The axial compression of the bubble during the initial

shock wave transit is visibly stronger, as observed in both experiments and simulations,

and is as expected from the Rankine-Hugoniot conditions. Further, a distinct primary

vortex ring forms very quickly, visible as a well-defined circular feature at τ = 7.7 in

Fig. 40(c). The size of the trailing lobe is also much smaller, to the point that only faint

wisps remain upstream of the primary vortex ring in Fig. 40(f), with the Mie-scattered

signal in Fig. 40(f) being dominated by the region of the primary vortex ring.

Several peculiar features are also visible in these images. First, in Fig. 40(a), we

note the bright horizontal discontinuity visible near the equator of the shocked bubble.

This feature is the front of atomized soap film particles under the acceleration of the

transmitted shock wave. Since these particles have a small but finite acceleration time,

they can be assumed to lag slightly behind the shock wave, and therefore do not exhibit

the concave curvature of the transmitted shock wave itself. This behavior is also seen

at M = 2.08, in Fig. 39(a). Another noticeable feature is the appearance of multiple-

scattering effects, due to the strength of the Mie-scattered signal generated in the plane

of the laser sheet, soap film particles entrained in regions of the bubble that lie outside

the plane of the laser sheet are also visible via secondary scattering events. This is

responsible for the dim regions visible between opposing vortex cores in Fig. 40(c-e).

Even more noticeable is the fact that by τ = 23.8, the development of a secondary

vortex ring is already nearly complete. This can be seen in the rotational motion evident

on the trailing wisps in Fig. 40(f), and in the numerical vorticity plots in Fig. 40(e′-f ′).

As in the M = 2.08 case, this vortex ring has opposite sense of rotation compared to that

associated with the primary vortex ring. Most of the helium bubble fluid is entrained

in the primary vortex ring, but induced velocities associated with the secondary vortex
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ring cause traces of helium to be drawn into the upstream region at late times.

In general, we observe remarkable agreement between experimental and numerical

flow visualizations shown in Fig. 40. The simulations capture both the bulk features of

the shocked bubble, including its dimensions and the configuration of vortex rings, as well

as many of the more subtle, small-scale features of the flow, including the spacing and

relative sizes of the vortex cores and the development of the upstream trailing strands of

bubble fluid. The experimental images exhibit a very strong Mie-scattering signal from

well-entrained soap film particles, and no individual particles are visible in the images.

(This is in contrast to the lower-M cases, where we would expect a much clearer flow

visualization if smaller scattering particles could be generated.) Most notable in both

experiments and simulations, is the development of a distinct primary vortex ring, which

is the dominant feature of both the observed and simulated flow field, and shows no sign

of deterioration for the temporal regimes shown in Fig. 40.

4.1.4 Helium bubble in air or nitrogen at late post-shock times

The behavior at later times for all three Mach numbers is depicted in a fourth set of

experimental and numerical flow visualizations shown in Fig. 41. The numerical images

in Fig. 41 show the helium volume fraction field (f), rather than the total density,

plotted on a logarithmic scale. In this way, the distribution of the bubble fluid even

at small concentrations can be observed more clearly. Further, in order to facilitate

comparison with experimental images, the grey scale for the volume fraction plots is

peaked at f = 10−4, with the maximum and minimum values of f colored black. In this

way, regions of pure helium in the vortex cores appear black, as they do in experiments,

due to centrifugal ejection of soap film particles from these vortices.
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Figure 41: Late-time flow field visualizations of He bubble in air or N2. Numerical
images show (on the left) the helium volume fraction f on a logarithmic gray scale
peaked at f = 10−4, and (on the right) vorticity magnitude ω. Dimensionless times τ
are (a) 105.8, (a′) 105.8, (b) 63.4, (b′) 63.5, (c) 69.5, (c′) 63.5. The characteristic times
and Mach numbers (for a bubble of initial diameter 3.81 cm) are (a − a′)t′ ≈ 15.3 µs,
M = 1.45 (b − b′)t′ ≈ 12.3 µs, M = 2.08 (c − c′)t′ ≈ 9.7 µs, M = 2.95. The width of
the field of view in each image is 8 cm. White dashed lines denote cropping locations
for experimental images.
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The late-time images in Fig. 41 illustrate the strength and duration of vortical motion

in divergent-geometry shock-bubble interactions. In the M = 1.45 case, the experimental

and numerical flow fields are shown at dimensionless time τ = 105.8, and yet the primary

vortex ring remains very well-defined and apparently stable. The visualizations for

M = 2.08 and 2.95 are shown for much earlier times, τ ≈ 65, and in these cases as well,

the downstream region of the flow field is dominated by the well-defined primary vortex

ring (PVR), which persists as a stable feature of the flow to very late times. In all three

cases, the strong axial elongation of the shocked bubble is also clearly evident, which

is due to the divergence of the primary vortex ring from either the trailing lobe or the

secondary vortex ring. (The elongation has proceeded farther in the low-M case shown

in Fig. 41(a) because of the later time.)

For M = 2.08 in Fig. 41(b), a secondary vortex ring can be seen at the upstream end

of the bubble. At M = 2.95, in Fig. 41(c), a stable, well-defined secondary vortex ring

(SVR) is visible, as well as a tertiary vortex ring (TVR) which appears at late times

just downstream from the SVR. The induced velocities associated with the SVR are so

strong that the upstream and downstream portions of the shocked bubble visibly begin

to separate from each other in Fig. 41(c). The SVR in both of these cases can be seen to

have the opposite sense of rotation to the PVR, however, no SVR of this type appears

in the M = 1.45 scenario, even at τ = 105.8. The only additional vortex formation that

occurs in the M = 1.45 scenario is the development of small-scale vortices co-rotating

with the primary vortex ring on the long neck between the PVR and the trailing lobe,

seen in Fig. 41(a-a′).

The origin of the secondary and tertiary vortex rings is in the slip line traced in the

flow field around the bubble by the triple point that develops as a result of irregular
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shock refraction. In Figs. 38(b′-c′), 39(b′), and 40(b′-c′), a triple point is visible in the

density field where the re-transmitted shock wave, Mach stem, and incident shock wave

all meet. As the shock wave returns to planarity, this point moves circumferentially

around the surface of the shocked bubble, just outside the interface. A contact surface

develops at the boundary between (1) fluid that has interacted with the re-transmitted

shock wave and the Mach stem and (2) fluid that has interacted only with the incident

shock wave. The path traveled by the triple point marks the boundary between these

two regions. Because fluid that has interacted with the Mach stem has a lower velocity

magnitude than fluid that has interacted with the incident shock wave, a shear layer

develops on the contact surface, with vorticity in the opposite sense to the PVR.

After the shock wave returns to planarity, a slip surface is left in the flow field, just

outside the surface of the shocked bubble. This process is depicted schematically in

Fig. 42. The slip surface can be seen in the numerical vorticity plots of Figs. 38-40 as

a blue streak traced around the shocked bubble. As time progresses, this shear layer

deforms in Kelvin-Helmholtz-like roll-ups, which appear first at the farthest-upstream

point on the shocked bubble and later at other locations nearer to the primary vortex

ring. This is seen most clearly in the M = 2.95 late-time images shown in Fig. 41(c-c′).

The emergence of these secondary vortices is significant for two reasons. First, they

contribute to the elongation of the mixing region, as the two counter-rotating vortex rings

tend to pull away from each other and eventually pinch off, as seen in Fig. 43. Second,

vortex rings are stable coherent structures that persist to very late times and propagate

downstream at nearly constant velocity. Thus, in shock-accelerated inhomogeneous flows

where strong irregular shock refraction takes place in the inhomogeneities, long-lived

vortex projectiles of this sort may be expected to arise in the flow as artifacts of shock
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Figure 42: Schematic view of a secondary vortex ring generation in divergent refraction
geometry (A < 0): (a) seeding of secondary vortex ring; (b) late-time separation of
primary and secondary vortex rings.

refraction and persist to very late post-shock times.

Several relevant length scales are visible in the vortex dynamics of the shock-bubble

interaction as shown in Fig. 44. The largest scale is the axial distance between the PVR

and the SVR (scale 1). The second scale (scale 2) can be associated with the geometrical

features (vortex major/minor diameter) of the PVR formed due to the initial baroclinic

vorticity deposition. The smallest scale is that of the features associated with secondary

instabilities like the Kelvin-Helmholtz instability seen on the edges of the PVR.

4.2 Convergent-Geometry: Mach Number Effects

Flow visualization images of a shocked Ar bubble in N2, for 1.33 ≤ M ≤ 3.38 are shown

in this section, to highlight the Mach number effects in the convergent-geometry shock

bubble interaction. This scenario corresponds to an Atwood number of A = 0.176.
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Figure 43: Late-time flow field visualizations of He bubble in N2, M = 2.95. Dimension-
less times τ are (a) 46.3, (b) 63.5, (c) 69.5. The characteristic time is t′ ≈ 9.7 µs, for a
bubble initially of diameter 3.81 cm.
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Figure 44: Length scales observed in shock-bubble interaction.
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4.2.1 Argon bubble in nitrogen, M = 2.88

Figures 45-47 show the evolution of the shocked bubble after contact with a M = 2.88

shock with a wave velocity Wi = 1017 m/s, an N2 particle velocity u′1 = 745 m/s and

transmitted shock wave speed Wt = 993 m/s. Several experiments have been conducted

and the reproducibility between different experiments is quite good with initial bubble

diameters in the range D = 5.0 ± 0.02 cm and incident Mach numbers in the range

2.88± 0.04. The time is non-dimensionalized in a similar fashion as described above.

In Fig. 45(a), the shock is visible midway through its transit across the argon bubble

region. Bright points at the upper and lower limbs of the bubble indicate the upper and

lower edges of the initial bubble film. The film layer is atomized upon shock impact,

and microscopic particles of liquid film are entrained nearly uniformly into the flow

behind the transmitted shock. The refractive effect of the heavier gas introduces a slight

upward bow into the shock front, and the longitudinal compressive effect of the shock

flattens the upper portion of the bubble. Shock refraction is complete in Fig. 45(b)and

atomized film material still appears to be nearly uniformly distributed throughout the

argon volume.

When the refracted shock wave is just downstream of the bubble, vortical features

begin to emerge on the bubble surface, small perturbations can be seen developing on

the outer limbs of the bubble in Fig. 45(c). These perturbations are the manifestation

of the baroclinic vorticity deposition on the Ar-N2 interface, which is strongest on the

bubble surface tangent to the flow direction. Figure 45(d) shows the bubble when the

shock is approximately 1.5 diameters downstream and the bubble has been compressed

into an inverted bowl-type shape. The strongest vorticity deposition predicted by the
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Figure 45: Experimental images of planar laser light Mie-scattered near the bubble
midplane, at time τ after the initial interaction of a M = 2.88 shock wave in N2 with
an Ar bubble: (a) τ = 0.92, (b) τ = 2.02, (c) τ = 2.52, (d) τ = 6.61, (e) τ = 9.06, (f )
τ = 10.91. The characteristic time is t′ ≈ 25.2 µs, for a bubble initially of diameter 5.0
cm.
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baroclinic model is at the left and right bubble limbs, and at these locations, in Fig. 45(e-

f ), a primary vortex ring (hereafter referred to as PVR) can be seen developing at

the downstream end of the bubble. Furthermore, the small scales introduced into the

vorticity field by the presence of the film material lead to a number of secondary features

that can be seen forming on the bubble surface at this time. The presence of film leads to

the formation of the reflected shock wave from the downstream end of the bubble. The

upper surface of the bubble is becoming distorted and a secondary vortex ring (hereafter

referred to as SVR) associated with the appearance of an upper mushroom structure is

becoming evident.

Figure 46 shows the development of the PVR and SVR in the flow field. The domi-

nant feature seen in Fig. 46(a-b) is the PVR at the downstream end of the bubble while

a small SVR is also observed at the upstream end of the bubble. The SVR at the up-

stream surface has the same sense of rotation as the PVR at the downstream surface of

the bubble. The PVR entrains ambient fluid from the central/side portion of the image

and swirls it into the center of the vortex ring. This is observed from the long tails, or

dendrite-like structures, associated with the PVR, visible in Fig. 46(a-b).

In Fig. 46(c), along with the PVR and the SVR, a secondary jet (SJ) is evident at

the top of the image. The secondary jet and vortex ring on the upstream surface of the

bubble represent the combined effect of nonuniformities on the initial bubble film, and

of the passage of the internally reflected shock over the upstream surface of the bubble.

In particular, liquid film mass accumulated at the bottom of the initial bubble film in a

gravitational meniscus is ejected in the upstream direction after shock passage, forming

a jet which pierces the upstream surface of the bubble. This leads to the growth of

additional vortical features near the apex and upper shoulders of the bubble. At the
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Figure 46: Experimental images of planar laser light Mie-scattered near the bubble
midplane, at time τ after the initial interaction of a M = 2.88 shock wave in N2 with an
Ar bubble: (a) τ = 15.52, (b) τ = 18.42, (c) τ = 21.08, (d) τ = 21.30. The characteristic
time is t′ ≈ 25.2 µs, for a bubble initially of diameter 5.0 cm.
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same time, a reflected shock wave moves upstream across the Ar region from the interior

bottom surface of the bubble, and upon crossing the upstream surface of the bubble,

induces the further growth of secondary vortices as shown numerically by Zabusky et al.

in 1998 [74] but never before confirmed experimentally.

PVR

SVR

SJ

(a) (b)

Figure 47: Late-time experimental images of planar laser light Mie-scattered near the
bubble midplane, at dimensionless time τ after the initial interaction of a M = 2.88 shock
wave in N2 with an Ar bubble: (a) τ = 28.68, (b) τ = 29.09. Each image represents a
9.0 cm × 13.6 cm region of the flow. The characteristic time is t′ ≈ 25.2 µs, for a bubble
initially of diameter 5.0 cm.

The bubble asymmetry about the vertical axis observed in Fig. 46(d) is due to

the onset of the bending mode instability commonly known as Widnall instability [71]

for laminar flows. One can also observe that the PVR is connected at the top of the

image through a cone-shaped channel (appearing as bright lines in a two dimensional
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Figure 48: Experimental image of planar laser light Mie-scattered near the Ar bubble
midplane, for incident shock wave strength M = 2.88 and dimensionless time τ = 39.70.
This image represents a 10 cm × 11 cm region of the flow. The characteristic time is
t′ ≈ 25.2 µs, for a bubble initially of diameter 5.0 cm.
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image) forming an approximately 45◦ angle to the horizontal. Figure 46 shows that this

channel continues to shrink in thickness and increase in length as the ambient fluid is

pulled into the vortex. The sum effect of these processes is the streamwise elongation of

the bubble regions and the development of the secondary vortex ring on the upstream

bubble surface. The primary vortex is stable even to very late times.

Figure 47(a) is at a much later time, when the shock is approximately ten diameters

downstream. At this point of its evolution, the bubble appears to be undergoing intense

fine-scale turbulent mixing in addition to major length scale growth. The PVR has

pulled fluid from above into the central portion previously filled with nitrogen gas and

tails of fluid also appear to develop from the PVR. Examination of the initial condition

for this experiment has shown that there was no excess film accumulated at the bottom

of the bubble. In contrast, Fig. 47(b) shows that the shocked bubble exhibits a strong

upstream jet when excess film is initially present at the bottom of the bubble. Therefore,

it is concluded, that the formation of the SVR is the result of the interaction of the

internally-reflected shock wave with the upstream bubble surface. The excess mass of

the film at the bottom leads to the secondary jet and enhances the geometry of the SVR.

At late-times, the induced velocity due to the PVR leads to the entrainment of the SVR

as it is apparent in Fig. 48. Similar flow features are visible in experiments involving

shocks of higher and lower strength outlined in Sec. 4.2.2- 4.2.3.

The computed density and Ar volume fraction fields and their evolution over time,

for a M = 2.88 planar shock, and a bubble with both the film layer and excess mass

included, are shown in Fig. 49. Simulations without film material [47] have shown that

shock diffraction, combined with a reflected rarefaction, can lead to the development of

weak secondary upstream jet and vortex ring, but this effect becomes more intense with
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Figure 49: Montage of computed flow field for M = 2.88 and a nonuniform initial film
layer. Left: Ar volume fraction; right: total density. (a) τ = 0, (b) τ = 4.65, (c)
τ = 13.17, (d) τ = 21.93. The characteristic time is t′ ≈ 25.2 µs, for a bubble initially
of diameter 5.0 cm.

the presence of a film layer. This is clearly seen in Fig. 49(b-d). Early-time comparison

between the experimental and simulation image is shown in Fig. 50. Five geometrical

features are marked on both the experimental and simulation image. All of these fea-

tures, except the vortex core (feature 5), are small scale features of the flow. In both

experiment and simulation, we observe the breaking of axial symmetry at late times.

The experimental bubble has inherent asymmetry in its initial condition due to pertur-

bations imposed by the bubble inflation and release processes; the simulated bubble has

grid-seeded perturbations. At late-times, these lead to the growth of azimuthal varia-

tions in the flow field, by a Widnall- type bending mode instability [71]. Vortex rings

develop bends and kinks, and vortical fluctuations grow, leading to chaotic, turbulent

motion in some regions of the flow. This is clearly illustrated in the three-dimensional

rendered plot of the late-time flow field shown in Fig. 51.
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Figure 50: Comparison between experimental and simulation image at early-time, M =
2.88. Simulation shows density plot on two different planes of the shocked bubble. Five
similar features are labeled on the experimental and simulation images: (1) vortical
inward divot at shocked bubble shoulder, (2) filaments at interior bubble waist being
drawn inward, forming a KH-type radially-inward oriented rollup or arc, (3) bases of
axial pedestal at bubble upstream pole, (4) shocked bubble downstream surface and (5)
spiral/cyclonic structure at outermost rim of shocked bubble, rotating under influence
of the primary vortex core.
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Figure 51: Argon bubble with soap film, shocked at M = 2.88 in a nitrogen environment,
from a three-dimensional simulation using Raptor. The 0.1 isosurface of argon volume
fraction is shown in blue, and an isosurface of vorticity magnitude is shown in red in
the cut-out region. The bubble is shown at a dimensionless time τ = 20.14. The
characteristic time is t′ ≈ 25.2 µs, for a bubble initially of diameter 5.0 cm.
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Figure 52: Experimental images (a,b) and computational argon volume fraction (c,d) ,
for an M = 3.38 shock in nitrogen (moving vertically from top to bottom) incident on
an argon bubble. Non-dimensional times τ are given relative to shock arrival at the top
of the bubble. (a) τ = 2.0, (b) τ = 4.0, (a′) τ = 3.0, (b′) τ = 4.6. The characteristic
time is t′ ≈ 21.3 µs, for a bubble initially of diameter 5.0 cm. Shock motion is from top
to bottom.
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Figure 53: Experimental images (a,b) and computational argon volume fraction (c,d) ,
for an M = 3.38 shock in nitrogen (moving vertically from top to bottom) incident on
an argon bubble. Non-dimensional times τ are given relative to shock arrival at the top
of the bubble. (a) τ = 7.1, (b) τ = 14.3, (a′) τ = 7.9, (b′) τ = 14.7. The characteristic
time is t′ ≈ 21.3 µs, for a bubble initially of diameter 5.0 cm. Shock motion is from top
to bottom.
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4.2.2 Argon bubble in nitrogen, M = 3.38

Figure 52 shows the early-time shocked bubble development for M = 3.38. Figure 52(a, a′)

illustrates the initial compression of the bubble to an ellipsoidal shape, and developing

vortical features can be seen in the Fig. 52(b, b′) at the outer limbs of the bubble, which

grow to form a well-defined vortex ring at later times. In Fig. 53(a, a′) a strong jet due

to excess film material is seen extending upstream from the apex of the bubble, along

with a SVR growing on the upstream bubble surface. The PVR, however, remains the

dominant feature of the flow, and maintains its coherent structures even at late time, as

seen in Fig. 53(b). The bending of the vortex ring is evident in both the experimental

and simulation images. Figure 54 shows that the vertical jet and secondary vortex rings

are amplified if both an interior and exterior drop of film material are present in the

initial condition at the bottom extremity of the bubble. It is important to note that

even in the absence of excess film material adhering to the bottom extremity, a very

small vertical jet and SVR are visible in the simulation image.

During the M = 3.38 experimental campaign, one of the imaging windows was

broken due to the dynamic shock loading, which significantly changed our experimental

plan for this Mach number. After this incident, no more experiments were performed at

this Mach number. Therefore, no experimental image is available to show the late-time

behavior for the shocked bubble at this Mach number.

4.2.3 Argon bubble in nitrogen, M = 1.33

At M = 1.33, the evolution of the shocked bubble is similar and experimental results

are shown in Fig. 55. Figure 55a represents the shadowgraph image acquired during
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Initial Condition

Figure 54: Simulation images indicating the effect of the non-uniformities on the post-
shock flow. Vertical jet and secondary vortex rings are amplified if both and interior
and exterior drop of film material are present in the initial condition.

the compression phase of the bubble. The bright vertical line in the center of the image

indicates the location of the laser sheet. The shock deposits vorticity on the bubble

surface, which subsequently deforms into a PVR. Also it may be noted that, because

of the lower energy deposited by the shock on the bubble film, the atomization is less

efficient, which results in large particles of liquid film in the flow, as seen in Fig. 55(b).

Due to the presence of film in the experiment, the internally reflected shock is stronger

than in the filmless numerical case. Therefore, even at a low Mach number a small

SVR is evident in Fig. 55(d) but is no longer seen in Fig. 55(e-f ), while the PVR

remains the most dominant feature of the flow. The vortical cores are much more

defined when compared with the high Mach number experiments at late times. During

these experiments, efforts were made to eliminate the excess initial mass deposition at
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the downstream pole of the bubble. With the excess initial film mass eliminated, no

secondary vertical jet at the apex of the bubble is observed in the post-shock flow shown

in Fig. 55. However, the simulations were performed using the same initial condition as

the other Mach numbers. Simulation images in Fig. 56 show a very good agreement with

the experimental images even at the late-time. The only difference between simulation

and experiment is the presence of the secondary vertical jet in the simulation. Figure 57

highlights the similarities between the experimental and simulation image at late-time,

where the entrainment patterns observed in the experiments are observed in the same

spatial locations as the bubble density in the simulation.

4.2.4 Argon bubble in nitrogen, M=2.03

Figure 58 shows the development of an argon bubble accelerated by a M = 2.03 shock

wave in nitrogen. The evolution of the shocked bubble is similar to the low and high

Mach number scenarios discussed earlier in this section. The shock wave propagation

leads to the compression of the bubble visible in Fig. 58(b). A distinguishable vortex

ring core forms in the flow field by τ = 11 as seen in Fig. 58(c) due to the baroclinic

vorticity deposition, and remains the dominant feature of the flow through late times,

as seen in Fig. 58(d).

To summarize, in all the four cases, a distinguishable vortex ring core forms in the

flow field due to the baroclinic vorticity deposition. In the case of M = 1.33, this core

is visible by τ = 20; while in the case of M = 3.38, it is visible much sooner (by τ = 8).

In all the cases, the refractive effect is very weak due to the small magnitude of A.

Therefore, as seen in Fig. 58(a), the transmitted shock wave front inside the bubble

looks planar. A secondary vortex ring is visible at the apex of the bubble in all the
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(a)

(f)(e)

(d)(c)

(b)

Figure 55: Flow field evolution for Ar bubble in N2, M = 1.33. Dimensionless times τ
are (a) τ = 9.5, (b) τ = 15.5, (c) τ = 26.6, (d) τ = 46.5, (e) τ = 51.5, (f ) τ = 71.5.
The characteristic time is t′ ≈ 57.1 µs, for a bubble initially of diameter 5.0 cm. Shock
motion is from top to bottom. Image shown in (a) is obtained using shadowgraphy
technique.
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(a) (b) (c)

(d) (e) (f)

Figure 56: Montage of computed flow field for M = 1.33 and a nonuniform initial film
layer. Left: Ar volume fraction; right: total density. (a) τ = 0, (b) τ ≈ 9.5, (c) τ ≈ 15.5,
(d) τ ≈ 26.0, (e) τ ≈ 47.5, (f) τ ≈ 71.0. Non-dimensional times τ are given relative
to shock arrival at the top of the bubble. The characteristic time is t′ ≈ 57.1 µs, for a
bubble initially of diameter 5.0 cm. Shock motion is from top to bottom.
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Figure 57: Comparison between experimental and simulation images (Left: Ar volume
fraction; right: total density) at late-time (τ ≈ 71.5), M = 1.33. Feature 1: petal or
filament of shocked bubble material (or film material) trailing the primary vortex core
in a spiral structure. Feature 2: Similar feature as 1 but trailing at greater downstream
distance, in longer, more gentle arc. The characteristic time is t′ ≈ 57.1 µs, for a bubble
initially of diameter 5.0 cm.
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(a) (b)

(c) (d)

Figure 58: Experimental images of a shocked (M = 2.03) Ar bubble in N2. Non-
dimensional times τ are given relative to shock arrival at the top of the bubble. (a)
τ = 0.74, (b) τ = 3.05,(c) τ = 11.55, (d) τ = 36.87. The characteristic time is t′ ≈ 36.3
µs, for a bubble initially of diameter 5.0 cm. The width of the field of view in each image
is 7.5 cm.
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cases; however, it is more prominent in the high Mach cases. The presence of excess

film mass at the bottom of the bubble leads to the formation of a secondary jet at the

apex of the bubble, and in all four cases, the flow field at late-times is dominated by the

primary vortex ring.

4.3 Convergent-Geometry: Atwood Number Effects

In order to study the Atwood number effects, and to deepen the understanding of the

shock-refraction phenomenon for convergent-geometry shock-bubble interaction, three

more experimental campaigns (scenarios 9-11, Tab. 1) are performed for A > 0.5. In this

section, flow visualization images are presented for those three scenarios and comparisons

are made to the results obtained for low Atwood number scenarios discussed in Sec. 4.2.

4.3.1 Refrigerant-22 bubble in nitrogen, M=2.03

Figure 59 shows the development of a Refrigerant (R-22) bubble accelerated by a M =

2.03 shock wave in nitrogen. This scenario corresponds to an Atwood number of A =

0.516. In this case, t′ ≈ 35.4 µs, for a Refrigerant (R-22) bubble initially of radius

1.6 cm. The upper and lower images of Fig. 59(a) illustrate the initial compression of

the bubble and development of the vortical structures at the side of the bubble. The

one striking difference between the flowfield shown in Fig. 59(a) and Fig. 58(b) is the

appearance of a small axial jet at the downstream end of the bubble. This small jet is

formed due to the focusing of the transmitted shock wave at the downstream pole of the

bubble.

In the high Atwood number scenarios as depicted in figure 8, a portion of the shock
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Figure 59: Experimental images of a shocked (M = 2.03) R-22 bubble in nitrogen. Non-
dimensional times τ are given relative to shock arrival at the top of the bubble. (a) top:
τ = 2.0; bottom:τ = 2.6, (b) τ = 25.1. The characteristic time is t′ ≈ 35.4 µs, for a
bubble initially of diameter 3.2 cm. The width of the field of view in each image is 7.5
cm.
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wave front sweeping around the bubble periphery is diffracted, meaning it is turned

toward the axis so that the surface of discontinuity remains nearly normal to the inter-

face [21, 48]. The diffracted shock waves then collide with each other at the downstream

pole. The diffracted shock wave collision, along with the focusing of the transmitted

shock wave, produces an intense pressure jump and initiates additional baroclinic vor-

ticity deposition. Secondary shock waves are generated due to shock focusing and lead

to dramatic changes in the observed flow field at late times. This effect can be compared

to a reshock phenomenon, familiar from Richtmyer-Meshkov flows in shock tubes. Fig-

ure 59(b) shows that the late-time flow field is dominated by a turbulent plume rather

than the primary vortex ring as seen in Fig. 58(d).

4.3.2 Sulfur-hexafluoride bubble in nitrogen, M=2.07, 2.94

Figure 60 shows the development of a sulfur-hexafluoride bubble accelerated by a M =

2.07 shock wave in nitrogen. This scenario corresponds to an Atwood number of A =

0.681. In this case, the refractive effect is quite strong when compared to the Ar-N2

scenario. Thus, the transmitted shock wave has a concave curvature right from the

beginning of the shock propagation through the bubble as shown in Fig. 60(a). The

shock wave propagation leads to the compression of the bubble visible in Fig. 60(b),

where the unshocked part of the bubble is also visible. Due to the shock focussing effect

described in sec 4.3.1, the late-time flow field is again dominated by a turbulent plume

as seen in Fig. 60(d).

A complex field of secondary shock waves is generated between the shocked bubble

and the incident shock wave after shock focussing. The secondary shock waves propa-

gating in the lateral and upstream directions traverse the already deforming bubble and
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(a) (b)

(c) (d)

Figure 60: Experimental images of a shocked (M = 2.07) sulfur-hexaflouride bubble in
nitrogen. Non-dimensional times τ are given relative to shock arrival at the top of the
bubble. (a) τ = 0.43, (b) τ = 0.82 ,(c) τ = 2.18, (d) τ = 14.14. The characteristic time
is t′ ≈ 43.0 µs, for a bubble initially of diameter 3.2 cm. The width of the field of view
in each image is 7.5 cm.
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Figure 61: Late-time experimental image of a shocked (M = 2.94) sulfur-hexaflouride
bubble in nitrogen. The bubble is shown at a dimensionless time τ = 17.9. The charac-
teristic time is t′ ≈ 28.2 µs, for a bubble initially of diameter 3.2 cm.

enhance the complexity of the evolving vorticity field. More small-scale features are ob-

served in the turbulent plume region here, compared to the one seen in Fig. 59(d) for R-22

bubble. The plume region observed in Fig. 60(d) represents a strongly disordered state

of the vorticity field. Fig. 61 shows the late-time flow field for a sulphur-hexafluoride

bubble accelerated in nitrogen by a M = 2.94 shock wave. Due to the combined intensity

of the shock focusing effects and the azimuthal transport of vorticity, the vortex ring is

highly distorted and nearly indistinguishable. The shocked bubble is effectively reduced

to a small core of compressed fluid, which trails behind a plume-like structure indicative

of a well-developed mixing region.

These results show good agreement with calculations performed by Niederhaus et

al. [48], showing the distinct effects that arise due to shock focusing in the case of an

R12 bubble (A = 0.613) accelerated by a M = 5.0 shock wave. Results presented in

Section 4.2.2 showed that the primary vortex ring existed at very late times in the case
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of low Atwood number flow even at high Mach number and suggest that the increased

Mach number is not itself sufficient to induce the development of this plume feature.

The growth of this turbulent plume is mostly due to the nonlinear acoustic effects which

are associated with the density contrast between the bubble and the ambient gas.
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Chapter 5

Analysis and Discussion

This chapter provides a detailed analysis of quantitative measurements obtained from

the experimental data. Quantitative measurements include: a) translational velocities

of the bubble and the associated vortex rings, b) circulation (deduced from the rings’

velocity-defect), and c) different geometrical length scales (axial/lateral extents of the

bubble and minor/major diameters of the vortex rings).

Figure 62 shows the pixel intensity line-out across the core of the primary vortex

ring formed during the interaction of an argon bubble with an M = 2.88 shock wave

in nitrogen. The line-out reveals the location of the center of the vortex ring, vortex

core and edges of the core. From these line-outs, the length scales are measured in the

experiments. Features from the line-out identified by local minima and maxima in pixel

intensity can be directly compared with those from the numerical simulation results.

5.1 Translational Velocity

The translational velocities of the bubble and vortex ring after shock interaction have

been studied numerically and theoretically. Different velocity models have been discussed

in Section 2.6.

Figure 63 shows three pairs of post-shock images, where each pair was captured on

the same CCD array. The bubble and vortex displacements measured from such images
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Figure 62: Pixel line-out across the core of primary vortex ring formed during the
interaction of an argon bubble with an M = 2.88 shock in nitrogen.
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Figure 63: Schematic representation of displacement measurement in shock-bubble in-
teractions at: (a) early-phase and (b) late-times.

are used to obtain the bubble velocity Vb and vortex velocity Vv. At early times, the

velocity is that of the bubble whose location is measured as the average of the top

and bottom of the bubble as shown in Fig. 63(a). The initial bubble velocity is then

computed as Vb = 0.5 (X1 + X2) /∆t, where ∆t is the time difference between these

images. After a distinct, identifiable vortex core has formed, the vortex velocity is

measured for experiments where two post-shock images are obtained on a single image

as shown in Fig. 63(b). The translational velocity of the vortex ring is computed as

Vv = X/∆t, where X is the displacement of the vortex measured over ∆t. This velocity

is plotted at the mean of the two image times.

Figure 64 shows the velocity of an argon bubble V , accelerated by a M = 2.88 shock

wave in nitrogen and non-dimensionalized by the shocked gas particle speed (u′1), as a

function of time. The bubble velocity behaves in a similar fashion to that observed for

a weakly-shocked krypton bubble in air by Layes et al [35]. That is, the bubble initially

accelerates up to the particle velocity (within the experimental error), and then the
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velocity falls below the particle speed at later times due to the formation of the vortex

ring. The measurement error is on the order of 1% based on the spatial accuracy of the

CCD image and the timing jitter for the two laser pulses.

0 5 10 15 20 25
0

0.5

1

1.25

τ

V
/u

1'

V Vb v

Figure 64: Velocity of an argon bubble accelerated by a M = 2.88 shock in nitrogen
(A = 0.176). In the early phase of the bubble growth, it is represented as Vb and later,
after the growth of the vortex ring, as Vv.

The ratio of the vortex velocity to the particle speed, Vv/u
′
1, is calculated at late-

time using the Picone-Boris (Eq. 2.20) and Rudinger-Somers velocity models (Eq. 2.16).

Table 2 shows the normalized vortex velocity Vv/u
′
1 averaged over all times 2tu′1/D >

20.0 for experimental scenarios 5-8 (see Tab. 1), along with the predictions of the Picone-

Boris and Rudinger-Somers model. The circulation-based model of Picone and Boris

provides a reliable prediction for the experimentally measured values for M > 2.0, with

the difference between the model and the experimental data being less than 2%. On the

other hand, the difference between the Rudinger-Somers model and the experimentally

measured data is about 5% for M < 2.5. In summary, both models show very good

agreement with the measured values from the experiments for these scenarios.
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M Vv/u
′
1 Vv/u

′
1 Vv/u

′
1

Experiment PB model RS model
1.33 0.94 0.954 0.912
2.03 0.96 0.961 0.935
2.88 0.96 0.964 0.960
3.38 0.97 0.965 0.970

Table 2: Normalized vortex velocity, measured in experiments, and predicted by the
Picone-Boris (PB) and Rudinger-Somers (RS) models for Ar bubble in N2 scenarios
(A = 0.176). In the experiments, the value is computed as a mean of velocities for
2tu′1/D > 20.0.

In the case of the shocked helium bubble (Tab. 1, scenarios 1-3), multiple vortex

rings are seen at late-times in the flow field. In order to compare the vortex velocity

in these scenarios, the ratio of the translational velocity associated with the primary

vortex ring to the post-shock ambient flow speed u′1, is plotted in Fig. 65 along with the

simulation results. Also shown in this plot (right margin) are the values predicted using

the Picone-Boris model. The experimentally measured velocities, like those obtained

from simulations, oscillate strongly during the initial transient phase (particularly for

M = 1.45), and arrive at a nearly steady value slightly greater than u′1 at later times.

The initial variability persists only until a coherent vortex structure forms.

After 2tu′1/D ≈ 5, the vortex ring velocity does not diminish significantly throughout

the duration of the experiments or simulations. The normalized vortex ring velocity

Vv/u
′
1, averaged over all times 2tu′1/D > 7.5 for each scenario, is shown in Table 3,

along with the predictions of the Picone-Boris and Rudinger-Somers models, and the

experimentally measured averaged values. We see that the vortex ring which rotates

in an opposite sense to the heavy bubble, moves at a substantially higher speed than

the surrounding gas – as much as 35% higher in the simulations – although the relative
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Figure 65: Normalized translation speed of primary vortex ring, plotted on a dimen-
sionless timescale based on the ambient shocked flow speed u′1 for helium bubble in
air/nitrogen scenarios (A ≈ −0.8). Symbols represent experimental data; lines represent
simulation results. Horizontal lines on the right margin indicate normalized translation
speeds predicted by the Picone-Boris model.
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M Vv/u
′
1 Vv/u

′
1 Vv/u

′
1 Vv/u

′
1

Simulation Experiment PB model RS model
1.45 1.354 1.277 1.276 1.589
2.08 1.255 1.216 1.220 1.589
2.95 1.219 1.146 1.197 1.581

Table 3: Normalized primary vortex ring translation speed for helium bubble in air/N2

(A ≈ −0.8), computed from simulations, measured in experiments, and predicted by
the Picone-Boris (PB) and Rudinger-Somers (RS) models for divergent geometry shock-
bubble interactions. In the experiments and simulations, the value is computed as a the
mean of velocities measured for 2tu′1/D > 7.5.

velocity between the bubble and the ambient gas decreases significantly as the Mach

number increases.

Once again, the circulation-based model of Picone and Boris provides a reliable

prediction for the experimentally measured velocity. The difference between the Picone-

Boris model and the experimentally measured values is less than 2%. The Rudinger-

Somers model, on the other hand, drastically overestimates the vortex ring velocity rel-

ative to both simulations and experiments for the divergent geometry of these particular

scenarios, although it showed good agreement for the convergent-geometry shock-bubble

interactions. As for the vortex ring velocities obtained from the simulations, they con-

sistently exceed those measured from the experiments, though the difference is roughly

6% or less. This difference can be attributed to the effect of film material in the ex-

periments. The film material provides a very strong acoustic impedance mismatch on

the bubble surface, so that some portion of the shock wave impulse is transferred to

reflected shock waves, as well as to the atomization process. Shock waves of this type –

reflected from helium-filled soap bubbles in air – were also observed by Haas and Sturte-

vant [21]; however, their strength and their influence on the subsequent development of
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the flow field are only inferred here. Measurements of these effects are not provided here

or elsewhere, and are left for future work. Despite these effects, the agreement between

measured, simulated, and modeled vortex ring velocities indicated in Fig. 65 and Table

3 is remarkable.

Table 4 shows the measured non-dimensionalized vortex ring velocity,Vv/u
′
1, for the

high Atwood number convergent-geometry shock-bubble interactions. Both, the Picone-

Boris and Rudinger-Somers velocity models fail to provide a reliable prediction for the

experimentally measured velocity. In all three cases, the Picone-Boris model overesti-

mates the vortex velocity by roughly 5% or more, whereas the Rudinger-Somer model

underestimates it by roughly 10%. It can be noted from Tables 2-4, that for a constant

Mach number (M ≈ 2.0 cases), the vortex ring velocity ratio decreases with an increase

in Atwood number. This suggests that for a fixed Mach number, the circulation associ-

ated with the primary vortex ring increases in strength with an increase in the Atwood

number.

Gas pair M A Vv/u
′
1 Vv/u

′
1 Vv/u

′
1

Experiment PB model RS model
R22-N2 2.03 0.516 0.74 0.868 0.675
SF6-N2 2.07 0.681 0.63 0.785 0.623
SF6-N2 2.94 0.681 0.74 0.778 0.611

Table 4: Normalized vortex velocity, measured in experiments, and predicted by
the Picone-Boris (PB) and Rudinger-Somers (RS) models for high Atwood number,
convergent-geometry, shock-bubble interactions. In the experiments, the value is com-
puted as a mean of the velocities for 2tu′1/D > 8.0.
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5.2 Geometrical Length Scales

The most readily obtainable quantities from the experimental images of a shocked bubble

are the axial (height) and lateral (width) extent of the bubble. Figure 66 shows four

relevant length scales of the shocked heavy bubble: w is the maximum width, h is the

maximum height, Dv is the major diameter of the vortex ring, and dv is the minor

diameter of the vortex ring. Figure 67 is a drawing of the relevant length scales of the

shocked light bubble at different phases of the evolution. In the analysis, the length

scales are non-dimensionalized by the initial bubble diameter for both heavy and light

bubbles, e.g. Lh=h/D. The time is non-dimensionalized as, τ = t/t′. The characteristic

time t′ = D/(2Wt), is defined as the cloud crushing time, where D is initial diameter of

the bubble and Wt is the transmitted shock wave velocity in the bubble.
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Figure 66: Geometrical length scales for a heavy bubble.
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Figure 67: Geometrical length scales for a light bubble at the different phases of evolu-
tion.

5.2.1 Convergent-geometry: argon bubble scenarios

Figure 68 shows the width, height, and vortex size measurements for an Ar bubble in N2,

accelerated by a M = 2.88 shock wave. Three temporal regions of interest are observed,

separated with the dashed vertical lines on the plots: region 1 is the compression zone

(0 < τ < 7.5); region 2 is the vortex-pair-induced mixing zone (7.5 < τ < 18.0);

and region 3 is the highly turbulent mixing zone (τ > 18). The earliest post-shock

picture shows an initial flattening of the bubble caused by the compression of the shock

wave. From the height plot (Fig. 68b) the compression is observed taking place until

τ=7.5, after which, Lh starts to grow. This axial compression is accompanied by a

transverse spreading, as observed in the width plot (Fig. 68a) where Lw has reached

a local maximum. Near τ=10 the width suddenly decreases due to the shock wave

reflected from the shock tube side walls which originated when the incident shock wave

reflected off the surface of the bubble. The influence of the shock tube walls on w was

discussed previously in a numerical study of a weakly shocked bubble [55]. The vortex
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Figure 68: Non-dimensional length scales of an argon bubble accelerated by an M = 2.88
shock wave as functions of non-dimensional time: (a) width, (b) height, and (c) vortex
dimensions.
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formation begins at τ=9.0 (Fig. 68c) in region 2 where the height is increasing rapidly

and the width, which has reached a plateau, decreases. The formation of the vortex

ring enhances the mixing and this is evident in the rapid increase in the core diameter

(minor diameter of the vortex ring).

The width, which increased during the compression region, decreases and reaches a

second plateau at Lw ≈1.25. The height, however, continues to increase within 7.5 <

τ < 16 and then decreases for 16 < τ < 18.5. The reason for the measured decrease of

the height is the suction of the tail of the vortex inside the vortex ring. The data points

denoted by square symbols represent the height of the bubble excluding the tail of the

vortex ring. The tail swirl inside the vortex ring leads to entrainment of the surrounding

N2 gas into the vortex ring. Later in time, this leads to the splitting of the vortex rings

and then the experiment enters a phase of highly turbulent mixing. During this phase

the width begins to increase at a constant rate. Further experiments are needed at later

times to determine if this growth continues or reaches an asymptotic value. Also in this

region the Lh and Lv curves appear to begin a constant growth phase, and the height

(Lh) of the bubble grows linearly (after the compression phase) and the rate of the axial

elongation (α = dLh/dτ) of the bubble is measured to be α = 0.051.

Figure 69 shows a comparison between the growth trends for M = 2.88 and M = 3.38

shocked Ar bubbles in N2 with computational data obtained from Raptor also included.

Computational and experimental results show good agreement for the height during

the compression phase of the bubble, although experimental results show higher lateral

growth rates. After τ ≈ 10, the effect of shock reflections from the shock tube side walls

can be seen on the transverse growth plot in Fig. 69(b). In the simulations, this halts the

lateral growth; whereas, in the experiments, it dramatically decreases the bubble width
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Figure 69: Comparison between non-dimensional growth trends for shocked Ar bubble
in N2, M = 2.88, 3.38: (a) height, and (b) width.

as discussed before. In the axial growth trend shown in Fig. 69(a), the re-expansion

effect is stronger in the simulations.

Figure 70 shows the growth trends for a M = 1.33 shocked Ar bubble. The axial

growth trends plotted in Fig. 70(a) indicate the compression of the bubble for τ < 10,

while the transverse growth trends shown in Fig. 70(b) reflect a corresponding lateral

expansion. Figure 70(a) again shows that the re-expansion effect is stronger in the

simulation. The height (Lh) of the bubble grows linearly after the compression phase,

and the rate of the axial elongation (α = dLh/dτ) of the bubble is measured to be

α = 0.027. The observed difference in the rate of the elongation between higher and

lower Mach number experiments can be attributed to the formation of the secondary

vortex ring in higher Mach number scenarios.

Figure 71 shows the growth trends for a M = 2.03 shocked Ar bubble. The growth

trends are similar to the other Mach numbers described above. The rate of axial elon-

gation of the bubble is measured to be α = 0.028. Figure 72 highlights the comparison
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Figure 70: Non-dimensional growth trends for shocked Ar bubble in N2, M = 1.33: (a)
height, and (b) width.
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Figure 71: Non-dimensional growth trends for shocked Ar bubble in N2, M = 2.03: (a)
height, and (b) width.
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between the growth trends for the M = 1.33 and M = 2.03 experiments. Figure 72 (a)

shows that the axial compression effect is stronger in the case of the M = 2.03 experi-

ments although, the rate of elongation is same for both cases. Surprisingly, the lateral

growth is higher in the case of the M = 1.33 experiments. This observed difference can

be attributed to the strength of the shock waves reflected off the shock tube side walls.

In the case of the low- Mach- number experiments, the reflected waves are very weak,

and hence, the lateral extent of bubble continues to grow in time.
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Figure 72: Comparison between non-dimensional growth trends for shocked Ar bubble
in N2, M = 1.33, 2.03: (a) height, and (b) width.

Table 5 summarizes the results discussed so far for the shocked argon bubble. The

minimum expected value for Lh is estimated from the conservation of mass as (Lh)min =

(Wi − u′1)/Wi. The minimum axial dimension reached by the bubble during the experi-

ment varies significantly with the Mach number. The experimental values of the (Lh)min

are significantly higher compared to the theoretical value for M > 2.0 . In general, for

M > 2.0, the minimum axial dimension reached by the bubble is 1.3(Wi − u′1)/Wi.

The rate of axial elongation significantly increases for M > 2.03, suggesting some sort of
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transition for M > 2.03. It is thought that at Mach numbers where the flow speed of the

shocked ambient gas becomes supersonic (for a shock wave in nitrogen at atmospheric

temperature this occurs at M = 2.07), there are compressibility effects that may alter

the growth of the bubble. Although the data suggest this is probably the case, it is still

premature to make a definite conclusion.

M Wi u′1 Theoretical Experimental Asymptotic width Axial Growth
[m/s] [m/s] (Lh)min (Lh)min (Lw)stab α = dLh/dτ

1.33 469.4 170.1 0.64 0.68 1.5 0.027
2.03 716.5 452.4 0.37 0.48 1.3 0.028
2.88 1016.5 745.2 0.27 0.37 1.5 0.053
3.38 1192.9 907.5 0.24 0.33 1.4 0.067

Table 5: Experimental result overview for a shocked Ar bubble in N2. M and Wi

represents the Mach number and speed of the incident shock wave respectively. u′1
represent the flow speed of the shocked ambient gas.

Although the dimensionless timescale for growth measurements used thus far is based

on the transmitted shock wave speed, a number of other timescales were also tested.

Figure 73 shows the temporal evolution of the axial dimension of the shocked bubble

for 1.33 ≤ M ≤ 3.38, plotted on three different dimensionless timescales. In Fig. 73(a)

the dimensionless timescale is based on the transmitted shock wave speed Wt and in

Figs. 73(b) and 73(c), the incident shock wave speed Wi, and the flow speed of the shocked

ambient gas u′1 are utilized respectively, to calculate the dimensionless timescales. None

of the timescales displayed a collapse of the bubble dimension data to a single trend for

all M . This may be considered a shortcoming of the dimensionless timescales discussed

so far, or a lack of self similarity behavior over the Mach number regime considered here.
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Figure 73: Axial dimension of a shocked Ar bubble in N2, for 1.33 ≤ M ≤ 3.38, plotted
on a non-dimensional timescale. The time is non-dimensionalized as τ = t/t′; where (a)
t′ = D/(2Wt), (b) t′ = D/(2Wi), and (c) t′ = D/(2u′1).
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5.2.2 Divergent-geometry: Helium bubble scenarios

Figures 74-75 show the evolution of the axial (height) and lateral (width) extents of a

shocked helium bubble. Four regions of interest have been labeled on the width plot

separated by vertical dashed lines to facilitate the description of the evolution. The

earliest post-shock images show an initial flattening of the bubble caused by compression

due to shock interaction. The height plot in Fig. 74(b) shows compression taking place

until τ=4.0. The transverse spreading associated with the initial flattening can be

observed in region 1 of the width plot, Figure 74(a), where Lwu reaches a local maximum.

This early phase of evolution up to τ=7.0 is denoted as region 1. Similar growth trends

for the lateral and axial extents of the bubble are observed in Fig. 75(a)-(b) for the

low-Mach-number scenario during region 1.
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Figure 74: Non-dimensional length scales of a helium bubble accelerated by a M = 2.95
shock as functions of non-dimensional time: (a) width , and (b) height.

The next phase of the bubble evolution, region 2, sees the mass transfer from the

body of the bubble to the primary vortex ring (PVR) occurring. This can be clearly

seen in the width plot (Fig. 75a) where Lwu starts decreasing with an increase in Lwd
.
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Figure 75: Non-dimensional length scales of a helium bubble accelerated by a M = 1.45
shock as functions of non-dimensional time: (a) width , and (b) height.

The second phase (region 2) of the shocked bubble evolution is of much shorter duration

in the M = 2.95 case (see Fig. 74a), which suggests that the primary vortex ring is

much stronger in high- Mach- number scenario. The height grows linearly after the

compression phase, and the rate of axial elongation (α = dLh/dτ) of the bubble for the

M = 2.95 case is measured to be α= 0.051. The rate of axial elongation (α) of the bubble

for the M = 1.45 case is measured to be α= 0.024. This difference can be attributed

to the higher shock strength. It may be noted that the particle velocity behind the

shock wave, in the case of M = 2.95 experiments, is supersonic while in the case of low-

M experiments it is subsonic. The observed difference in the rate of axial elongation,

supports the argument that compressibility effects play an important role in the shocked

flows when the particle velocity behind the shock becomes supersonic. Following region

2, a sudden decrease is observed in Lw, due to the shock wave reflected from the shock

tube side walls which originated when the incident shock wave was reflected off the

surface of the bubble (this can be attributed to the presence of the soap film). Finally,
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in region 4, Lw reaches a plateau at late times.
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Figure 76: Axial dimension of a shocked helium bubble for 1.45 ≤ M ≤ 2.95, plotted
on a non-dimensional timescale. The time is non-dimensionalized as τ = t/t′; where (a)
t′ = D/(2Wt), (b) t′ = D/(2Wi), and (c) t′ = D/(2u′1). Symbols represent experimental
data; lines represent Raptor simulation results.

The experimental results obtained here are also compared to their numerical coun-

terparts. The experimental and numerical data are plotted on a series of dimensionless

timescales in Figs. 76-77. Comparing the axial dimension trends for timescales based on

various characteristic velocity scales, we see that, for these scenarios, a timescale based
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on the incident shock wave speed Wi as a characteristic velocity (Fig. 76b) yields the

closest approach to a self-similar growth trend by collapsing the data for τ < 20. Such

a conclusion is justified by the observation that: the speed of the incident shock wave,

not the transmitted shock wave or the shocked ambient flow, sets the speed with which

the slip surface and secondary vortex ring (SVR) are generated in the flow field; and the

separation of the SVR from the PVR is the primary agent of the elongation seen after the

compression phase in the trends, for M > 2. It can also be noted from these plots that

the Raptor simulations capture the evolution in the axial dimension of the bubble with

good accuracy, although the agreement deteriorates at later times, particularly for the

low-Mach-number scenarios. Table 6 presents a summary of the axial compression ob-

served in the case of the shocked helium bubble. The experimental values of the (Lh)min

are significantly higher compared to the theoretical value for M > 2.0. In general, for

M > 2.0, the minimum axial dimension reached by the bubble is 1.3(Wi−u′1)/Wi, which

was also observed for the heavy Ar bubble scenarios.

M Wi u′1 Theoretical Experimental
[m/s] [m/s] (Lh)min (Lh)min

1.45 503.3 220.0 0.56 0.55
2.08 721.9 462.7 0.36 0.48
2.95 1042.0 768.2 0.26 0.34

Table 6: Experimental result overview for a shocked He bubble in air or N2. M , Wi and
u′1 represent the Mach number, speed of the incident shock wave and flow speed of the
shocked ambient gas respectively.

The evolution of the lateral dimension of the shocked bubble is also compared to

the Raptor simulations as shown in Fig. 77. In the simulation, the maximum diametral

dimension is tracked for the bubble. Therefore the experimental data shown in Fig. 77,
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Figure 77: Lateral dimension of a shocked helium bubble for 1.45 ≤ M ≤ 2.95, plotted
on a non-dimensional timescale. The time is non-dimensionalized as τ = t/t′; where (a)
t′ = D/(2Wt), (b) t′ = D/(2Wi), and (c) t′ = D/(2u′1). Symbols represent experimental
data; lines represent Raptor simulation results.
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denotes either wu or wd, depending upon whichever is maximum. The lateral dimensions

grow as vortices form around the bubble, but remain at a relatively constant level subse-

quently, with some oscillations due to secondary shock waves and the rotation of material

around the vortices. Here we see that although the trends in the axial dimension of the

bubble scale according to a characteristic timescale based on Wi, trends in the lateral

dimension collapse to a near self-similar trend (for early times) only on a timescale based

on u′1, the post-shock ambient flow speed as shown in Fig. 77(c). Comparison between

experimental and numerical data in Fig. 77 indicates a much stronger lateral growth at

early times for M = 1.45 experiments than is found in simulations, though the early-

time agreement is improved for higher Mach numbers. At late times, the experimental

data do not show a clear trend, however, both experiment and numerical results indicate

that the lateral extent of the shocked bubble does not exceed 1.5D.

5.2.3 Convergent-geometry: M ≈ 2.0 scenarios

Here, we measure the axial and transverse dimension of the shocked bubble for a fixed M

in order to determine the effect of Atwood number on the growth trends. The temporal

evolution of the axial (height) and lateral (width) extents of the M ≈ 2.03 shocked

bubble, for the Atwood number range 0.17 ≤ A ≤ 0.68, are plotted on a series of

dimensionless timescales in Figs. 78-79. The axial dimension of the bubble goes through

a minimum during the shock-compression phase, and then grows at a nearly constant

rate until very late times. Comparing the trends for timescales, based on different

characteristic velocities, we see that, for these scenarios, a timescale based on the Wi,

shown in Fig. 78(b), yields the closest approach to self-similar trend by collapsing the

data for A > 0.5 cases. Figure 78 indicates much stronger axial growth for higher
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Atwood numbers, although at early-times, the minimum axial dimension reached by the

bubble is roughly the same for all the scenarios. This difference can be attributed to

the complex field of secondary shock waves generated due to shock focusing in the case

of high Atwood number flows. Regions of intense mixing develop in the flow field which

significantly increase the axial growth of the bubble. For higher Atwood number cases,

the lateral dimension of the bubble shows a stairstep growth profile. In Fig. 79(c), a

dramatic drop in the lateral dimension of bubble, even below the initial value, is evident

for the A > 0.5 cases. Such behavior has not been seen in any other scenarios. The

width of the bubble reaches a plateau by τ ≈ 8.0, and again starts to increase by τ ≈ 20.

It finally reaches a second plateau by τ ≈ 25, and subsequently remains at a relatively

constant level.

Comparing the trends for timescales, based on different characteristic velocities, we

saw that, for these scenarios, the Atwood number has a significant effect on the axial

growth rate of the bubble. Therefore, a new non-dimensional timescale is built which

includes the Atwood number (A) in its formulation. The new non-dimensional timescale

is given as τ = t/t′, where t′ = D/(2WiA
p). At this time, there is no physical justification

for choosing the exponent of A. Different values of p were tested, and we found that

p = 0.95, provided the best fit to the experimental data for the post shock compression

phase. The axial elongation rates of the bubble for various values of p are presented

in Tab. 7. Figure 80(a) shows the temporal evolution of the axial dimension of the

bubble based on this new timescale for p = 0.95. We see that this new timescale yields

a self-similar growth trend for the axial dimension of the bubble, however, the lateral

dimension resembles a self-similar growth trend only for 5 ≤ τ ≤ 10. Although the data

suggest this is probably a very good scaling law, it is still premature to make a definite
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Figure 78: Axial dimension of a shocked heavy gas bubble (0.17 ≤ A ≤ 0.68) for
M ≈ 2.03, plotted on a non-dimensional timescale. The time is non-dimensionalized as
τ = t/t′; where (a) t′ = D/(2Wt), (b) t′ = D/(2Wi), and (c) t′ = D/(2u′1).
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Figure 79: Lateral dimension of a shocked heavy gas bubble (0.17 ≤ A ≤ 0.68) for
M ≈ 2.03, plotted on a non-dimensional timescale. The time is non-dimensionalized as
τ = t/t′; where (a) t′ = D/(2Wt), (b) t′ = D/(2Wi), and (c) t′ = D/(2u′1).
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Gases M A α = dLh

dτ
α = dLh

dτ
α = dLh

dτ
α = dLh

dτ
α = dLh

dτ

p = 0.8 p = 0.9 p = 0.95 p = 1.0 p = 1.1
Ar-N2 2.03 0.176 0.1074 0.1277 0.1393 0.1520 0.1808
R22-N2 2.03 0.516 0.1249 0.1344 0.1379 0.1425 0.1523
SF6-N2 2.07 0.681 0.1314 0.1366 0.1392 0.1419 0.1475

Table 7: Axial growth rate (α = dLh/dτ) for different values of p. The non-dimensional
timescale is given as τ = t/t′, where t′ = D/(2WiA

p).

conclusion here. Therefore, this remains a subject for future work.

5.3 Circulation

The method by which shock-bubble interactions have most commonly been understood

and analyzed is by the means of the circulation. The circulation quantifies the net

strength of the vortex rings generated by the shock-bubble interactions. For this reason,

it has been the subject of a number of analytical models with various conceptual bases as

discussed in Sec. 2.6. Circulation models proposed by three sets of authors are considered

here: Picone and Boris (PB) [51, 52]; Yang, Kubota, and Zukoski (YKZ) [72]; and

Samtaney and Zabusky (SZ) [64, 74]. Each of these models predicts the total circulation

in the flow field after the shock wave passage through the bubble.

In the PB and YKZ models, Eq. 2.18 is utilized to obtain the circulation in one half

of the bubble, with the only source term for the vorticity being the baroclinic term. In

our notation, the PB model, is given by

ΓPB ≈ 2u′1

(
1− u′1

2Wi

)(
D

2

)
ln

(
ρ1

ρ2

)
, (5.1)
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Figure 80: Non-dimensional length scales of a shocked heavy gas bubble (0.17 ≤ A ≤
0.68) for M ≈ 2.03, plotted on a non-dimensional timescale given as τ = t/t′, where
t′ = D/(2WiA

p). (a) Axial dimension, (b) lateral dimension and (c) zoomed view of
lateral dimension for 0 ≤ τ ≤ 10.
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and the YKZ model by

ΓYKZ ≈ 2D

Wi

p′1 − p1

ρ′1

(
ρ2 − ρ1

ρ2 + ρ1

)
. (5.2)

Samtaney and Zabusky produced an in-depth analysis of the baroclinic vorticity deposi-

tion on a planar interface using shock polar analysis and extended it to the spherical case

using a “near-normality” condition. Recently, for the case of 0 < A < 0.2, Niederhaus et

al. [48] observed that the “near-normality” condition does not hold, and suggested a

minor modification to the model. This yields the following formula for the circulation:

ΓSZ =





(
4

1 + γ

) (
1− χ−

1
2

) (
1 + M−1 + 2M−2

)
(M − 1) (D/2) c1, 0 < A < 0.2

(
1 +

π

2

) (
2

1 + γ

) (
1− χ−

1
2

) (
1 + M−1 + 2M−2

)
(M − 1) (D/2) c1, A ≥ 0.2

,

(5.3)

where the dimensionless scaling law (equation 5.15 of SZ) has been multiplied by the

ratio c1/γ
1
2 , in order to obtain the circulation in physical units.

In order to obtain the circulation from experimental data here, Kelvin’s vortex model

is used, following the method of Haas and Sturtevant [21]. The Kelvin formula [34, 63]

for the velocity of a moving vortex ring of major diameter Dv and minor diameter dv is

given as :

U =
Γ

2πDv

[
ln

(
8Dv

dv

)
− 1

4
+ o

(
dv

Dv

)]
, (5.4)

where Γ is the circulation about the ring. Moore in 1985 [63], presented a modified

version of Kelvin’s vortex model for the propagation speed of a uniform vortex ring in a

compressible fluid to lowest order in the Mach number given as

U =
Γ

2πDv

[
ln

(
8Dv

dv

)
− 1

4
−

(
5M2

v

12

)]
, (5.5)

where Mv = U/c1 is the translational Mach number of the vortex ring. In our experi-

ments the velocity defect U = Vv−u′1, and the major and minor diameters of the vortex
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ring are known. Therefore the circulation associated with a vortex ring can be estimated

using the Kelvin’s (ΓK) and Moore’s (ΓM) formula as

ΓK = 2πDv (Vv − u′1)
[
ln

(
8Dv

dv

)
− 1

4

]−1

, (5.6)

ΓM = 2πDv (Vv − u′1)
[
ln

(
8Dv

dv

)
− 1

4
−

(
5M2

v

12

)]−1

. (5.7)

This quantitative analysis across a broad parameter space makes the present study useful

as a tool for the evaluation of various analytical models. For each scenario, a “mean”

circulation is calculated from experiments by averaging over all times 2tWt/D > 10

for the convergent-geometry, and 2tWt/D > 20 for divergent-geometry shock-bubble

interactions. The circulation values in the model and experiments are scaled for a

bubble of initial diameter, D = 0.0381 m. Comparisons have also been made with the

available Raptor simulation results.

5.3.1 Divergent-geometry shock-bubble interactions

Experimental results from divergent-geometry shock-bubble interactions are presented

in Table 8, along with the predictions of the various analytical models, and the results

computed from the Raptor simulations. The data shown in Table 8 indicate remarkable

agreement between (1) the PVR circulation (ΓPVR) measured from experimental data

(through Kelvin/Moore model), (2) that obtained from net integrated vorticity in sim-

ulations (Γ̄0), and (3) that predicted by the YKZ model (ΓYKZ), except at M = 1.45.

These results indicate that the YKZ model gives the most accurate prediction of the

late-time circulation, long after the initial shock wave transit. The difference between

the circulation obtained using Kelvin’s and Moore’s formula is less than 3%. It can also
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Gases M ΓK
PVR ΓM

PVR Γ̄0 ΓK
PVR ΓYKZ ΓPB ΓK

SVR ΓK
SVR

Exp. Exp. Raptor Raptor Model Model Exp. Raptor
He-air 1.45 4.80 4.83 8.415 8.169 7.058 12.819 – –
He-air 2.08 9.82 10.01 9.827 12.869 9.472 23.447 – -2.279
He-N2 2.95 10.38 10.64 12.366 18.282 11.373 35.504 -2.29 -5.592

Table 8: Mean circulation extracted from experiments and Raptor simulations for
2tWt/D > 20, and predicted by analytical models for divergent-geometry shock-bubble
interactions. ΓK

PVR (Exp.) and ΓM
PVR (Exp.) represent mean experimental values of

the circulation calculated using Kelvin’s model (Eq. 5.6) and Moore’s model (Eq. 5.7),
respectively. Γ̄0 represents the mean net circulation obtained from simulation using inte-
grated vorticity method, and the values ΓK

PVR (Raptor) and ΓK
SVR (Raptor) are computed

for the circulation values obtained from simulations using Eq. 5.6 (Kelvin’s model). Cir-
culation values are given in units of m2/s.

be noted that, as observed in previous work [72], the PB model overestimates the circu-

lation by a factor of two or more. The extension of Samtaney and Zabusky [64] model

for A < 0 has not been adapted to circular interfaces successfully, and comparison with

this model is therefore omitted here.

5.3.2 Convergent-geometry shock-bubble interactions

Experimental results from convergent-geometry shock-bubble interactions are presented

in Table 9, along with the predictions of the various analytical models, and the results

computed from the Raptor simulations. We note that as we increase the Atwood number,

the circulation associated with the vortex ring increases dramatically. For M ≈ 2.03,

the circulation increased seven times by increasing the value of A from 0.176 to 0.681.

This difference can be attributed to the strong shock refraction in the case of higher

Atwood number scenarios, which leads to a significant difference in the translational

velocity of the bubble with respect to the post-shock flow speed. A transition from
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Gases M A ΓK ΓM Γ̄0 ΓYKZ ΓPB ΓSZ

Exp. Exp. Raptor Model Model Model
Ar-N2 1.33 0.176 -0.98 -0.98 -1.46 -1.45 -1.74 -1.65
Ar-N2 2.03 0.176 -1.36 -1.36 — -2.24 -3.84 -3.52
Ar-N2 2.88 0.176 -2.02 -2.02 -3.19 -2.67 -4.88 -5.17
Ar-N2 3.38 0.176 -2.05 -2.05 -3.51 -2.91 -6.23 -6.06
R22-N2 2.03 0.516 -8.23 -8.34 — -6.56 -13.57 -13.41
SF6-N2 2.07 0.681 -14.06 -14.65 — -8.75 -20.15 -18.12
SF6-N2 2.94 0.681 -17.05 -18.20 — -10.43 -30.15 -26.48

Table 9: Mean circulation extracted from experiments and Raptor simulations for
2tWt/D > 10, and predicted by analytical models for convergent-geometry shock-bubble
interactions. ΓK (Exp.) and ΓM (Exp.) represent mean experimental values of the circu-
lation calculated using Kelvin’s (Eq. 5.6) and Moore’s model (Eq. 5.7), respectively. Γ̄0

represents the mean net circulation obtained from simulation using integrated vorticity
method. Circulation values are given in units of m2/s.

large-scale coherent structures at low A to fine-scales complex structure at high A was

observed in the experiments performed at fixed Mach number discussed in Chapter 4.

With the limited data available for comparison, one can see that the Raptor simulations

overpredict the experimental circulation values by a factor of approximately 1.5. The

PB model overpredicts the experimental value by roughly 30% or more at high density

contrasts, A > 0.2, but drastically overpredicts the circulation by a factor of two or more

for A < 0.2. The YKZ model performs reliably for A < 0.2, with better comparison

with increasing Mach number. The SZ model provides a reasonable estimates in general

for A > 0.2, but it is unrealiable for A < 0.2. Overall, the results shown in Tables 8-9

suggest that a consistent and reliable predictive model for the shocked-bubble circulation

does not yet exist.

To characterize the turbulence characteristics of the flow, the physical Reynolds

number associated with the shock-bubble interactions can be estimated on the basis on
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Gas µ
[Kg/m-s]

He 1.993×10−5

N2 1.768×10−5

Air 1.857×10−5

Ar 2.229×10−5

R22 1.302×10−5

SF6 1.625×10−5

Table 10: Dynamic viscosities for gases in the present study, obtained from JANAF data
[18] at P1 = 0.098274 MPa and T1 = 300 K.

the circulation Γ, as

ReΓ =
Γ∗

ν∗
, (5.8)

where Γ∗ is a characteristic circulation for the flow, and ν∗ is a characteristic kinematic

viscosity. If we take Γ∗ to be the circulation associated with the primary vortex ring (see

Sec. 5.3), and take ν∗ to be the weighted average of the two fluids’ kinematic viscosities,

ν∗ = (µ1 +µ2)/(ρ1 + ρ2), then we obtain the physical Reynolds numbers for the shocked

flow field. The dynamic viscosities used to calculate ν∗ are shown in Table 10.

Vortex rings generated in the flow can be laminar or turbulent, and their behav-

ior can be explained on the basis of the Reynolds number as shown in Table 11. The

circulation-based Reynolds number (ReΓ) in the experiment is nearly one order of mag-

nitude greater than the mixing-transition Reynolds number identified by Dimotakis [15]

as 2×104. Therefore, in all of the present scenarios, the flow field is turbulent at late-

times. In the case of high-Atwood number high-Mach number experiment, we observed

that the shocked bubble is effectively reduced to a small core of compressed fluid, which

trails behind a plume-like structure indicative of a well-developed mixing region. Such
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Gases M A Γ∗ ν∗ ReΓ Behavior
[m2/s] [m2/s] vortex ring

He-air 1.45 -0.757 4.83 2.809×10−5 1.72×105 Turbulent
He-air 2.08 -0.757 10.01 2.809×10−5 3.56×105 Turbulent
He-N2 2.95 -0.750 10.64 5.091×10−5 2.09×105 Turbulent
Ar-N2 1.33 0.176 0.98 1.415×10−5 6.93×104 Turbulent
Ar-N2 2.03 0.176 1.36 1.415×10−5 9.61×104 Turbulent
Ar-N2 2.88 0.176 2.02 1.415×10−5 1.43×105 Turbulent
Ar-N2 3.38 0.176 2.05 1.415×10−5 1.45×105 Turbulent
R22-N2 2.03 0.516 8.34 0.638×10−5 1.31×106 Turbulent
SF6-N2 2.07 0.681 14.65 0.464×10−5 3.15×106 Turbulent
SF6-N2 2.94 0.681 18.20 0.464×10−5 3.92×106 Turbulent

Table 11: Reynolds number for shock-bubble interaction evaluated using Eq. 5.8. The
expected behavior of the vortex ring is characterized on the basis of the Reynolds number.

behavior is justified on the basis of the Reynolds number obtained in these scenarios

(ReΓ > 1.0× 106).

5.4 Comparison with Laser-Driven Experiments

Several shock-driven experiments for a spherical inhomogeneity have been carried out

successfully at high Mach number (M ∼ 10) using both the Omega laser at the Lab-

oratory of Laser Energetics [60, 22] and the NOVA laser at LLNL [30, 31]. These

experiments have been described briefly in sec. 2.7. Klein et al. [31] utilized the NOVA

laser to generate a strong shock wave (M = 10) which traveled within a miniature

beryllium shock tube, 750 µm in diameter, filled with a plastic of density 1.06 g cm−3.

Embedded in the plastic was a copper sphere 100 µm in diameter of density 8.9 g cm−3.

This corresponds to a convergent-geometry shock-bubble interaction for Atwood num-

ber, A = 0.787. The incident shock-wave speed is calculated from the paper (Fig.15)
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to be Wi = 1.66 × 104 m/s. In Fig. 81 we show a comparison between the shock tube

experiments and laser-driven experiment for the axial dimension of the bubble. The time

is non-dimensionalized as as τ = t/t′; where t′ = D/(2WiA
0.95). We see a remarkable

agreement between the laser-driven experiment and the current experiment campaign.

The rate of axial elongation in the case of the laser-driven experiments is α = 0.1423.
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Figure 81: Comparison of the results of the laser-driven shock sphere experiment [31]
and the shock tube experiments showing the temporal evolution of the axial dimension
of the bubble. The time is non-dimensionalized as τ = t/t′; where t′ = D/(2WiA

0.95)

In 2007, Hansen et al. [22] took the Omega experiments a step further by replacing the

area radiography technique used by Robey et al. [60] with a point-projection radiography

technique, and this vastly increased the number of photons that illuminated the shock

tube, resulting in a better signal to noise ratio. The images obtained with this technique

allowed them to estimate the cloud mass as a function of time. In these experiments

they also replaced the copper sphere used previously by other experimenters with an

aluminium sphere, to study the faster hydrodynamic evolution, for the lighter material

so distortion could be studied for a longer time. Hansen et al. [22] showed that the
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cloud mass as a function of time followed a model of turbulent-mass stripping, strongly

suggesting that turbulence plays an important role in the development at late times.

They also showed that the cloud distortion (see Fig. 82) compared quantitatively quite

well with the shock tube experiments reported by Ranjan et al. [56] (the work described

in Ranjan et al. [56] was performed as a part of this dissertation) for the scaled lengthwise

growth of the bubble. The images shown in their paper closely resemble the experimental

images obtained here for A > 0.5 cases. Since, the value of the incident shock wave

speed is not clearly presented in the paper, we will restrict ourself from extending this

comparison with the new timescale (τ = t/t′, where t′ = D/(2WiA
0.95)).

(a) (b)

Figure 82: Comparison of the results of the laser-driven shock sphere experiment( [22])
and the shock tube experiments showing the temporal evolution of : (a) the axial dimen-
sion of the bubble and (b) the lateral dimension of the bubble. The plots shown here are
obtained from the published work of Hansen et al. [22]. The time is non-dimensionalized
as τ = t/t′; where t′ = D/u′1

This is still a very encouraging result, as it suggests that the results obtained from this

experimental campaign can be extended to study very high- Mach- number experiments,

which are beyond the capabilities of mechanical shock tubes.
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Chapter 6

Conclusions and Future Work

The experimental study described in this dissertation represents a novel approach for

characterizing the shock-bubble interaction problem where the bubble is in free-fall or

free-rise before the shock wave arrival, since the flow remains unobstructed by a bubble

holder or injector. Planar laser diagnostics have been utilized for the first time to study

the evolving flow field, and this technique helped to characterize the vortex rings formed

following the shock wave bubble interaction much more distinctly than in previous work

obtained using integrated visualization techniques. The imaging system implemented

here enabled the capturing of up to five shocked bubble images per run, enhancing the

investigation of the evolution of the shocked bubble during a single experiment. For

the first time, experiments have been conducted for a wide range of varying Atwood

(−0.8 < A < 0.7) and Mach numbers (1.3 < M < 3.5). Previously, shock tubes

have only been utilized to study these instability growth rates at lower shock strengths

(M < 1.5) where u′1 < c′1; this is the first study of its kind, which intends to connect the

hydrodynamic shock instability growth measurements with those conducted in laser-

driven shock tubes at higher shock strengths (M > 10) where u′1 > c′1. The results

have also been analyzed in greater detail to yield quantitative characterizations of the

post-shock vortex ring velocity, trends in the streamwise and lateral dimensions of the

bubble, and the circulation associated with the vortex rings.
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6.1 Bubble Deformation

Qualitatively, the results presented in this dissertation indicate that shock-bubble inter-

actions exhibit patterns of development at low |A| that are fundamentally distinct from

those seen at high |A| . Because the processes of shock refraction and vorticity gener-

ation are nonlinearly coupled via gradients in the density field, and density gradients

persist to late times due to secondary shocks, differences in the initial value of A lead to

vastly different end states in these flow. Despite the complex couplings, in almost every

case in the experimental study, a distinguishable vortex ring core forms in the flow field

by 2tWt/D = 20, or much sooner in some cases. Such a behavior is expected accord-

ing to the standard description based on baroclinic vorticity deposition as described in

Sec. 2.4.3. The results show that the important large-scale features observed in the flow

field experimentally are captured with good accuracy in the three-dimensional numeri-

cal simulations performed using Raptor. The correspondence between experimental and

numerical results improves with increased Mach number (M > 2) due to the decreased

tracer particle size associated with larger energy deposition on the film layer.

6.1.1 Divergent shock-refraction geometry

In the case of M > 2, divergent shock-refraction geometry (A < 0) shock-bubble inter-

action problem, both experimental and numerical flow visualizations exhibit the devel-

opment of secondary and, in some cases, tertiary vortex rings rotating oppositely to the

primary vortex ring. However, the origin of these secondary vortex rings is closely linked

to the generation of slip surfaces in the flow field during irregular shock refraction around
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the bubble at early times, and they appear in experiments and simulations only for in-

cident shock wave Mach numbers M > 2. The primary and secondary vortex rings both

persist stably to very late times in both experiments and simulations (2tWt/D > 100

in some cases), and strongly contribute to the axial elongation of the shocked bubble

in the post-shock flow. This indicates that in a divergent shock-refraction geometry,

baroclinically-generated vortical features can be expected to remain an important fea-

ture of shock-accelerated inhomogeneous flows long after the passage of the initial shock

wave. Inherently three-dimensional vortical features also appear in the simulated flow-

fields at late times. However, the regions where such features are significant is relatively

small for these divergent-shock-refraction scenarios, and the late-time flowfield for these

divergent shock-refraction scenarios is in general dominated by large-scale coherent vor-

tical structures.

6.1.2 Convergent shock-refraction geometry: low A

In convergent geometry at low A (the case of Ar-N2 experiments), a secondary vortex ring

is observed at the apex of the bubble in all the four cases; however, it is more prominent

in the case of high Mach number experiments (M > 2.5). Such a ring was predicted

previously for strong shocks by Zabusky et al. in 1998 [74] but, until now, not confirmed

experimentally. The formation of the secondary vortex ring is the result of the interaction

of the internally-reflected shock wave with the upstream deformed bubble surface. The

presence of excess film mass at the bottom extremity of the bubble leads to the formation

of a secondary vertical jet at the apex of the bubble and enhances the geometry of the

secondary vortex ring. At late-times, the induced velocity due to the primary vortex

ring leads to the entrainment of this secondary vortex ring, suggesting that the flow
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field at this time is mostly dominated by the primary vortex ring. Simulations without

film material have shown that shock diffraction, combined with a reflected rarefaction,

leads to the development of weak secondary jet and vortex ring, but this effect becomes

more intense with the presence of a film layer. In both experiment and simulation, we

observed the breaking of axial symmetry at late times. The experimental bubble has

inherent asymmetries in its initial condition due to perturbations imposed by the bubble

inflation and release processes; while the simulated bubble has grid-seeded perturbations.

At late-times, these lead to the growth of azimuthal variations in the flow field, by a

Widnall- type bending mode instability [71]. Vortex rings develop bends and kinks, and

vortical fluctuations grow, leading to chaotic, turbulent motion in some regions of the

flow.

6.1.3 Convergent shock-refraction geometry: high A

In convergent geometry at high A, we have observed that shock diffraction and focusing

leads to very intense, highly localized pressure discontinuities, leading to the subsequent

formation of high speed axial jets. A complex field of secondary shock waves is generated

between the shocked bubble and the incident shock wave after shock focusing. The

secondary shock waves propagating in the lateral and upstream directions transverses

the already deforming bubble and enhances the complexity of the evolving vorticity field.

Due to the combined intensity of the shock focusing effects and the azimuthal transport

of vorticity, the vortex rings become highly distorted and nearly indistinguishable in the

case of high-Mach number experiments. The shocked bubble is effectively reduced to a

small core of compressed fluid, which trails behind a plume-like structure indicative of

a well-developed mixing region. These results show a good agreement with calculations
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performed by Niederhaus et al. [48], showing the distinct effects that arise due to shock

focusing in the case of an R12 bubble (A = 0.613) accelerated by a M = 5.0 shock wave.

Results presented in Sec. 4.2.2, showed that the primary vortex ring existed at very late

times in the case of low Atwood number flow even at high Mach number, and suggested

that the increased Mach number is not itself sufficient to induce the development of

this plume feature. The growth of this turbulent plume is mostly due to the nonlinear

acoustic effects which are associated with the density contrast between the bubble and

the ambient gas.

6.2 Bubble Dimension, Vortex Velocity, Circulation

and Timescaling Arguments

For each of the scenarios considered here, the axial bubble dimension showed a linear

growth rate after the initial shock-induced compression. The minimum axial dimension

reached by the bubble is slightly higher compared to the theoretical value for M > 2.0

in the case of convergent as well as divergent geometry shock-bubble interactions. In

general, for M > 2.0, the minimum axial dimension reached by the bubble is 1.3(Wi −
u′1)/Wi. The lateral growth of the bubble at late-times asymptotes to a constant value

in most of the experimental scenarios.

Dimensional analysis of trends in various quantities measured for these flow fields

indicates that there is no single fundamental characteristic time or velocity scale that

encompasses the different aspects of the flow evolution together for the wide range of

Atwood number considered here. In the case of the divergent shock-refraction geometry,

trends in the streamwise dimension of the shocked bubble are found to yield the closest
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approach to a self-similar trend (for τ < 20) under a timescaling based on the incident

shock wave speed Wi, while trends in the lateral dimensions and the primary vortex ring

velocity follow timescales based on post-shock ambient flow speed u′1. Mass transfer

from the body of the bubble to the primary vortex ring was also observed in the lateral

dimension plot for divergent-shock refraction geometry. The rate of this mass transfer

increases significantly with the increase in the Mach number.

In the convergent geometry at low A, none of the timescales displayed a collapse

of the bubble dimension data to a single trend for all M . This may be considered a

shortcoming of the dimensionless timescales discussed in this dissertation, or a lack of

self similarity behavior over the Mach number regime considered here. The rate of axial

elongation significantly increases for M > 2.03, which is suggestive of a transitional Mach

number. It is thought that at Mach numbers large enough that the flow speed of the

shocked ambient gas becomes supersonic (for a shock wave in nitrogen at atmospheric

temperature this occurs at M = 2.07), there are compressibility effects that may alter

the growth of the bubble. Although the data suggest this is most likely be the case, it

is still premature to make a definite conclusion.

In the convergent geometry for a fixed M , much stronger axial growth is observed

for higher Atwood numbers although, at early-times, the minimum axial dimension

reached by the bubble was roughly the same for all the scenarios. This difference can

be attributed to the complex field of secondary shock waves generated due to shock

focusing in the case of high Atwood number flows. Regions of intense mixing develop in

the flow field which significantly increase the axial growth of the bubble. For a fixed M ,

a timescale based on t′ = D/(2WiA
0.95), yields a self-similar trend in the axial growth

of the bubble by collapsing the growth trends for all the Atwood numbers considered in
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this study.

For all the experimental scenarios, the circulation-based velocity model of Picone and

Boris provides a reliable prediction for the experimentally measured vortex velocity. The

difference between the model and the experimentally measured values was less than 2%

for A < 0.2, while for A > 0.2, the model overestimated the vortex velocity by roughly

5% or more. The Rudinger-Somers model, on the other hand, drastically overestimates

the vortex ring velocity in the case of the divergent geometry shock-bubble interaction.

It provided a very good agreement with experimental data for convergent geometry low

A scenarios, while it underestimated the experimental value by roughly 10% for high A

scenarios.

Quantitative analysis of circulation data demonstrates very good agreement with the

predictions of the Yang-Kubota-Zukoski (YKZ) model for the late-time circulation in the

case of divergent geometry shock-bubble interaction. It can also be noted, as observed

in previous work [72], that the Picone-Boris model overestimated the circulation by a

factor or two or more. This was very surprising, as the circulation-based velocity model

of Picone-Boris provided a very reliable prediction for the experimentally measured

velocity (the difference was less than 2%).

In the case of the convergent geometry, we note that as we increase the Atwood num-

ber the circulation associated with the vortex ring increases dramatically. For M ≈ 2.03,

the circulation increased seven times by increasing the value of A from 0.176 to 0.681.

This difference can be attributed to the strong shock refraction in the case of higher

Atwood number scenarios, which leads to a significant difference in the translational

velocity of the bubble with respect to the post-shock flow speed. The Yang-Kubota-

Zukoski (YKZ) model performs reliably well for A < 0.2, with better comparison with
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increasing Mach number. The Samtaney-Zabusky (SZ) model provides a reasonable es-

timates in general for A > 0.2, but it is unreliable for A < 0.2. The estimated value

of the Reynolds number on the basis of the circulation, suggested a transition to tur-

bulent behavior at late-times in all the experimental scenarios which is supported by

the experimental images. Therefore, it can be concluded, on the basis of circulation

and estimated Reynolds numbers, that the late-time flow field is turbulent for all the

experimental scenarios.

6.3 Limitations and Future Work

Before generalizing the results obtained from these experiments, it is important to un-

derline the limitations of this study. The major drawback of this study remains with the

flow visualization technique utilized here. In this study, the images represents the Mie-

scattered light resulting from the laser interaction with the atomized soap film particle.

Surprisingly, this has resulted in excellent visualization of the flow field for all considered

experimental scenarios, however we do not exactly know which gas is being tracked by

the atomized particles. Therefore, it is difficult to comment on the mixing rate between

the two gases, and this probably represents the biggest shortcoming of this work.

Although this visualization technique has provided excellent images of the flow field

even for very high Mach numbers at late-times, efforts should be made to seed one of

the gases with a tracer particles, which can provide brighter signals compared to the

atomized soap particles. One should avoid using acetone or biacetyl for this experiment,

as both of them get absorbed in the soap film. It is also documented that acetone is

prone to molecular dissociation at high temperatures which limits its applicability in the
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present study. Probably, the best technique would be to create a filmless bubble (see

Sec. 3.4.3), similar to the gas-jet cylinder experiments.

In the future, an interesting extension of this work would be to perform the same set

of experiments, but replace the ambient gas by bubble gas and vice versa. Such effort

will provide useful insight on the effect of the Atwood number on the bubble deformation

pattern. The jetting effect, which has been addressed very briefly in this dissertation,

can be studied in detail to obtain a relationship between the mass of the secondary

inhomogeneity and the dimensions of the observed jet. Also, it will be of great interest

to the astrophysics community to study the interaction of a detonation front with a

shock-induced deforming spherical bubble. This can be achieved by utilizing the shock-

focusing effect seen in the case of the convergent geometry shock-bubble interaction, to

ignite a pre-mixed combustible mixture contained inside the bubble.
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Appendix A

Stationary Bubble: Air Bubble in

Argon, M=2.13

Results are presented from the interaction of a planar shock wave with an an axisym-

metric soap bubble which is at rest on an injector. In this set of experiments (scenario

4), the driver gas is nitrogen, the driven gas is argon and a soap bubble bubble filled

with air (test gas) sits on a stationary (non-retracting) injector inside the test section,

facing upwards due to buoyancy as shown in Fig. 83(a); a M = 2.13 shock wave impacts

the bubble from above. The air is seeded with smoke (at about 0.5% mass loading).

The time is non-dimensionalized as τ = t/t′. The characteristic time t′ = D/(2Wt), is

defined as the cloud crushing time, where D is initial diameter of the bubble and Wt

is the transmitted shock wave velocity in the bubble. The initial stages of the shock

interaction result in the compression of the bubble as shown in Fig. 83 (a)-(c). There

is no visible mixing with the surrounding argon at this stage, therefore, the density of

the shocked bubble can be calculated using shock refraction physics. These images also

show very close agreement with the images obtained without seeding the flow discussed

in Chapter 4. Figure 84 shows two separate post-shock images acquired on the same

CCD frame. From such experimental images, the transmitted shock wave speed is cal-

culated as Wt = Xs/∆t, where ∆t is time difference between those images. The initial
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bubble velocity is calculated as Vb = Xb/∆t. The above experiment has been modeled

numerically [58], and the results are in quite good agreement. No detailed quantitative

analysis was done for this case, as at later post-shock times, the injector used to support

the bubble significantly altered the flow field.

(a) (d)(c)(b)

Figure 83: Experimental images for a M = 2.13 shock in Ar incident on a bubble of air
seeded with smoke particles, times are given from when the shock is at the top of the
bubble: (a) initial condition, just before the shock arrival, (b) τ = 0.73, (c) τ = 1.57,
(d) τ = 2.0.The time is non-dimensionalized as τ = t/τ∗. The characteristic time
τ∗ = D/(2Wt), is defined as the cloud crushing time, where D is initial diameter of the
bubble and Wt is the transmitted shock wave velocity in the bubble.

X
S

X
b

Figure 84: Experimental images for a M = 2.13 shock in Ar incident on bubble of air
seeded with smoke particles. Two post shock images are shown on the same CCD array.
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Appendix B

Uncertainties and Error

Propagation

In Chapter 5 detailed analysis of quantitative measurements obtained from the experi-

mental data included: a) translational velocities of the bubble and the associated vortex

rings, b) circulation (deduced from the rings’ velocity-defect), and c) different geomet-

rical length scales (axial/lateral extents of the bubble and minor/major diameters of

the vortex rings). The accuracy and precision of a measurement are always limited by

the degree of refinement of the apparatus used, by the skill of the observer, and by

the basic physics in the experiments. No measurement made is ever exact. In many

cases, the quantity that we wish to determine is derived from several measured quan-

tities. Therefore, it is necessary to estimate the uncertainty associated with the each

measured quantity and systematically study the error propagation in the case of the

derived quantities.

The general method of getting formulas for propagating errors involves the total

differential of a function. Suppose that F = f(x, y, z, ..) where the variables x, y, z, etc.

are independent variables. The total differential is then given as

dF =

(
∂f

∂x

)
dx +

(
∂f

∂y

)
dy +

(
∂f

∂z

)
dz + ..... (B.1)
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where dx = δx is uncertainty in x, and likewise for the other differentials, dF , dy, dz,

etc. The numerical values of the partial derivatives are evaluated by using the average

values of the independent variables. The total error in F is then obtained using the

method of standard deviation as:

δF =

√(
∂f

∂x

)2

δx2 +

(
∂f

∂y

)2

δy2 +

(
∂f

∂z

)2

δz2 + ..... (B.2)

The translational velocity of the vortex ring was computed as Vv = X/∆t, where X

is the displacement of the vortex measured over ∆t. Therefore, using Eq. B.2, the error

in velocity can be calculated as:

δVv

Vv

=

√(
δX

X

)2

+

(
δ∆t

∆t

)2

. (B.3)

The second quantity of interest in the experiments were the various geometrical

length scales of the bubble. In the experimental analysis, the length scales were non-

dimensionalized by the initial bubble diameter for both heavy and light bubbles, e.g.

Lh=h/D. The uncertainty in Lh, or any other geometrical length scale, can be calculated

as:

δLh

Lh

=

√(
δh

h

)2

+

(
δD

D

)2

. (B.4)

Before we describe the uncertainty associated with circulation measurements, lets

first calculated the uncertainty values for vortex velocity and the geometrical length

scales of the bubble. To perform this analysis we will look at the experimental values for

a M = 2.07 accelerated SF6 bubble in N2. In the experiments, the sampling frequency

for the data acquisition system is 1 MHz, therefore the uncertainty associated with ∆t

is 1 µs. The values of various experimental parameters are:
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X = 6.4 cm, δX = 0.1 cm, ∆t = 220 µs, δt = 1 µs

h = 5.67 cm, δh = 0.1 cm, D = 3.28 cm, and δD = 0.15 cm.

Using these values, the uncertainty in vortex velocity and geometrical length scales are

calculated to be 1.6 and 4.9% respectively. This uncertainty does not account for errors

associated with gas purity or soap film contamination after break-up.

The circulation values in the experiments were deduced from the vortex velocity

defect using the Kelvin’s model shown below:

ΓK = 2πDv (Vv − u′1)
[
ln

(
8Dv

dv

)
− 1

4

]−1

.

The following substitutions are made in the circulation equation to obtain a form

which can be differentiated easily.

P1 = Dv, P2 = (Vv − u′1) , P3 = dv, ΓK/2π = Γ.

Using this substitution and neglecting the constant term in the Kelvin’s model, the

equation is reduced to

Γ = P1P2

[
ln

P1

P3

]−1

.

Now this equation can be differentiated easily to obtain the standard formulation of

the uncertainty calculation.
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δΓ

δP1

= P2

[(
ln

P1

P3

)−1

−
(

ln
P1

P3

)−2
]

δΓ

δP2

= P1

[
ln

P1

P3

]−1

δΓ

δP3

=
P1P2

P3

[
ln

P1

P3

]−2

δΓ =

√(
δΓ

δP1

δP1

)2

+

(
δΓ

δP2

δP2

)2

+

(
δΓ

δP3

δP1

)2

With some more algebra we obtain the following form of circulation uncertainty

δΓ

Γ
=

√√√√
[(

δP1

P1

) (
1− 1

ln P1

P3

)]2

+

[(
δP2

P2

)]2

+

[(
δP3

P3

)
1

ln P1

P3

]2

. (B.5)

Now we can evaluate Eq. B.5 using the experimental parameters to calculate the

uncertainty associated with the circulation measurements presented in this study. The

experimental parameters are listed below:

δP1

P1

= 0.049

δP2

P2

= 0.019

δP1

P1

= 0.049

P1

P3

= 1.89

Using these values the uncertainty in circulation (ΓK) is estimated to be 9.7%.
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