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Chapter 1.  Introduction 

 

1.1 Introduction to Fusion 

 

Fusion energy, which has the potential to create vast amounts of energy, has been under 

development since the 1950’s.  The two major advantages of fusion energy over current 

forms of energy production are: 1) a major component of fusion fuel, deuterium, is 

plentiful and inexpensive, and 2) the waste produced from fusion is not made up of long-

lived, heavy radioactive isotopes, but stable light isotopes such as hydrogen and helium 

[1].  A disadvantage, however, is that the flux of neutrons produced from the fusion 

reactions can activate reactor structural materials.  In contrast to waste from fission 

reactors, however, there is no transuranic waste.  Though a few radioisotopes created are 

long-lived, the vast majority of radioisotopes have short half-lives, and the small 

inventory of radioactive waste will decrease rapidly. 

Fusion is the process of combining the nuclei of two light elements together, 

creating a heavier element.  Fusion has been difficult to achieve because the nuclei are 

both positively charged, and therefore repel each other.  The fusion fuel must be heated to 

incredibly high temperatures such that the velocities of the nuclei are very large, allowing 

the nuclei to overcome the repulsive Coulomb force.  The nuclei will scatter off of each 

other more often then they will fuse together, therefore the fuel must be confined, 

allowing the nuclei to collide many millions of times, until they finally fuse [1]. 

There are two confinement schemes commonly considered for fusion energy.  

These are the magnetic and inertial confinement fusion concepts.  The goal of magnetic 

confinement fusion is to create a steady-state plasma confined by a magnetic field [2].  

Devices currently being considered for magnetic confinement are the Tokamak and the 

Stellator designs [1].  Inertial confinement fusion involves heating the fusion fuel to 

thermonuclear temperatures by rapid compression of the fuel pellet so that a large 

number of fusion reactions occur before the pellet blows apart.  Large laser beam 

generators or light/heavy ion beam accelerators are used as drivers to generator beams, 

which compress the pellets to high densities and the fuel to thermonuclear temperatures 
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[1].  While the fusion reactions considered for the two concepts are the same, the density 

and pressure regimes differ by several orders of magnitude [2]. 

 

1.2 Introduction to Inertial Confinement Fusion 

 

Unlike magnetic confinement fusion, Inertial Confinement Fusion, or ICF, does not 

depend on external means to confine a plasma.  Instead, ICF utilizes the mass inertia of 

the fuel to confine the fuel long enough to achieve thermonuclear burn.  The confinement 

time of an ICF plasma is then very short, usually on the order of 50 ps.  Target 

compression influences the confinement time and the burn yield.  Compression to 

extremely high densities leads to longer confinement times and high reaction rates [2]. 

To protect the walls of the reactor vessel in which the fusion burn takes place, the 

energy release from the explosion of the fuel must be limited.  This in turn limits the 

mass of fuel in a pellet to only 1 - 10 mg.  To burn such a small mass of fuel requires a 

very high fuel compression [2]. 

A typical deuterium-tritium fuel pellet consists of three regions, as seen in Figure 

1.1.  The outer shell of the pellet is an ablator, and is made of plastic.  Behind this is a 

shell of deuterium-tritium ice, and the inner most region is deuterium-tritium vapor.    

The pellet is uniformly irradiated by a large number of lasers.  The energy from the lasers 

heats up the ablator, which begins to expand.  To conserve momentum, the rest of the 

shell is forced inward.  As the fuel pressure increases from the implosion, a hot spot of 

very high temperature is formed at the center of the pellet.  Energy loss due to conduction 

by electrons and radiation from the hot spot to the surrounding cold fuel cool the hot spot 

[2]. 
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Figure 1. 1:  ICF Fuel Pellet.  Credit: Andy Schmitt, Naval Research Laboratory 

 

As long as losses due to conduction and radiation are not too high, ignition will 

occur in the central hot spot.  To achieve ignition, the confinement parameter, ρ*R, of the 

hot spot must be equal to about 0.3 g/cm2, where ρ is the density and R is the radius [3].  

Alpha particles, produced from fusion reactions in the hot spot, propagate the burn by 

depositing their energy in the surrounding fuel.  Meanwhile, the fuel is rapidly 

expanding, and remains confined for only about 50 ps.  Because the fusion products can 

be used to propagate the burn to the surrounding fuel, only the hot spot needs to be 

compressed to a very high density at a very high temperature, which in turn requires less 

input energy from the lasers [2].     

 

1.3 Motivating Neutron Transport 

 

Neutron transport is of great importance to the study of Inertial Confinement Fusion.  

High-energy neutrons are born from the fusion process.  These particles, along with alpha 

particles, are necessary to propagate the burn from the ignition region to the outlying 

low-temperature, high-density regions surrounding the ignition region of the target. 

The following reactions use the most common fusion fuels, deuterium, tritium, 

and helium-3, and therefore are of importance to ICF devices: 
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 D + T → 4He (2.5 MeV) + n (14.1 MeV) 

 D + D → T (1.0 MeV) + H (2.0 MeV) 

 D + D → 3He (0.8 MeV) + n (2.45 MeV) 

 D + 3He → 4He (2.6 MeV) + H (14.7 MeV) 

 

As can be seen from the above reactions, neutrons figure prominently in fusion reactions.  

Neutrons result from two of the four reactions, and carry the bulk of the kinetic energy 

when present. 

The alpha particles and neutrons created during a fusion burn propagate the burn 

by transferring energy to the low-temperature, high-density regions surrounding the 

ignition region.  However, alpha particles and neutrons travel at different velocities.  In a 

sense, neutrons can be thought of as pre-heating the areas that are later ignited by the 

energy from the alpha particles, an effect that may or may not be detrimental to the burn 

process.  A complete understanding of the interplay of these particles is essential to fully 

characterize a fusion burn. 

Accurate neutron modeling is important to ICF for other reasons, as well.  The 

neutrons eventually transport out of the target and collide with the reactor vessel walls.  

Since the neutrons may suffer collisions before escaping the target, the neutrons emerge 

with a spectrum of energies.  This fact will affect the radioactivity of the reactor vessel 

walls, tritium breeding, shield designs, and dose rates to reactor personnel. 

The deuterium-tritium reaction is of great interest to ICF because the fuel mixture 

has the lowest ignition temperature and the highest specific yield of any of the above 

reactions [2].  However, since tritium has a half-life of only 12.3 years, tritium must be 

breed.  The reactor vessel has specific zones designed for tritium breeding.  Two 

important tritium-breeding reactions are: 

 

 6Li + n → T + α + 4.86 MeV 

 7Li + n → T + α + n – 2.87 MeV 

 

Both these reactions require neutrons for breeding.  However, the 6Li reaction requires 

slow neutrons, while the 7Li reaction requires fast neutrons.  Therefore, it is important to 
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know the energy spectrum of the neutrons escaping the target, to determine if the 

breeding zone must be enriched with 6Li to ensure that enough tritium is breed. 

 

1.4 Time-Dependent Neutron Transport 

 

The burn time of a fusion target is incredibly fast, taking approximately 50 ps.  During 

this phase, a fusion target fuel region changes rapidly.  Given the speed of a 14.1 MeV 

neutron as roughly 5.2 cm/ns and the approximate radius of the compressed fuel target as 

0.012 cm, the fuel transversal time for a neutron is found to be approximately 4.6 ps.  

Therefore, during the burn phase, a propagating neutron would encounter a rapidly 

changing medium.  For this reason, a steady state approach to neutron transport study 

would not be appropriate. 

On the other hand, since the fusion target is so small, a neutron would only 

experience a few collisions before escaping the target.  The number of collisions a 

neutron would experience can be calculated from an escape probability estimate as a 

function of the target density, ρ, multiplied by the target radius, R.  Such a study indicates 

that, for a ρ*R value of 2.0 g/cm2, less than 30% of the neutrons experience a collision 

[3].  The number of collisions a neutron experiences in a fusion target is small.  

Therefore, a Neumann series approach is considered appropriate for calculating the total 

neutron flux.  As discussed in Section 2.1, a Neumann series decomposes the total flux 

into the uncollided flux and the collided fluxes.  The first collided flux is calculated using 

the uncollided flux as a source term, the second collided flux is calculated using the first 

collided flux as a source term, and so on.  Since the neutrons only make a few collisions 

before escaping the target, only the first several collided fluxes need to be calculated to 

obtain an accurate answer for the total flux. 

 As is evident from the above discussion, time-dependent neutron transport is 

important to ICF for many reasons.  The ensuing chapters will discuss the different 

methods used to solve the neutron transport equation and the work currently undertaken 

to address the specific problem of neutron transport in an ICF device.  The final chapter 

will detail the steps necessary to produce a neutron transport code that can by coupled 

into the BUCKY radiation hydrodynamics code. 
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Chapter 2.  Preliminary Work 

 

This chapter will discuss the benchmark solutions that have been verified, the infinite 

slab and infinite sphere geometries.  For each of the benchmarks, the form of the integral 

transport equation to be solved is derived and numerical results are given.  This is the 

starting point for the development of a time-dependent integral equation formulation. 

 

2.1 Infinite Slab Geometry 

 

2.1.1 Mathematical Development 

 

A Green’s function is derived for the integral form of the “reduced collision equations” 

for an infinite slab geometry with an arbitrary isotropic source, and will be used to 

determine the time-dependent neutron flux.   

To derive the Green’s function, we begin with the time-dependent differential 

transport equation in planar coordinates for a one-dimensional infinite medium with an 

arbitrary source, Q(x,t): 

 

( ) ( )
2

,,,1 txQtx
xtv

=Ψ





 Σ+

∂
∂

+
∂
∂ µµ   (2.1) 

 

The differential form of the transport equation can be converted to an integral 

equation for the scalar flux through either the method of characteristics or Laplace 

transforms [4].  The time-dependent integral equation is then of the form 

 

( ) ( ) ( )∫ ∫
∞

∞−

=Φ
t

dtdxtxQttxxKtx
0

''','',;',,   (2.2) 

   

where  is the time-dependent kernel and Q  is the time-dependent 

source.  The source Q  consists of both the external source, , and the 

)',;',( ttxxK )','( tx

)','( tx ),( txS
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isotropically scattered source, Σs(x)φ(x, t).  Inserting the explicit expressions for the 

planar geometry scalar flux kernel [4] and the time-dependent arbitrary source into 

equation (2.2), and expanding the integral, one obtains 

Φ


−
−

v
xx

t (
'

'




−
− xS

v
xx '

'

).(
v
xtH −

Φ


−
−−

v
xx

t
'

'

 

∫ ∫
∞

∞−

−Σ−

Φ+



−

−
Σ=Φ

t ttv

s txdtdxtxtH
tt

etx
0

0

)'(

)','('')','
)'(2

),(   (2.3) 

 

where Φ0(x,t) is the uncollided flux.  The uncollided flux is calculated as 

 

( ) ( )∫ ∫
∞

∞−

−Σ−





−

−
=Φ

t ttv

dtdxtttH
tt

etx
0

)'(

0 ''','
)'(2

,   (2.4) 

 

The above equation is applied to the case of a unit planar source of pulsed 

neutrons located at the origin of an infinite medium, S(x,t) = S0δ(x)δ(t).  Using this source 

in equation (2.4), the uncollided flux is found to be: 

 

)(
2

),( 0
0 v

xtH
t

eStx
vt

+







=Φ

Σ−

  (2.5) 

 

The above solution for the uncollided flux describes an outgoing planar wave of 

particles moving to the left and right.  The neutrons are confined between the wavefronts 

at x = vt and x = -vt [4]. 

The Neumann series method is used to decompose the time-dependent integral 

equation into a series of equations for the individual collided fluxes.  The integral 

equation for the nth collided flux is 

 

∫ ∫
∞

∞−
−

−Σ−





−

Σ=Φ
t

n

ttv

sn dtdxtxtH
tt

etx
0

1

)'(

'')','(
)'(2

),(   (2.6) 

 

for n ≥ 1.  The reduced collision equation ansatz for the nth collided flux has the form [5]: 
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where ( ) 




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

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v
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xtHtx,0 .  Inserting the ansatz into equation (2.6) and 

simplifying, the following expression is found: 
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Using the substitution ( ) ( ) 





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v
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where F0(x,t) = 1.  Fn is then the shape factor for the nth collided flux. 

Next the integration variables x' and '  are transformed to the t η',τ '  domain.  The 

transformed variables are defined as 
t
t ''=τ  and 

'
''

vt
x

=η .  The Jacobian 
(
(
η∂

∂ x  

evaluates to vt .  Substituting the transformed variables into equation (2.9) and 

extracting the step functions, the following is obtained: 
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The shape factors, , depend only on the variable nF η .  This can be seen from the fact 

that , and that the limits of integration only contain the variable 10 =F η .  As a result, the 

'τ  integration can always be performed analytically.  The numerical integration over the 

'η  variable can be performed using simple integration methods, such as quadrature rules. 

Equation (2.10) can be written more compactly in terms of kernels as: 

 

( ) ( ) ( ) ( ) ( )

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where  
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and 
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The kernels for each n can be computed analytically.  For instance, the kernels for n = 1 

are 

 

( ) ( ) ( 'ln'1ln',,1 )ηηηηη −−−=AK    (2.14) 

 

and 

 

( ) ( ) ( .'ln'1ln',,1 )ηηηηη −−+=BK    (2.15) 
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Additionally, the kernels for n = 2 are 

 

( ) ( ) ( )
'1
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ηηηηηη
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and 
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A pattern in the form of the kernels appears likely from the above equations.  Indeed, 

further computation of the kernels leads to the following: 
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and 
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It is possible to compute the first few shape factors analytically.  The resulting 

first and second collided flux shape factors are [6]: 
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and 
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    (2.21) 

 

where Li2(z) is the dilogarithm function, and is defined as [7]: 

 

( ) ( )dz
z

zz
z

∫
−

−=
0

2
1lnLi .    (2.22) 

 

The dilogarithm belongs to the class of functions known as polylogarithms, and is a 

polylogarithm of order two [7]. 

 Since the nth shape factor is calculated from the (n-1)th shape factor, the ability to 

find analytic solutions to the first few shape factors is expected to lead to smaller errors in 

the total collided flux calculations. 

 For a pulsed source in space and time, all that remains after finding the shape 

factors is to calculate the total collided flux in x and t space.  The individual collided 

fluxes are constructed from the shape factors: 

 

( ) ),(
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),( 0 txF
n
vt
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n
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vt
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
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    (2.23) 

 

where Fn(x,t) = Fn(η).  The total collided flux is the sum of the uncollided and collided 

fluxes. 

 

( )∑
∞

=

Φ=+Φ+Φ+Φ+Φ=Φ
0

3210 ,),(
n

ntot txtx Κ     (2.24) 
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where Φ0 is the uncollided flux.  For an arbitrary source in an infinite medium, the 

Green’s function for the nth collided flux, Gn(x,t), is given by equation (2.23).  Then the 

time-dependent nth collided flux is given by 

 

( )∫ ∫=Φ
' '

''',')',;',(),(
t V

nn dtdxtxSttxxGtx    (2.25) 

 

 The kernels, equations (2.14), (2.15), (2.18), and (2.19) are singular at the point 

'ηη = .  Using the subtraction of singularity method [8], discussed in Appendix A, the 

integral equation for the shape factor, equation (2.11), can be rewritten as: 

 

Fn η( )=
n
2

Fn−1 η( ) Kn,A η,η'( )dη'
−1

η

∫ + Kn,A η,η'( ) Fn−1 η'( )− Fn−1 η( )[ ]
−1

η

∫ dη'+

Fn−1 η( ) Kn,B η,η'( )dη'
η

1

∫ + Kn ,B
η

1

∫ η,η'( ) Fn−1 η'( )− Fn−1 η( )[ ]dη'

 

 

 
 
 
 
 

 

 

 
 
 
 
 

   (2.26) 

 

 The first and third integrals can be performed analytically.  The second and fourth 

integrals must be performed numerically.  However, these integrals are equal to zero at 

the singularity. 

Inserting the form of the kernels above into the first and third integrals of equation 

(2.26) and performing the integration, the following results are found for the first few 

values of n: 
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For n ≥ 3, a pattern emerges for the integration result of the kernels: 
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and 
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2.1.2 Shape Factors 

 

Equation (2.26) now needs to be solved.  The first and third integrals can be performed 

analytically, as shown above, while the second and fourth integrals must be computed 

numerically.  The function to be solved for in equation (2.26), Fn(η), appears only on the 

left-hand side of the equation.  Therefore, simple numerical integration methods, such as 

Gaussian quadrature rules and the Chebyshev Polynomial Expansion, can be utilized.  

The numerical integration methods are discussed in more detail in Appendix B.  Each 

shape factor, Fn, corresponds to the nth collided flux.  Shown in Figure 2.1 are the 

uncollided and first five shape factors. 
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Figure 2. 1  Infinite Slab Shape Factors 

 

From this figure, it is evident that, as n increases, the height of the shape factor at 

0=η  increases, while the value of the shape factor near the boundaries goes to zero.  It 

also appears that the area under the curves is conserved.  To see if this is the case, the 

analytic functions for F1 and F2 were integrated over the range of η , [-1,1].  When these 

calculations were performed, it was found that the area under both curves was equal to 

two.  It was expected that the area under the curves would be constant, since the shape 

factors only represent the scattering of neutrons.  The absorption of neutrons is 

represented in the exponential decay term of the ansatz, equation (2.7), and is not 

included in the shape factors.  Also, since the calculations were performed for an infinite 

medium, neutrons would not be lost through leakage. 

The points 1±=η  are the wavefronts of the neutrons, and correspond to the 

points vtx ±= .  As expected, only the uncollided shape factor is non-zero at the 

wavefront.  As the number of collisions increases, the domain on which the nth shape 

factor is non-zero decreases.  This trend continues, as shown by the n = 500 shape factor 

in Figure 2.2 below. 
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Figure 2. 2  500th Shape Factor 

 

2.1.3 Benchmark Results 

 

The nth collided flux is calculated from the nth shape factor using equation (2.23).  The 

total flux for a pulsed source in time and space in an infinite medium is then calculated as 

a summation of the individual collided fluxes.  For comparison to Ganapol’s [9] and 

Olson’s and Henderson’s benchmark solutions [10], the following values were chosen: 

the source strength, S0 = 1, the neutron velocity, v = 1, the total cross section, Σ = 1, and 

the absorption cross section, Σa = 0.  For a given mean free time, t, the values for the 

distance, xi, are calculated from: 

 

ii vtx η=    (2.34) 

 

Equation (2.34) shows that there is a one-to-one correlation between η  and x; that is, if 

2501 points are used for calculations in η  space, then there will be 2501 points in x 

space.  As time increases, the size of the  domain increases, while the size of the x η  
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domain remains constant.  Therefore, as time increases, the ratio of the length of the x 

domain to the number of x points decreases.  

 Shown in Figure 2.3 below is the total neutron flux at mean free time of 1, 3, 5, 7, 

and 9. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig es ure 2. 3  Total Flux for Infinite Slab Benchmark at Various Mean Free Tim

 

Shown in Table 2.1 below are the results for the infinite slab benchmark at small 

mean free times, compared to the results obtained by Ganapol, and by Olson and 

Henderson.  Table 2.2 shows the benchmark solution at large mean free times. 
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Table 2. 1  Infinite Slab Geometry Benchmark Solution at Small Mean Free Times 

Time x Flux, Ganapol Flux, Olson and 
Henderson

Flux integral in η and 
τ

1 1 1.8394E-01 1.8394E-01 1.8394E-01
1 2 0.0000E+00 0.0000E+00 0.0000E+00
1 3 0.0000E+00 0.0000E+00 0.0000E+00
1 4 0.0000E+00 0.0000E+00 0.0000E+00
1 5 0.0000E+00 0.0000E+00 0.0000E+00
1 6 0.0000E+00 0.0000E+00 0.0000E+00

3 1 2.3942E-01 2.3942E-01 2.3942E-01
3 2 9.3836E-02 9.3835E-02 9.3837E-02
3 3 8.2978E-03 8.2978E-03 8.2978E-03
3 4 0.0000E+00 0.0000E+00 0.0000E+00
3 5 0.0000E+00 0.0000E+00 0.0000E+00
3 6 0.0000E+00 0.0000E+00 0.0000E+00

5 1 1.9957E-01 1.9957E-01 1.9957E-01
5 2 1.2105E-01 1.2105E-01 1.2105E-01
5 3 4.9595E-02 4.9595E-02 4.9595E-02
5 4 1.1823E-02 1.1823E-02 1.1823E-02
5 5 6.7379E-04 6.7379E-04 6.7379E-04
5 6 0.0000E+00 0.0000E+00 0.0000E+00

7 1 1.7347E-01 1.7347E-01 1.7348E-01
7 2 1.2293E-01 1.2293E-01 1.2293E-01
7 3 6.8028E-02 6.8028E-02 6.8028E-02
7 4 2.8447E-02 2.8447E-02 2.8447E-02
7 5 8.4158E-03 8.4157E-03 8.4158E-03
7 6 1.5036E-03 1.5036E-03 1.5037E-03

9 1 1.5528E-01 1.5528E-01 1.5528E-01
9 2 1.1935E-01 1.1935E-01 1.1935E-01
9 3 7.6384E-02 7.6384E-02 7.6385E-02
9 4 4.0186E-02 4.0186E-02 4.0185E-02
9 5 1.7004E-02 1.7004E-02 1.7004E-02
9 6 5.5765E-03 5.5764E-03 5.5765E-03
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Table 2. 2  Infinite Slab Geometry Benchmark Solution at Large Mean Free Times 

Time x Flux, Ganapol Flux, Olson and 
Henderson

Flux integral in η and 
τ

15 1 1.2269E-01 1.2269E-01 1.2269E-01
15 2 1.0514E-01 1.0514E-01 1.0514E-01
15 3 8.1158E-02 8.1159E-02 8.1159E-02
15 4 5.6305E-02 5.6305E-02 5.6305E-02
15 5 3.4985E-02 3.4985E-02 3.4985E-02
15 6 1.9376E-02 1.9376E-02 1.9376E-02

25 1 9.6128E-02 9.6128E-02 9.6129E-02
25 2 8.7720E-02 8.7720E-02 8.7721E-02
25 3 7.5287E-02 7.5287E-02 7.5287E-02
25 4 6.0744E-02 6.0744E-02 6.0744E-02
25 5 4.6042E-02 4.6042E-02 4.6042E-02
25 6 3.2757E-02 3.2757E-02 3.2757E-02

35 1 8.1632E-02 8.1632E-02 8.1632E-02
35 2 7.6491E-02 7.6491E-02 7.6491E-02
35 3 6.8624E-02 6.8624E-02 6.8624E-02
35 4 5.8937E-02 5.8937E-02 5.8937E-02
35 5 4.8445E-02 4.8445E-02 4.8444E-02
35 6 3.8099E-02 3.8099E-02 3.8099E-02

45 1 7.2182E-02 7.2182E-02 7.2182E-02
45 2 6.8630E-02 6.8630E-02 6.8630E-02
45 3 6.3091E-02 6.3091E-02 6.3091E-02
45 4 5.6074E-02 5.6074E-02 5.6073E-02
45 5 4.8177E-02 4.8177E-02 4.8176E-02
45 6 4.0007E-02 4.0007E-02 4.0007E-02

 
 

2.2 Infinite Spherical Geometry 

 

2.2.1 Mathematical Development 

 

To derive the Green’s function for the infinite spherical medium case, we begin with the 

time-dependent differential transport equation in spherical coordinates for a one-

dimensional infinite medium with an arbitrary source, Q : ),( tr

 

( ) ( )
2
,,,11 2 trQtr

rrtv
=Ψ
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




Σ+

∂
∂−

+
∂
∂

+
∂
∂ µ

µ
µµ    (2.35) 
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As in the slab case, the differential form of the transport equation can be 

converted to an integral equation for the scalar flux through either the method of 

characteristics or Laplace transforms [4].  The time-dependent integral equation is then of 

the form 

 

( ) ( ) ( )∫ ∫
∞

=Φ
t

dtdrtrQttrrKtx
0 0

'','',;',, '    (2.36) 

   

where  is the time-dependent kernel and Q  is the time-dependent 

source.  The source Q  consists of both the external source, , and the 

isotropically scattered source, 

)',;',( ttrrK )','( tr

)','( tr )','( trS

)','()'( trrs φΣ .  Inserting the explicit expressions for the 

spherical shell scalar flux kernel [4] and the time-dependent arbitrary source into 

equation (2.36), and expanding the integral, one obtains 
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where Φ0(r,t) is the uncollided flux.  The uncollided flux is calculated using the point 

source kernel as: 
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The above equation is applied to the case of a unit point source of pulsed neutrons 

located at the origin of an infinite medium, ( ) ( ) ( )tr
r

StrS δδ
π 2

0

4
, = .  Using this source in 

equation (2.38), the uncollided flux is found to be: 

 



 20

.1
4

),( 0
0 






 −








=Φ

Σ−

vt
r

t
e

rvt
Str

vt

δ
π

   (2.39) 

 

The above solution for the uncollided flux describes an outgoing pulse of neutrons that is 

infinite at the wavefront and zero elsewhere.  The uncollided flux has a strong singularity 

at the wavefront, and the first collided flux will inherit this. 

The Neumann series method is used to decompose the time-dependent integral 

equation, equation (2.37), into a series of equations for the individual collided fluxes.  

The integral equation for the nth collided flux is 
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for n ≥ 1.   

Equation (2.40) can be used to calculate each collided flux.  However, there is 

quicker way to calculate the collided fluxes if the planar collided fluxes are known.  The 

following relation allows for the transformation from slab geometry fluxes to spherical 

geometry fluxes, and is a simple way to obtain the spherical fluxes [11]: 
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Using this relation and the planar forms for the first and second collided fluxes, the 

spherical fluxes are 
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and  
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These solutions agree with the results found in literature [9, 10], but were found through 

alternate means.   

Returning back to equation (2.40), the reduced collision equation ansatz for the nth 

collided flux has the form: 
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Since the first collided flux, equation (2.42) has a singularity at r = vt, the numerical 

calculations must begin at n = 3, with the seconded collided flux as the forcing function.   

 Inserting the ansatz, equation (2.42) into the Neumann series expansion for the 

integral form of the time-dependent neutron transport equation and simplifying, the 

following expression is obtained for the nth shape factor: 
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Next the integration variables r′  and t′  are transformed to the η′ ,τ ′  domain.  

The transformed variables are defined as 
t
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evaluates to vt .  Substituting the transformed variables into equation (2.47) and 

extracting the step functions, the following equation for the n

τ ′2

th shape factor is obtained:   
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 The notation may be simplified by introducing the concept of kernels: 
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where the kernels are: 
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and 
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The kernels can be calculated analytically.  As in the planar coordinates case, the kernels 

follow a pattern with n and can be written as: 
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 Examining the kernels, we see that KA,n and KB,n have a singularity at 'ηη = , 

while KC,n has a singularity at 0'== ηη .  The singularities can be handled through the 

subtraction of singularity method.  Using the subtraction of singularity method, the 

expression for Fn becomes: 
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 The second, fourth, and sixth integrals may always be performed analytically.  

Carrying out the integration, the following expressions are obtained for n = 3: 
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For n = 4, the integrals of the kernels may be written as: 
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Finally, for n ≥ 5, a pattern in the integrals of the kernels emerges: 
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 The above expressions contain a singularity at the point 0=η .  Appendix C 

shows the derivation of the expressions that must be solved for the nth shape factor at 

0=η .  These expressions are reproduced below: 
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3.2.2 Shape Factors 

 

Equation (2.56) now needs to be solved.  The second, fourth, and sixth integrals can be 

calculated analytically, while the first, third, and fifth integrals must be calculated 
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numerically.  Again, a simple numerical integration method can be implemented.  The 

Clenshaw-Curtis quadrature rule was used for the first integral, while the Chebyshev 

Polynomial Expansion was used for the third and fifth integrals.  At the point 0=η , 

equations (2.66), (2.67), and (2.68) must be solved, using either the Clenshaw-Curtis 

quadrature or the Chebyshev Polynomial Expansion.  Shown in Figure 2.4 below are the 

first five collided shape factors.  The uncollided flux, equation (2.39), is a delta function 

at the wavefront. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 4  Infinite Sphere Shape Factors 

 

 From this figure, it is apparent that the first collided flux has inherited the 

singularity from the uncollided flux at the wavefront.  As in the infinite slab case, the 

collided fluxes, except for the first collided flux, go to zero at the wavefront.  It should 

also be noted that the area under the curves of the collided fluxes increase, instead of 

staying constant, as in the slab case.  This is because the area through which the neutrons 

travel increases as the area of a sphere, 4πr2.   
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Shown in Figure 2.5 below are the first five shape factors multiplied by the factor 

4πη2.  The area under these curves is equal to the volume integral of the shape factors.  

Therefore, the area under these curves is conserved, and equals two.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 5  Infinite Sphere Shape Factors Multiplied by η2 

 

2.2.3 Benchmark Results 

 

The nth collided flux is calculated from the nth shape factor using equation (2.44).  The 

total flux is again calculated as the sum of the individual collided fluxes.  For comparison 

to Ganapol’s [9] and Olson’s and Henderson’s benchmark solutions [10], the following 

values were chosen: the source strength, S0 = 1, the neutron velocity, v = 1, the total cross 

section, Σ = 1, and the absorption cross section, Σa = 0.  For a given mean free time, t, the 

values for the distance, ri, are calculated from: 

 

ii vtr η=    (2.69) 

 

Again, there is a one-to-one correlation between η and r. 
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 Shown in Figures 2.6 and 2.7 below is the total flux at early mean free times.  

From these figures, it is obvious how quickly the total flux falls off.  These figures also 

show that the peak flux after 1 mean free time is at the origin. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 6  Spherical Case Total Flux at Early Mean Free Times 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 7  Spherical Case Total Flux at Medium Mean Free Times 
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It is also instructive to graph the total flux multiplied by the geometry area, 4πr2.  

This is shown in figures 2.8 and 2.9 below.  These figures show that the radius at which 

most of the neutrons are located increases with time.   

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2. 8  Total Flux Multiplied by Area for Small Mean Free Times 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2. 9  Total Flux Multiplied by Area for Medium Mean Free Times 
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In figures 2.8 and 2.9, the singularity at the wavefront is much more pronounced. 

The benchmark results, shown in comparison to Ganapol’s and Olson’s and 

Henderson’s solutions, are shown in Table 2.3 for small mean free times, and Table 2.4 

for large mean free times. 

 

Table 2. 3  Infinite Sphere Geometry Benchmark Results at Small Mean Free Times 

 
Time r Flux, Ganapol Flux, Olson and 

Henderson
Flux integral in η 

and τ
1 1 Inf Inf Inf
1 2 0.0000E+00 0.0000E+00 0.0000E+00
1 3 0.0000E+00 0.0000E+00 0.0000E+00
1 4 0.0000E+00 0.0000E+00 0.0000E+00
1 5 0.0000E+00 0.0000E+00 0.0000E+00
1 6 0.0000E+00 0.0000E+00 0.0000E+00

3 1 2.2001E-02 2.2001E-02 2.2001E-02
3 2 1.0187E-02 1.0187E-02 1.0187E-02
3 3 Inf Inf Inf
3 4 0.0000E+00 0.0000E+00 0.0000E+00
3 5 0.0000E+00 0.0000E+00 0.0000E+00
3 6 0.0000E+00 0.0000E+00 0.0000E+00

5 1 1.0305E-02 1.0305E-02 1.0305E-02
5 2 6.5738E-03 6.5738E-03 6.5739E-03
5 3 2.9565E-03 2.9565E-03 2.9565E-03
5 4 8.5550E-04 8.5549E-04 8.5550E-04
5 5 Inf Inf Inf
5 6 0.0000E+00 0.0000E+00 0.0000E+00

7 1 6.2715E-03 6.2715E-03 6.2715E-03
7 2 4.5417E-03 4.5417E-03 4.5417E-03
7 3 2.6143E-03 2.6143E-03 2.6144E-03
7 4 1.1654E-03 1.1654E-03 1.1654E-03
7 5 3.8287E-04 3.8287E-04 3.8287E-04
7 6 8.3430E-05 8.3429E-05 8.3430E-05

9 1 4.3089E-03 4.3089E-03 4.3089E-03
9 2 3.3538E-03 3.3538E-03 3.3538E-03
9 3 2.1944E-03 2.1944E-03 2.1944E-03
9 4 1.1937E-03 1.1937E-03 1.1937E-03
9 5 5.3016E-04 5.3016E-04 5.3016E-04
9 6 1.8655E-04 1.8655E-04 1.8655E-04
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Table 2. 4  Infinite Sphere Geometry Benchmark Results at Large Mean Free Times 

 Time x Flux, Ganapol Flux, Olson and 
Henderson

Flux integral in 
η and τ

15 1 2.0059E-03 2.0059E-03 2.0059E-03
15 2 1.7263E-03 1.7263E-03 1.7263E-03
15 3 1.3423E-03 1.3423E-03 1.3423E-03
15 4 9.4107E-04 9.4106E-04 9.4107E-04
15 5 5.9294E-04 5.9294E-04 5.9295E-04
15 6 3.3430E-04 3.3430E-04 3.3430E-04

25 1 9.3283E-04 9.3283E-04 9.3284E-04
25 2 8.5252E-04 8.5252E-04 8.5253E-04
25 3 7.3353E-04 7.3353E-04 7.3353E-04
25 4 5.9394E-04 5.9394E-04 5.9395E-04
25 5 4.5228E-04 4.5228E-04 4.5229E-04
25 6 3.2364E-04 3.2363E-04 3.2364E-04

35 1 5.6323E-04 5.6323E-04 5.6324E-04
35 2 5.2816E-04 5.2815E-04 5.2816E-04
35 3 4.7444E-04 4.7443E-04 4.7444E-04
35 4 4.0819E-04 4.0819E-04 4.0820E-04
35 5 3.3630E-04 3.3629E-04 3.3630E-04
35 6 2.6523E-04 2.6523E-04 2.6523E-04

45 1 3.8637E-04 3.8637E-04 3.8637E-04
45 2 3.6752E-04 3.6752E-04 3.6753E-04
45 3 3.3812E-04 3.3812E-04 3.3812E-04
45 4 3.0083E-04 3.0083E-04 3.0084E-04
45 5 2.5882E-04 2.5882E-04 2.5882E-04
45 6 2.1530E-04 2.1529E-04 2.1530E-04

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Error Analysis 

 

This section discusses the error incurred in the numerical integration routines.  The 

analysis is performed by assuming the benchmark solutions are as accurate as an analytic 

solution.  The error is calculated using the Euclidian norm: 
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where φana,i is the benchmark value of the neutron scalar flux, φcal,i is the neutron scalar 

flux calculated above, i is the point in space and time at which the flux is given in the 
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literature, and N is the total number of points at which the scalar fluxes are compared.  

The error is calculated relative to both Olson’s and Ganapol’s results.  It is necessary to 

divide by the total number of points, N, since there are fewer points published in the 

literature for Ganapol’s solution as for Olson’s.  By dividing by the number of points, the 

error calculations should be directly comparable. 

 

2.3.1 Error in Gauss-Legendre Quadrature Rule 

 

The number of quadrature points used in the Gauss-Legendre rule can be varied greatly.  

The quadrature rule is exact for polynomials of degree 2n-1, where n is the number of 

quadrature points [12].  By varying both the number of quadrature points and the number 

of mesh points in η, an optimal combination of the two could be found using equation 

(2.70) as a measure for comparison.  This procedure was carried out for both the infinite 

slab benchmark solution and the infinite spherical coordinates benchmark solution. 

Shown in Table 2.5 below is the error for the Gauss-Legendre numerical 

integration scheme for various numbers of quadrature points and mesh points for the 

infinite slab case.  Both the error relative to the Olson benchmark results and the error 

relative to the Ganapol benchmark results are shown.  The lowest error, relative to both 

benchmark solutions, is for the configuration of 75 quadrature points and 2501 mesh 

points.  The error relative to the Ganapol solution for this configuration was 1.5338*10-6, 

while the error relative to the Olson solution was 1.4747*10-6.   

Shown in Table 2.6 below is the error for the Gauss-Legendre numerical 

integration scheme for the infinite spherical coordinates case.  The lowest error relative to 

the Olson benchmark is 6.1846*10-8, for 60 quadrature points and 5001 mesh points.  The 

lowest error relative to the Ganapol benchmark is 1.9626*10-8, for 60 quadrature points 

and 2501 mesh points.  There is a fairly large difference between the error calculated 

relative to the Ganapol solution and the error calculated relative to the Olson solution.  

The cause of this is a point published only in the Olson solution that is believed to be in 

error.  The point is at a mean free time of six and a mean free length of four.  The value 

published in the Olson paper is 1.0665*10-3, while every simulation run with the above 

method returned 1.0655*10-3.  
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Table 2. 5  Gauss-Legendre Quadrature Error for Infinite Slab Case 

Configuration Error Relative 
Ganapol

Error Relative 
Olson Configuration Error Relative 

Ganapol
Error Relative 

Olson

30 Quadrature Points 
2501 Mesh Points 1.5210E-05 1.6868E-05 40 Quadrature Points 

5001 Mesh Points 3.4673E-06 4.3342E-06

40 Quadrature Points 
2501 Mesh Points 4.1333E-06 5.9412E-06 50 Quadrature Points 

5001 Mesh Points 1.9201E-06 2.0016E-06

50 Quadrature Points 
2501 Mesh Points 8.2644E-06 9.2324E-06 60 Quadrature Points 

5001 Mesh Points 3.2830E-06 3.4265E-06

60 Quadrature Points 
2501 Mesh Points 1.6836E-06 1.5538E-06 75 Quadrature Points 

5001 Mesh Points 1.8157E-06 2.0009E-06

75 Quadrature Points 
2501 Mesh Points 1.5338E-06 1.4747E-06 30 Quadrature Points 

7501 Mesh Points 1.0779E-05 1.2497E-05

80 Quadrature Points 
2501 Mesh Points 2.3094E-06 2.5576E-06 40 Quadrature Points 

7501 Mesh Points 3.8156E-06 4.5761E-06

90 Quadrature Points 
2501 Mesh Points 2.2528E-06 2.3709E-06 50 Quadrature Points 

7501 Mesh Points 2.1605E-06 2.2986E-06

100 Quadrature Points 
2501 Mesh Points 3.1389E-06 3.6307E-06 60 Quadrature Points 

7501 Mesh Points 1.7797E-06 1.7154E-06

30 Quadrature Points 
5001 Mesh Points 1.1179E-05 1.2796E-05 75 Quadrature Points 

7501 Mesh Points 2.2279E-06 2.1902E-06
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Table 2. 6  Gauss-Legendre Quadrature Error for Infinite Spherical Coordinates Case 

Configuration Error Relative 
Ganapol

Error Relative 
Olson Configuration Error Relative 

Ganapol
Error Relative 

Olson

50 Quadrature Points 
2501 Mesh Points 3.0123E-08 6.5709E-08 70 Quadrature Points 

5001 Mesh Points 2.4495E-08 6.2026E-08

60 Quadrature Points 
2501 Mesh Points 1.9626E-08 6.2319E-08 80 Quadrature Points 

5001 Mesh Points 2.3998E-08 6.1914E-08

70 Quadrature Points 
2501 Mesh Points 2.3014E-08 6.3742E-08 90 Quadrature Points 

5001 Mesh Points 2.3805E-08 6.2599E-08

80 Quadrature Points 
2501 Mesh Points 2.3014E-08 6.3742E-08 100 Quadrature Points 

5001 Mesh Points 2.4037E-08 6.2683E-08

90 Quadrature Points 
2501 Mesh Points 2.0184E-08 6.2732E-08 60 Quadrature Points 

7501 Mesh Points 2.4721E-08 6.2058E-08

100 Quadrature Points 
2501 Mesh Points 2.0230E-08 6.2668E-08 70 Quadrature Points 

7501 Mesh Points 2.4037E-08 6.1935E-08

50 Quadrature Points 
5001 Mesh Points 2.3844E-08 6.3029E-08 80 Quadrature Points 

7501 Mesh Points 2.3960E-08 6.1867E-08

60 Quadrature Points 
5001 Mesh Points 2.1082E-08 6.1846E-08 90 Quadrature Points 

7501 Mesh Points 2.3921E-08 6.1881E-08

 

2.3.2 Error in Chebyshev Polynomial Expansion 

 

The Chebyshev Polynomial Expansion method and Clenshaw-Curtis quadrature rule for 

numerical integration, discussed in Appendix B.2, are exact for polynomials of degree n.  

This is in contrast to the Gauss-Legendre rule, which is exact for polynomials of degree 

2n-1 [12].  This is not necessarily detrimental to the accuracy of the numerical 

integration, however, since the integrands being evaluated are not polynomials.  In fact, it 

has been shown that the apparent factor of two advantage of the Gaussian quadrature 

rules over the Clenshaw-Curtis quadrature rule has not been found in practice [13]. 

For the slab coordinates case, the error in the Chebyshev Polynomial Expansion is 

shown in Table 2.7 below.  The lowest error relative to the Ganapol results was 

1.4143*10-6, and corresponds to the configuration of 7501 mesh points and either 90 or 

100 Chebyshev points.  The lowest error relative to the Olson results was 1.2868*10-6, 

and corresponds to a configuration of 7501 mesh points and 60 Chebyshev points.   
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Table 2. 7  Chebyshev Polynomial Expansion Error for Infinite Slab Case 

Configuration Error Relative 
Ganapol

Error Relative 
Olson Configuration Error Relative 

Ganapol
Error Relative 

Olson

50 Chebyshev Points 
2501 Mesh Points 3.2803E-06 4.6006E-06 80 Chebyshev Points 

5001 Mesh Points 1.6556E-06 1.6012E-06

60 Chebyshev Points 
2501 Mesh Points 1.5457E-06 1.8820E-06 90 Chebyshev Points 

5001 Mesh Points 1.5094E-06 1.3561E-06

70 Chebyshev Points 
2501 Mesh Points 2.9250E-06 3.2020E-06 100 Chebyshev Points 

5001 Mesh Points 1.5276E-06 1.4624E-06

80 Chebyshev Points 
2501 Mesh Points 1.6103E-06 1.5180E-06 50 Chebyshev Points 

7501 Mesh Points 1.4908E-06 1.3686E-06

90 Chebyshev Points 
2501 Mesh Points 5.4400E-06 6.2834E-06 60 Chebyshev Points 

7501 Mesh Points 1.4207E-06 1.2868E-06

100 Chebyshev Points 
2501 Mesh Points 4.4992E-06 4.5814E-06 70 Chebyshev Points 

7501 Mesh Points 1.4338E-06 1.3323E-06

50 Chebyshev Points 
5001 Mesh Points 1.4969E-06 1.4000E-06 80 Chebyshev Points 

7501 Mesh Points 1.4783E-06 1.3449E-06

60 Chebyshev Points 
5001 Mesh Points 1.7586E-06 1.9226E-06 90 Chebyshev Points 

7501 Mesh Points 1.4143E-06 1.3097E-06

70 Chebyshev Points 
5001 Mesh Points 1.5516E-06 1.6353E-06 100 Chebyshev Points 

7501 Mesh Points 1.4143E-06 1.2940E-06

 

 The error for the infinite spherical coordinates case is shown in Table 2.8 below.  

For the spherical case, the Chebyshev Polynomial Expansion method was used for the 

third and fifth integrals in equation (2.53), while the Clenshaw-Curtis quadrature rule was 

used for the first integral.  Here, the lowest error relative to the Ganapol results was 

1.9532*10-8 for a configuration of 90 Chebyshev points and 2501 mesh points.  The 

lowest error relative to the Olson results was 6.1645*10-8, for the same configuration of 

90 Chebyshev points and 2501 mesh points.  The fairly large difference in the errors is 

again due to the typo in the Olson solution at the point six mean free times and four mean 

free paths. 
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Table 2. 8  Chebyshev Polynomial Expansion Error for Infinite Spherical Coordinates Case 

Configuration Error Relative 
Ganapol

Error Relative 
Olson Configuration Error Relative 

Ganapol
Error Relative 

Olson

50 Chebyshev Points 
2501 Mesh Points 4.4701E-08 7.3541E-08 80 Chebyshev Points 

5001 Mesh Points 2.4381E-08 6.3049E-08

60 Chebyshev Points 
2501 Mesh Points 3.5066E-08 6.6909E-08 90 Chebyshev Points 

5001 Mesh Points 2.4152E-08 6.2748E-08

70 Chebyshev Points 
2501 Mesh Points 2.2608E-08 6.3504E-08 100 Chebyshev Points 

5001 Mesh Points 2.3921E-08 6.2338E-08

80 Chebyshev Points 
2501 Mesh Points 1.9814E-08 6.2412E-08 50 Chebyshev Points 

7501 Mesh Points 2.5568E-08 6.3510E-08

90 Chebyshev Points 
2501 Mesh Points 1.9532E-08 6.1645E-08 60 Chebyshev Points 

7501 Mesh Points 2.4114E-08 6.2697E-08

100 Chebyshev Points 
2501 Mesh Points 1.9814E-08 6.1666E-08 70 Chebyshev Points 

7501 Mesh Points 2.4191E-08 6.2833E-08

50 Chebyshev Points 
5001 Mesh Points 2.4944E-08 6.3145E-08 80 Chebyshev Points 

7501 Mesh Points 2.4191E-08 6.2842E-08

60 Chebyshev Points 
5001 Mesh Points 2.5892E-08 6.3735E-08 90 Chebyshev Points 

7501 Mesh Points 2.4114E-08 6.2715E-08

70 Chebyshev Points 
5001 Mesh Points 2.5276E-08 6.3413E-08 100 Chebyshev Points 

7501 Mesh Points 2.3921E-08 6.2644E-08

 

2.3.3 Comparison of Numerical Integration Methods 

 

Comparing the relative errors for the numerical integration routines for the infinite slab 

case, we find that the Chebyshev Polynomial Expansion method gives the lowest relative 

error.  However, the Chebyshev method needed significantly more mesh points to obtain 

the lower error.  When similar configurations are compared, it becomes apparent that the 

Chebyshev polynomial expansion method gives a lower error than the Gauss-Legendre 

quadrature rule in most cases. 

 Comparing the relative errors for the numerical integration routines for the 

infinite spherical coordinates case, we find that the Chebyshev Polynomial Expansion 

method once again gives the lowest relative error.  However the Gauss-Legendre 

quadrature rule gives a lower error for small numbers of quadrature points.  For instance, 

at 2501 mesh points and 50 quadrature or Chebyshev points, the Gauss-Legendre 
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quadrature rule gives an error relative to Ganapol’s results of 3.2803*10-8, while the 

Chebyshev expansion method gives an error relative to Ganapol’s results of 4.4701*10-8. 



 38

References 

 

1.   Duderstadt and G.A. Moses.  Inertial Confinement Fusion.  New York: John Wiley & 

Sons, 1982. 

 

2.   Atzeni, Stefano and Jurgen Meyer-ter-vehn.  The Physics of Inertial Fusion.  Oxford: 

Oxford University Press, 2004. 

 

3.  Lindl, John D.  Inertial Confinement Fusion: The Quest for Ignition and Energy Gain 

Using Indirect Drive.  New York: Springer-Verlag, 1998. 

 

4.  Henderson, D. L. and C. W. Maynard.  “Time-Dependent Single-Collision Kernels for 

Integral Transport Theory.”  Nuclear Science and Engineering, v 102, pg 172-182 

(1989). 

 

5.  Kholin, S. A.  “Certain Exact Solutions of the Nonstationary Kinetic Equation 

Without Taking Retardation Into Account.”  USSR Computational Mathematics 

and Mathematical Physics, v 4, pg 213-221 (1964). 

 

6.  Wolfram, S., 1999.  Mathematica 4.0: A System for doing Mathematics by Computer.  

Addison-Wesley, New York. 

 

7.  Lewin, Leonard.  Polylogarithms and Associated Functions.  New York: Elsevier 

North Holland Inc., 1981 

 

8.  Davis, Philip J. and Philip Rabinowitz.  Methods of Numerical Integration.  New 

York: Academic Press, 1975. 

 

9.  Ganapol, B. D., P. W. McKenty, and K. L. Peddicord.  “The Generation of Time-

Dependent Neutron Transport Solutions in Infinite Media.”  Nuclear Science and 

Engineering, v 64, pg. 317-331 (1977). 



 39

 

10.  Olson, K. R. and D. L. Henderson.  “Numerical Benchmark Solutions for Time-

Dependent Neutral Particle Transport in One-dimensional Homogeneous Media 

Using Integral Transport.”  Annals of Nuclear Energy, v 31, pg 1495-1537 (2004). 

 

11.  Ganapol, B. D.  “Reconstruction of the Time-Dependent Monoenergetic Neutron 

Flux from Moments.”  Journal of Computational Physics, v 59, pg. 468-483 

(1985). 

 

12.  Anita, H. M.  Numerical Methods for Scientists and Engineers.  Boston: Birkhauser 

Verlag, 2002. 

 

13.  Trefethen, Lloyd N.  “Is Gauss Quadrature Better Than Clenshaw-Curtis?”  SIAM 

Review, submitted for publication.  Retrieved from 

http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/ April 25th, 2007.  

 

14.  Press, William H. et al.  Numerical Recipes in Fortran.  Cambridge: Cambridge 

University Press, 1989. 

http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/


 40

Appendix A.  Subtraction of Singularity 

 

Consider an integral with a singularity at some point xo.  The idea of subtraction of 

singularity is to extract the singular part of the integrand.  This is done by subtracting, 

from the integrand, an expression integrable in closed form, which eliminates the 

singularity and yields a form which can be integrated numerically [8].  For instance, 

consider 
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 (A.1) 

 

The integrand has a singularity at x = 1, and ∞=)1(I .  However, we can subtract the 

singularity in the following manner: 
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The first integral is evaluated analytically.  The second integral has no singularity, since it 

equals zero at x = 1, and can be evaluated numerically over the whole range. 

Now consider the infinite slab geometry case.  The expression for the nth shape 

factor, in terms of the (n-1)th shape factor is: 
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where ( ',, )ηηAnK  and ( ',, )ηηBnK  are the kernels, and are calculated as: 
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and 
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The kernels have a singularity at the point ηη =' .  To apply the subtraction of 

singularity method, we need to ensure that the form of the integrand that is extracted is 

integrable in closed form, and that the integral calculated numerically is equal to zero at 

the singularity.  Rewriting equation (A.3) as 
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fulfills the above requirements.  The first and third integrals, which contain a singularity 

at ηη =' , can be performed analytically.  Meanwhile, the second and fourth integrals, 

which cannot be performed analytically, equal zero at the point ηη =' .  
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Appendix B.  Numerical Integration Routines 

 

B.1 Gauss-Legendre Quadrature 

 

While Newton-Cotes formulas, such as the Simpson’s rule, are based on evaluations of a 

function at equally spaced points, Gaussian quadrature rules evaluate a function at points 

picked so that the rule is exact for polynomials of as high a degree as possible.  The 

general form of a Gaussian quadrature rule on an interval [-1,1] is 
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where the choice of the points xi, the weights ci depend on the number of quadrature 

points n, and W(x) is the weight function and is equal to 1 for Gauss-Legendre 

quadrature.  The quadrature rule is exact for polynomials of degree up to 2n – 1 [12]. 

When the integration is performed on an interval of [a,b] instead of [-1,1], the 

quadrature rule must be modified.  Using a change of variables, it can be shown that the 

quadrature points ti on the interval [a,b], corresponding to the quadrature points xi on      

[-1,1] can be found from [12]: 

 

( )( abxabt ii ++−=
2
1 ) . (B.2) 

 

Therefore, the Gaussian quadrature rule is applied to the integral 
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Since the points at which the function must be evaluated for the Gauss-Legendre 

quadrature rule are not necessarily the same as the points at which the function is known, 
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an interpolation scheme must be used to evaluate the function.  For the Gauss-Legendre 

quadrature rule, a 2nd order polynomial interpolation scheme was implemented [14]. 

 

B.2 Chebyshev Polynomial Expansion 

 

Chebyshev polynomials are a set of orthogonal polynomials, Tn(x).  They are defined on 

the real line from –1 to 1, or in θ space from 0 to 2π.  The Chebyshev polynomials can be 

obtained from [12]: 
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Chebyshev polynomials can also be generated from the recurrence relation [12]: 
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The polynomial Tn(x) will have n zeros in the range [-1,1], defined as [14]: 
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 If the function to be approximated is defined on an arbitrary range [a,b], rather 

than [-1,1], then a variable change can be used to make the expansion valid on [a,b]: 
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 Chebyshev expansion of a function involves finding a set of coefficients, ci, for 

the polynomials Ti such that [14]: 
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where N is the number of Chebyshev polynomials used in the approximation, and is on 

the order of 30 to 50 [14].  The coefficients, ci, are found through the following relation 

[14]: 

 

( ) ( )

( ) ( )( )∑

∑

=

=
−











 −−















 −

=

=

N

k

N

k
kjki

N
ki

N
kf

N

xTxf
N

c

1

2
1

2
1

1
1

1coscos2

2

ππ
       (B.9) 

 

 If the coefficients for the Chebyshev expansion are known, the coefficients, ai, of 

the equivalent polynomial in x can be found from Clenshaw’s recurrence relations [12, 

14]: 
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The number of Chebyshev coefficients used for the evaluation procedure can be truncated 

from the number of coefficients used in the expansion. 

 Given the coefficients ci of the Chebyshev expansion approximating f(x), it is a 

simple matter to calculate the coefficients, Ci, that approximate the integral of the 

function f(x) [14]: 
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 Generally, the function to be evaluated is not known at the zeros of the 

Chebyshev polynomial.  In this case, interpolation must be performed to find the value of 
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the functions at the zeros of the Chebyshev polynomials.  A linear interpolation scheme 

was implemented [14]. 

 The Chebyshev Polynomial method of performing an indefinite integral on a 

function is then as follow: 

1) Obtain the coefficients, ci, of the Chebyshev polynomial expansion of the function 

f(x) using equation (B.9). 

2) Obtain the coefficients of the integrated function, Ci, from the coefficients ci using 

equation (B.11). 

3) Evaluate the integrated function in x using equations (B.10). 

Equation (B.11) is the basis of a quadrature rule known as the Clenshaw-Curtis 

quadrature.  This quadrature rule can be used for definite integrals, using the following 

formula 
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 The Chebyshev Polynomial Expansion method and Clenshaw-Curtis quadrature, 

since they use Chebyshev zeroes as the nodes, are only exact for polynomials of degree n, 

as opposed to the Gaussian quadrature rules, which are exact for polynomials of degree 

2n-1.  However, this factor of two advantage in efficiency is rarely seen in practice [13]. 
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Appendix C.  Derivation of Shape Factor Equations at η = 0 for 
Infinite Spherical Medium 

 

This appendix gives the detailed derivation of the shape factor equations at the point 

0=η  for the infinite spherical medium with isotropic scattering problem.  We begin the 

discussion with the equation for the nth collided shape factor equation, corresponding to 

equation (3.53) in Chapter 3, Section 3.2.1: 
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where the kernels are given by 
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and where the integrals of the kernels are given by 
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for n = 3 and  
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for n ≥ 4. 

 The above derived expressions are not enough to numerically solve the spherical 

case infinite medium problem, because there is a singularity at η = 0.  Therefore, the limit 

of Fn as η → 0 must be computed.  Plugging in 0=η  for the n = 1 shape factor results in 

0
0 , or indeterminate.  Applying L’Hospital’s gives 
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Again, with the n = 2 shape factor plugging in η = 0 results in the indeterminate relation.  

Again applying L’Hospital’s yields 
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 Next, the equation for the shape factors for n ≥ 3 at 0=η  will be determined.  

The derivation begins by taking the limit of equation (C.1): 
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From equation (C.13), it is immediately apparent that the first and second integrals are 

equal to zero in the limit as η → 0.  Therefore, equation (C.13) simplifies, in the limit 

that η → 0, to 
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For the specific case where n = 3, the kernels at η = 0 are 
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The kernels are equal at η = 0.  Therefore, subtracting the third integral from the first 

integral in equation (C.14) results in the indeterminate relation.  Once again, L’Hospital’s 

rule can be used and gives 
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The integrated kernels in the limit that η → 0, for n = 3 are 
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Again, the integrals of the kernels are equal.  Therefore, subtracting the fourth integral 

from the second integral in equation (C.14) results in an indeterminate.  Once again, 

L’Hospital’s rule is used: 
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Therefore, the equation for the n = 3 shape factor at 0=η is: 
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 These same steps can be applied to determine the equation to be solved for F4(0).  

Start again by examining the kernels for n = 4 when 0=η . 
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Again, subtracting the third integral from the first integral results in the indeterminate 

relation.  Applying L’Hospital’s rule yields 
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Taking the limits of the integrals of the kernels as 0→η , 
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As in the n = 3 case, the integrals of the kernels are equal to each other at 0=η .  

Subtracting the fourth integral from the second integral again results in the indeterminate 

relation.  Once again L’Hospital’s rule may be applied, and results in 
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Finally, the equation to be solved for n = 4 is 

 

( ) ( ) ( ) ( )[ ]
( ) 




















+
−

+
−−+= ∫

1

0
23334 '

'1
1

'1
1

'
1'0'2020 η

ηηη
ηη dFFFF .     (C.28) 



 52

 

 This same procedure can be applied to find the equation that must be solved at 

0=η for n ≥ 5.  First look at the expressions for the kernels at 0=η : 
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As in the cases with n = 3 and n = 4, the kernels are equal to each other at 0=η .  

Subtracting the third integral from the first in equation (C.14) results in the indeterminate 

relation.  Once again, apply L’Hospital’s rule to obtain 
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The final step is to examine the integrals of the kernels at 0=η . 
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Once again, the integrals of the kernels are equal to each other in the limit that 0→η .  

Subtracting the fourth integral from the second in equation (C.14) again results in the 

indeterminate relation.  Applying L’Hospital’s rule yields 
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Finally, the equation that must be solved at η = 0 for the case of n ≥ 5 is 
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