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Abstract

This report describes the physical model, algorithms and test examples in the mod-

ule of implicit Monte Carlo (IMC) radiation transport for the hydrodynamic simulation

code DRACO. The implementation has the following features: 1) The photon particles are

equally created on multi-processors to ensure equal load balancing. Each processor is asso-

ciated with a particle pool using a linked-list data structure so that storing and retrieving

operations have clean and simple interfaces to the particle pool; 2) The Fleck and Cum-

mings (FC) method of IMC is adopted in which the implicity is given by the parameter f ;

3) The time independent (adiabatic) transport option is provided so that the photons are

not censused when the hydro time is reached. This option may be adequate for conditions

where the radiation is not strongly coupled with the plasma; 4) Up to 1000 energy groups

can be used for the photon transport, since the speed of the calculation is not affected by

the size and complexity of the tabulated cross section data; however, a large amount of

memory is required. We have done a number of test problems to ensure the correctness

of the implementation, such as the FC Marshak waves, the static problem, a hot square

in a cold surrounding plasma, equilibrium distribution for infinite medium, etc. The IMC

results from the above tests are physically reasonable and have been reported previously. In

this report, we will focus on the FC Marshak wave problem to address several issues related

to the IMC such as computer memory usage and timing in time dependent or adiabatic

simulations, statistical noise and parallel speedup. Simulations for realistic ICF targets will

be presented in other reports.



I. INTRODUCTION

In radiation hydrodynamics, the radiation transport is coupled with the fluid when

the fluid temperature increases since the radiation energy density varies as the fourth

power of the temperature. At a very high temperature, a condition that usually oc-

curs in Inertial Confinement Fusion (ICF) studies, the energy density of the radiation

field becomes sufficiently large that radiation transfer is a dominant heat transfer

mechanism. Because of the complexity and difficulties in solving these coupled radi-

ation and material equations using conventional deterministic approaches, the Monte

Carlo method provides an accurate and highly feasible computational tool for these

nonlinear radiation problems.

In the Monte Carlo method, photons are created in the mesh zones at the beginning

of the time step according to the material thermal emission. Then they are followed

through the zones, and heat the material according to the radiation absorption. The

temperatures are updated at the end of the time step. This algorithm works when

the radiation is weakly coupled with the material. However, when the radiation is

strongly coupled with the material, this method will be unstable when the time steps

increase to a point that at this time interval, the amount of the radiation and material

energy exchange is able to change the material temperature by a large amount. If

the temperature is used for the emission term at the beginning of the time step,

the material does not radiate and only absorbs the radiation energy and thus the

instability occurs.

The IMC method works by using the material equation to estimate the future

material temperature, and using this estimate in the transport equation. In other

words, in the integration of the material equation from tn to tn+1, the integrands are

approximated by the mean-value theorem and the centered value ur(r, t) is approxi-

mated as a linear combination of tn and tn+1 time step values. It is shown that it is

equivalent to reducing the absorption opacity by a factor of f and adding an equal

amount of isotropic scattering with effective scattering cross section (1− f)σs. When

f is small (∆t is large), the photons being absorbed are quickly reemitted, and most



of the absorption opacity is replaced by an effective isotropic scattering opacity.

The IMC treatment of nonlinear radiation transport leads to a significant improve-

ment in stability, accuracy and computational efficiency over the explicit conventional

Monte Carlo treatment. For the basis of the IMC method, we closely follow the work

of FC. However, we are handling 2D geometries, actually 3D tracking in a 2D cylin-

drical geometry while only 1D geometry is handled in the FC paper. In Section II, we

give the coupled nonlinear radiation transport equations. In Section III, we introduce

the FC IMC method and derive the IMC equations by replacing the exponentials in

the emission term by the first-order expansion. In Section IV, we describe the IMC

algorithm, code structure, data structure support, and input deck and its usage. Fi-

nally, in Section V, we give numerical results for the FC Marshak wave problem run

in 2D.

II. NONLINEAR RADIATION TRANSPORT EQUATIONS

The time-dependent radiation transport equation including scattering is in the

form [1]

1

c

I(�r, �Ω, ν, t)

∂t
+ �Ω · ∇I(�r, �Ω, ν, t) + µt(ν)I(�r, �Ω, ν, t) = µa(ν)B(ν)

+
∫ ∫

ν

ν ′µs(ν
′ → ν, �Ω · �Ω′)I(�r, �Ω′, ν ′, t)dν ′d�Ω′, (1)

where ν is the frequency, I(�r, �Ω, ν, t) is the specific intensity and B(ν) is the Planck

function. Since local thermodynamic equilibrium (LTE) is assumed in the above

transport equation,

B(ν) =
2hν3

c2

1

ehν/kT − 1
, (2)

µt(ν) is the total attenuation coefficient

µt(ν) = µa(ν) +
∫ ∫

µs(ν → ν ′, �Ω · �Ω′)dν ′d�Ω′, (3)

and µa(ν) is the absorption coefficient including induced effects,

µa(ν) =
µ′

a(ν)

1 + c2B(ν)/2hν3

= µ′
a(ν)(1 − e−hν/kT ). (4)
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The transport equation is coupled to the energy balance material equation

∂um(�r, t)

∂t
=

∫ ∫
µt(ν)I(�r, �Ω, ν, t)dνd�Ω − 4π

∫
µa(ν)B(ν)dν

−
∫ ∫ ∫ ∫

ν

ν ′µs(ν
′ → ν, �Ω · �Ω′)I(�r, �Ω′, ν ′, t)dνd�Ωdν ′d�Ω′ + S(�r, t), (5)

where um(�r, t) is the material energy density, which is related to the temperature

T (�r, t) through the equation of state,

um(�r, t) = γ(�r, t)T (�r, t), (6)

where γ(�r, t) depends on the material properties such as pressure, specific heat ca-

pacity, etc.

The above equations are exact without any kind of approximation. The mathe-

matical derivation of the basic equations in the IMC method starts with a crucial

variable substitution, that is,

∂um(�r, t)

∂ur(�r, t)
=

1

β(�r, t)
, (7)

where ur(�r, t) is the equilibrium radiation energy density defined in terms of the

Planck function as

ur(�r, t) =
4π

c

∫
B(ν)dν = aT 4 (8)

with

a =
8k4π5

15c3h3
. (9)

Expressing the emission term in the transport equation in terms of the equilibrium

radiation energy

µa(ν)B(ν) =
c

4π
µa(ν)bνur(�r, t), (10)

where bν is the normalized Planck function, and defining the Planck function weighted

absorption coefficient as

σp(�r, t) =
∫

bνµa(ν)dν, (11)

the transport and material equations used in the IMC method are as follows:

1

c

I(�r, �Ω, ν, t)

∂t
+ �Ω · ∇I(�r, �Ω, ν, t) + µt(ν)I(�r, �Ω, ν, t) =

c

4π
µa(ν)bνur(�r, t)

+
∫ ∫

ν

ν ′µs(ν
′ → ν, �Ω · �Ω′)I(�r, �Ω′, ν ′, t)dν ′d�Ω′, (12)
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1

β(�r, t)

∂ur(�r, t)

∂t
=

∫ ∫
µt(ν)I(�r, �Ω, ν, t)dνd�Ω − cσp(�r, t)ur(�r, t)dν

−
∫ ∫ ∫ ∫

ν

ν ′µs(ν
′ → ν, �Ω · �Ω′)I(�r, �Ω′, ν ′, t)dνd�Ωdν ′d�Ω′ + S(�r, t). (13)

With the relation between the material energy density and the temperature

[Eq.(6)], and the relation between the material energy density and radiation energy

density [Eq.(7)], the closure form of basic equations in the IMC method is defined.

III. THE IMC METHOD BY FLECK AND CUMMINGS

The IMC equations by FC are derived by making two distinct approximations.

In the integration of the material equation from time tn to tn+1, the integrands are

approximated by the mean-value theorem and the centered value ur(�r, t) is approxi-

mated as a linear combination of beginning and ending time step values,

ur(�r, t) = αur(�r, tn+1 + (1 − α)ur(�r, tn). (14)

The above averaged radiation energy density is substituted back in the right-hand-

side of the transport equation, and the second approximation is made there: the

time-centered radiation energy density is replaced by its instantaneous value. In the

absence of scattering, the resulting radiation transport equation has the form [2]

1

c

I(�r, �Ω, ν, t)

∂t
+ �Ω · ∇I(�r, �Ω, ν, t) + µa(ν)I(�r, �Ω, ν, t) = f

c

4π
µa(ν)bνur(�r, t)

(1 − f)µa(ν)bν
1

4πσp

{∫ ∫
µa(ν

′)I(�r, �Ω, ν ′, t)dν ′d�Ω + S(�r, t)
}

, (15)

where the parameter f is defined

f =
1

1 + αcβσp∆t
. (16)

Another way to derive FC’s IMC equation is to replace the exponentials in the

emission term by the first-order expansion. Here is the summary of the derivation.

The solution of Eq. (13) is given by

ur(�r, t) = ur(�r, t
0)exp(−

∫ t

t0
cβσpdt′) +

∫ t

t0
dt′β(�r, t′)exp(−

∫ t

t′
cβσpdt′′)

{∫ ∫
µa(ν)I(�r, �Ω, ν, t′)dνd�Ω + S(�r, t′)

}
, (17)
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where ur(�r, t
0) is an initial condition at t0. The radiation transport equation is ob-

tained in the absence of scattering by substituting the solution for ur(�r, t) in the

source term,

1

c

I(�r, �Ω, ν, t)

∂t
+ �Ω · ∇I(�r, �Ω, ν, t) + µa(ν)I(�r, �Ω, ν, t) =

c

4π
µa(ν)bν{ur(�r, t

0)exp(−
∫ t

t0
cβσpdt′)

+
∫ t

t0
dt′β(�r, t′)exp(−

∫ t

t′
cβσpdt′′)

[∫ ∫
µa(ν)I(�r, �Ω, ν, t′)dνd�Ω + S(�r, t′)

]
}. (18)

The emission source term consists of the intensity I, the external heat source S and

the initial condition ur(�r, t
0). Consider the exponential exp(− ∫ t

t0
cβσpdt′), assuming

the product σβ is almost constant in the time interval tn and tn+1 and applying the

mean-value theorem,

exp(−
∫ t

t0
cβσpdt′) = exp(−αcβσp∆t), (19)

where α is a time-centering parameter in the range of 0 and 1, which represents the

degree of implicitness. Further assuming αcβσp∆t is a small value, the exponential

can be transformed to the form

exp(−αcβσp∆t) ≈ 1

αcβσp∆t
, (20)

which is the f -parameter in Eq. (16). Applying the same argument in the second

term on the right-hand-side of Eq. (18) and approximating
∫ t
t0

dt′β(�r, t′) by β∆t, the

same equation as Eq. (15) can be obtained.

IV. IMC CODE STRUCTURE AND DATA STRUCTURE SUPPORT

A. IMC Code Structure

The IMC has been implemented in the subtree of rt imc with 14 new subroutines

and several module subroutines. Other affected or modified subroutines include the

initialization subroutines and thermal transport subroutines (see source codes for the

details and the listing of IMC subroutines in Table 1).
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The main structure of the radiation transport is as follows. In the subroutine

rtimc control .f90 , The equilibrium radiation energy density is first updated according

to Stefan’s Law, then the IMC parameters such as β, f and Planck mean absorption

cross section are calculated. Note the previous temperature is used for the evaluations.

After these IMC parameters have been calculated, the photon particles are created

randomly in the subroutine rtimc photon source.f90 . The energy of volume source

particles is given by

ej−1/2 = Ej−1/2/Nj−1/2, (21)

while the energy of surface source particles is given by

es =
ac

4
T 4

0 ∆t/Ns, (22)

where a is the radiation constant, Nj−1/2 is the number of source particles created in

zone j and Ns is the number of source particles created on the surface. Ej−1/2 is the

source energy radiated in zone j, given by

Ej−1/2 = fσpcurj−1/2∆x∆t + (1 − f)Sj−1/2∆x∆t. (23)

The code segment used to generate sampled photons for a surface source is listed in

Figure 1, and the code segment for the volume source is listed in Figure 2.

The full 3D Monte Carlo tracking is then followed after the sampled photons.

The photon to be transported is retrieved from the photon pool by calling function

get curr pused indx pool(). First, the correct zone index is searched near the neigh-

bor zones to ensure the photon resides in the correct physical zone, then the photon

travel distances are calculated for the boundary crossing, for a collision event and to

census time. The distance to a boundary crossing is geometry dependent. Two kinds

of geometry are supported in the current implementation, that is, planar 2D and cylin-

drical 2D, in subroutines rtimc planar dist 2d.f90 and rtimc cylind dist 3d.f90, re-

spectively. The distance to a scattering collision is given by

dc =
|lnξ|

(1 − fj−1/2)σν
, (24)

6



and the distance to census is,

ds = c(tn+1 − t). (25)

If the photon is crossing the zone boundary or it is censused, the photon is advanced

according to [2]

x
′
= x + µd,

t
′
= t + d/c,

ν
′
= ν,

µ
′
= µ,

E
′
= Ee−fσνd.

(26)

The photon’s energy loss ∆E = E(1 − e−fσνd) is added to the total radiation energy

in the zone. The cutoff photon energy is chosen as 1% of the photon’s energy at birth.

The photon is eliminated if its energy is lower than the cutoff energy and its remaining

energy is deposited in the zone. If the photon is crossing the zone boundary, a new

plasma condition is calculated, and the geometry routine is reentered. If the photon

is censused, its data is stored in the photon pool for the next integration cycle.

If the photon experiences a scattering collision, x
′
, t

′
, E

′
and energy deposition are

advanced as before. A different photon frequency ν
′

is resampled from the volume

source frequency distribution, and also a random direction is re-sampled. A new zone

is then reentered.

Finally, the material temperature is updated according to the equation

T n+1
j−1/2 = T n

j−1/2+
1

β(T n
j−1/2)

[
Ej−1/2/∆x − fj−1/2c∆tσpj−1/2urj−1/2 + fj−1/2Srj−1/2∆t

]
.

(27)

Note that IMC solves the coupled equations of radiation transport and the mate-

rial equation. As we know, the material equation is formulated as part of the thermal

electron transport in DRACO. In order to incorporate the IMC, we use operator split-

ting, that is, the IMC radiation updates the electron temperature to an intermediate

7



value, and then the thermal transport updates this median value to n+1 time step

without the radiation source.

An approximation, called adiabatic transport, has also been implemented in

DRACO. In this approximation, the photon is transported time independently, that

is, the photon will not be censused even if the hydro time step limit is reached. Under

certain conditions, this approximation is valid if the radiation and material evolution

is not strongly coupled. This assumption is based on the condition that during the

photon life time the underlying plasma is under small changes in terms of temper-

ature and density. The implementation of the adiabatic transport is similar to the

above described time dependent transport, except that the photon travel distance is

not bounded by the census distance. This approximation will significantly reduce the

amount of memory used for storing the censused particles although the computing

time is basically the same.

B. Data Structure Support

The basic data structure is in the module file module rtimc.f90. It takes advantage

of the Fortran 90 object data type capability. The photon type is defined as

type :: photon t

type(particle t) :: particle

real(real kind) :: freq

end type photon t

The particle t object type is further defined as shown in Figure 3. This type

abstracts the basic information for a particle. Actually, this abstract is also shared

in the alpha charged particle transport.

One of the challenges for parallelization for the particle tracking time-dependently

is how to store the tracking temporal particle information. Here is the data structure

implemented in DRACO. A pool built with a linked list is associated with each

processor and the capacity of each pool is a user-defined parameter. Retrieving and

storing particles are manipulated through two linked lists, one for free indices and

8



the other for used indices. The advantage of doing so is it provides a simple and

clean interface for connecting the particle pool. This method is also used in alpha

particle transport. All the data structures are collected in the subtree code tree, such

as alpha pool and photon pool. The operations that access the data pool are through

the interfaces, as shown in the following.

public :: init photon pool

public :: get pfree indx pool

ublic :: put pused indx pool

public :: put pfree indx pool

public :: count pfree indx pool

public :: count pused indx pool

public :: print pfree indx pool

public :: print pused indx pool

public :: start sweep pused indx pool

public :: sweeping pused indx pool

public :: is end pused indx pool

public :: get curr pused indx pool

public :: remove curr pused indx pool

public :: check photon pool

public :: photon debug plot

A diagram of the photon pool allocated on parallel machines is shown in Figure 4.

C. IMC Input Deck and Usage

A separate input block is added in the sim input.txt file besides several global

radiation control parameters in input block radtins. Four input parameters in in-

put block radtins are relevant and important for radiation IMC. In order to use

IMC, the parameter radiation schema must be set to ÍMĆ. The number of fre-

quency groups is set by parameter number of radiation freq groups. The param-

eter rad trans energy limit is used to decide whether the IMC radiation will be

9



invoked or not. Another opacity table format option is also added for the IMC. In or-

der to use the radiation IMC, the opacity table format must be set as YAC because

current LLE opacity files do not have the cross section data in them. To run the

IMC, the cross section itself, the absorption probability and the mean Planck opacity

are required. These data are calculated by the YAC code in a format that is slightly

different from the standard LLE opacity format.

The separate input block rtimcins is exclusively for the radiation IMC. The size

of the photon pool is set by parameter photon pool capacity. This will pre-allocate

memory for the whole simulation on each processor. The photons are dynamically

created and destroyed in the pool. The parameter photon pool number controls the

number of newly created photons emitted in each time step on each processor. The

size of photon pool capacity must be very much larger than emit photon number in

order to run a large time step. For example, if photon pool capacity is set to 1,000,000,

and emit photon number is set to 1,000 on 4 processors, the total number of 4,000,000

photons will be allocated on these 4 processors and total number of 4,000 photons

will be emitted for each time step on these 4 processors. The estimated number of

time steps that could be supported is about 1000. The parameter fleck alpha is the

implicity from Fleck and Cumming’s method. The value should be set in the range

0.5 to 1. The default value is 1. The parameter cv type is for the specific heat and

the parameter cs type is for the cross section type. For realistic calculations, cv type

and cs type muse be set to zero. The boundary conditions are set from parameters

rtimc bc ism,

rtimc bc iep,

rtimc bc jsm,

rtimc bc jep.

The value of these parameters can be ′none′ or ′zero′, which have the same meaning

as for the diffusion transport.

More detailed information about the IMC input deck is given in Tables 2-4.
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V. NUMERICAL TESTS

We have done a number of test problems to ensure the correctness of the imple-

mentation, such as the FC Marshak waves, the static problem, a hot square in a cold

surrounding plasma, equilibrium distribution for infinite medium, etc. In this report,

we will only focus on the FC Marshak wave problem. We use this test problem to

address several issues related to computer memory usage and timing in time depen-

dent or adiabatic simulations, statistical noise and parallel speedup. Simulations for

realistic ICF targets and comparison with the diffusion simulations will be presented

in other reports.

In the FC Marshak wave problem, a slab with thickness of 4 cm is heated by a 1

keV blackbody source at the left side x=0, and the macroscopic cross section has an

analytical form as given by

σv =
27

ν3
(1 − e−ν/T ) cm−1, (28)

where ν and temperature T are measured in keV. This cross section has a value of

mean free path of 1 cm for ν=3 keV, which is approximately the frequency for which

a 1 keV blackbody spectrum peaks. The temperatures in all volume zones are set

equal to 10 eV initially to keep σp finite. The value of specific heat is taken to be

0.5917aT 3
0 . We run this 1D problem in the 2D DRACO mode. To compare with the

results in FC’s paper, we average the results along I-lines.

We have varied the number of sampled photons and the mesh size to study the

influences on the temperature distribution. Figure 5 shows the effect of using a small

number of sampled photons and a large number of sampled photons. We can see the

result from a large number of photons has much smoother curves due to the reduction

of statistical errors. Comparing with FC’s paper for time ct = 6 cm, the agreement

is very good.

The stability of the IMC solutions is illustrated by increasing the time step as

shown in Figure 6. For the time step of 1 × 10−2 shakes (10−8 s), initially the

11



temperature near the source is slighly higher, however after the time ct = 15 cm

the solutions become correct. For a larger time step of 2 × 10−2 shakes, the solution

is incorrect near the source although the remainder of the curve looks good.

We have also studied the influence of zone sizes on the temperature distribution as

done in the FC paper. We can see that decreasing the zone size does not improve the

accuracy of the solution but instead introduces a slight spatial fluctuation, as shown

in Figure 7. This observation also agrees well with that shown in the FC paper.

The temperature contours for this 1D problem run in 2D at three different times

(0.6 ns, 1 ns and 3 ns) are shown as 3D surfaces in Figure 8. The run uses 4 cpus

and each cpu transports 50,000 photon particles. The time step is set to 1.e-11 s and

the code runs up to 3 ns. The statistical noise is obvious at the wavefront. However,

the overall statistical error is less than 3% as shown in Figure 9. For some regions,

the statistical error is around 1%.

We estimate the parallel speedup by running the problem on 1, 2 and 4 processors

on UR-LLE parallel machines. The time per cycle on 1, 2, and 4 processors are 1.964

second, 1.011 second and 0.502 second, respectively. Therefore, the speedup factors

for 2 and 4 processors are 1.94 and 3.91, respectively. We can see the speedup is

almost linear with the number of processors.

Comparisons with the results from the adiabatic approximation are shown in Fig-

ures 10-12 for 0.6 ns, 1 ns and 3 ns, respectively. We can see the adiabatic approxi-

mation gives incorrect answers for earlier times; however, it converges to the correct

solution at the equilibirum state for later times.

VI. CONCLUSIONS AND FUTURE WORK

There are some other variant forms of the IMC method [3] [4] [5], for example,

Gentle uses an implicit Monte Carlo diffusion method by solving the diffusion matrix

with Monte Carlo method, random walk method using a confined diffusive sphere,

discrete diffusion Monte Carlo solving diffusion on some regions and symbolic Implicit

method. These are topics we may study further.
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FIG. 1: The code segment used to generate sampled photons for a surface source
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FIG. 2: The code segment used to generate sampled photons for volume sources
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FIG. 3: The data structure for particles in Fortran 90
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FIG. 4: Diagram of the photon pool allocated on each parallel machine

17



FIG. 5: Comparison with FC’s result and effect of the number of sampled photons
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FIG. 6: Comparison between IMC temperatures for different time steps
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FIG. 7: Comparison between IMC temperatures for different spatial sizes
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FIG. 8: The 3D temperature contour surfaces for the FC 1D problem run in 2D at three

different times (0.6 ns, 1 ns and 3 ns)
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FIG. 9: Statistical error for the FC problem run in 2D
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FIG. 10: Comparison with the adiabat approximation at 0.6 ns
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FIG. 11: Comparison with the adiabat approximation at 1 ns
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FIG. 12: Comparison with the adiabat approximation at 3 ns
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TABLE 1: Radiation IMC Subroutines

module pfree indx data structure for a free queue element

module pfree indx queue data structure for a free queue

module pfree indx queue op operations upon a free queue

module pused indx data structure for a used queue element

module pused indx queue data structure for a used queue

module pused indx queue op operations upon a used queue

module photon pool data structure and operations for a photon pool

module rtimc module file for radiation IMC

module particle module file for particle transport

rtimc cens dist calculate the travel distance to the census time

rtimc coll dist 2d calculate the collision distance if a collison event occurs

rtimc control control subroutine for radiation IMC

rtimc cross section calculate photon cross sections

rtimc csetc update update Planck mean absorption cross section

and other IMC parameters, such as f and β

rtimc cylind dist 3d calculate the travel distance to the boundary condition

for the cylindrical geometry

rtimc energy update update material energy after the photon transport

rtimc photon pool energy check total photon energy in the pool

rtimc photon source create randomly sampled photons from surface and volume

rtimc photon track calculate the tracking trajectory for each photon

rtimc planar dist 2d calculate the travel distance to the boundary condition

for the planar 2D geometry

rtimc sample cell sample photons in volume

sample blackbody planck sample photon frequency from a blackbody distribution

rtimc sample frequency sample frequency from a volume photon

rtimc sample surface sample random photon from a surface
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TABLE 2: Radiation IMC Namelist Options in Input Block radtins

Variables Default Dimension Meaning

radiation schema Kershaw 1 Option for radiation transport method,

set to ’IMC’ for IMC transport

number of radiation 4 1 set the number according to

freq groups available data files

rad trans energy limit 0. 1 transport radiation if the radiation

energy density is greater than this value

opacity table format ’LLE’ 1 set to ’YAC’ if radiation IMC is used

The corresponding data file name is

yac imc #group element.txt
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TABLE 3: Radiation IMC Namelist Options in Input Block rtimcins

Variables Default Dimension Meaning

emit photon number 100 1 Number of sampled photons at each time step

photon pool capacity 100 1 total storage allocated on each processor.

If the number of requested photons is greater ,

than this value the program will stop abnormally.

rtimc method ’standard’ 1 If it is set to ’standard’, the program will run

time dependent transport, meaning the photons

will be censused

If it is set to ’adiabat’, the program will run

time independent transport

photon per cell 0 1 Number of sampled photons for each computational

zone if the value is set to non-zero

fleck alpha 1.0 1 Fleck’s f parameter with a range between 0.5 and 1.

cv type 0 1 =1, specific heat for Fleck test problem

=2, specific heat for Tophat problem

=0 (default), real specific heat

rtimc right tbc 0. 1 Right boundary condition under blackbody irradiation,

temperature in unit of eV
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TABLE 4: Radiation IMC Namelist Options in Input Block rtimcins (continue)

Variables Default Dimension Meaning

rtimc left tbc 0. 1 Leftt boundary condition under blackbody irradiation,

temperature in unit of eV

rtimc top tbc 0. 1 Top boundary condition under blackbody irradiation,

temperature in unit of eV

rtimc bottom tbc 0. 1 Bottom boundary condition under blackbody irradiation,

temperature in unit of eV

rtimc bc ism ’none’ 1 Left boundary condition,

’none’ - escape boundary

’zero’ - adiabatic boundary

rtimc bc iep ’none’ 1 Right boundary condition,

’none’ - escape boundary

’zero’ - adiabatic boundary

rtimc bc jsm ’none’ 1 Bottom boundary condition,

’none’ - escape boundary

’zero’ - adiabatic boundary

rtimc bc jep ’none’ 1 Top boundary condition,

’none’ - escape boundary

’zero’ - adiabatic boundary

cs type 0 1 =1, cross section for Fleck test problem

=2, cross section for Fleck test problem

temperature dependent case

=3, artifical temperature dependent opacity

only for test purpose

=4, one group, set to Planck mean

=0 (default), real cross section

from tabulated cross section data
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