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Executive Summary

The development of Monte Carlo techniques for isotopic inventory analysis has been
explored in order to facilitate the modeling of systems with flowing streams of material
through varying neutron irradiation environments. This represents a novel applica-
tion of Monte Carlo methods to a field that has traditionally relied on deterministic
solutions to systems of first-order differential equations. The Monte Carlo techniques
were based largely on the known modeling techniques of Monte Carlo radiation trans-
port, but with important differences, particularly in the area of variance reduction
and efficiency measurement. The software that was developed to implement and test
these methods now provides a basis for validating approximate modeling techniques
that are available to deterministic methodologies.

The Monte Carlo methods have been shown to be effective in reproducing the so-
lutions of simple problems that are possible using both stochastic and deterministic
methods. The Monte Carlo methods are also effective for tracking flows of materials
through complex systems including the ability to model removal of individual ele-
ments or isotopes in the system. Computational performance is best for flows that
have characteristic times that are large fractions of the system lifetime. As the char-
acteristic times become short, leading to thousands or millions of passes through the
system, the computational performance drops significantly. Further research is un-
derway to determine modeling techniques to improve performance within this range
of problems.



Monte Carlo Technique

Modeling of Isotopic Inventories in

Future Nuclear Systems and Fuel Cycles

s for the Comprehensive

This report describes the technical development of Monte Carlo techniques for

isotopic inventory analysis. The primary motivation for this solution methodology

is the ability to model systems of flowing material being exposed to varying and

stochastically varying radiation environments. The methodology was developed in

three stages: analog methods which model each atom with true reaction probabili-

ties (Section 2), non-analog methods which bias the probability distributions while

adjusting atom weights to preserve a fair game (Section 3), and efficiency measures

to provide local and global measures of the effectiveness of the non-analog methods

(Section 4). Following this development, the MCise (Monte Carlo isotope simulation

engine) software was used to explore the efficiency of different modeling techniques

(Section 5).

1 Importance of Monte Carlo Isotopic Inventory

Many of the current nuclear power systems rely on the fuel cycles in which material is

exposed to a small number of different irradiation environments over long time scales

with little to none on-line chemical processing. However, the fuel cycle’s characteristic

for the future system is gradually changing as some of the ongoing developments for

the fuel cycles tend to be more “dynamic” as the material is anticipated to mix and

circulate throughout the system and, therefore, exposed to a wide range of neutron

spectrums over much shorter time scales. In addition, it is possible to integrate an

on-line chemical process as a component of the system. Aside from improving overall



performance of the system, such changes are typically introduced with the purpose

of minimizing the volume, activity and/or mean half-life of the radioactive waste

disposal. As a result, the amount of a high-level waste repository can eventually be

decreased. Furthermore, such changes often raise concerns about an increase in the

proliferation risk of the system even though no consideration has been given to the

intrinsic proliferation barriers that may also be part of the new systems. Both aspects

are sensitive issues that need to be addressed before the future nuclear power systems

become more viable options of global energy resource.

Accurate determination of isotopic inventory, particularly the actinide inventory,

of the nuclear power systems is one of the most important inputs used to quanti-

tatively assess their waste disposal and to evaluate their resistance to proliferation.

Such calculation requires tools and methodologies that permit a transient analysis of

the isotopic inventories throughout the lifetime of the system or fuel cycle. Tradi-

tional methodologies for inventory analysis focus on the conversion of a macroscopic

mixture of isotope via transmutation, fission, and decay reactions. The first order

ordinary differential equations (ODE) that describe the reactions for each isotope are

collected into a system of equations that can be written as

~̇N(t) = A ~N(t), (1)

where A is a transfer matrix that represents decay, production and destruction rates

of all isotopes. The general solution to equation (1) is given in terms of matrix

exponential [1]:

~N(t) = eAt ~N(0). (2)

Equation (1) can be solved using a variety of methods. Several activation codes, such



as FISPIN [2], FISPACT [3] and RACC [4], use simple time-step methods by applying

a difference operator to approximate the time derivative on the left hand side of

equation (1) and converting a system of first order differential equations into a system

of algebraic equations. An alternative method treats the system of equations as a

matrix and employs one of existing computational techniques to solve the exponential

as in Equation (2). ORIGEN [5] employs Taylor’s series expansion to calculate the

term eAt. In addition to above methods which attempt to solve the problem as one

large system of ODE’s, a linear chain method which is implemented by DKR [6] and

CINDER [7] breaks down the reaction tree into a number of chains such that each

isotopic node has only one product. Each linear chain has its associated transfer

matrix A which is bidiagonal and its analytical solution is popularly known as the

Bateman equations [1, 8].

All of the mentioned techniques have their own limitations and advantages, de-

pending on physical problems on which they are modeling. A highly stiff nature of

a transfer matrix A is a major obstacle that affects accuracy and convergence of

the numerical method. Furthermore, their effectiveness and accuracy become the is-

sue of concern when they are used to simulate more complicated systems, especially

ones with flowing materials. First, it is often the case in most of these methodolo-

gies to assume a finite set of isotopes produced during the simulation time. Several

techniques are employed to resolve this a priori assumption, ranging from including

all isotopes for which data exists, to arbitrarily applying the maximum number of

isotopes in each reaction chain, to specifying the size of reaction tree based on de-

sired accuracy and truncation of the simulation. Secondly, all of these traditional

techniques are suitable for the analysis of a fixed volume of static material exposed

to a steady-state, pulsed or slowly varying irradiation environment. As mentioned

earlier, future nuclear systems and fuel cycles, however, is likely to have constant or
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Figure 1: A simple example of mixing flow paths where two flows of coolant coming
from a hard and soft spectrum region mix in the heat exchanger and re-enter the
reactor.

regular addition or removal of material which causes flowing streams of fuel or other

materials to experience a variety of neutron flux throughout the operating lifetime

of the system. While current methodologies are capable of modeling some of these

characteristics of future system to some degree of accuracy, they are clearly short

of the ability to perform the computation efficiently. Finally, the implementation of

flowing streams of fuel or other materials into a nuclear system suggests two supple-

mentary features to the model: on-line chemical processes and mixing of flow paths.

The on-line chemical processes would create a unique set of differential equations

that must be solved concurrently with those representing transmutation and decay

processes. The definition of chemical processes may be extended to include a sink in

the system. Moreover, the performances of traditional techniques are susceptible to

error in modeling the mixing of flow paths since flow paths can have an unpredictable

effect if those flow paths previously experience different neutron fluxes. A simple re-

actor design as shown in Figure 1 is used as an example to illustrate a problem from

using traditional techniques to approximate the problem with mixing flow paths. The

reactor has coolant passing through two different regions inside and has two coolant

outflows mixed in the heat exchanger. One traditional approach to approximate this



situation is to have the same sample of coolant flowing through the hard spectrum

region every time and another sample of coolant going through the soft spectrum

region every time. In reality, the coolant will randomly pass through both hard and

soft spectrum regions after leaving the heat exchanger. The following reaction chain

that involves two consecutive transmutation reactions with energy threshold in the 1

MeV range is considered.

A
(n,α)−→ B

(n,2n)−→ C

In this case, the approximation would overestimate the amount of C in the hard

region while underestimating the amount of C in the soft region, with respect to its

average value in the real calculation.

Aiming to overcome the drawbacks of traditional techniques, Monte Carlo tech-

niques for modeling isotopic inventories offer the promise of modeling materials with

complex flowing paths and irradiation histories. They are specifically suitable in

the simulations where the arbitrary flow paths lead to non-predetermined irradiation

histories.

Monte Carlo techniques which are based on tracing the history of individual atoms

allow atoms to randomly follow determined flow paths, to enter/leave the system at

arbitrary locations, and to be exposed to radiation or chemical processes at different

portions of the flow paths. Some early potential applications of these methods include

liquid breeder in fusion blankets, molten salt fueled reactor, and possibly advanced

fuel cycles based on symbiotic combinations of reactors. The liquid breeder is probably

the most immediate application for the use of Monte Carlo techniques. A Pb-Li

coolant is used in many designs to ensure adequate tritium production. Pb and its

impurities are subject to activation under different neutron flux environments as the

coolant arbitrarily enters various regions of the reactor, e.g., first wall, shield, blanket.



After exiting the reactor, the coolant is diverted to the heat exchanger, a chemical

treatment system which is installed to extract the tritium, and back to the reactor.

Monte Carlo methods appear to have distinct advantages over traditional method-

ologies when a “dynamic” nuclear system is of concern. The proposed work investi-

gates and develops a Monte Carlo approach for performing isotopic inventory analysis

of dynamic material exposed to a variety of nuclear and chemical environments in a

complex fuel cycle. The development begins with the implementation of a single-point

steady-state calculation. The basic extensions to allow flowing and mixing of mate-

rials are followed. In addition, some enabling concepts and fundamental capabilities

are described. A variety of well-known problems, some with analytic solutions and

others with solutions from validated deterministic methods, are used to demonstrate

the validity of the method. Finally, the methodology can be applied to the analysis

of existing systems or proposed designs, including potential Generation IV reactors.

Even though the realization of such nuclear systems and fuel cycles may not be prac-

tical in a number of years, early investigations of their radioactive waste disposal and

proliferation resistance would certainly promote efforts in developing technology in

this area.

2 Analog Monte Carlo Isotopic Inventory

This section introduces the methodology with specifics for implementing single point

steady-state activation calculations, the first step in this development. The basic

extensions to allow flowing systems are described and demonstrated. Finally, some

additional enabling concepts and fundamental capabilities are shown. A variety of

well-crafted problems, some with analytic solutions and others with solutions from

deterministic methods, are used to demonstrate the validity of the method. Finally,



future developments for the creation of a comprehensive tool are outlined, with a

particular attention to possible variance reduction techniques.

2.1 Methodology

The development of this methodology follows a logical progression of complexity.

First, it is necessary to develop and implement the solution for a mixture of isotopes

exposed to a single steady-state flux. This is extended by adding the possibility of a

simple flow path– one in which all material flows through the same sequence of control

volumes– and then by allowing for complex flow paths with splitting/combining of

flows. Finally, loop flow allows an atom to return to a previous control volume. Many

combinations of these different flow/complexity regimes are possible. Throughout this

development, a number of enabling concepts must be implemented, most importantly

sources of atoms and tallies of results. This section discusses the development of both

the primary methodology and its enabling concepts.

2.1.1 Problem Formulation

The Monte Carlo simulation of isotopic inventory is based upon following the histories

of individual atoms as they pass between control volumes. An atom always has

a specific isotopic identity characterized by its atomic number, mass number and

isomeric state, but this identity is subject to change due to transmutation reactions

and radioactive decay processes. Each control volume is characterized by a (neutron)

flux 1 and a residence time, tres. The flux for each control volume, typically expressed

as a multi-group spectrum, is assumed to be constant throughout the control volume.

The residence time represents the average amount of time that any atom spends

1In principle, if nuclear data is available, this methodology could treat transmutation by fluxes
of any type of particle and even fluxes of more than one type of particle.



in the control volume. By placing an atom in a control volume, a number of new

important quantities can be determined. The total effective reaction rate coefficient

for an isotope i in control volume v, λv
i,eff , can be determined by collapsing the total

transmutation cross-section for that isotope, σi,tot(E), with the neutron flux for that

control volume, φv(E), and adding the decay constant for that isotope, λi,decay:

λv
i,eff = λi,decay +

∫
φv (E) σi,tot(E) dE (3)

as in equation (3), λ is a variable.

(For simplicity, the index for the isotope, i, and control volume, v, will henceforth

be suppressed unless necessary for clarity.) The mean reaction time is defined as the

inverse of this total effective reaction rate coefficient, tm ≡ λ−1
eff . The probability of

the atom undergoing a reaction of any kind between time, t, and time, t + dt, is

p(t) dt = λeffe
−λeff t dt. (4)

The corresponding cumulative density function is given by integrating equation (4),

P (t) =

t∫

0

λeffe
−λeff t′ dt′

P (t) = 1− e−λeff t (5)

At any point in time, an atom has a known amount of time before it leaves the current

control volume, the remaining residence time, 0 < trem(≤ tres), and thus a remaining

number of mean reaction times,

nrem = λeff trem =
trem
tm

. (6)



2.1.2 Basic Elements

Steady-State Simulation

Consider an atom that has just entered a control volume 2; its remaining residence

time is equal to the control volume’s residence time, trem = tres, and its remaining

number of mean reaction times is defined by equation (6). The number of mean

reaction times until the next reaction, nrxn, can be randomly sampled, using the inverse

transformation of equation (5) with a uniform random variable between 0 and 1, ξ:

nrxn = − ln(ξ). (7)

If nrxn < nrem, the atom reacts before leaving the control volume. The remaining

residence time is updated,

trem ← trem − nrxntm, (8)

a new isotopic identity is determined by randomly sampling the list of possible

reaction pathways, and a new value for is calculated based on the new isotopic identity.

Finally, nrem is updated using equation (6), and nrxn for the next reaction is sampled

using equation (7). The history continues by repeating the comparison of nrxn and

nrem.

If nrxn > nrem, the atom leaves the control volume before reacting (and in a 0-D

simulation the history is ended).

It is perhaps clear at this point that standard steady state inventory analysis

can be performed with this simple 0-D treatment. Since the physics/mathematics

of inventory analysis does not introduce coupling between spatial regions, “multi-

dimensional ” steady-state problems are solved by simply performing a 0-D solution

2Note that for a 0-D analog simulation, entering and leaving the control volume represent the
beginning (birth) and end (death) of the history for that atom, respectively.



a) b)

c) d)

Figure 2: Four different flow and complexity regimes: a) 0-D b) simple flow c) complex
flow, d) loop flow.

at each spatial point of interest in the problem.

Simple Flow

In a simple flow system, as an atom leaves one control volume, it enters another

(Figure 2(b)). In this case, nrxn is updated

nrxn ← nrxn − nrem, (9)

a new value for λeff is calculated based on the new flux in this control volume, and trem

is reset to the residence time for the new control volume, tres. Finally, nrem is updated

using equation (6). Again, the history continues by repeating the comparison of nrxn

and nrem. Note that for simple flows, entering a new control volume requires no

random sampling.

So far, time is only measured relative to the time at which a control volume

is entered. It is useful to introduce a more universal definition of time, the absolute

simulation time, tsim, measured relative to some arbitrary starting time, most logically

the beginning of the first control volume. This would be a property of each atom and



be incremented each time a reaction takes place or a control volume boundary is

reached. Furthermore, since the atoms now flow from one control volume to another,

it is more important that the current control volume of an atom be maintained as a

property of that atom. In systems with simple flows and simple sources, all atoms

would originate in the first control volume at tsim = 0.

Complex Flow

In complex flow systems, atoms leaving one control volume may flow into one

of any number of other control volumes — flows split and combine so that not all

atoms follow the same flow path (Figure 2(c)). Implementing this is straightforward

under the assumption that the relative volumetric flow rate to each control volume

is known and properly characterizes the probability that a given atom will take each

path. As such, random sampling of the discrete probability density function [PDF]

derived from these relative flow rates fully determines which flow path a given atom

takes. The absolute simulation time becomes more important here since different

atoms may experience different flow paths and irradiation histories but still need to

be tallied on an absolute time scale to report results.

Loop Flow

The distinguishing feature of loop flow is the ability for a given atom to return to

a control volume in which it has already been resident (Figure 2(d)). Loop constructs

can be combined with both simple and complex flow. If the total simulation time is

being tracked properly, the implementation of loop flow does not introduce complexity

to the methodology.

2.1.3 Enabling Concepts

Atom Sources



To this point, this discussion has quietly implied that all atoms come from the

same simple source, their histories beginning in the same control volume at the same

time (tsim = 0). As such, implementation of the source would be trivial — random

sampling of a discrete PDF representing the isotopic mix of the initial material. The

method is rendered far more versatile; however, by accommodating different source

locations, compositions and time-dependencies. In fact, the implementation is not

significantly complicated by such improvements.

In its most general form, each source would be associated with a single control

volume, have a single specific isotopic composition, and would have a well-defined

time-dependence, r(t). In a problem with many sources, the total strength of each

source, Rs, would be defined by integrating the time-dependent form over the total

simulation time:

Rs =

tmax
sim∫

0

r(t) dt. (10)

The set of total source strengths defines a discrete PDF which can be sampled to

determine from which source a new atom comes. Once a particular source is chosen,

its initial control volume is explicitly defined and its isotopic identity and birth time

can be randomly sampled from the discrete PDF representing the isotopic mix and

from the time-dependent source strength, r(t),respectively. Note that the 0-D steady

state source is still supported by this generalized scheme by defining a source with a

delta function time-dependence, r(t) = Rsδ(tsim).

Further accommodations are needed to allow atoms to begin their histories at

arbitrary places in a control volume, allowing a simulation to start with control vol-

umes already containing material, some of which just entered and some of which is

almost leaving. This is implemented by permitting different PDFs for the remaining

residence time, trem, when an atom is created from a source.



Tallies

The primary result to be estimated by tallies is the time-dependent population of

atoms, possibly separated into bins based on the isotopic identity. From this result,

most other quantities of interest (activity, decay heat, radiation dose) can be derived

by simple scalar transformations based on nuclear data or using this result as the

input to another simulation. Two types of tallies have been developed: atom current

tallies that take a snapshot of the isotopic spectrum and atom population tallies that

average the isotopic spectrum over a time interval.

An atom current tally simply counts the atoms as they reach user-defined points

in time, but scoring in bins based upon the isotopic identity of the atom. In the

simplest case, these points in time correspond to the simulation times at which atoms

leave specific control volumes. In an analog simulation, every history contributes

the same total score (unity) to each tally. As a result, this type of tally provides

an accurate estimate of the isotopic inventory at that particular point in time but is

susceptible to missing the existence of very short-lived isotopes that are both produced

and consumed between two points in time. This consequence of atom current tallies

is related to the analog detection limit discussed in the results of the next section.

An atom population tally is designed to counter this limitation. In such tallies,

histories contribute scores to time bins, rather than points in time. Again each history

contributes the same total score (unity) to each time bin in each tally. However, the

total score is divided among bins that correspond to the isotopic identity of the atom

during that time bin. Each isotope bin receives a score that is equal to the fraction of

the time bin that the atom existed as that isotope. While this is guaranteed to detect

all isotopes regardless of when they are produced or consumed, since the results are

time-averaged over the width of the bins, they only estimate the results at a specific

time within a discretization error of first order in time. As the number of bins becomes
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t i t i+ 1

Figure 3: Representative reaction sequence between points of time to illustrate dif-
ference between current and population tallies.

Tally type Time bin
Contribution to isotopic tally bin

Exact time
Isotope A Isotope B Isotope C

Current
i 1 0 0 ti

i + 1 0 0 1 ti+1

Population i 1/ 3 1/ 3 1/ 3 none

Table 1: Contributions to different tally types from sample reaction sequence shown
in Figure 3.

very large within a fixed time interval, a population tally and a current tally approach

the same result.

Figure 3 shows a representative reaction sequence occurring between two points

in time and Table 1 indicates how each tally type would respond to this reaction

sequence. None of the time bins in the current tally would include a contribution for

isotope B but will be exact at the times indicated. Conversely, the population tally

will not be exact at any time, but will include a contribution for isotope B.

2.1.4 Compound Capabilities

Taken in various combinations, the above elements and concepts can be used to derive

additional capabilities. This section outlines some of these compound capabilities.

Arbitrary Flow
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Figure 4: An arbitrary flow system (with complex and loop flows) representing a
simplified two region coolant (A1 and A2) with chemical cleaning step (C) following
the heat exchanger (B). In addition to the 40/60 flow split between regions A1 and
A2, 5% of the flow leaving the heat exchanger is diverted to the cleanup system.

Once the basic constructs of simple, complex and loop flow have been implemented

and validated, they can be combined in simulations with arbitrary complexity without

adding complexity to the implementation of the methodology. A simplified schematic

of a two region coolant with chemical cleanup system is shown in Figure 4. In this

system, as the coolant loops through the system repeatedly, the flow through the two

cooling regions is split unevenly and only 5% of the flow passes through the chemical

cleanup system in each pass through the system.

Atom Reservoirs: After Shutdown Decay Calculations and Atom Sinks

In many activation calculations, the isotopic composition at various times fol-

lowing the shutdown of the facility is of primary importance because of its role in

performing analysis of decay heat removal of waste disposal alternatives. The basic

constructs of this methodology make this possible by having all material flow into

a control volume with no neutron flux and a residence time that is longer than the

longest cooling time of interest, an atom reservoir. A tally in this control volume at



Element Transport Inventory Analysis
Source quanta Neutral particles Individual atoms

Characteristic dimension Length of geometric cell Residence time in control volume

Basic sampling quanta
Mean free paths between Mean times between reactions
reactions (macroscopic (effective transmutation &

cross-section) decay rate)
Primary particle

Energy Isotopic identity
characteristic

Fundamental tallies
Surface & volume flux Atom current & population
(energy dependent) (Isotope dependent)

Table 2: Analogies between elements of Monte Carlo neutral particle transport and
Monte Carlo inventory analysis.

all the cooling times of interest will represent the shutdown decay inventory of the

system.

Some systems might include the removal of material either at regular intervals

or continuously throughout the operation period. Moreover, it may be important to

simulate the instantaneous or cumulative isotopic composition of such atom sinks over

the operation period. In fact, most systems with complex atom sources will require

atom sinks to ensure that atom quantities of the system are conserved appropriately.

This is implemented as an atom reservoir, placed anywhere in the system, representing

the effluent of a chemical processing step, possible diversionary pathway or some other

extraction process.

2.1.5 Relationship to Monte Carlo neutral particle transport

Many of the elements of Monte Carlo inventory analysis have natural analogs in the

field of Monte Carlo neutral particle transport [9–12].

Table 2 highlights the most important of these.



2.2 Testing

This section describes a variety of cases that have been designed to test and demon-

strate the operation of the methodology described in the previous section. Following a

fundamental test with a simple decay problem, a numerical benchmark for 0-D steady

state problem was used as the foundation for testing each of the basic elements and

enabling concepts. The results of the ALARA activation code were used as the refer-

ence solution for this benchmarking exercise. ALARA adaptively employs a variety

of exact and approximate methods to solve the matrix exponential that arises as the

solution of the system of first order ordinary differential equations. Finally, some

sample calculations were then performed to demonstrate the compound capabilities

using the 0 D steady state problem as a reference.

2.2.1 Single Control Volume: 0-D Analytic and Numerical

In order to demonstrate that the underlying methodology is valid, the simplest pos-

sible analytic test case was used: pure decay from a single isotope. Figure 5 shows

the results of this comparison for 1010 Monte Carlo particles simulated for 4 half-lives

where the statistical error of the results is 0.001%. This simple result serves to demon-

strate the fundamental validity of this technique for modeling the first order ordinary

differential equations that govern isotopic inventory problems and a verification of its

correct implementation.

With the basic Monte Carlo sampling technique validated, the next test case was

a full transmutation and decay problem: a single isotope, 56Fe, irradiated for 10 years

at with a steady-state 175-group (vitamin-j) neutron flux where the first seven groups

fluxes are zero and the remaining group fluxes are 5×1012 n/cm2·s. The FENDL-2/A

activation library and FENDL-2/D decay library were used in the calculation. The
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Monte Carlo results using 1010 atoms were compared to ALARA [1] using a truncation

tolerance of 10−9.

The ALARA results included 39 isotopes whereas the Monte Carlo results only

included 20. Figure 6 shows the relative difference between the Monte Carlo result

and the deterministic result for 19 of these isotopes (56Fe is not included) as a func-

tion of the deterministic result itself. The line indicates the statistical error ( 2σ )

associated with a result of that magnitude in an analog Monte Carlo calculation. For

each isotope, the relative difference is a consequence both of the statistical variations

in the Monte Carlo results and of the approximations in the deterministic calcula-

tion. The deterministic solution will include truncation errors due to the physical

modeling techniques as well as an accumulation of numerical errors introduced by

the mathematical methods. This representation permits some qualitative assessment

of the relative contribution of these two sources of discrepancy. For seven of the

isotopes, the relative difference is larger than the 2σ statistical error, with relative

differences ranging from 0.15% to 2.41%. In this case, the relative difference is most

likely dominated by modeling discrepancies. The remaining 12 isotopes have results

with relative differences that are less than the statistical error. Of these, six have

statistical errors that indicate they are statistically credible results (2σ < 10%). For

these isotopes, the difference is most likely dominated by the statistical variations

in the results, suggesting that smaller relative differences could result from improved

statistics, i.e. more initial atoms.

This hypothesis was tested by performing the same calculation with 32 times as

many initial atoms. In particular, there are five isotopes that represent the intersec-

tion between those isotopes that have statistically credible results (2σ < 10%) and

those that have a relative difference greater than 1%. If the relative difference for

these isotopes does not decrease, it would indicate a potentially unreasonable differ-



Isotope
1010 MC Atoms 32× 1010 MC Atoms

Relative 2σ Statistical Relative 2σ Statistical
Difference Error Difference Error

50Ti 1.86% 5.6% 1.18% 0.97%
56Mn 4.49% 6.3% 0.65% 1.1%
54Fe 2.41% 1.7% 0.46% 0.31%
59Co 1.49% 3.0% 1.2% 0.54%
60Co 1.15% 9.1% 1.28% 1.6%

Table 3: Comparing improvements in results (relative to deterministic calculation)
and statistical error with increasing number of initial atoms.

ence between the techniques. Table 3 shows how both the relative difference and the

statistical error change with an increased number of initial atoms. Two isotopes, 54Fe

and 56Mn, converge to relative differences less than 1%. Two more isotopes, with

relative differences initially between 1% and 2%, 59Co and 50Ti, converge to relative

differences that remain above 1% and are larger than the 2σ statistical error. The

last isotope, 60Co, converges to a relative difference greater than 1% but still less than

its statistical error. This suggests that the modeling discrepancy could be as large as

1.2% for some isotopes.

Figure 7 shows how the ratio between the Monte Carlo and the deterministic

results, averaged over all 20 isotopes, varies with increasing Monte Carlo sample size.

For each sample size, the average ratio for all isotopes is shown. The statistical error

of this average is calculated by propagating the individual statistical errors using the

standard root-mean-squared summation, and is shown with error bars representing 1σ

statistical error (68% confidence). Such a plot demonstrates the (expected) steadily

improving precision of the Monte Carlo results even if the mean value does not change

monotonically.

Returning to the isotopes missing from the Monte Carlo results, it is important to

note that their production rate according to ALARA is less than 10−10 in all cases.
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Figure 7: The average ratio (averaged over all isotopes) improves with more atom
histories. The statistical error of the average is the root-mean-squared average of the
individual statistical errors and is shown here as a 1σ statistical error.

This draws attention to a fundamental limitation of atom current tallies for the analog

Monte Carlo methodology — a raw detection limit that is the inverse of the number

of MC atoms, N, and a statistically significant detection limit (assuming a goal of a

relative statistical error, R < 5%) of 400/N. The relative statistical error for the tally

of a given isotope, j, can be derived as

Rj =

√√√√√√√√√√

N∑
i=1

x2
ij

(
N∑

i=1

xij

)2 −
1

N
, (11)

and by the definition of analog Monte Carlo, the score contribution to isotope j,

xij, from a given sample atom, i, is 1 if that atom is the isotope in question and 0

otherwise. By defining the yield, Yj, as the probability of producing isotope j from a



source atom, this can be reduced to

Rj =

√
Yj ·N

(Yj ·N)2
− 1

N

=

√
1

N

(
1

Yj

− 1

)
. (12)

Since the goal is to determine the detection limit for rare product isotopes, Yj ¿ 1,

and

Rj ≈
√

1

Yj ·N ⇒ Yj ≈ 1

N ·R2
j

⇒ N ≈ 1

Yj ·R2
j

(13)

Statistical error of less than 5% for results with yields of 10−9 requires N = 4×1011

for an analog implementation. Moreover, if an important product isotope derives

only from a single isotope, k, that has a small relative initial concentration, Ck,

the statistically significant detection limit for this resultant isotope is reduced to

Ck ·
(
N ·R2

j

)−1
. Fortunately, variance reduction techniques are available to improve

this situation and this methodology is well-suited to parallelization; both will later

be explored.

2.2.2 Simple, Complex and Loop Flow

A steady-state problem with a single control volume (CV) can be duplicated by a

steady-state problem with two CVs in series (Figure 8(S1)), provided they each have

identical neutron fluxes and the two residence times add to the same residence time

of the single CV problem (Figure 8(B)). The same is true for 10 CVs in series each

with 10% of the single CV residence time (Figure 8(S2)). This is the strategy for

testing the simple flow capability.

If the second CV is replaced by two CVs in parallel (Figure 8(C1,C2)), each with

the same neutron flux and the same residence time, valid results at the end of the two
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Figure 8: Physically equivalent/comparable test cases for testing flow capabilities.



parallel CVs will have two predictable features: a) they will sum to the same as the 1

CV results, b) their ratio to each other will be equal to the flow distribution between

them. Two cases are analyzed, one with a 50/50 flow split (C1) and another with a

90/10 flow split (C2). Another test of the complex flow is achieved by having the flow

split and rejoin, with a total of 4 CVs and the total residence time through either path

being identical to the residence time in the single (Figure 8(C3,C4)). The same two

flow distributions, 50/50 in C3 and 90/10 in C4, are used to test this model. In this

case, the final results should be the same as the single CV results and independent

of the flow split.

Finally, both simple and complex loop flow can be tested by looping through short

residence time CVs enough times to be equivalent (or comparable) to the single 0-D

base case (Figure 8(L1, L2, L3)). These three cases include a simple loop (L1), a

50/50 flow split loop (L2) and a 90/10 flow split loop (L3).

Figure 9 summarizes the results for all 10 cases, including the steady-state base

case, compared to the deterministic results from ALARA and normalized for the

correct solution (e.g. the case C1 [50/50 complex flow] should have a result of 0.5).

In all cases, the total number of Monte Carlo atoms is 1010 and the error bars represent

the 1σ statistical error of the mean. All results are within the statistical error of the

correct result. The importance of variance reduction is further demonstrated here,

especially in cases C2 and L3 where the number of atoms reaching some tally points

is 10% of the total due to the 90/10 flow splitting. In general, however, this set of

results serves to demonstrate the functionality of this method for this varied set of

flow conditions.
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2.2.3 Sources, Tallies, Decay and Sinks

With the basic elements implemented and tested, some of the enabling concepts and

compound capabilities can be demonstrated. The first case demonstrates sources and

sinks using a variation, shown in Figure 10, of the L1 loop case. A single control

volume has a residence time of two years and a steady-state flux of 5× 1012 n/cm2s.

A fraction, f , of the flow leaving the control volume is diverted to a sink while the

rest simply returns to the control volume. The same flow rate of source material is

used to make-up the flow entering the first control volume. Note that to conserve the

atom volume of the control volume, the atoms that begin in the control volume must

have the same simulation time (tsim = 0s) but must have their remaining residence

time, trem, distributed uniformly throughout the two-year residence time of the control

volume, allowing some to leave immediately to make room for those that are entering.
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Figure 10: Test case for sources and sinks shows a fraction, f , of the flow being
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the average atom spends less time in the neutron flux.

Figure 11 shows the declining isotopic inventories of transmutation products as

the loss rate, f , increases. Qualitatively, this is consistent with expectations since

the average amount of time each atom spends in the control volume decreases with

increasing loss rate.

In order to quantitatively benchmark these results, a mathematically equivalent

problem can be constructed as the superposition of six more simple problems. The



first simple problem tracks only the atoms that begin in the control volume, those

with their remaining residence time, trem, uniformly distributed in the two-year time

span of the control volume. Each of the atoms that are still in the control volume at

the end of ten years has faced five decisions about whether or not to leave the system,

and chosen, with probability 1 − f , to remain each time. More importantly, those

that have remained have been exposed to a constant flux for 10 years, regardless of

the initial value of trem, so that the contribution from these atoms is simply

[gB
i (10y)](1− f)5, (14)

where gB
i (10y) is the solution to the base single CV case for isotope, i. The other

five simple problems track the atoms that are introduced during each of the five 2-

year periods, facing successively fewer decision points about whether or not to stay

in the system. More specifically, during each of the 2-year periods, the atoms enter

with the same remaining residence time, trem = 2y, but with a simulation time, tsim,

uniformly distributed between 2(j − 1) and 2j years, where j = [1, 5], and are tallied

at tsim = 10y. By simple variable transformation, this can instead be considered as

five problems in which all the initial atoms have trem = 2y, tsim uniformly distributed

between 0 and 2 years, and tallied at 2j years. Thus, the results of a single such

problem with a tally at 2, 4, 6, 8, and 10 years, g
(2)
i (t), will provide the necessary

information to include these contributions. Each of the contributions is thus

f · [g(2)
i (j · 2y)](1− f)(j−1), (15)

where j=[1,5]. The benchmark solution for the fully modeled loop extraction case



shown in Figure 10 will therefore be the results of this six source superposition

gbench
i = [gB

i (10y)](1− f)5 + f
5∑

j=1

[g
(2)
i (j · 2y)](1− f)(j−1). (16)

Figure 12 shows the relative difference between the test case and the benchmark

case for three different loss rates, 0, 0.5 and 1. While numerical results gB
i (t) have been

described above, a simple Monte Carlo problem was performed to generate results

for the g
(2)
i (t) problem. The 2σ statistical error in this case if found by combining

the 2σ errors for the test case and the benchmark case in quadrature since both are

Monte Carlo calculations. These results show the expected level of agreement, with

most isotopes falling within the 2σ error for all values of f .

The functionality of the two tally types was compared by performing the base

case, B, with both a current tally every 0.5 years and a population tally with 0.5 year

bins. Over the 10 year simulation time, the current tally detected 20 isotopes while

the population tally detected 26. For the 20 common isotopes, the two tallies produce

nominally the same results but differ in their precision depending on the half-life of

the isotope in question. For relatively short-lived isotopes (those with half-lives less

than 0.5 y in this case) the population tally is more precise than the current tally,

sometimes significantly. The population tally is nearly 25 times more precise than

the current tally for 56Mn with a 3.6 h half-life. For longer-lived or stable isotopes,

the current tally is slightly more precise, typically by a multiple of 1.25 or less, and

decreasing at later times. The six isotopes missed by the current tally are all present

in the population tally at levels below 10−11 (below the detection limit) and all had

half-lives below 11 minutes.

This half-life dependent behavior is a natural consequence of the tallying methods.

The population tally detects all isotopes that occur within its time bin no matter



10
-10

10
 -8

10
 -6

10
 -4

10
 -2

10
0

10
 -3

10
 -2

10
 -1

10
0

10
1

10
2

Six Sources Superposition Result

R
e
l
a
t
i
v
e
 
D
i
f
f
e
r
e
n
c
e
 
(
%
)

f=0
f=0.5
f=1
2σ Statistical Error

Figure 12: A comparison of relative difference as a function of the benchmark result
compared to the statistical error shows agreement for values of f=0, 0.5, and 1.

when they occur and for how long they occur while the current tally only detects

isotopes that occur when the atom crosses a certain point in time. Thus current

tallies are less likely to detect the presence of a short-lived isotope. Conversely, long-

lived isotopes that build up slowly throughout the simulation are rare at early times

and only contribute over a fraction of a time bin to population tallies while they

contribute a uniform (unit) amount to current tallies. Even if the same number of

atoms is detected by the two tallies, at early times the population tally will have a

more statistically diverse set of contributions than the current tally.

Finally, the ability to model post-irradiation decay time, where the isotopes are

not subjected to a flux was demonstrated by adding a 100-year cooling time to the

base case, B. This is implemented simply as a control volume with uniformly zero

flux and a 100-year residence time. Figure 13 shows the relative difference between

the MC results and the deterministic (ALARA) results, as a function of the deter-

ministic result, for three times: shutdown, 10 years post-shutdown and 100 years

post-shutdown.
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Figure 13: Relative difference as a function of deterministic result for shutdown and
two difference cooling times for a 10-year steady-state irradiation of 56Fe. Two arrows
demonstrate the decay of 55Fe resulting in the accumulation of 55Mn.

The results are consistent with the previous analyses. All results are either within

1% of the deterministic result or within 2σ statistical error of the deterministic result.

Additionally, however, the impact of the statistical error in closely matching results

can be seen in the simple decay paths. Figure 13 includes an indication of the decay

of 55Fe to 55Mn in this representation. One arrow shows the decay of 55Fe (t 1
2

=

2.73 years) over the first 10 years (the Monte Carlo results do not include any 55Fe

after 100 years) while the other arrow shows the accumulation of additional 55Mn as

a result of this decay. In both cases, the relative difference between the MC results

and the deterministic result changes as the inventories change, most clearly in the

55Fe case. Pure (deterministic) exponential decay based on the same decay constant,

would result in a relative difference that is independent of time. The changing relative

difference here reflects the role of the statistical uncertainty as a contribution to

the total relative difference. As the decay occurs, the contribution from statistical

uncertainty changes while the contribution from the modeling differences is likely

unchanged.



Number of Wall Time CPU Time
Speedup

Efficiency
Processors (seconds) (seconds) (percent)

1 941.496 941.496
2 475.556 951.070 1.980 98.989
4 241.665 966.370 3.896 97.397
8 122.296 977.347 7.699 96.231
10 98.553 984.341 9.553 95.532

Table 4: Summary of computing efficiency as different numbers of processors were
used on the same problem. Nearly 100% parallel efficiency can be achieved for prob-
lems of fixed total work.

Number of Number of Atoms Wall Time CPU Time
Processors (106 particles) (seconds) (seconds)

1 30 279.808 279.808
2 60 283.064 566.075
4 120 282.777 1130.767
8 240 284.041 2271.366
10 300 282.929 2828.671

Table 5: Constant run-time can be achieved for problems with fixed work per proces-
sor.

2.2.4 Parallel Performance

As indicated above, the analog Monte Carlo methodology has clear limits on its

detection precision that can only be overcome by sampling more atoms. Fortunately,

this type of problem is straightforward to parallelize with good performance. Two

different approaches can be used to demonstrate this: problems of fixed total work

(i.e. work per processor decreases) and problems of fixed work per processor (i.e.

total work increases). Table 4 and Table 5 show the performance for each of these

approaches, respectively, on a typical Linux cluster (1.4 GHz AMD Athlon, 512 MB

RAM, 100 Mbps LAN).

In both tables, wall time refers to the time that a user would wait for the code

to produce results where cpu time refers to the amount of computational resources

used to produce those results. Such high parallel performance allows for improved



statistical results by simply adding more computers to a computing cluster; however,

given the scaling of statistical error with the number of particles in analog Monte

Carlo simulation, only modest gains can be realized in this fashion.

2.3 Summary

A new methodology has been developed and implemented for the simulation of chang-

ing isotopic inventories in nuclear systems, particularly those with material flowing

in arbitrary paths through the system. The current tool focuses primarily on ”ac-

tivation type” problems where the change in isotopics is assumed to have negligible

impact on the neutron flux. The current implementation includes the ability to sim-

ulate simple, complex and loop flows, and any combination of those. These advanced

abilities can then be used to implement features of real systems including sources,

sinks, post-irradiation decay and extraction processes.

Pure analog calculations are limited in the relative inventories they are able to

detect, either absolutely or statistically. Without implementing variance reduction

techniques, large numbers of source atoms must be modeled requiring either long

runtimes or large parallel clusters to achieve necessary precision. Many variance

reduction techniques are being explored and expected to improve the ability of this

method to provide useful results in a broader range of problems.

In addition to implementing variance reduction for improved performance, fu-

ture enhancements will include new capabilities including the modeling of chemical

extraction processes.



3 Variance Reduction Techniques

The early benchmarks of analog results with results from a well-validated activation

code in various flowing schemes were found to be successful. At the early stage, using a

large number of sampled atoms, which requires long runtimes or large parallel clusters,

was the only mean to improve precision. It was intuitively simple as it eliminated the

need to modify an existing code or exploit the physics of the problem. However, this

approach was not always favorable as the computing time was linearly proportional

to number of sampled atoms and the detection limit might not be improved quickly

enough. An effort to develop variance reduction techniques as alternatives to improve

precision has been investigated. Variance reduction techniques are applied to improve

statistical precision of the analog Monte Carlo method by modifying the underlying

probability distributions that govern Monte Carlo processes so that the desired effects

are produced more frequently. The importance or weight of each particle must be

adjusted to obtained unbiased results.

Three variance reduction techniques, forced reaction, biased source sampling and

biased reaction branching, have been explored and expected to provide useful results in

a broad range of problems. Each has its own unique implementation and capability in

different types of problems. Accuracy and precision improvement will be thoroughly

evaluated by specifically designed test problems for each variance reduction technique.

However, the efficiency enhancement will not be discussed until after the appropriate

efficiency measurement tool is developed.

3.1 Forced Reaction

In the activation analysis, isotopes with low inventories are sometimes the most con-

cerning. The results of these isotopes are not reliable due to their production nature.



They often occur in the reaction tree which has an isotope with a very low total

effective reaction rate in front of them. Based on a current analog calculation, the

Monte Carlo simulation spends an obscene amount of time to follow a history of this

almost stable isotope without advancing further into the reaction tree. Even though

some Monte Carlo particles manage to transmute through this isotope, a small over-

all contribution yields poor statistical results for all consequent isotopes. A variance

reduction technique, forced reaction (FR), betters the precision of low-production

isotopes by requiring an atom to undergo a specified number of reactions in a con-

trol volume. The weight is adjusted accordingly by considering how likely each of

the forced reactions would be. This technique increases the contributions not only

from the isotopes produced after an almost stable isotope but also from the isotopes

produced after many reactions.

3.1.1 Methodology

The forced reactions technique is directly analogous to the forced collision technique

common in Monte Carlo radiation transport methods [9]. The forced reaction tech-

nique is based on sampling the mean time needed by an atom to undergo a reaction

from the conditional probability that the reaction is to occur within the remaining

residence time, trem, of a control volume. The underlying probability distribution can

be described by an exponential distribution with a parameter λeff where λeff is a total

effective reaction rate coefficient of a current atom entering a control volume. If t is

a random variable that represents the amount time the atom resides before having a

reaction, the probability density function is then given by

f(t) = λeffe
−λeff t , t ≥ 0 (17)



At a pre-determined reaction time, which will later be discussed, the Monte Carlo

particle with an initial weight, W0, will be split into two particles: a reacted parti-

cle and a non-reacted particle with weights, Wreacted and Wnon, respectively. Both

particles have the same identity as the initial particle. The weights of both particles

depend on how likely the atom will undergo a reaction and both weights are added

up to be W0.

Wreacted = W0 · P (t ≤ trem)

= W0 ·
trem∫

0

f(t) dt

= W0 ·
trem∫

0

λeffe
−λeff t dt

= W0(1− e−λeff t) (18)

Wnon = W0 · P (t > trem)

= W0 ·
∞∫

trem

f(t) dt

= W0 ·
∞∫

trem

λeffe
−λeff t dt

= W0e
−λeff t (19)

The non-reacted particle will leave the control volume without having a reaction

while the reacted particle will be forced to transmute within the control volume. Its

number of mean reaction times until the next reaction, nrxn, can be randomly sampled

from the conditional probability density. Given that the reaction occurs within the

remaining residence time of the control volume, trem, the probability that the atom



will spend trxn before undergoing a reaction is given by:

P (t ≤ trxn|t ≤ trem) =
P ((t ≤ trxn) ∩ (t ≤ trem))

P (t ≤ trem)

=
P (t ≤ trxn)

P (t ≤ trem)
∵ trxn ≤ trem

=
1− e−λeff trxn

1− e−λeff trem
(20)

If ξ is a uniform random variable in [0,1), the reaction time, trxn, can be calculated

by inverting the above conditional cumulative density function.

trxn = − 1

λeff

ln[1− ξ(1− e−λeff trem)] (21)

nrxn = λeff · trxn = − ln[1− ξ(1− e−λeff trem)] (22)

The forced reaction is controlled by the forced reaction parameter, which defines

how many times a reaction is forced in a given control volume. While the forced

reaction parameter is still greater than zero, another forced reaction will occur and

the forced reaction parameter will be decremented by one.

3.1.2 Test Problems

The precision(statistical error) and accuracy(difference from reference) of FR were

tested by calculating the inventory at shutdown following a 10-year steady-state ir-

radiation of 56Fe with a uniform multi-group neutron flux of 5 × 1012 n/cm2s. The

results from five non-analog test cases were compared to the analytical results by

ALARA using a truncation tolerance of 10−9. The test cases with 1010 atoms had

different forced reaction parameters: 1, 2, 3, 5 and 8. In all cases the FENDL-2/A

activation library and FENDL-2/D decay library were used.



3.1.3 Simulation Results

The analytical result yields 39 isotopes but only 26 isotopes are produced at levels

above the absolute analog MC detection limit (10−10) and only 21 are above the

10% statistical error limit (10−8) whereas the Monte Carlo analog case produces

26 isotopes. As the forced reaction parameter increases from 1 to 8 in non-analog

cases, very rare/deep reaction pathways are followed, producing isotopes at levels far

below the relative production tolerance used to truncate the ALARA calculation, and

increasing the number of isotopes from 34 to 94, respectively. For non-analog cases,

the number of isotopes that have a relative statistical error less than 10% increases

from 25 to 46. Figure 14 shows the average relative differences for 26 isotopes common

to all cases, with error bars representing the 2σ statistical error of their respective

means. It is important to note that based on this metric alone, the effectiveness

of forced reaction technique reaches a saturation limit, in this case, when a forced

reaction parameter is three. This suggests two possible scenarios. First, these 26

isotopes occur within three reactions of the 56Fe root in the activation tree. Once the

forced reaction parameter is greater than three, the additional forced reactions do not

contribute significantly to their tallies. Second, there might be a number of isotopes

with relatively low total effective reaction rate, occurring within three reactions from

the initial isotope, 56Fe; therefore, the effects of additional force reactions greater

than three are not relevant. Since there is no significant improvement after increasing

force parameter beyond three, it is likely that a number of inert isotopes occur at the

third ranks of the reaction tree. These species limit the depth of the reaction tree of

the problem.

To illustrate the effectiveness of forced reaction technique in reducing the statisti-

cal errors of isotopic products, the sample reaction chain of 56Fe–53Cr–50Ti–49Ti was
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Figure 14: Average relative differences (%) from an analog case and five non-analog
cases are compared. The error bars represent 2σ statistical errors.

investigated. Figure 15 shows the statistical errors of four isotopes as a function of the

number of forced reaction. As the number of forced reaction increases, the statistical

errors of the products in the chain are improved while the statistical errors of the

parents are steady. When the number of forced reaction is one, 53Cr, which is a direct

product of 56Fe, has its statistical error dropped about an order of magnitude while

the statistical error of 56Fe remains unchanged. This is due to the fact that forcing a

reaction will only reduce the variance of the products in the reaction chain. For the

same reason, the statistical quality of the 53Cr result is not improved with additional

forced reactions. Depending on its position in the reaction chain, each daughter’s sta-

tistical error drops to its lowest value at different numbers of forced reactions. 49Ti,

which is produced predominantly from the third reaction from 56Fe, has its variance

steady after three forced reactions. This suggests that, besides increasing the number

of Monte Carlo particles, other variance reduction techniques are needed to further

reduce the variance.
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Figure 15: The statistical errors of products in one reaction chain of 56Fe as a function
of force parameter.

3.2 Biased Source Sampling

Currently, the source is implemented by randomly sampling an isotopic identity and

a birth time from a probability density representing the isotopic compositions of the

initial material and from a time-dependent source strength, respectively. The simplest

form is the 0-D steady state source which is composed of a single isotope and the birth

time is characterized by a delta function. However, it is often not the case in a real

world problem, where the initial material can be composed of hundreds different

isotopes. With analog source sampling, isotopes with low concentrations give way to

relatively small numbers of sampled atom source, leading to statistically poor results

for their respective products. The biased source sampling technique is introduced

to help increasing the likelihood of sampling the rare isotopic compositions. As a

result, the technique reduces the statistical errors of those products derived from rare

initial isotopes. For example, the sampling mechanism can be uniform among isotopic

compositions or biased in favor of a specific isotope.



3.2.1 Methodology

The biased source sampling technique adjusts the importance or the weight of the

starting Monte Carlo particle according to a real relative concentration and a biasing

score toward the particular isotope. Let X be a random variable representing an

initial Monte Carlo isotope. Let pi and bi be an atomic fraction and a biasing score

of the isotope xi, respectively, M be a total number of isotopic species in the initial

mixture and w0 be an initial weight of the analog starting particle. The probability of

sampling the isotope xi with a weight, wi, as an initial Monte Carlo isotope is given

by

P (X = xi) =
bipi

M∑
j=1

bjpj

(23)

wi = w0

M∑
j=1

bjpj

bipi

· pi = w0

M∑
j=1

bjpj

bi

(24)

It can easily be shown that the above formulations conserve the overall weight of

Monte Carlo particles and realize the physical meaning of the source definition in the

problem by calculating the expectations of W and Wi which represent the weight of

any initial particles and the weight of a starting particle as isotope xi, respectively.

The expectation of the weight for the starting particles, E(W ), is found to be in

agreement with analog sampling.

E(W ) =
M∑

j=1

wj · P (W = wj) =
M∑

j=1

wj · P (X = xj)



= w0

M∑
j=1

M∑

k=1

bkpk

bj

· bjpj

M∑

k=1

bkpk

= w0

M∑
j=1

pj = w0

The expectation of Wi corresponds to the real physical concentration of the isotope

xi in the source multiplied by the initial weight.

E(Wi) = wi · P (W = wi) = wi · P (X = xi) = w0

M∑
j=1

bjpj

bi

· bipi

M∑
j=1

bjpj

= w0pi

Uniform source sampling is a special case for biased source sampling when bi is equal

to 1/pi. Each isotopic composition will be sampled with equal probability, 1/M , and

the weight is adjusted to its atomic fraction multiplied by a total number of isotopic

species, M · pi.

3.2.2 Test Problems

The ability of biased source sampling to improve results of product isotopes trans-

muted from rare initial isotopes was tested by studying the inventory at shutdown

following a 10-year steady state irradiation of natural iron(91.75% 56Fe, 5.85% 54Fe,

2.12% 57Fe and 0.28% 58Fe) with a uniform multi-group neutron flux of 5 × 1012

n/cm2s. Three test problems with different sampling schemes were conducted. The

first problem was a pure analog test problem. The second one was a test problem with

a uniform sampling technique and the third one had its source biased toward 58Fe,

which was the least abundant isotope in the source. The test cases were simulated

with 1010 Monte Carlo particles and FENDL-2/A activation library and FENDL-2/D



decay library were used. In addition, the results were compared with determinis-

tic results from ALARA, which solved the activation problems of each initial source

isotope individually to the specified truncation tolerance of 10−9.

3.2.3 Simulation Results

The test problem with uniform source sampling technique applied was expected to

equally distribute initial Monte Carlo particles among isotopic source compositions.

Isotopes with relatively high concentrations would be chosen less frequently; therefore,

the statistical errors of their respective products would be higher than results from an

analog problem. At the same time, the occurrences of the rare source isotopes would

be more favorable and would yield results with lower statistical errors than those

from an analog problem. As a result, the overall variation in statistical errors of

isotopic products would be smaller. The uniform source sampling problem produced

41 products and 27 of those had statistical errors less than 5% while the analog

problem yielded 35 products with 26 products having statistical errors less than 5%.

Figure 16 compared the results from both problems to the deterministic results by

showing the relative differences of results with statistical errors less than 5% as a

function of the deterministic results. Slight improvements on both accuracy and

precision were achieved as the average relative differences were found to be 0.7582%

and 0.9646% and the statistical errors of the averages were 1.32% and 1.79% for

uniform source sampling results and analog results, respectively.

It is important to note that uniform source sampling is simply equivalent to per-

forming calculations on individual isotopic compositions independently and weight-

averaging all of the results, according to their initial source concentrations. The

technique is only useful in a problem where there is no target isotope or the overall

statistical improvement is desired.
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Figure 16: Relative Differences between Monte Carlo results with statistical errors
less than 5% and deterministic results as a function of the deterministic result.

The last test problem was designed to evaluate the capabilities of biased source

sampling. It was aimed to increase the sampling frequency of the least abundant

isotope, 58Fe, and thus reduce statistical errors of its products. 59Fe was a direct

product of 58Fe and had a statistical error of 1.27% from an analog problem with 1010

particles. The test problem was set up such that 58Fe was likely to be sampled three

times as often as the other isotopes combined. As a result, the statistical error of 59Fe

was reduced to 0.08% with the same number of simulated particles. However, the

statistical error of about 1.20% could be achieved in the biased problem using only

5× 107 particles. In this case, the computing time was reduced by about two orders

of magnitude; however, the improvement of 59Fe’s result came at the expense of the

other isotopic results’ statistical quality.

3.3 Biased Reaction Branching

As a simulated atom undergoes a reaction, it will be assigned a new atomic iden-

tity by sampling a discrete random variable representing a list of possible products

whose probability density is characterized by the effective reaction rates for each re-



action pathway. The product isotopes with small effective reaction rates will rarely

be selected. Consequently, results with high variances for those isotopes and their

respective daughters are usually obtained. Biased reaction branching is introduced

to increase the occurrences of the products with low branching probabilities. The

technique is based on sampling products from a modified probability density and

adjusting the weights by considering how likely the products would be. Without a

significant increase in the number of simulated particles, the reaction tree will be-

come broadened and thus contain a wider range of product spectrum. The modified

probability density can be uniform or biased toward specific isotopic products.

3.3.1 Methodology

In a control volume v, the branching ratio for a pair of parent isotope, xi, and a

daughter isotope, xj, is defined as

Bij =
λv

ij,eff

λv
i,eff

(25)

where λv
ij,eff is the effective reaction rate coefficient for a reaction path, xi to xj and

λv
i,eff is the total effective reaction rate coefficient for an isotope xi. The subscript,

eff, and superscript, v, will be suppressed for simplicity. Given the analog problem

and the isotope xi undergoing a reaction, the branching ratio, Bij, is indeed the prob-

ability that the isotope xi will transmute to the isotope xj. It is obvious that the

branching ratio is analogous to the atomic fraction during a source sampling process.

In general, biased reaction branching draws a close analogy to biased source sam-

pling with reaction products, branching ratios and the number of possible products

replacing source compositions, atomic fractions and the number of initial isotopes,

respectively. All of the formulations for biased source sampling are valid here with a



weight w0 representing a weight of the parent isotope xi.

3.3.2 Test Problems

The inventories at shutdown following a 10-year steady state irradiation of 56Fe with

a uniform multi-group neutron flux of 5 × 1012 n/cm2s were calculated from three

test problems with different reaction sampling schemes. The first problem was a

pure analog test problem while the second problem had a uniform reaction branch-

ing technique applied and the third problem was designed to improve the results of

53Mn. If 53Mn was present as a product, the biased reaction rates were calculated

by increasing the 53Mn reaction rate by a factor of ten and renormalizing the set of

reaction rates. The test cases were simulated with 1010 Monte Carlo particles and

FENDL-2/A activation library and FENDL-2/D decay library were used throughout.

In addition, the results were compared with deterministic results from ALARA using

the truncation tolerance of 10−9.

3.3.3 Simulation Results

The analog problem produced 26 isotopes, including 56Fe. Of these, 17 have statistical

errors less than 5%. When compared to deterministic results, the average relative

difference of these seventeen isotopes was 0.91%. As expected, the test problem with

uniform reaction branching produced a much wider range of product spectrum than

did the analog test problem. Sixty three isotopes were produced and 19 of these

have statistical errors less than 5%. The average relative difference of these isotopes

was found to be 2.13%. Higher deviations for low-variance results from uniform

reaction branching case were due to the fact that simulated particles were uniformly

distributed among possible reaction pathways, regardless of how likely they were to

be sampled in an analog case. Therefore, the statistical error of those low-variance



isotopes became higher and resulted in lower accuracy.

In particular, there were 15 identical isotopes from both cases that have statistical

error less than 5%. The analog problem had two isotopes that were not detected by

the uniform reaction branching problem. They were 59Co and 60Co. Because they

occurred at least five reactions from the initial isotope, 56Fe, and the uniform reaction

branching widened and implicitly shortened a reaction tree for the same number of

Monte Carlo particles as the analog case. It was obvious that the analog case allowed

more histories to follow the reaction pathways with high reaction rates and thus

created more chances for histories to reach deep isotopes in the reaction tree than the

uniform reaction branching case did. On the other hand, the latter produced four

new isotopes with statistical errors less than 5%. These isotopes(3H, 3He, 51V and

53Mn) were produced in the analog case with extremely high statistical errors, as high

as 44% for 3He. Obviously, those results were statistically improved in the uniform

reaction branching case because the technique increased contributions from isotopes

that were produced through reaction paths with low probability. The light ions, 3H

and 3He, benefitted most from the technique because they were produced sparsely

throughout the reaction tree.

The next test problem was to study the effect of biasing a reaction toward 53Mn.

The statistical error and the relative difference from a deterministic result of 53Mn’s

result from the analog case were 13.36% and 8.20%, respectively. A larger discrepancy

in the precision suggested that applying a variance reduction technique to improve

precision would likely lead to a better accuracy of the result. The uniform reaction

branching was then introduced to the problem. As expected, both precision and

accuracy discrepancies were reduced to 3.24% and 2.68%. However, the last test

problem which was implemented with the biased reaction branching toward 53Mn did

not perform better than the uniform case as both precision and accuracy discrepancies



became 4.92% and 7.84%.

The reaction chains of 53Mn from both cases were carefully examined to explain

larger errors discovered in the last test problem. The test problem with uniform

reaction branching produced sixty-seven reaction chains leading to the production

of 53Mn while the last test problem generated only five such chains which were all

included in the previous case. Based on a small number of reaction chains of 53Mn

in the latter case, lack of accuracy and precision in 53Mn’s result was a direct conse-

quence of the technique’s inability to detect the 53Mn productions through reaction

paths containing isotopes with relatively low total effective reaction rate coefficients.

Examples of those reaction chains are given below:

56Fe → 56Mn → 56Fe → 55Fe → 54Fe. → 53Fe → 53Mn,

56Fe → 54Mn → 53Mn → 52Mn → 53Mn → 54Mn → 53Mn,

56Fe → 54Mn → 53Mn → 54Mn → 53Mn → 54Mn → 53Mn,

56Fe → 54Mn → 55Mn → 55Cr → 55Mn → 54Mn → 53Mn,

56Fe → 55Mn → 56Mn → 56Fe → 55Fe → 54Mn → 53Mn,

56Fe → 54Mn → 53Mn → 52mMn → 52Mn → 52mMn → 52Mn → 53Mn.

Evidently, biasing a reaction tree toward a particular isotope does not always max-



56Fe

55Fe
55Mn

54Mn

53Mn

55Mn

54Mn

53Mn 54Mn 54Fe

53Mn 53Mn

53Mn

Figure 17: Most of the reaction chains leading to productions of 53Mn from a uniform-
branching problem, including all five chains from a biased-branching problem (◦), are
shown. The latter case fails to include most 53Mn’s production pathways and thus
results in much higher errors.

imize the accuracy and precision of its result as the technique tends to underestimate

significant contributions to the isotope’s inventory from other reaction pathways. The

biasing scores should also be assigned to those isotopes leading to such contributions

and ranged from the highest to the lowest values for the channel with maximum and

minimum contributions, respectively. Defining a set of appropriate biasing scores that

optimizes the accuracy and precision of the isotope in question is a research challenge

and might require prior knowledge of the whole reaction tree and the extensive use

of figure of merit that will later be discussed.

3.4 Summary

In addition to a simple increase in the number of simulated particles, variance re-

duction techniques are alternative methods to improve the precision of the results of

isotopic inventory problems. To this point, three variance reduction techniques: forced

reaction, biased source sampling and biased reaction branching, have been studied and

successfully implemented. With variance reduction techniques applied , precision, ac-

curacy and efficiency of the problem have been tremendously improved. However,

using only one technique at a time might not produce the most efficient modeling



scheme in most situations. The combination of several techniques and appropriate

parameter inputs are recommended. As an example, forced reaction and biased reac-

tion branching would be used together to both broaden and deepen a reaction tree.

Nonetheless, finding suitable parameters for each technique that yields optimal per-

formance is quite a challenging task. A figure of merit was then introduced as a

tool to evaluate the efficiencies of different modeling schemes on the same physical

problem, leading to the optimal variance reduction parameters.

4 Figures of Merit

Monte Carlo isotopic inventory analysis is directly analogous in many ways to Monte

Carlo neutral particle radiation transport; instead of neutral particles traveling through

3-dimensional space and having interactions with the underlying materials that change

their energy, inventory analysis simulates atoms moving through (1-D) time and hav-

ing interactions with the underlying neutron flux that change their isotopic identity.

After a description of the fundamental Monte Carlo methodology, including some ba-

sic variance reduction methods, and of the motivation and goals for the development

of a figure of merit, this section will explore a number of possible figures of merit and

discuss their applicability to different types of simulations.

4.1 Introduction and Importance of Figure of Merit

Even though the variance reduction techniques have tremendously reduced the sta-

tistical error and increased the spectrum of isotopes generated in the Monte Carlo

simulation, they also increase the computer time spent calculating each history and

thus are not guaranteed to optimize the computing resource for such calculations.

That is, in some cases it may be more efficient to simply simulate more histories than



use a variance reduction technique. A figure of merit (FOM) is introduced to monitor

the efficiency of the Monte Carlo code as different variance reduction techniques are

attempted on the same problem [13]. FOMs representing relative efficiencies from bi-

ased and unbiased runs of the same physical problem can be calculated and compared

quantitatively, assisting a user in determining the optimal variance reduction para-

meters. This chapter will first consider the desired properties of a figure of merit and

then introduce a number of possibilities for the figure of merit, discussing situations

where each may be a useful measure.

4.2 Principles and Constraints of Figure of Merit

Since the underlying distribution that governs the random walk process is rarely

known a priori, determining the most computationally efficient modeling scheme re-

quires testing a variety of schemes and comparing their performance. In order to be

useful, however, a quantitative metric is necessary to permit this comparison. This is

the role of a figure of merit (FOM), and as such, defines the characteristics of an ideal

figure of merit. In practice, a FOM will be used to determine which set of variance

reduction parameters are most efficient for a given problem by comparing the FOMs

that result from short problems, each with different variance reduction parameters.

The set of parameters with the best FOM would be used to run a simulation with

many more histories to achieve the final answer with sufficient precision. Therefore,

a FOM should be a quantitative measure that is somehow proportional to the overall

efficiency of the problem. This allows a user to compare two alternative modeling

schemes. In addition, an ideal FOM is independent of the number of Monte Carlo

histories so that a simulation with few histories can be used as an indication of the

efficiency of a simulation with many histories. Finally, an ideal FOM should have a



clear mathematical relationship to the statistical quantities used to measure the per-

formance and one-to-one functional relationship with the computational cost. This

allows a user to estimate the number of histories required to achieve the desired level

of precision/performance. If the statistical performance metric, Pt, is measured over

a short test time, Tt, and the performance goal is Pg, then an ideal FOM would allow

a determination of the time to reach the goal, Tg, as:

FOM = f(Tt) g(Pt) = f(Tg) g(Pg) = Constant

Tg = f−1

[
FOM

g(Pg)

]
= f−1

[
f(Tt) g(Pt)

g(Pg)

]
(26)

In summary, an ideal figure of merit has the following characteristics:

• quantitative measure of statistical performance,

• independent of number of Monte Carlo histories, and

• a one-to-one function of the computational cost.

While previous work on determining the efficiency of simulations provides a rigor-

ous decision-theoretic framework evaluating and possibly determining the efficiency

of simulations [14], this work takes an approach based more directly in the desired

physical outcomes of the simulation. Future work can be carried out to reconcile the

efficiency measures developed here with the mathematical development in [14].

The following sections will consider a variety of potential FOMs, both for these

characteristics and for other ways that they provide information about the problems

performance.



Test Problem

The performance of each FOM was tested by calculating the proposed FOM at shut-

down following a 10-year steady state irradiation of 56Fe with a uniform multi-group

neutron flux of 5× 1012 n/cm2 s. In all cases the FENDL-2/A activation library and

FENDL-2/D decay library were used. The results for the analog case were compared

to non-analog cases with forced reaction parameters of 1, 2, 3, 5, and 8. The forced

reaction parameter indicates the number of times an isotope will be forced to undergo

a reaction within the 10-year irradiation period. The FOM was calculated for each

case as a function of time, in increments of 1000 seconds of computer time.

4.3 Development of Figures of Merit

Based on the above characteristics, developing a Figure of Merit requires first choosing

a statistical performance metric and then examining its relationship to the computa-

tional cost to arrive at a formulation that is independent of the number of histories.

A variety of statistical performance metrics are available and they form the basis for

distinguishing among the four FOM formulations proposed in this section. The be-

havior of the specific statistical performance metric will be considered first and then

its usefulness in formulating a FOM will be addressed.

4.3.1 Statistical Error of Single Result (1 /R2T)

The strong analogy between this methodology and Monte Carlo neutral particle trans-

port results in an obvious suggestion for a FOM based on the statistical error of the

result. In this case, the statistical performance metric is the square of the relative

statistical error, R, which is known to vary inversely with the number of Monte Carlo

particles and hence inversely with the computational cost, T. Thus, a FOM based on



this metric is

FOM =
1

R2T
(27)

Implicitly, this metric/FOM is based on the relative error of a single tally result,

or single tally bin. Consequently, optimizing this FOM amounts to optimizing the

results for only that tally bin and only improves the whole problem to the extent that

the tally bin in question represents the rest of the problem. In the current Monte

Carlo inventory implementation, the tally bins are based on time (analogous to space

in Monte Carlo transport) and/or isotopic identity (analogous to energy in Monte

Carlo transport). Using this FOM, therefore, requires the choice of a specific time

and isotopic identity.

It is important at this stage to point out a distinct difference between the inventory

analysis and the neutral particle transport methods. The energy domain of neutral

particle transport is a continuous dimension where two different energies have a clear

physically meaningful relationship to each other. This often allows a single energy

bin (or the total over all energy bins) to be representative of the results over the

entire energy domain. The isotopic identity domain is discrete and two isotopic

identities may not have any clear relationship to each other. Hence a single isotopic

identity bin is unlikely to be representative of many other isotopic identities, and

rarely representative of the whole problem. This FOM is therefore only valuable

in optimizing the modeling scheme for a particular isotope, i. For this study, the

inventories at the end of a 10-year irradiation period were used to calculate while the

FOMs, comparing results for a variety of specific represented isotopes, still remained

in questions.

Since R2 is inversely proportional to T and T is directly proportional to the num-

ber of histories, FOM should be constant with respect to the number of histories



(allowing for statistical fluctuations at very small numbers of histories). Three iso-

topes from the test problem, 56Fe, 54Cr and 59Co, with different relative expected

end-of-problem inventories of 9.82×10−1, 3.10×10−5 and 4.29×10−7, were chosen to

be isotopes in question. The behaviors of the three resulting FOM values are shown in

Figure 18(a-c), demonstrating the effects of increasing the forced reaction parameter.

The FOM for all three isotopes are constant as expected. For 56Fe, this FOM suggests

that the analog scheme is much more efficient than forced reactions technique. This

agrees with physical nature of the problem; because 56Fe is the initial isotope, forcing

a reaction will only reduce the variance of the products in the reaction chain, but

will make each history have a higher computational cost. On the other hand, both

54Cr and 59Co are produced predominantly from the third reaction from 56Fe and the

forced reaction technique with parameter of 3 improves the likelihood of producing

these isotopes with the minimum increase in the computational cost of each history.

This FOM confirms that this is the optimal choice for these isotopes.

Finally, this FOM can be used to estimate a computing time to achieve a target

error for the isotope in question:

Tg =
1

R2
g · FOM

=
R2

t Tt

R2
g

, (28)

as described in Equation (26). This FOM has all of the characteristics of an ideal FOM

defined above, but the performance metric itself is only useful in special circumstances.

Since the important isotopes are not always known a priori and one isotope’s results

are rarely indicative of another’s, other potential performance metrics and FOMs will

be explored.
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Figure 18: Traditional figure of merit based on relative error, shown for three different
isotopes as a function of time and for different forced reaction(FR) parameters: a)56Fe
b)54Cr c)59Co.

4.3.2 Number of Qualified Isotopes (Nk)

Another performance metric for the Monte Carlo inventory method is the number of

isotopes produces by a given set of modeling parameters. If the statistical error for

a particular isotope is too high; however, it should be disregarded. The number of

qualified isotopes, Nk, is defined as the number of isotopes that have relative errors

less than k percent. This quantity is the simplest measurement of the performance

for a given modeling technique.

Figure 19 shows the results for this performance metric for a k of 1% and for a

variety of modeling schemes represented by the forced reaction parameter. For very

short run times, all cases produce approximately the same number of qualified iso-

topes. As the computing time progresses, Figure 19 clearly shows that forced reaction

problems with higher parameter(3, 5 and 8) perform similarly, but better than prob-

lems with lower forced reaction parameters. Increasing the number of Monte Carlo
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Figure 19: Number of qualified isotopes with relative error less than 1%. The per-
formances of the test problem with different FR parameters are compared using the
number of qualified isotope metric.

particles and thus computing time would decrease relative errors of all isotopes. Con-

sequently, more isotopes would be counted as qualified isotopes. This performance

measure is expected to have this step behavior until the maximum number of isotopes

is qualified, with the more efficient variance reduction schemes approaching this max-

imum more quickly. (In theory, the maximum number of qualified isotopes is equal

to the full scope of the data library since any isotope has a finite probability of being

produced, even if minute. In a different study using a forced reaction parameter of

8 and a computing time of 3 × 106 s, 94 isotopes were included for this 56Fe prob-

lem, of which 30 had relative errors below 1%.) While this measured does provide

quantitative information about the performance of the modeling scheme, its func-

tional relationship to the number of simulated histories is unclear making it difficult

to form a FOM that meets the other criteria: independent of number of histories and

a one-to-one functional relationship with computational cost. This measure could be

retained for comparing the efficiency of two schemes, but does not provide all the

necessary information expected of a figure of merit.



4.3.3 Detection Limit (1 /DkT )

Often, an isotope with a relatively small inventory may have a disproportionate im-

portance to the analysis in question due to some property of the isotope (e.g. its

contribution to an engineering response such as the overall activity, the radiotoxicity

or the waste disposal rating). The ability of a simulation to detect such a small ex-

istence of a particular isotope should also be taken into consideration when creating

a FOM for an inventory problem. Moreover, since the specific isotope in question

might not be known, it is important to use metric that provides information about

the overall precision of the simulation. The detection limit can serve that purpose.

Detection Limit in Monte Carlo Isotopic Inventory

A k -percent detection limit (Dk) is defined as the lowest relative production (yield)

of all isotopes with relative error less than k percent. Based on the definitions of

the relative error and yield given by equations (12) and (13), the k -percent detection

limit for an analog problem is therefore

Dk =
1002

N · k2
(29)

For a given a value of k the detection limit for analog Monte Carlo simulations

is inversely proportional to N. However, this continuous 1/N behavior implicitly as-

sumes that the isotopic yields are continuous, that is, an uncountably infinite number

of isotopes exist. This is certainly not the case for the Monte Carlo inventory method

where the isotopic yields are distributed discretely.

For any results from a Monte Carlo isotopic inventory simulation, there can be

only a finite number of isotopic products. The results will form a set of yields, {Yj},
which can be sorted in descending order. At any point, the detection limit, Dk, will



be defined by one of those isotopes, i, that has the smallest yield of all the isotopes

with relative error less than k percent. The isotope, i+1, has a smaller yield and

a relative error larger than k percent. As N is increased, the relative error of both

isotopes i and i+1 will decrease (R2 ∝ 1/N), but the detection limit will remain

unchanged until the relative error of isotope i+1 drops below k percent, at which

point Dk will drop suddenly to the value Yi+1. The overall shape of the detection

limit in a discrete problem should therefore be a series of steps where the leading edge

follows the 1/N (∝ 1/ T ) dependence.

Analyzing the detection limit in a real problem

Figure 20 shows the 1% detection limits for an analog case and three different forced

reaction parameters for the test problem. As expected, the detection limits for the

analog case exhibits a 1/ T dependence. In addition to the step behavior caused by

the discrete nature of the isotopic yields, the detection limits for the non-analog cases

are all lower than that of the analog case and appear to depend similarly on 1/ T .

Power law curves were fit to the leading edge of each of these results to examine the

relationship with T. The parameters of each fit are shown in the figure, where the

multiplicative constant represents the relative improvement of the variance reduction

method and the exponents are reasonably close to -1. Once again, the discrete nature

of the detection limit combined with the discrete time sampling of this test problem

can contribute to an apparent departure from the 1/ T behavior.

The detection limit, Dk, can be used to evaluate the overall performance of the

modeling scheme since a lower value Dk indicates a greater precision in the answer. In

Figure 20, orders of magnitude improvement are seen in the precision of the problem

by invoking forced reaction variance reduction. Because of the 1/ T dependence of



0 1 2 3 4 5 6 7 8 9 10

10
-11

10
 -10

10
 -9

10
 -8

10
 -7

10
 -6

10
 -5

10
 -4

10
 -3

[× 104 s]

D
e
t
e
c
t
i
o
n
 
L
i
m
i
t

Analog
FR1
FR2
FR5y= 0.1616x -1.0991

  R2 = 0.9901

y= 0.0172x -1.0811

  R2 = 0.999

y= 0.0004x -1.0059

  R2 = 0.9962

y= 7e -6x -1.061

  R2 = 0.961

Computational Time 

Figure 20: Detection limit as a function of computing time for an analog problem
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leading edge have been used to generate a power law fit whose parameters are also
shown.

the detection limit, the most appropriate choice for a FOM is

FOM =
1

Dk T
(30)

This FOM for the various cases of the test problem are shown in Figure 21.

As expected, the overall shape of detection-limit-based FOM still exhibits the step

behavior from 1/Dk. However, the 1/ T factor helps to lessen a strong step-function

behavior and causes the FOM to oscillate about a constant value.

4.3.4 Error Corrected Detection Limit (1/DkR
2T )

The fluctuations in the detection limit based FOM are due to the 1 /T factor while

the detection limit, Dk, is constant. Similarly, the relative error, Ri, of the isotope, i,

that is defining the detection limit is declining continuously with time while that the

detection limit is constant at that isotope’s yield, Yi. It should therefore be possible

to mitigate the oscillatory behavior of the detection-limit-based FOM by using the
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Figure 21: The detection limit based figure of merit is shown for the analog case and
5 different forced reaction (FR) variance reduction parameters.

relative error as a correction. In particular, it can be shown that a figure of merit,

1/DkR
2T , is constant for the analog case. In regions where Dk is constant, this FOM

is constant since R2 behaves as 1/ T . Consider how Dk and R2 vary across a jump in

the detection limit:

D−
k

D+
k

≡ Yi

Yi+1

=
Ni+1

Ni

=
Ti+1

Ti

R2
−

R2
+

≡ R2
i

k2
= k2 Ti

Ti+1

1

k2
=

Ti

Ti+1

,

∴ D−
k R2

− = D+
k R2

+ (31)

where D−
k and D+

k are the detection limit on the left and right of the jump, respec-

tively, and R2
− and R2

+ are the squares of the relative errors on the left and right

of the jump, respectively. Thus, for analog problems this FOM is constant across a

jump in the detection limit as well as during the periods where the detection limit

does not change.
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Figure 22: Figure of merit using error corrected detection limit provides a measure of
the overall efficiency of the problem with a nearly constant value for a given modeling
scheme.

Figure 22 shows results for an FOM with this formulation. The results agree with

the analytic calculation that FOM is constant for analog case and nearly constant

for the variance reduction cases. Even though, this FOM is likely to experience some

fluctuations due to the discrete behavior of the detection limit, it can be used in a

problem without a target isotope to compare the overall efficiency of different schemes.

Most importantly, it is effective at providing an estimate of the necessary computing

time for a given modeling technique to achieve a certain overall precision, as indicated

by the detection limit.

4.4 Summary

A number of statistical measures can be employed to assess the performance of dif-

ferent Monte Carlo modeling schemes for a given isotopic inventory problem. From

these, two valuable figures of merit have been derived that meet the criteria described

above: a figure or merit should provide quantitative information about statistical per-

formance, independent of the number of simulated histories, providing guidance on

the relationship between computational cost and performance. The FOM based on



the relative error of a single tally result (1/R2T ) is recommended for the problem with

a known target isotope. In these situations, the modeling scheme can be optimized for

that single result and the necessary computing time to achieve a target precision can

be calculated. However, since many problems do not have readily identified target

isotopes, or may have multiple important isotopes, a FOM based on the detection

limit, corrected by the relative error, (1/DkR
2T ) is useful for assessing the overall

efficiency of the problem. With this FOM, the modeling scheme can be optimized

against the detection limit and then the necessary computing time to achieve a target

detection limit can be calculated.

5 Efficiency Assessment

For each isotope in an analog Monte Carlo problem, the square of relative error is

inversely proportional to a number of simulated particles and computing time. Hence,

for every order of magnitude improvement in precision, two orders of magnitude more

atoms must be supplied. Parallel computing is an immediate solution to reducing

wall time to achieve a certain level of precision. Alternatively, variance reduction

techniques are introduced to lower statistical error of a solution for the same number

of Monte Carlo particles. However, this statistical gain comes at the expense of higher

computing time per atom history. Thus, applying variance reduction techniques does

not always provide the most efficient modeling scheme unless the statistical error of

the result is reduced at a fast enough rate compared to the increase in computing

time.

Figure of merit(FOM) can be used to quantitatively evaluate the efficiency of

different Monte Carlo modeling schemes for the same physical problem and to provide

useful guidelines to select the most efficient scheme, which sometimes may be a simple



analog model.

5.1 Problem Definition

Monte Carlo simulations were designed to study efficiency variations resulting from

different sets of variance reduction parameters and the use of FOM to monitor the

efficiency. Several isotopic products, following a 10-year steady-state irradiation of

56Fe under a uniform neutron flux of 5 × 1012 n/cm2s, were selected such that their

analog statistical errors were in distinctive ranges. Each chosen isotope was assumed

to be an isotope of interest in separate study cases. Each study case was composed of

many short test problems with different sets of variance reduction parameters. FOMs

from short test problems were used to determine a set of variance reduction para-

meters that yielded the most efficient scheme for producing that particular isotope.

The variance reduction techniques were limited to only biased reaction branching and

forced reaction. A special case of the former, the so-called uniform reaction branching,

was also considered. The biased reaction branching technique was in effect when the

isotope of interest appeared as a product and the reaction probability density was

adjusted according to the biasing score at the time. Otherwise, the uniform reaction

branching technique was implemented to ensure that each reaction branch was equally

followed and thus increase the possibility of capturing the isotope when it occurred

deeply in rare reaction pathways. The number of simulated particles in each short

test problem was 106. The FENDL-2/A activation library and FENDL-2/D decay

library were used in all cases.



5.2 Simulation Results

Four isotopes, 51Cr, 49Ti, 53Mn and 60Ni, with statistical errors of 100%, 37.80%,

13.74% and 8.80%, respectively, were chosen in the study from an analog problem

with 1010 simulated particles. The reaction tree obtained from ALARA was used as a

preliminary input for defining sets of variance reduction parameters to be tested. In

addition, the testing sets were defined based on an assumption that the overall sta-

tistical quality of a particular isotope depends heavily on the qualities of the reaction

branches that dominate the production of that isotope. Thus, improving statistical

qualities of those branches was likely to subsequently better the statistical quality of

the result.

The first study case was concerned with 51Cr as the isotope of interest. 51Cr was

produced predominantly from the following reaction chain:

56Fe → 53Cr → 52V → 52Cr → 51Cr.

The observed occurrence in the reaction tree of 51Cr suggested a value of four for

a forced parameter. Combinations of initial guessed values of forced parameter, 3, 4

and 5, and biasing scores of 5, 10 and 100 were used to construct a test set for finding

the best modeling scheme for 51Cr.

According to Table 6, the test case when forced parameter and biasing score are

4 and 10, respectively, produced the highest value of FOM. It implied that this setup

is the most efficient scheme for detecting 51Cr. Based on a previous analog problem

with 1010 Monte Carlo particles, 51Cr was produced with a relative error of 100%,

and a computational time of 5.58 hours. With the optimal scheme, the relative error

of 51Cr was improved to 5.28% while the computing time was reduced to 60 seconds.



Case
Forced Biasing Relative Error FOM FOM

Parameter Score (%) 1/R2T 1/D1R
2T

0 analog analog 100.00 4.98× 10−5 4.98× 105

1 3 5 8.95 2.4026 1.21× 1010

2 4 5 11.16 1.1158 1.21× 1010

3 5 5 32.42 0.1252 1.17× 1010

4 3 10 9.93 2.2060 1.50× 1010

5 4 10 5.28 5.9746 1.15× 1010

6 5 10 5.04 5.1763 1.18× 1010

7 3 100 15.79 0.9112 1.51× 1010

8 4 100 13.35 0.9355 1.63× 1010

9 5 100 11.21 1.0478 1.12× 1010

Table 6: The values of figure of merit (1/R2T ) were calculated from nine test runs
and the analog problem (1010 particles for case 0) when 51Cr was a target isotope.
The values of one-percent error corrected detection limit (1/D1R

2T ) were included
to compare the general efficiencies of all test cases. One million simulated particles
were used for each test problem.

Based on Equation (28), the test case would need about 67 seconds of computing time

to produce 51Cr with a relative error less than 5%. The relative error from the analog

case was statistically unreliable and could not be used to predict the computing time

necessary to achieve a certain precision. The deterministic result of 8.420×10−11 was

assumed to be a theoretically correct result and used with Equation (29) to estimate

a required number of particles to obtain a result with relative error less than 5%. As

a result, the analog problem would need about 4.80 × 1012 particles translating to

about 9.64× 106 seconds of computing time.

It is interesting to consider an overall efficiency of the problem, which was designed

to improve one particular result. The values of one-percent error corrected detection

limit (1/D1R
2T ) were used to assess an overall efficiency of each test case. Relative

magnitudes of those values implied that each test case performed at the same level

of efficiency. This interpretation agreed with the actual physical modeling schemes,

which had slight variations of biasing scores for the last reaction in each test case. As



Target Isotope Dominant Reaction Chains

49Ti

56Fe → 52Cr → 49Ti
56Fe → 53Cr → 52Cr → 49Ti
56Fe → 53Cr → 50Ti → 49Ti

53Mn

56Fe → 55Fe → 55Mn → 54Mn → 53Mn
56Fe → 55Fe → 53Mn
56Fe → 55Fe → 54Fe → 53Mn

60Ni

56Fe →57Fe → 58Fe → 59Fe → 59Co
→ 60Co → 60Ni

56Fe → 57Fe → 58Fe → 59Fe → 59Co
→ 60mCo → 60Co → 60Ni

Table 7: Reaction channels leading to the most productions of 49Ti, 53Mn and 60Ni
were described and used for estimating the optimal values of variance reduction pa-
rameters.

expected, the most optimal scheme for calculating a result for one particular isotope

was not the most efficient scheme when an overall efficiency of the problem was of

interest.

As stated, biased reaction branching was not applied at a reaction where 51Cr

was not present as a product. This avoidance obviously introduced a degradation of

performance in the model. Further increase in efficiency may be achieved with a more

elaborately defined sets of variance reduction parameters for every reaction.

Table 7 shows the reaction pathways with the most productions of 49Ti, 53Mn and

60Ni. It is important to point out that uniform reaction branching was not used in

the study case with 60Ni because both of the product channels in the chains resulting

in 60Ni were extremely active and thus probable. The use of uniform reaction branch-

ing would, in fact, decrease frequency of 60Ni-dependent histories and consequently

worsen the precision of 60Ni’s detection.

The most efficient sets of forced parameter and biasing score for calculating the

inventories of 49Ti, 53Mn and 60Ni were summarized in Table 8. With a simple

application of variance reduction techniques, as large as four orders of magnitude



Product Force Parameter Biasing Score
49Ti 3 300
53Mn 3 100
60Ni 7 5

Table 8: The most efficient configurations of variance reduction parameters for de-
tecting three isotopes in the study cases are shown.

improvement in efficiency was obtained in the study case of 49Ti. According to Ta-

ble 9, the results of 49Ti and 60Ni showed significant improvements in both statistical

errors and computing time, with the statistical errors errors under two percent and

computing time of 54 and 136 seconds, respectively. Although the statistical errors

of 53Mn was only improved slightly, the computing time for this studied isotope was

greatly reduced from 5.58 hours to 54 seconds. The simulation results confirmed the

initial guess that the optimal values of forced parameter were in the proximity of the

position of the target isotope in the dominant reaction channels. For example, for

49Ti, the target isotope appeared 3th and 4th within the reaction channels, and the

optimal forced parameter for 49Ti is 3. On the other hand, the most efficient choices

of biasing score were determined on a trial-and-error basis. It was also worth noting

that the effect of biased reaction branching tended to be insignificant in a case when

a target isotope was the most active product. 60Ni was produced predominantly from

a β− decay of 60Co. This reaction channel was far more active than others of 60Co. A

high value of biasing score for this reaction channel would decrease the importance of

each history due to weight adjustment and thus would not provide an efficient model.

As a result, the optimal value of biasing score for 60Ni turned out to be as low as 5.



Product
Analog Problem Study Case

Relative Comp.
F.O.M

Relative Comp.
F.O.M

Error Time (s) Error Time (s)
51Cr 100% 20088 0.00005 5.28% 60 5.97
49Ti 30.15% 20088 0.00055 1.87% 54 52.76
53Mn 13.13% 20088 0.00290 11.08% 54 1.51
60Ni 8.64% 20088 0.00670 0.73% 136 139.37

Table 9: Comparisons of relative error, computing time and FOM between an ana-
log problem and study cases with optimal sets of variance reduction parameters are
shown. Improvements in all areas from the analog problem are observed in all cases.

5.3 Summary

A reaction tree from a deterministic calculation was an important input for defining

an initial set of variance reduction parameters to optimize the efficiency of produc-

tion toward one particular isotope. It was shown that an optimal value of forced

parameter depended on the position of that isotope in the reaction chain with the

most relative production. Another factor that influenced the efficiency was biasing

scores, which were more difficult to predict. The magnitude of biasing score of each

reaction branch was likely to depend on its relative contribution toward that isotope’s

result. Improving the efficiency by all means would likely require a priori knowledge

of a reaction tree, which sometimes can be computationally expensive.

6 Summary

This effort to develop Monte Carlo methods for isotopic inventory analysis was largely

successful. While allowing for the exact modeling of complex flowing systems of irra-

diated material, there is a computational performance issue as those systems become

more and more complex. The goals of the project were largely accomplished although

sample calculations of real nuclear systems are still ongoing. Variance reduction tech-



niques became a significant focus of the project in order to improve the overall mod-

eling performance. Simple techniques to model chemical extraction processes were

developed without the need for specialized chemical reaction models. A software tool

is being made available for continued investigation of complex irradiation histories

and benchmarking of deterministic approximations to those histories.
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APPENDIX

A MCise Input File

Extensible Markup Language (XML) has been implemented as a sole input file for-

mat [15] for MCise. It provides the users with the input format that is standardized

and easy to use. For a given MCise calculation, an XML file is used as an input file to

store the data the code needs to run. The input file is then parsed by any XML pars-

ing libraries and validated with an XML schema file specifically written for MCise.

The input file is composed of a series of elements. Each element can contain other

elements and attributes that completely describe its characteristics. The definition of

the element must be enclosed by a starting tag and an ending tag whereas the values

of associated attribute are included inside the starting tag.

<main elem attrib 1 ="val 1" attrib 2 ="val 2"> a starting tag

<sub elem sub attrib 1 ="sub val 1"> a starting tag
...

</sub elem> an ending tag
...
...

</main elem> an ending tag

In general, there are 16 different types of main elements. Many elements can occur

more than once, if necessary. However, all of the elements must appear in the order

according to their appearances in the following sections. Comments are permitted

and must be included between tags, “<!−−” and “−−>”.

A.1 MCise

MCise is the first element in the input file and also referred to as the root element.

All subsequent main elements must be enclosed inside the root element.



<MCise>
...
a series of main elements
...

</MCise>

A.2 NPS

The NPS element specifies a number of Monte Carlo particles in the simulation. Its

only attribute member is num.

<NPS num="10000" />

A.3 TotalTime

This element define the total simulation time of each Monte Carlo history in seconds.

It has only one attribute, time.

<TotalTime time="3600" />

A.4 TransLib and DecayLib

The TransLib and DecayLib elements are used to define the locations of nuclear

data library. The first one deals with the transmutation library while the second

one involves with the library path to the decay library. Both paths are defined with

respect to the current execution directory.

<TransLib path="/usr/local/data/fendlg-2.0 175" />
<DecayLib path="/usr/local/data/fendld-2.0" />

A.5 WeightWindow

Characteristic weight values of a weight window can be defined by the WeightWindow

element. It has the following attributes.



• lower defines a lower bound of the weight window.

• upper defines an upper bound of the weight window.

• target defines a weight of the particle that survives a Russian-roulette decision.

<WeightWindow lower="1e-10" upper="1.0" target="1e-5" />

A.6 FluxDef

This element defines a set of neutron flux spectrums. Since different control volumes

can have different flux spectrums, this element may occur as many times as necessary.

It has one attribute, name that is a symbolic name, used to refer to this flux definition

when a control volume is being created. In addition, it contains as many sub elements,

Point, as necessary to represent the intensities of all energy groups. The order of the

Point elements corresponds the energy bins, ranging from the first bin to the last

bin. Each sub element point has two attributes which are value and repeat. The

value attribute represents the intensity in n
b·s . The repeat attribute is optional and

represents a number of adjecent energy bins having the specified intensity. If it is not

included, it will equivalent to assigning a value of “1” to repeat.

<FluxDef name="steady flux 1">
<Point value="0.0" repeat="7" />
<Point value="5.0E-12" repeat="168" />

</FluxDef>

A.7 Tally Elements

Five different tally elements are designed to ensure that all of the types of tally and the

natures of tally bin are captured. The tally elements, when created, are indepentdent

of one another and may occur as many times as necessary to define all of the tallies



used in the simulation. Each tally element has an attribute, name, to represent its

symbolic name.

A.7.1 ACT

This element defines an atom current tally with one time plane in seconds specified

by an attribute, time.

<ACT name="ac 1" time="3600" />

A.7.2 ACTEqualBin

This element defines an atom current tally on a time range specified by attributes,

low bound and high bound. An attribute, num bins, is used to specify a number of

time planes in the range. The time planes are equally separated from one another.

<ACTEqualBin name="ac eq 1" num bins="10" low bound="0" high bound="3600"/>

A.7.3 APTEqualBin

This element defines an atom population tally on a time range specified by attributes,

low bound and high bound. The time range is equally divided into a certain number

of bins defined by an attribute, num bins.

<APTEqualBin name="ap eq 1" num bins="10" low bound="0" high bound="3600"/>

A.7.4 ACTNonUniform

This element defines an atom current tally with unequally separated time planes.

Attributes, low bound and high bound, specify the range of the tally. Additional



TimeInfo elements are used to define the relative time widths between each time

plane.

<ACTNonUniform name="ac dc 1" low bound="0" high bound="3600">
<TimeInfo width="1.5"/>
<TimeInfo width="2.5"/>

</ACTNonUniform>

A.7.5 APTNonUniform

This element defines an atom population tally with non-uniform time bins. At-

tributes, low bound and high bound, specify the range of the tally. Additional Time-

Info elements are used to define the relative widths of the time bins.

<APTNonUniform name="ap dc 1" low bound="0" high bound="3600">
<TimeInfo width="1.5"/>
<TimeInfo width="2.5"/>

</APTNonUniform>

A.8 ControlVolume

The ControlVolume element consists of two attributes and four elements. An at-

tribute, name, represents a symbolic name of the control volume and res time defines

the duration of the control volume in seconds. Both attributes are required for a

complete definition of the control volume whereas some elements are not. The de-

scriptions of the element members are the followings.

• Flux indicates a set of neutron flux to be used in the control volume. It contains

only one attribute, name, which is a symbolic name declared by a FluxDef

element. This element is required.

• Tally indicates a tally to be placed in the control volume. It contains only

one attribute, name, which is a symbolic name declared by one of the tally



elements. This element may occur as many times as a number of tallies in the

control volume.

• VR lists a variety of variance reduction techniques to be applied in the con-

trol volume. It does not have any attribute but consists of three optional sub

elements.

– force indicates the use of a forced reaction technique. It has only one

attribute, value, which represents a force parameter.

– Split contains one attribute, value, which is a boolean flag that determines

whether or not a reaction path splitting technique is used in the control

volume. The value accepts either “true” or “false”.

– Biased enables a biased reaction branching technique by defining a biasing

score for a specified isotope. Two attributes, kza and bias, correspond to

the isotopic identity and a biasing score, respectively. This element can

occur as often as necessary to include all of the isotopes which are needed

to be biased and the biasing scores would be interpreted as relative scores

among all Biased elements.

• CVExit is used to describe the material flowing path of the control volume. It

contains two attributes, name which is a symbolic name of the next control

volume or sink and probability which refers to a corresponding probability that

the material would flow to this control volume. This element may be omitted if

the current control volume is terminal and may occur as many times as necessary

to capture all possibles flow paths. The probabilities will be automatically

renormalized. Note that a biased reaction branching will have no effect if a

reaction path splitting is applied.



<ControlVolume name="cv 1" res time="3600">
<Flux name="steady flux 1"/>
<Tally name="ac 1"/>
<Tally name="ap dc 1"/>
<VR>

<Force value="3.0"/>
<Biased kza="240520" bias="100.0"/>
<Biased kza="260570" bias="50.0"/>

</VR>
<CVExit name="sink 2" probability="1.0"/>
<CVExit name="cv 3" probability="2.0"/>

</ControlVolume>

A.9 Sink

The Sink element contains two attributes, name and entrant tally. The name at-

tribute represents a symbolic name of this sink while the entrant tally is a boolean

flag that triggers the use of the atom entrant tally on the sink.

<Sink name="sink 1" entrant tally="true"/>

A.10 Mixture

This element defines atomic compositions of a mixture. The Mixture element can

occur more than once if there are multiple types of mixture in the simulation. It

consists of one attribute, name, and one element, Atom. As usual, the name attribute

represents a symbolic name of this mixture. The Atom element can occur as many

times as necessary to complete a definition of this mixture. This element contains two

attributes, kza and amount which represent the isotopic identity and its corresponding

atomic percentage.

<Mixture name="water">
<Atom kza="10010" amount="2"/>
<Atom kza="80160" amount="1"/>

</Mixture>



A.11 Source

This element is used to specify a source defintion. At least one of this element is

required in the input file. It consists of the following required attributes.

• name represents a symbolic name of this source.

• mix indicates a mixture to be used as a source material. The mixture must be

declared using the Mixture element.

• cv accepts a symbolic name of the control volume to which this source is at-

tached.

• time defines a simulation time in seconds when the source releases the material

to the system.

• strength indicates a relative strength of this source. It is in effect when there is

more than one source defined.

<Source name="sc 1" mix="water" cv="cv 1" time="0.0" strength="1.0"/>

B MCise Output File

Outputs from an MCise simulation are stored and organized in a file with a hierarchi-

cal data format known as HDF51. Generally, there are two primary objects, datasets

and groups [16], in the HDF5 format. The first hierarchical level of the output file

is consisted of one dataset, CPU time, and two groups of data, Reaction tree and

Output tally. CPU time indicates the total computational time used in a particular

run in seconds. Reaction tree contains a reaction tree information of the problem

1HDF5 is the latest development based on a HDF project which is developed and supported by
the National Center for Supercomputing Applications at University of Illinois.



whereas Output tally keeps output details of all tallies specified in the input file.

Possible sub elements will also be described as their main elements are mentioned.

B.1 Reaction tree

For a given MCise simulation, only one reaction tree is generated. It contains the

reaction pathway information of all isotopes in the simulation, regardless of when and

where in the control volume they occur.

B.1.1 Key

A dataset Key indicates the isotopic identities of nodes in the reaction tree. Key is

a column vector with indices and entries corresponding to node numbers and their

isotopic identities, respectively. The initial material is always placed at the beginning

of the reaction tree and designated with node number 0. The isotopic identity of the

initial material is also assigned to be 0. Consequently, the Key vector always has 0 as

its first entry.

B.1.2 Parent

A dataset Parent is a column vector containing the actual pathway information.

Each index is regarded as one daughter node and its parent node is given by the

entry associated with the index. The parent node of the initial material is defined

to be 0 by default. As a result, the first entry of the Parent vector that reflects the

parent node of the initial material is always 0.

Reaction tree
|−→• Key
|−→• Parent



B.2 Output tally

A group Output tally does not contain any dataset; however, it has as many sub-
groups as a number of tallies declared in the input file.

Output tally
|-Current Tally 1
| |−→• Tally time
| |−→• KZA
| |−→• KZA--Number Density
| |−→• KZA--Relative Error(%)
| |−→• KZA--F.O.M.
| |−→• NODE
| |−→• NODE--Number Density
| |−→• NODE--Relative Error(%)
| |−→• NODE--F.O.M.
| |-F.O.M. -- 10%
| |-F.O.M. -- 5%

Each tally group contains nine datasets and two groups.

B.2.1 Tally time

A dataset Tally time is a column vector that contains the time information in sec-

onds of a tally and is directly associated with a number of tally bins. AtomCurrentTally

has the same number of tally bins as the size of the Tally time vector while AtomPopTally

has one less tally bin than the size of the same vector.

B.2.2 A KZA category

Datasets with their name starting with KZA belong to this category. Their descriptions

are described below.

KZA

A dataset KZA is a column vector that contains all of the isotopic identities whose

existences are detected by a particular tally. The KZA vector is used as a reference



column for other characteristics outputs that belong to a category KZA.

KZA--Number Density

A dataset KZA--Number Density is a matrix with numbers of columns and rows

corresponding to the size of the KZA vector and a number of tally bins. Each entry in

the matrix represents the production of a given isotope with respect to a unit atomic

amount of the initial material.

KZA--Relative Error(%)

A dataset KZA-Relative Error(%) is a matrix with the same dimensions as a dataset

KZA--Number Density. It contains relative errors of the results.

KZA--F.O.M.

A dataset KZA--F.O.M. is a matrix containing figures of merit of every entry in the

KZA vector for all tally bins. The dimensions of this matrix are the same as Number

Density.

B.2.3 A NODE category

Instead of being sorted by KZA, the results are also organized according to node

numbers from the Reaction tree. This set of output provides finer details of the

inventory productions as it suggests relative contributions from each reaction point

in the Reaction tree. The output format of this category is virtually the same as a

previous one.



B.2.4 General F.O.M.

The overall efficiency of the simulation suggested by a particular tally is given in terms

of FOM based on the detection limit, corrected by the relative error (1/DkR
2T ). The

default values for k are 5 and 10 percent. For each default value, there are three

datasets: KZA, Relative Error(%) and F.O.M.. KZA specifies an isotope with the

lowest relative production and Relative Error(%) less than k percent. Finally,

F.O.M. is the resulting figure of merit.

F.O.M.-- k%
|−→• KZA
|−→• Relative Error(%)
|−→• F.O.M.




