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Abstract 

 
A Monte Carlo algorithm for alpha particle tracking and energy deposition on an RZ computational 

mesh in a Lagrangian hydrodynamics code used for inertial confinement fusion (ICF) simulations is 

presented. The straight line approximation is used to follow propagation of “Monte Carlo particles” 

which represent collections of alpha particles generated from thermonuclear deuterium-tritium (DT) 

reactions. Energy deposition in the plasma is modeled by the continuous slowing down 

approximation. The scheme addresses various aspects arising in the coupling of Monte Carlo tracking 

with Lagrangian hydrodynamics; such as non-orthogonal severely distorted mesh cells, particle 

relocation on the moving mesh and particle relocation after rezoning. A comparison with the flux-

limited multi-group diffusion transport method is presented for a polar direct drive target design for 

the National Ignition Facility. Simulations show the Monte Carlo transport method predicts about 30 

picosecond earlier ignition than predicted by the diffusion method, and generates higher hot spot 

temperature. Nearly linear speed-up is achieved for multi-processor parallel simulations. 



 

I. INTRODUCTION 

Inertial confinement fusion (ICF) is an approach to controlled nuclear fusion that uses high power 
lasers or charged particle beams as drivers to create a high energy density plasma that reaches fusion 
conditions [1-3].  In the direct drive approach, the laser or particle beams are focused onto a spherical 
fuel pellet that contains a mixture of deuterium-tritium (DT) fuel. The outer portion of the pellet is 
ablated and accelerated outward in a spherically divergent flow, consequently driving the inner part of 
the pellet inward in a spherically convergent flow. This inwardly imploding DT fuel ideally reaches 
very high densities (on the order of 200 g/cm3).  However, the imploding plasma is also 
hydrodynamically unstable, so that any non-spherical perturbation introduced by non-uniformity in 
the driver intensity or the pellet fabrication will grow in time.  Thus the highly compressed fuel will 
deviate to some degree from perfect sphericity.  This final distorted fuel region must remain 
sufficiently spherical to avoid mixing of the DT fuel with surrounding pellet material such as Be or 
plastic, otherwise it will fail to compress and ignite.  The carefully timed increasing driver intensity 
drives a final strong shock wave toward the origin of the spherically imploded fuel and this shock 
wave heats a small center portion (<10%) of the fuel (central hot spot) to a temperature exceeding 4 
keV.  The combination of very high DT fuel density and the high central temperature results in 
nuclear fusion reactions between the deuterium and tritium nuclei, releasing a 14.1 MeV neutron and 
a 3.5 MeV alpha particle for each fusion event.  The fusion hot spot plasma radius is comparable to 
the range of the 3.5 MeV alpha particles (0.3 g/cm2) such that they slow down and lose an appreciable 
amount of energy in the hot plasma [4-5], thus “bootstrap heating” the plasma to yet higher 
temperature.  A fusion burn wave is created that propagates outward into the surrounding dense, but 
cooler, fuel and heats this fuel to fusion conditions so it begins burning as well with temperature 
rising to 50-80 keV. This process of hot spot ignition and fusion burn occurs on a time scale of about 
10-50 picoseconds (ps).  In this short time, the fuel is held stationary by its own inertia, despite the 
enormous pressures being created. Thus the name inertial confinement fusion is given to this dynamic 
process. 

A critical stage in this complex process is the central hot spot ignition phase.  Significant fusion 
energy gain (>100) requires that a hot spot is formed and the fusion burn propagates into the 
surrounding cold fuel. High gain is necessary for potential fusion power plant applications.  This 
important hot spot ignition process will be first tested at the National Ignition Facility currently under 
construction at Lawrence Livermore National Laboratory [6].  There are unfortunately many 
pathways that lead to ignition failure.  If the hot spot fuel has insufficient temperature after shock 
heating, then too few fusion reactions occur and bootstrap heating fails to materialize.  If the fuel 
density (and thus charged particle stopping power) is too low, then alpha particle reaction products 
deposit their energy in a large volume of fuel and fail to raise the temperature sufficiently to create a 
burn wave.  Making all of these processes occur at precisely the same time requires very precise 
physical tolerances on the driver power and the fuel pellet dimensions and sphericity.  It is estimated 
from ICF implosion simulations that laser pulse shape tolerances of a few picoseconds and laser beam 
power balancing tolerances of a few percent between the hundreds of laser beams are necessary to 
achieve fusion ignition conditions. 

These highly precise physical tolerances demand that the theoretical models and numerical schemes 
used to simulate the pellet implosion and fusion burn have a very high fidelity so that numerical 
modeling inaccuracies are significantly smaller than the true physical tolerances.  The numerical 
simulation of inertial confinement fusion laser-pellet interaction, pellet implosion and fusion burn is  
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Fig. 1.  Typical 2D computational mesh used in fusion target simulations. 

 

accomplished with complex multi-physics computer codes.  The fundamental basis of these codes is 
radiation-hydrodynamics.  The physics of ICF radiation-hydrodynamics is the same as that used in 
astrophysics to simulate dynamic phenomena in stars [7].  The dense plasma is treated in the fluid 
approximation and the heat transfer is modeled by x-ray radiation transport.  In the multi-physics 
nature of these codes, other physical phenomena, such as laser energy absorption and charged fusion 
reaction product transport and slowing down are coupled to the mass, momentum and energy 
conservation equations of hydrodynamics. 

The computer codes used to simulate ICF experiments employ either finite difference or finite 
volume methods to solve Eulerian, Lagrangian or arbitrary Lagrangian Euler (ALE) forms of the 
hydrodynamics equations.  The Lagrangian form has an advantage in preserving material interfaces 
and is thus commonly used in ICF pellet implosion simulations. While the computational mesh 
remains stationary in the Eulerian form, verticies move with the local fluid velocity in the Lagrangian 
form and the ALE form. Such moving meshes add additional complexity to numerical modeling 
because the finite different cells can become distorted as they follow the flow of the ever-present 
hydrodynamic instabilities.  A typical two-dimensional (2D) mesh used in fusion target simulations is 
shown in Fig. 1, which employs an RZ coordinate system to simulate a half sphere. Since it is a 2D 
mesh, the finite difference cells are quadrilaterals with four verticies and four edges rotated around 
the Z axis.  The distorted shape of an individual cell under hydrodynamic motion may have three 
different forms, as shown in Fig. 2.  These are of the convex (regular) shape, the concave (banana) 
shape and the tangled (bowtie) shape.  When severe convex and concave shapes occur, the 
computational mesh must be rezoned in order for the simulation to proceed in a timely fashion 
without loss of numerical accuracy.  This is accomplished by redefining the mesh to be more 
orthogonal and interpolating the original finite difference values onto the new mesh.  The tangled 
shape results in negative cell volume and must be corrected by rezoning before continuing the 
simulation. 

The distortion of the hydrodynamic computational mesh creates complications in the derivation of 
deterministic finite difference algorithms for modeling the transport of particles such as x-ray photons 
and DT fusion reaction alpha particles on this mesh [8-11].  These algorithms have a figure of merit 
that measures their ability to preserve regular solution features such as plane waves crossing a 
distorted mesh that is not orthogonal to the isocontours of the solution.  The degree to which the mesh 
does not distort the otherwise uniform solution and the convergence of the solution with refined mesh 
are features of these algorithms that researchers seek.  The complexity of numerical solutions of the 
transport equation on distorted meshes as well as the substantial computational resources necessary  
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Fig. 2.  Three different quadrilateral shapes under hydrodynamic flow. (a) Convex (regular), (b) 

Concave (banana) and (c) Tangled (bowtie). 

 

for solving the transport equation in multiple dimensions often leads to the use of flux-limited multi-
group diffusion as the method of choice for transport of x-rays and alpha particles in multi-physics 
ICF radiation-hydrodynamics simulation codes.  Flux-limited diffusion has been shown to correctly 
predict general features of alpha particle transport and energy deposition and accurately preserve 
conservation of particle energy and number, but it fails to predict detailed features of energy 
deposition such as the “Bragg peak” that occurs at the end of the alpha particle range [12].  
Furthermore, flux-limited diffusion is a finite difference method that suffers the peril of the distorted 
hydrodynamic mesh. 

In this paper we describe a Monte Carlo method for the transport of DT fusion product alpha particles 
on a distorted hydrodynamic mesh.  The Monte Carlo method [13] has the advantage that it is 
insensitive to the non-orthogonal nature of the mesh because the algorithm simply tracks alpha 
particles to the next cell edge that they intercept and this algorithm is independent of the cell shape.  
The Monte Carlo algorithm has the disadvantage that it is a non-deterministic method that relies on 
good statistical significance for accurate solutions.  The challenge is to use sufficient numbers of 
“Monte Carlo particles” to obtain statistically significant results.  This often requires substantial 
computational resources.  This limitation is balanced by the fact that Monte Carlo algorithms are 
“embarrassingly parallel” and parallel computers can easily be employed. 

The paper is organized as follows. In Section II, we present the Monte Carlo tracking algorithm. The 
initial sampling of particles, intersection with cell edges, particle relocation on the moving mesh and 
relocation after rezoning are discussed in each subsection. In Section III, we describe the alpha 
particle energy deposition, applying the same stopping power theory for both diffusion and Monte 
Carlo transport.  Results of our Monte Carlo algorithm compared to flux-limited diffusion in a 
production ICF simulation code are given in Section IV. We use the baseline polar direct-drive target 
[14] proposed for testing at the National Ignition Facility as an example to examine the effect of using 
the Monte Carlo transport model.  This will likely be the first experiment that tests the fidelity of the 
simulation methods used for DT fusion alpha particle transport and slowing down.  Energy 
deposition, burn wave propagation and ignition timing are compared side-by-side with the diffusion 
model [12,15]. The different results predicted by the Monte Carlo method compared to the diffusion 
method are discussed in Section V.  Significant differences in simulation results between these two 
transport methods advocate for the use of the more physically accurate and mesh independent Monte 
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Carlo method for such sensitive simulations.  Finally, a note on the run time speed-up of the Monte 
Carlo algorithm for execution on a multi-processor parallel computer concludes the paper. 

 

II. TRACKING ALGORITHM 

Simulation of alpha particle transport, slowing down and tabulation of consequent energy deposition 
in the fusion plasma by the Monte Carlo method is based upon the idea that Monte Carlo particles can 
each approximate a large number of actual alpha particles (with appropriate statistical weight) and 
that tracking of the Monte Carlo particles is an accurate representation of the transport of all real 
particles.  This approximation is improved as the number of Monte Carlo particles increases and thus 
the statistical weight of each becomes proportionately less.  In the limit as the number of Monte Carlo 
particles approaches the number of real particles, the simulation becomes exact.  We will refer to the 
Monte Carlo particles as particles in the following discussion.  In practical terms, the number of 
particles that one chooses to track is determined by the amount of computational resources that are 
available and the degree of accuracy that is necessary.  The Monte Carlo algorithm is independent of 
the number of particles; it is independently applied to each particle to track its history. 

Radiation-hydrodynamics simulations are inherently time dependent and thus the alpha particle 
transport algorithm should be time dependent.  We have implemented two approximations to time 
dependence for tracking the alpha particles.  In the adiabatic approximation, all particles created on a 
given time step are tracked to the end of their life during that time step. This adiabatic approximation 
is valid when the hydrodynamic time step is comparable to the slowing down time of the alpha 
particles.  A second approximation that we call the time dependent approximation is to track the alpha 
particles until they either slow down to thermal energy or they have transported for a time equal to the 
time step, whichever is a shorter time.  If they have not slowed to thermal energy before the end of 
the time step, then information about this Monte Carlo particle is saved and the transport is restarted 
on the next time step.  This second approximation is usually necessary for ICF burn calculations.  It 
requires that a data structure to save particle information be constructed.  This is discussed in Section 
II.C. 

To track the particles on the hydrodynamic computational mesh during a single time step, the Monte 
Carlo algorithm must randomly generate particles in the particle source cells, compute the distance to 
intersection with the next cell edge as particles traverse cells, compute the energy loss through 
slowing down in each cell traversed and tally the accumulated energy loss in each cell. Between time 
steps the algorithm must determine particle relocation in the cells after the mesh moves. In the 
following, we discuss each task individually. 

 
II.A. Random sampling of particles in a cell 

Random sampling of particles produced from fusion reactions in a cell is not straightforward in the 
2D RZ cylindrical geometry. First of all, it is actually a three-dimensional (3D) problem. The position 
of a sampled particle is represented by Cartesian coordinates (x, y, z) within a torus enclosed by four 
conical segments defined by the quadrilateral cell rotated around the Z axis. Secondly, a geometric 
effect must be taken into account; that is, a uniform density of created particles implies that more total 
particles are created at larger radii within a cell. Thirdly, the sampled particles on a cell edge must be 
associated with the indices of the cell into which they are traveling.  Adjustment to the cell indices of 
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Fig. 3.  Quadrilaterals are inscribed in rectangles. (a) Convex, (b) Concave. 

 

the particle location is needed in order to ensure an intersection.  This is illustrated at the end of this 
section.  This ambiguity can cause problems with the tracking algorithm.  Our algorithm allows 
particles to be generated on the cell edges but some algorithms do not [16].  This is necessary since 
the size of the final compressed DT fuel in a typical target implosion is very small (around 100 µm). 

We use the rejection sampling method for the random particle sampling in a cell.  As shown in Fig. 3, 
the quadrilateral of either regular shape or concave shape is enclosed in a rectangle with the 
maximum Z and R length as the width and height of the rectangle. The reject sampling method first 
samples particles from the rectangle, for which it has an analytic solution.  The random selection of 
radius r in the rectangle is given by 

)( 2
min

2
max

2
min

2 rrrr −+= ξ    ,                                                     (1) 

where rmin  and rmax represent the minimum and maximum radius of the quadrilateral, respectively. 
The variable ξ  is a random number between 0 and 1. The x and y coordinates of the particle position 
can thus be sampled from a random azimuthal angle as  

)sin(
)cos(

ϑ
ϑ

ry
rx

=
=

  ,                                                         (2) 

where ϑ is the azimuthal angle which is selected randomly from 0 to 2π. The z coordinate of the 
particle position is simply given by,  

)( minmaxmin zzzz −+= ξ ,                                                  (3) 

where zmin and zmax represent the minimum and maximum z components of the quadrilateral, 
respectively.  The second step in the rejection sampling method is to determine whether this sampled 
particle from the rectangle region is in the quadrilateral.  If the particle is outside the quadrilateral, the 
sampled particle is rejected.  We design a method to detect whether a particle is in a quadrilateral by 
splitting the quadrilateral into two triangles.  The particle-in-triangle (PIT) test is performed for each 
of the two triangles.  A point is inside of a triangle if and only if the summation of the areas of three 
sub-triangles created by connecting the point with three vertices of the triangle is equal to the area of 
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the triangle.  In order to include the quadrilateral concave shape as well as the convex shape in the 
algorithm, the splitting line is first determined to connect two opposite vertices of the quadrilateral.  
For quadrilaterals with regular shape, either pair of two opposite vertices can be used as the splitting 
line.  For quadrilaterals with concave shape, the vertex with internal angle greater than 180 degrees 
must be chosen for the splitting line.  This vertex can be found by performing the PIT test since this 
vertex is inside of the triangle constituted by the other three vertices. The sampled particle location is 
tested with the PIT test.  If it is successful in either of the two triangles, the particle is inside of the 
quadrilateral or on the edge of the quadrilateral. Otherwise, the sampled particle is rejected.  

The accepted particle is also assigned the quadrilateral’s computational mesh indices.  In the rare 
occurance of a particle located on a cell edge, the cell indices may need adjustment because the 
isotropically sampled direction of travel may associate the shared edge with the adjoining cell. The 
cell to which the particle is assigned is always the cell into which it is traveling. Care must be taken 
for edge particles because failure to assign the correct cell indices can lead to “lost particles” and 
errors in the particle census and deposition results. The algorithm used to handle the assignment of 
the indices for the particle sampled on the edge is as follows. 

Determine the inward normal direction vector of the edge. As shown in Section II.C, the normal line 
of the conical segment surface constructed by the edge is (∂f/∂x, ∂f/∂y, ∂f/∂z), which is 

 and f is the equation function of the conical segment defined in Eq. 5. 
However, the normal line has no direction. To assign the inward direction to the normal line, a 
reference point inside of the quadrilateral is needed.  We choose the centroid of the quadrilateral as 
the reference point. 

)])([2,2,2( 11 zzkrkyx −+−

The cosine of the angle between the normal line vector and the vector from the particle position to the 
reference point is calculated.  If the cosine is less than zero, the direction of the normal line vector is 
reversed to use as the inward normal direction vector. 

The cosine of the angle between the inward normal direction vector and the particle direction is 
calculated.  If the cosine is less than zero, the assigned indices need to be adjusted according to the 
location of the edge.  For example, if it is the edge (I,J+1; I,J), the indices of the particle are changed 
from (I,J) to indices (I-1,J). 
            

II.B. Intersection with cell edges 

To calculate the energy deposition in a cell, the particle travel distance in the cell is required.  To 
determine the point at which a particle passes from one computational cell to another, the intersection 
with the cell edge is calculated.  In the RZ cylindrical geometry, this requires the solution of two 
coupled equations consisting of the equation of a line in 3D and a conical segment equation. Again, 
each quadrilateral in the mesh actually represents a volume enclosed by four conical segments 
defined by the edges.  Unlike the situation in XY planar geometry in which we can determine the 
intersection using only the angular information without actual computation of the intersection, there is 
no shortcut for the 2D RZ cylindrical geometry to the best of our knowledge.  Computation of the 
intersections for each of the four sides must be performed in order to determine the intersected edge.   
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Fig. 4.  Intersection with one edge of a quadrilateral by the particle straight line trajectory. 

 

This is actually the workhorse operation in the whole Monte Carlo tracking algorithm, consuming the 
greatest amount of computer time.  

As shown in Fig. 4, the line in 3D is represented by the starting point (x0, y0, z0) with direction cosine 
vector (u, v, w).  One edge of a quadrilateral is connected by point (r1, z1) and point (r2, z2).  This edge 
is rotated about the Z axis and thus forms a conical segment.  The intersection point of the line and 
conical segment is (x, y, z) and the distance from the starting point to the intersection is represented 
by the symbol S. The equation of the particle trajectory line is 

S
w

zz
v

yy
u

xx
=

−
=

−
=

− 000 ,                                               (4) 

and the equation of the conical segment with ending point (r1, z1) and point (r2, z2) is 

0)]([ 2
11

22 =−+−+ zzkryx ,                                                (5) 

where k ≡ (r2-r1)/(z2-z1). 

The solution of the two coupled equations is based upon the locations of the two points (r1, z1) and 
(r2, z2).  

When the two points (r1, z1) and (r2, z2) are the same, that is, r1= r2 and z1= z2, there is one potential 
solution S=(z1-z0)/w only if the solution satisfies the equation ( , 
otherwise, there is no solution. 

222
100 )() rSvySux =+++

When r1= r2 and z1≠ z2, it is a cylinder with radius r1, and there are two solutions if w ≠ ±1. These two 
solutions are 

2

2
10

22
0000

1
))(1()()(

w
rrwvyuxvyux

S
−

−−−+±+−
= ,                       (6) 
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where . Positive solutions are selected.  If there are two positive solutions, the smaller 
one is selected.  There is no solution when w = ±1, which means the particle trajectory is parallel to 
the Z axis. 

2
0

2
0

2
0 yxr +≡

 When z1 = z2 and r1 ≠ r2, the edge is a plane disc parallel to the r direction. There is a solution only if 
w ≠ 0, which is . wzzS /)( 21 −=

If none of the above cases apply, the distance to the cell edge is obtained by solving the following 
quadratic equation, 

0))(())((222()1( 2
101

2
010100

2222 =−+−+−+−++−− zzkrrzzkrkwvyuxSwkwS ,   (7) 

where k ≡ (r2-r1)/(z2-z1) and . The acceptable solutions are positive ones. 2
0

2
0

2
0 yxr +≡

 The intersection with a quadrilateral edge results in eight possible solutions, with two 
possible solutions for each edge. The rules required to select the unique and correct solution are 1) it 
must be positive, 2) it must be smallest,  and 3) the Z component of the intersection point must be in 
the range (z1, z2). 
 

II.C. Particle travel history 

Once a particle is launched in a cell, its trajectory is constructed by a straight line which encounters 
one of the cell’s edges.  This straight line approximation to the particle trajectory is discussed in 
Section III.  The particle trajectory is terminated under one of the following three circumstances, 1) 
the particle travels out of a user specified region of interest, 2) the particle energy falls below a user 
specified cut-off energy, or 3) the particle travel time is larger than the hydrodynamic time step if the 
time dependent tracking is applied.  The alternative tracking approach is adiabatic, in which the 
particle continues to propagate until one of the first two conditions is met.  The time dependent 
tracking method requires additional computer memory to store the previous incomplete trajectories so 
that they can resume on the next hydrodynamic time step. In our implementation, a two-dimensional 
array is created for this purpose, one dimension is for the particle number and the other is for the time 
step history number.  A particle element in the two dimensional array is represented by a Fortran 90 
data type which has position, direction, energy, statistical weight and other statistical variables as its 
data members.  The history number equals one for adiabatic tracking. For time dependent tracking, a 
rule must be applied to free a history slot so that it can be reused if the needed history index is larger 
than the total available number of histories in the data structure.  The history slot marked as reusable 
either 1) contains the fewest particles or 2) is the oldest, depending upon user input.  The particles in 
the chosen history slot are forced to propagate continually until either 1) they are out of the region or 
2) their energy is below the cut-off energy.  The escape boundary or the boundary of the user 
specified region can be set as the outermost surface or a predefined radius. For example, in the 
simulation of a laser driven target implosion, we can set the region of interest radius as the interface 
between the DT fuel and the ablation layer under the assumption that the alpha particles propagating 
beyond this radius have little contribution to the fusion burn.  Particles with energy less than the cut-
off energy (e.g. 0.01 MeV) are considered as thermalized and their energies are deposited locally.   
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II.D. Moving mesh, rezoning and restart 

A Monte Carlo charged particle deposition package using the above algorithm has been implemented 
in the ICF simulation code, DRACO, developed by the Laboratory for Laser Energetics (LLE) [17].  
DRACO is a Lagrangian radiation-hydrodynamics code designed to run in a multi-dimensional 
geometry.  It includes important ICF physics such as energy exchange among the fields, refractive 
laser ray tracing, classical ion and electron conductivity, multi-group radiation diffusion, and multi-
group charged particle diffusion deposition [18-20].  Rezoning is included in the code to keep the 
computational mesh from severe distortion, and material interfaces are tracked in the mixed material 
cells.  For the adiabatic tracking method, the particles are tracked to their end-of-life on each time 
step so there is no complication with the  moving mesh.  However, for the time dependent tracking 
method, the hydrodynamic time step serves as a clock for the particle tracking.  The particles stop 
traveling temporarily when their propagation time is equal to the current hydrodynamic time step.  At 
the beginning of the next time step or after mesh rezoning, the cell indices of the particles’ locations 
need to be readjusted because the mesh moves, but the particles remain fixed in space.  The correct 
cell indices of particle location are required to find the intersection with the next cell edge and also 
for the correct use of the material properties in computing the particle slowing down.  Finding the 
new indices is greatly simplified by the fact that numerical stability required by the Courant-
Friedrichs-Lewy (CFL) condition restricts a cell to move for a distance less than one cell length.  This 
is also true for mesh rezoning which relocates the cell vertices to reconstruct a more regular mesh.  In 
this case, the relocation is limited to one cell to minimize the re-flux numerical diffusion of 
hydrodynamic field variables associated with the rezoning [21].  This restriction greatly simplifies the 
cell index search algorithm and reduces the computing time, since only the four neighbor cells need to 
be searched. 

Very often, hydrodynamics codes need to restart from previous runs.  To implement this capability, 
data information is periodically written from memory to hard disk at checkpoint time steps.  
However, it is impractical to write out all detailed Monte Carlo particle data structures during 
checkpointing since it significantly increases the execution time and uses too much disk space.  This 
can be seen from an example.  Assuming one million particles are followed on each time step and 
assuming 50 bytes of storage for each particle, the total storage size to be written is about 50 Mbytes 
per history. When particles from all histories are included, the total storage may grow to more than 
several gigabytes in the particle history data structure.  One way to overcome this difficulty is to force 
all live particles to deposit their remaining energy according to the adiabatic method by propagating 
until either they are out of the region or their energies drop below the cut-off energy on the time step 
before the operation to write data at the checkpoint is taken.  In this way the particle history data 
structure need not be written. However, detailed time dependent information is lost.  Another 
approach is to statistically build an energy distribution function and a direction distribution function 
from the data structure of live particles, and write these distribution functions for each cell to disk 
storage instead.  When the simulation resumes from the previous run, the Monte Carlo particles are 
dynamically sampled from these distribution functions.  This approach uses less disk space than 
writing the entire data structure and preserves some limited information about the energy and 
direction distribution. 
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III. ENERGY DEPOSITION BY STOPPING POWER 

There are two major approaches to the theoretical calculation of charged particle stopping power. One 
is based on Bohr’s theory which is dependent on the impact parameter between the trajectory particle 
and the target atom in the classical mechanic limit combined with the Bethe-Bloch equation which is 
dependent on momentum transfer from the particle to the target in the quantum mechanic limit. The 
other approach is based on the Fokker-Planck equation to evaluate the collision term of the 
Boltzmann equation [22].  In our work, we use the formulas derived by C. Li and R. D. Petrasso [23], 
which properly treat the effects of large-angle scattering as well as small-angle collisions by retaining 
the third-order term in the Taylor expansion of the collision operator in the Fokker-Planck equation.     

The relationship between the stopping power and the energy loss rate is 

ie

t

t

ie

v
v
E

ds
dE /

/
ε=                                                                 (8) 

where  is the trajectory particle energy, is the particle velocity and  is the energy loss rate to 
background electrons and ions, which is given by  
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where ( e ) is the trajectory (field) particle charge, ( m ) is the trajectory (field) particle mass), te f tm f

pfω  is the plasma frequency and  
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∫ −=
ftx

de
/

0

2 ξξ
π

µ ξ  is the incomplete gamma integral, x  where . 

For the Coulomb logarithm  for electrons we use the formula by S. Skupsky [24],  
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/ / ftft vv= fff mkTv /22 =
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]1)44.037.0(1[ln( 5.0ln 22 −+Λ+=Λ ηsRPA ,                                  (12) 

which is obtained from the random-phase-approximation form of the quantum-mechanical dielectric 
function. Λ is the standard Coulomb logarithm argument (= ). The effect of electron 
degeneracy η is calculated through the relation of the Fermi integral and the electron number density, 

s
22/12 DkmT h
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2/33 ηπ FmThn =                                                 (13) 
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Note in the case of alpha particle and field electron interactions, )(µG  approaches 2/3  because 

of the small mass ratio ( ) and 

2/3x
4−10≈ 1<<x . Thus, v  is independent of the trajectory particle 

energy . 

e
ε

tE

Assuming the stopping power is constant for a small traveling distance ∆S, the final energy becomes 

S
ds
dEEE i ∆−=  

The traveling time is solved from  , which can be approximated by [12] dEdtdE
E

Ei
∫ −= 1)/(τ

ii
e

i
e

e AEv
AEv

v +
+

= 2/3

2/3

ln1
3
2

ε

ε

ε

τ                                                              (14) 

where 2/)(ln 22
t

i
piiti mGeA µωΛ= .  

The relative contribution to the alpha particle slowing from the electrons and ions of the background 
plasma demonstrates that the stopping from the electrons dominates at high alpha particle energies 
(Fig. 6.12, ref. [2]). This validates the straight line slowing down approximation since the slowing 
ions suffer no significant deflection by colliding with electrons. Large angle scattering or dispersion 
occurs only near the end of the particle trajectory to thermalization when the velocity of alpha 
particles decreases and the stopping from the ions dominates. 
 

IV. RESULTS FOR NIF POLAR DIRECT DRIVE TARGET IGNITION 

The example we use to investigate the effect of the Monte Carlo alpha particle transport algorithm is 
the so-called baseline polar direct-drive NIF design [14].  This design employs a cryogenic DT-shell 
target with a thin polymer ablator surrounding the DT ice shell. The isentrope of the ablation surface 
and the fuel is controlled by a preheat shock. Figure 5 shows the target specification and the laser 
pulse shape. In order to test the scheme with a distorted mesh, a non-uniform laser irradiation is 
applied at l mode equal to 6 with the amplitude of 1% variation.  The simulation includes laser ray 
tracing, hydrodynamics, thermal conduction and burn wave propagation. Calculations are conducted 
using both the diffusion method [12,15] and the Monte Carlo tracking method.  Side-by-side 
comparisons are made for the results from these two methods. 

First, we look at the difference of alpha particle energy deposition from the two different options in 
the Monte Carlo transport method; that is, the time dependent transport and the adiabatic transport 
approximation. In the time dependent method, the hydrodynamic time step acts as a clock for 
particles, while in the adiabatic method, the particles deposit all their energy in the current time step. 
From Fig. 6, it can be seen that the temporal and spatial integrated energy deposition for both 
methods are very similar. The latter method gives a slightly larger energy deposition than the former. 
The variation of energy deposition at each time interval results from different time steps used for the 
numerical stability.  
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Fig. 5.  The baseline “all-DT” 1.5 MJ target design. (a) The target specification and (b) the laser pulse 
shape. 

 

 

 

n

10

Time (ns)

T
em

p
ra

la
n

d
sp

at
ia

li
te

g
ra

le
n

er
g

y
d

ep
o

si
tio

9.4 9.5 9.6 9.7
4

106

108

1010

1012

1014

deposition at each time step

total deposition at the current time

o
n

  
Fig. 6.  Comparison between the time dependent and the adiabatic Monte Carlo transport. Dash-

dotted lines: adiabatic. Solid lines: time dependent. Upper two lines: total energy 
deposition up to the current time step. Lower two lines: energy deposition at the current 
time step. 
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Fig. 7.  Comparison between the time dependent Monte Carlo method and the flux-limited diffusion 

method. Dash-dotted lines: diffusion. Solid lines: Monte Carlo. Upper two lines: total 
energy deposition up to the current time step. Lower two lines: energy deposition at the 
current time step. The peak energy deposition time: Monte Carlo (9.56-9.59 ns), diffusion 
(9.6-9.65 ns). 

 

Comparison between the Monte Carlo and diffusion transport for the same quantities as above is also 
plotted in Fig. 7. The spatially integrated current time energy deposition (the lower two lines in Fig. 
7) is normalized to the same time step interval. The figure shows that the energy depositions before 
9.55 nanoseconds (ns) are close. For example, at 9.38 ns the total temporal and spatial integrated 
energy for the Monte Carlo method is 1.2×109 ergs while it is 0.93×109 ergs for the diffusion method, 
and thus the energy deposition from the diffusion method is 20% lower than that from the Monte 
Carlo method. After 9.55 ns, the energy deposition using the Monte Carlo method is significantly 
larger than that using the diffusion method. It lasts for 50 ps to 9.6 ns before the energy deposition 
decreases. The peak deposition using the diffusion method lasts longer compared with the Monte 
Carlo method, which is about 80 ps. Therefore, the Monte Carlo method gives a higher heating rate  

13 



 

1

1

1

5

5

5

5

5

10

10

10

10

15

15

15

18

18 20

Z (µm)

R
(µ

m
)

-50 0 50
0

20

40

60

80

100

1

1

1

1

1

5

5

5

5

5 10

10

10

12

12
13

Z (µm)

R
(µ

m
)

-50 0 50
0

10

20

30

40

50

60

70

80

90

100

  
Fig. 8.  The ion temperature contour at the compression stagnation phase (t = 9.55 ns). (a) Monte 

Carlo and (b) diffusion. The temperature at the center of hot spot: Monte Carlo (20 keV) 
and diffusion (13 keV). 
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than the diffusion method. The other salient feature is the Monte Carlo method predicts earlier 
ignition than the diffusion method since the maximum energy deposition using the Monte Carlo 
method occurs earlier than using the diffusion method. This can be seen in detail in the later 
discussion.  The ion temperature contours shown in Fig. 8 at 9.55 ns explain the higher heating rate 
for the Monte Carlo method. As a result of 20% more energy deposition, the Monte Carlo method 
drives higher ion temperature in the hot spot, which is 20 keV in comparison with 13 keV from the 
diffusion method. Note the size of the hot spot is quite similar.  

A much closer investigation of the difference of energy deposition between the Monte Carlo method 
and the diffusion method is given in Fig. 9. The energy deposition is azimuthally averaged over 
constant mesh index in the azimuthal dimension. This averaging follows the contours created by the 
distorted mesh. We can see that at 9.50 ns they are very close. However, at 9.60 ns using the Monte 
Carlo method the ignition has already taken place and the alpha particles start to heat up the 
surrounding main fuel, while using the diffusion method the alpha particles still deposit energy at the 
center of the hot spot. At 9.67 ns, the thermal burn wave propagates outward further using the Monte 

15 



 

x
x

x
x
x

x

x

x
xx

x
x
xxx x

x x

+ +

+
+

+

+
+
+
++

+

++++ +
+

x x
x

x

x
xxx

x
xx
x
x
x

x
x

x

x

+ + + +
+ +

+
+

+
+

+
+
+
+

+

+

+

x
+

x
+

9.50 ns

9.60 ns

9.67 ns

9.60 ns

9.67 ns

{

Diffusion {

MC

9.50 ns
I-

lin
e

av
er

ag
ed

io
n

te
m

pe
ra

tu
re

(K
eV

)

0 0.025 0.05 0.075 0.1
10-1

100

101

102

Radius (cm)  
Fig. 10.  Comparison of burn waves between the Monte Carlo and diffusion method at different times. 

Earlier ignition for Monte Carlo can be seen. 
 

Carlo method while the ignition only just starts when using the diffusion method. The resulting ion 
temperatures are shown in Fig. 10. As we can see, the ion temperature is increasing from 10 keV 
forboth methods at 9.5 ns. The center of the hot spot is over 100 keV at 9.6 ns using the Monte Carlo 
method and the burn wave is developed at the radius of 200 µm and starts to propagate outward, 
while the compression is still on the way inward using the diffusion method. Using the Monte Carlo 
method, the center of the hot spot is cooling down at 9.67 ns as the result of the burn expansion and a 
larger thermal burn wave is developed from heating along the incoming main fuel. The main fuel is 
also ignited and a thermal wave is developed using the diffusion method. This offset in timing for 
ignition and burn waves is further shown in Fig. 11. The time at the end of compression and the 
beginning of heating the main fuel using the Monte Carlo method is 9.56 ns while it is 9.60 ns using 
the diffusion method. The thermal wave becomes obvious at 9.60 ns and amplifies at 9.67 ns for the 
Monte Carlo method while it is at 9.63 ns and 9.72 ns for the diffusion method, respectively. This 
clearly illustrates that the Monte Carlo method predicts the starting time of ignition about 30 ps 
earlier than the diffusion method predicts. 
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Fig. 11.  Comparison of gain factor between the Monte Carlo and diffusion method. Ignition time: 

Monte Carlo with 106 particles (9.551 ns); Monte Carlo with 104 particles (9.558 ns); 
diffusion (9.58 ns). 

 

Finally, the gain factor is given in Fig. 12 for four different runs. Three Monte Carlo calculations 
were performed for the particle numbers of 104, 105 and 106 to investigate the convergence and study 
the statistical effect of the number of particles used. Note these are particles newly emitted from 
nuclear burn for each time step. The actual number of tracked particles is much larger since there are 
many census particles from previous time steps also included in the transport. It can be seen that the 
three calculations generate similar gains in the end, but the ignition time is different. From the three 
Monte Carlo runs, we observe a logarithmic convergence trend with differences in time of ignition 
varying constantly with each factor of ten in particle number. For example, the calculation with 104 
particles predicts a delay ignition time for about 7 ps comparing with the calculation with 106 
particles, and the calculation with 105 particles sits halfway between them. While this is not a 
rigorous convergence proof, the trend shows that the gap in ignition time between the Monte Carlo 
results and the diffusion result is increasing with increased number of Monte Carlo particles. In the 
time between 9.56 ns and 9.58 ns the gain factor differs by a factor of 2 by using a different number  
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Fig. 12.  Comparison of gain factor between the Monte Carlo and diffusion method. Ignition time: 

Monte Carlo with 106 particles (9.551ns); Monte Carlo with 104 particles (9.558ns); 
diffusion (9.58ns). 

 

of Monte Carlo particles. This shows the burn dynamics is very sensitive to the energy deposition. 
We postulate the statistical effect inherent in the Monte Carlo simulation is reflected in the energy 
deposition and therefore the plasma ion temperature. A slightly different ion temperature at the 
ignition time may result in a larger difference in the reaction rates, which is fed into the next time 
cycle. The fourth calculation is performed using the diffusion method. The gain factor is 37, which is 
21% lower than using the Monte Carlo method where it is 47.  
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V.  SUMMARY AND DISCUSSION 

A scheme for the Monte Carlo tracking of fusion burn product alpha particles on a Lagrangian mesh 
has been presented. Since the material properties such as temperature and density vary from cell to 
cell, detailed cell-by-cell tracking is required for energy deposition. The initial positions and 
directions are randomly and uniformly selected. The particle weights are assigned according to the 
number of generated alpha particles. Particle trajectories are obtained by solving for the intersection 
with the cell edges represented by a quadratic equation. The trajectories are assumed to be straight 
lines since the charged alpha particles are highly energetic. Various aspects appearing in the coupling 
of Monte Carlo tracking with Lagrangian hydrodynamics, such as mesh moving and rezoning are 
discussed. The algorithm for determination of the particle location after the mesh moves or after 
rezoning is simplified by virtue of the CFL hydrodynamic stability requirement so that only neighbors 
are searched to locate the particle. 

A test case is presented to study the effect on the target ignition by adopting the Monte Carlo method 
for alpha particle transport. In this test case, a non-uniform laser irradiation of the DT capsule is 
applied at l mode equal to 6 with amplitude of 1% variation.  Comparing with the results from the 
alpha particle flux-limited diffusion transport method, we find the Monte Carlo energy deposition 
method predicts ignition time 30 ps earlier than the diffusion deposition method, and generates a 
higher hot spot temperature. We observe the same effect when the uniform laser irradiation is used. 

In a comparison between diffusion and Monte Carlo transport approximations the question of which 
is the intrinsically more appropriate model is always an issue. In the case of high energy alpha 
particle slowing down in DT plasmas with the temperature, density and spatial scale addressed here, 
the diffusion approximation is found to be an intrinsically less accurate approximation than Monte 
Carlo transport for the following reasons. The Monte Carlo approximation discussed in this paper 
directly simulates the angular and energy dependence of the alpha particles. The angular dependence 
is treated directly by choosing random directions of travel at birth from fusion. The energy 
dependence is treated using a continuous slowing down model that numerically mimics the 
continuous slowing down theory that underpins it. The transport itself is independent of the mesh 
distortion. The transport is approximated as straight lines, which accurately reflects the travel of the 
alpha particles so long as small angle scattering is the predominant energy loss mechanism. This is 
true until their velocity becomes comparable to the electron thermal velocity, at which point the 
alphas have lost a large percentage of their energy. Scattering of alphas on ions contributes to large 
angle collisions, but these occur at the end of the alpha particle range and contribute little to the 
energy deposition. The most significant approximation in the Monte Carlo approach is of a statistical 
nature, and numerical tests show that enough Monte Carlo particles have been used in the reported 
simulations to support the conclusions of the paper.  

In the diffusion approximation to the transport equation, the angular dependence of the alpha particle 
distribution function is first order in angle. The particles must be nearly isotropic. The isotropy of the 
particle distribution function in neutral particle transport is maintained by significant large angle 
scattering. This is lacking in alpha particle transport, where the particles travel in straight lines. 
Isotropy is often inferred by comparing the particle mean free path to relevant scale lengths of the 
transport medium. In the case of alpha particles, the range is approximately 0.35 g/cm2 measured in 
density independent units. This is by definition the extent of the hot spot necessary for ignition. The 
total fuel radius is approximately 1 g/cm2. Thus the system of relevance is only three times the range  

19 



 

forward direction
4π initial direction

T=9.55 ns

Radius (µm)

H
o

t-
sp

ot
io

n
te

m
pe

ra
tu

re
(k

eV
)

0 100 200 300
10-1

100

101

102

 
Fig. 13.  Comparison of ignition ion temperatures at 9.55 ns using two different direction selection 

methods in the Monte Carlo transport. Dash-dotted line: particles are allowed to have only 
outward directions. Solid line: directions of particles are isotropic. The comparison is used 
to illustrate the importance of the inward traveling deposition which we suspect contributes 
to the higher ion temperature at the center of hot spot. 

 

of the alpha particles and yet we are attempting to simulate the details of the alpha slowing down 
within this range. Finally, the diffusion approximation is augmented with so-called flux-limiting to 
address the breakdown of the approximation under the conditions found in burning DT plasma. The 
flux-limiting avoids causality violation where particles otherwise would propagate a signal at speeds 
faster than their maximum velocity, but it gives no credible information about the details of the 
transport. For these reasons we believe the only credible conclusion is that the Monte Carlo transport 
algorithm is giving more accurate transport and energy deposition results than the diffusion 
algorithm. Simple numerical tests of the algorithms confirm that the variations in energy deposition of 
the alpha particles over spatial scales of less than the alpha particle range are significantly different. 
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Fig. 14.  The speed-up factor for the Monte Carlo transport running in parallel on a Linux cluster. 

 

The reason that flux-limited diffusion is used in simulation codes rather than Monte Carlo transport is 
the substantial increase in computer time that is needed to execute the Monte Carlo algorithm in 
comparison to diffusion [25]. The point of this paper is to measure the differences in integrated target 
performance results (i.e. ignition) that are predicted using these two approximations that vary 
significantly in their accuracy of alpha particle transport. We see that the time of ignition (an 
important parameter in target design) differs significantly for the two transport models. The earlier 
ignition time may be explained by the fact that the alpha particles tend to lose their energy at the end 
of their range (the so called “Bragg peak”) and thus heat the incoming main fuel sooner than the 
diffusion transport which incorrectly predicts a peak deposition in the middle of the range. For 
marginal ignition, ρR≈1, energy deposition is sensitive to the transport model. For the case we studied 
in Section IV, the Monte Carlo method predicts 20% higher energy deposition to the hot spot plasma 
than the diffusion method, and thus generates higher hot spot ion temperature. Another reason that the 
Monte Carlo method gives higher hot spot temperature we can conjecture is that the particles having 
an inward direction travel a length of the diameter of the sphere. The longer the traveling length is, 
the more likely the particle deposits more of its energy. This is naturally simulated in the Monte Carlo 
method. To support this reasoning, we rerun the calculation with the particles having only outward 
directions.  We expect that the ion temperature at the center of the hot spot would be less than the full 
4π transport, since the particles will not enter the sphere defined by their initial radius. Fig. 13 
demonstrates this effect. At time 9.55 ns, the full 4π transport gives the temperature of the center of 
the hot spot of about 28 keV while the only outward transport gives the temperature of 20 keV. 
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We conclude by discussing the simulation run time using the Monte Carlo transport method.  An 
advantage of Monte Carlo particle transport is that the algorithm is “embarrassingly parallel”. With 
negligible communication cost, the calculation can achieve linear speed-up. Fig. 14 shows the linear 
speed-up factor by using up to 50 processors on a Linux cluster. The slight deviation from ideal linear 
speed-up is understandable since there are low bandwidth and low-speed switches in the cluster. 
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