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Abstract

A method is derived for using variational expressions to interpolate
among known values of a functional of the solution to linear equations. For
linear functionals of the solution to an inhomogeneous equation, the interpolation
expression is exact at N distinct points when N distinct functions are used,
each of which is the solution of the underlying Euler equation. Two point
variaional interpolation is derived to interpolate on the value of an eigenvalue
using the Rayleigh quotient. Illustrative examples are given based on neutron
transport studies of fusion reactor blanket systems and applications to

sensitivity and optimization studies in reactor theory are discussed.



I. Introduction

Variational theory has been widely used in mathematical physics to evaluate
functionals or to derive approximate theories. 1In the former application, the
motivation for using variational techniques is the fact that errors are second
order with respect to inaccuracies in trial functions. An additional motivation
is that one is often actually interested in a functional of the solution to an
equation describing a physical system, rather than in the solution itself.
Examples are the evaluation of transport coefficients for gases and plasmas and
the evaluation of various scalar products of the neutron or gamma flux in fission and
fusion reactor neutronics studies. In general, it is of interest to estimate
inner products of the form

sT,9) (1)
where ¢ satisfies a linear inhomogeneous equation
Ly = S . (2)

The adjoint equation is
LT ot = st (3)

(1)

In neutron transport theory, L is the Boltzmann transport operator and S

is a source.

Two widely used variational principles to estimate linear functionals of

2) (3)

the solution to an inhomogeneous equation are the Schwinger( and Roussopoulos

4)

variational principles. Both these principles have been generalized by Pomraning(
to provide an estimate of an arbitrary functional, rather than just a linear

one. Several recent papers have also treated the problem of estimating changes

(5,6)

in a functional of interest

(7

using variational forms accurate to second order

in the change.
In this paper, a method for using variational expressions to interpolate

among known values of a given functional is derived. The linear operator, L(a),

is assumed to depend in some known way on a set of parameters, . To estimate the



effect of changes in o on the functional of interest, e.g., (ST,¢), the standard
procedure has been to let a=0 , be defined as a reference system and to use
1

L(o ) and LT(a ) to determine solutions, ¢ and ¢+. Then ¢ and ¢+ are used as
1 1 1 1 1

1
trial functions in either the Schwinger of Roussopoulos functionals to assess
the effect of changing o on the response functional of interest. Often, the
perturbation introduced is large and/or more than one reference system is
appropriate. In such cases, the method of variational interpolation to be
described here can be used to interpolate among several reference values. For
linear functionals, an expression is derived which is exact at an arbitrary
number of reference points and which can be used to interpolate among them. Two

point variational interpolation is derived to interpolate on the

value of an eigenvalue using the Rayleigh quotient. Some illustrative numerical
examples are given based on neutron transport studies of fusion reactor blanket

(8)

systems which have recently become of greatly increased interest.

II. Theory of Variational Interpolation

a. Linear Functionals and Inhomogeneous Equations

The simpliest illustration of the basic idea is to consider two point
variational interpolation for linear functionals of the solution to a linear
inhomogeneous equation. Letting (ST,¢) be the linear functional of interest,
the Roussopoulos functional,

rl6T,0501 = sT@.0) + 6,510 (%)

+
is stationary about the exact value of (8 (ax¢) with Euler equations
L(a)¢ = S(a) (5)

LT(oc)¢T = sT(cx) (6)



As noted, 0 represents parameters in the operator L (for example, cross sections or

densities when L is the Boltzmann transport operator) and S and ST may depend

on 0. Let us now characterize two reference systems by the parameters o and o .
1

2

To estimate(ST(u),¢) at a point o not the same as a or 00 , we chose trial
1 2

functions ¢ and ¢T which satisfy, respectively,
1 2

Lo )¢ = S(a ) (7
171 1

LTyl = st . (8)
2" 2 2
The simpliest form of the method of variational interpolation follows from noting

that the functional

06T, 05 a1 = sT@,0) + @ s@ - Lo ) 9)
2 1 1 2 1

is exact at both reference points. Clearly, for o = o , the operator L is
1
, t
L(o ), the source is S(al) and § . Thus, the second term in eq. (9) is zero and
1
IR[¢T,¢ ;0 ] is exact. For a system with o = o , where L = L(ov ), S = S(a ) and
27711 2 2 2

ST = ST(a2), we use

L@ )6 ) = 8T ),0)
2 2 1 2 1

(10)
from which it follows that IR[¢T,¢ sa] is also exact. Thus, the functional
2771 2
IR[¢+,¢ ;0] can be used to interpolate in o and thus estimate other values of
2 1
the basic functional.
The Schwinger functional,
ST a T S (o 11
Is[¢T’¢’u] _ (8@, 0@ ,s(a)) (11)

6T, L))
is also exact at & = 03 and & = o when ¢ = ¢ and ¢T = ¢T are used as input
2 1 2
functions. The proof is equally straightforward. At o = o , use eq. (7)
1

to show that IS[¢I,¢ ;al] = (ST(al),¢ ). At o = o , again use
1 1 2



eqn. (10) to find 1 ¢:, ¢1; @ ] = (¢Z S(az))

ol
which, of course, is equal to (ST(a )59 ). Thus, the Schwinger functional
2 2
can equally well be employed to interpolate in o and it can have advantages

) We will

over the Roussopoulos functional, as has been discussed recently.
expand on this shortly.
A three point interpolation formula can readily be derived and it suggests

the procedure to follow in constructing a general proof. Consider three

reference systems, 00 , & , and o , and the trial functions
1 2 3

6@ = ¢ +a@ @ -0) (12)

o1 = bye! (13)

where ¢ , ¢ , and ¢T are solutions to the appropriate equations for the sub-
1 2 3

scripted reference points. Insert ®T(a) and ¢¥(a) into IR(¢¥’¢T;Q) and solve the

SIR BIR
equations Py o, FY 0. This yields
(¢, »5() - L)
a(a) = T (14)
(¢3, L(a)(¢2-¢l))
sT@, 6,-6)
b(a) = . (15)
@, L) -6 ))
3 2 1
Using these expressions in ¢T and ¢E gives the functional
6T, s@ - L@@, o -6)
L0600, ¢p5 ) = sT@,0) + — 1 2 (16)

T, L)@ ~9)))
3 2

which is exact when & equals o , & , or o .
1 2 3
A general proof can be constructed for N forward trial functions and N-1,

N, or N+l distinct adjoint trial functions (or N adjoint functions and N-1,

N, or N+1 distinct forward functions.) The proof for 2N distinct reference



systems proceeds as follows. Let

N
0p(@ =0+ ] a (@)(9,~0)
i=2
and
2N
oy = of T
Op(0) = ¢l + 1 b (@ (9 -0 )

i=N+2

where the ¢i satisfy
L(a)o, = s(a,)

and the ¢§'satisfy

+ o ,
LT el - sty

All ai are distinct and the indices can clearly be arbitrarily assigned.

Inserting eqns. (17) and (18) into IR[¢¥, ¢T; 0] and carrying out a Rayleigh-

o1 oI
Ritz procedure, (5—3 = 0, R
a, Bbi

equations are obtained:

For the coefficients, ai(u):

T
a, (@ (0] - of

s L@@ =6 )

+ay@ o] - ol ) L@ -0 )+

+ ay(@ (@] = of D, T @ 0 = ol - of

i=0N+ 2,

For the coefficients, bi(a):

)2 (0500

bN+2(LT(“)(¢£}2 - ¢§+1

L@ @fy - o0 @ -0 + .

T
N+1)

+ by

+ by T @l -0

N+1

0, - 00 = T - 1ty

= (), the following set of coupled algebraic

), s(a) - L(d)¢l)

N+ 3, ..

T
N+1°

., 2N

(6,=6 )

(17)

(18)

(19)

(20)

(21)

(22)



The functional IZN[¢$’ ¢T; o] is formed by using eqns. (17) and (18) as

trial functions with coeffients {ai(u)} and {bi(u)} determined by solving eqns.
(21) and (22). To prove that IZN[¢¥, ¢T; o] is exact whenever o = ai, i=1,2,

.» 2N is equivalent to proving that at o = ap, one of the trial functions
equals the exact solution, i.e., either ¢T = ¢p or ¢; = ¢g.

For a = al the right hand side of eqn. (21) vanishes. Since the coefficients

are linearly independent (the ai are distinct), it follows that ai(a ) = 0 for
1

i=2,3, ..., N. Thus, ¢T(a1) = ¢1 and IZN[¢¥, ¢T; ul] is exact. For

Q
il

oy # 0, rewrite the right hand side of eqn. (21) as
1

(@] = dgyp)s S = L0 ) = (O] = ¢11, L) (00 ). (23)

Then the coupled algebraic equations become

t
8y ((b; = Gy )s L) (0 0 )) + .
.1.

..T.
F(a D) (9 = g )LL) (0 = 6) + .
.1.

.1.
+ag((0) = dy,p)s L) Gy = ¢)) = 0. (24)

In this form, we see that the linear independence of the inner product
coefficients again implies

a,=a,=...=a-=-1=...,=a_=0. (25)

- . T . .
Thus, a; Sik’ ¢T(ak) = ¢k, and this guarantees that IZN[¢T, ¢T’ ak] is exact

for any k = 2, 3, . . ., N. Therefore, we have proven that IZN[¢;, ¢T; o} is exact
whenever 00 = 0 4, O 4 « . ., O_.
1 2 N
Similar arguments applied to eqn. (22) prove that for o = ak,
i , T
ko= NHL, N#2, .., 2N, L[4, O ak] is also exact. Thus, T, [¢5, ¢5; ]

involves 2N distinct trial functions and takes on the exact value for the



corresponding 2N distinct reference systems. This functional can therefore
be used to interpolate in 0 among these exact values and constitutes a multipoint
variational interpolation. A proof for N reference ¢ functions and N-1 or
N+l distinct reference adjoint functions can be carried through following the
same procedure.

The form of the error term in variational interpolation can be illustrated
by examining the two point formula. Again consider the linear functional,
R(a) = (ST(Q),¢), of the solution of a linear inhomogeneous equation. When an

+

altered S = SJr and an altered ¢ = ¢

T T

to the reference point in R is given by
+ +
SR = (8S ,9) + (S ,8¢) (26)
T + + - . . .
where &S = ST - S and §¢ = ¢T - ¢. This expression is the sum of an error term
due to the perturbation itself, which changes S+, and the error induced because
the perturbation in turn effects the solution. The change, SR, can be rewritten

using L8¢ = -6Ld + 6S where the operator LT has been written as L + 6L and ST as

S + 65. &R becomes

SR = (55 ,6) + (9,88) - (¢,6L0). (27)

Assume &S, 6ST, and 0L depend linearly on the change in a parameter o so that

§s = séa, (28-a)

8s = s'sa, (28-b)
and

SL = HSa. (29)

Then the derivative of R with respect to o at the reference value o is
1

SR | _ .t oy - et
R G R R R CRDE R RE (30)

1
It is easily shown that both the Roussopoulos functional, eqn. (4), and the

Schwinger functional, eqn. (11), also preserve the exact slope at o = o if
1

are used, the first order change relative



-10-

‘1‘
trial functions ¢ and ¢ are used.
1 1
In the method of variational interpolation, the trial functions are taken

at distinct reference points, for example, ¢ at o =0 and ¢ at o = o . The
1 1 2 2

slope of the functional does not, however, preserve the exact slope at either

a or o . Indeed, for two point interpolation where the changes depend
1 2

linearly on a, the Roussopoulos form, eqn. (9) yields a straight line

interpolation between (S+(a1)’¢1) and (ST(QZ),¢2). The difference between the

slope using eqn. (9) and the exact slope is (5¢Zl, H¢1 - S) where 5¢i1= ¢I - ¢?-
Variational interpolation using the Schwinger functional comes

closer to preserving the slope. Using eqn. (11) with ¢ and ¢T as input functions,
1 2

the approximate slope is

oI
s

+
(s (@ ),9.)
__s - (S+,¢ y o — T
o 1

: (6!, w0y~ 0,91 (31)
@,9) 2

o0
1

Let A(%g) be the difference in slope from the exact value. One then finds
that
)
21° +

oR 1
A(ga‘ = ((5¢21 - 2;;?;;“—'¢1), (H¢1 - S)) (32)
1

neglecting second order terms. Compared with (661)+ , H) ), we see now the additional
21 1

term £§$£ngl ¢T in the inner product on the right hand side of eqn. (32). This term
CHN R
is independent of the amplitude of ¢+ but does depend on the difference,
1
+ .
6¢21. This added term attempts to correct for first order differences in the adjoint

functions. This, if the shape of the adjoint function tends to be preserved, the slope

will tend to be preserved to second order. Further, interpolation between o and o
1 2

based on eqn. (11) will not be linear in &. This is an important distinction between

the Roussopoulos and Schwinger functionals which will be clearly illustrated in the



~11-
numerical examples. For higher order interpolation, the method used to derive

the combining coefficients, {ai} and {bi}, is the same as that applied to

(10)

derive the Schwinger principal from the Roussopoulos functional. The

interpolation will therefore be nonlinear and should have the same renormalized

(9)

) T
character as the Schwinger principal. Moreover, if one chooses ¢i and ¢i at

the same reference point in eqns. (17) and (18), i.e.

N
0@ =0, + 2 a @ - 0) (17-2)
@ =6t 4t e - o) (18-a)
T o, i~ %

the general procedure is equivalent to the variational synthesis method discussed

by Kaplan.(ll)

Now consider the exact form of the error term in two point variational inter-

, 0 . . .
polation when ¢ and ¢ , evaluated at o = 0. , are used as trial functions in the
1 1 1

Roussopoulos principle, eqn. (4), to estimate (S+(a),¢), o # al. The error is
T
€p = -(8¢ ,L(a)d&d ) (33)
1 1
Here, 0S=S-S,, 8¢ =¢p-¢ , 6¢i=¢+—¢+ and ¢ and ¢+ are the exact solutions in system
1 1 1 1

T . o . . .
o. When ¢ and ¢ are used in the variational interpolation method, the error is
1 2

e = —(80, L) ) + (8 ,88) (34)
VI 2 1 2

(This is another way of proving eqn. (9) is exact at a = ul and o = az.) By comparing
eqns. (33) and (34), it becomes clear that variational interpolation relies on
cancellation of error for o between al and az. That is, e.g., as & approaches ul

from az, 6¢z is increasing while 6¢1 and 8S are tending to zero. Thus, one should not
expect great accuracy if o does not lie between the two reference parameters.

Similar error terms can be derived for higher order interpolation formulas and they

all show the same basic characteristic of cancellation of error.

b. Two Pojint Variational Interpolation and Homogeneous Equationms

. , 4 . . .

The Rayleigh quotlent( ) is a homogeneous functional which is widely
used to estimate eigenvalues. In general, because an eigenvalue equation is
homogeneous, only homogeneous functional can be of interest. As such, these

functionals are nonlinear and we have not succeeded in constructing N point
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variational interpolation procedures in this case. Indeed, becausc the functionals
of interest here are nonlinear, it may not be possible to do so. It is possible,
however, to construct the simpliest case, two point variational interpolation,

and this can sometimes be useful. For example, it is often of interest to
determine the sensitivity of an energy level to the interaction potential in
quantum mechanics. If the potential is characterized by one or more parameters
which can vary over a specified range, interpolation can be used to determine

the change in the eigenvalue as the parameters change.

Consider, therefore, the general eigenvalue equation

. = A_F
L(o)¢, = A, F()o, (35)
and the adjoint equation

+ + + *

L (oc)(bi = AiF (u)¢i . (36)
It is assumed that L(a) and F(a) are real, though not necessarily self adjoint,
and that the eigenvalues Ai are discrete and nondegenerate. ¢i and ¢§ are

biorthogonal with respect to F(a), i.e.,

+ ot
F = F =
(<I>j » Fo) =« <1>j > 6. dij (37)
A variational expression for the kth eigenvalue is the Rayleigh quotient

+

(9,5 L(®) )

t .. _ K K
E)\MK’ (bK’OL] -

3 (38)
(0> F(@)d)

Consider two systems characterized by a and o . Ordinarily, one evaluates the
1 2
effect of changes in o from, e.g., o by using ¢1K and ¢IK as trial functions.
1

These functions are solutions of

L@ )0y = A @) Fla Do (39)
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and

wF T
K(QI)F (u1)¢1K, (40)

T +
L (ul)¢lK = A
respectively. With these trial functions, one proceeds to use L(a) and F(a)

to evaluate the Rayleigh quotient.

. + .
The expression for EA[¢1K’ ¢1K’ 0} can be written as

Gop L@oo ) = G, P800 ] )

Gl F@ 0.

.1..

¢; - ¢IK’ and higher order terms have been

g

i
where 6¢1K = ¢K - ¢1K’ 6¢K
neglected.

Now consider choosing ¢1K and ¢ZK as trial functions, where ¢1K satisfies

eqn. (39) and ¢ZK satisfies

+ T I +
L (u2)¢2K = AK(aZ)F (u2)¢2K- (42)
The functional
.l-.
(¢, L), )
+ . _ 2K 1K

(B> FOIO,)

is exact when o equals either @ or o and can therefore be used to interpolate
1 2

for AK(Q) when o differs from oo or o . Further, this functional can be
1 2

expressed, using 6¢;K = ¢; - ¢;K’ as
T

2K’
.t.
(@g> F(@9 )

; (897 L(@) 80, ) ~ (86

F(u)5¢lK
EA[¢2K, ¢1K; al = AK(a) 1+

(44)

neglecting higher order terms. The cancellation of error characteristic is

again clear on examination of the interpolation formula. As o approaches o ,
1
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T . . . ,
6¢2K remains finite as 6¢1K tends to zero while the reverse is true as ¢ tends
to a . This is analogous to the result found previously for linear functionals
2

of the solution to an inhomogeneous equation.

III. Illustrative Numerical Application

To illustrate the application of variational interpolation, we have
examined a relevant problem of current interest in the neutron transport analysis
of conceptual fusion reactor blanket systems. A quantity of primary interest for
a reactor based on fusions of deuterium and tritium is the tritium breeding
ratio, i.e., the number of tritons produced in the blanket per triton consumed.
The sample blanket is shown in Fig. 1. Tritium is produced by neutron reactions
. A . 6. . 7. ' .
in lithium, particularly the Li(n,a)t and 'Li(n,n'a)t reactions. We study here the

breeding ratio from reactions in 6Li, labeled T from 7Li, labeled T_, and the

6’ 7
total breeding ratio, labeled BR. T6, T7 and BR are defined as
T, = (5 (0,0),0),
- '
T7 (27(1?1,1'1 Ot),dD),

and
BR = ((26(n,a) + 27(n,n'u)),¢) .
¢ is normalized to one incident 14.1 MeV neutron, and 26(n,u) and 27(n,n'u)
are the macroscopic, energy and space dependent cross sections for the two
pertinent nuclear reactions. This, for T6, S'f = 26(n,@) while
for BR, ST = 26(n,a) + Z7(n,n'a).

The numerical evaluation of the inner products required for variational
interpolation were carried out using the program, SWANLAKE, (12 developed to
apply conventional variational procedures. The computational method to solve
the neutron tramnsport equation in multigroup form and the nuclear data employed are

( 8

the same as described previously.
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The illustrative examples are based on asking the question, "How does
the breeding ratio change as a function of the percentage of structural
material in the tritium breeding zones?" (zones (2) and (4))

We have chosen 5% structure as reference system al and 25% structure
as reference system az. Two point variational interpolation is used in the
analysis. ¢1 and ¢T have also been used as trail functions in eqns. (4) and (11)
to provide a comparison with the more conventional application of variational
techniques. The parameters o used in the theory are the appropriate atomic
densities of the materials in zones (2 ) and (4 ).

Fig. 2 shows T7 as a function of the percent structure based on several
calculational procedures. The open circles are taken as exact from direct
numerical calculation. Zeroth order perturbation theory is simply the evaluation
of (27,¢1) where 27 changes as the percentage of lithium changes in the breeding zones.
The value of T7 is preserved at the reference point but not the slope. Two
point variational interpolation based on the Roussopoulos functional also does
not preserve slope but gives correct values at the two reference points. The
Roussopoulos functional using ¢1 and ¢T as the trial functions preserves both the
value of T7 and the slope at reference point al but is quite inaccurate at
& = o . Finally, two point variational interpolation based on the Schwinger

2

functional, eqn. (11), is exact when « equals o or o and yields a nonlinear
1 2

interpolation that is quite close to the exact values for o between 0. and O
1 2

As a second example, the change in BR, T6’ and T7 as a function of the

fraction of 6Li making up the lithium in zonmes ( 2) and ( 4) has been evaluated.

(Natural 1lithium is 742 % 6Li and 9258 7 7Li,) Two point interpolation

has been used with a at 7.42% 6Li and a at 30% 6Li. The
1 2

results are given in Fig. 3 with the open circles indicating exact values.

Again, formula (1ll) yields a nonlinear interpolation between the reference values.
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