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1. Introduction 

          Radiation hydrodynamics is the study of very high energy density plasma fluid systems 

where heat is transferred predominantly by the transfer of x-ray radiation. These systems are found 

in astrophysics and on earth in high energy density plasmas like those found in laser fusion targets 

[1]. The mathematical treatment of radiation hydrodynamics is extremely complex because it is a 

combination of fluid dynamics and radiative transfer. Each of these subjects themselves is very 

involved and in combination the problem offers no useful analytical mathematical solutions. 

Therefore one must immediately resort to numerical solutions to very nonlinear sets of coupled 

partial differential equations. The opacities used as coefficients in these equations are nonlinear 

functions of the plasma energy density (density and temperature), rendering the solutions even 

more difficult to compute. Because one is forced to simultaneously simulate the fluid motion under 

the influence of radiative heat transfer and the heat transfer in moving background plasma, 

computer resources limit the choice of radiative transfer model. For this reason, the diffusion 

approximation is often chosen over more accurate transport approximations to model the radiative 

transfer, even in circumstances where the diffusion approximation is not strictly valid. Therefore 

the diffusion approximation is modified with a “fix-up” called a flux limit. 

The equations of radiation hydrodynamics can be written as [2] 

),(),()()(
0 4

���������
�

����������
�

�

� �
�

vIvv
v
vdvdIvvSI

tc
I

s��

�

       (1.1) 

where we have omitted the fluid equations for the conservation of mass and momentum and only 

included the conservation of energy equation, because this is the fluid equation that couples 

directly to the radiative transfer equation. In this report we will focus only on the solution of the 

radiative transfer equation in the diffusion approximation. 



The radiative transfer equation is treated in the multi-frequency approximation where the 

frequency dependence of the specific intensity is treated in a group structure with average opacities 

computed for each group. Each of these group equations is uncoupled from the others. In fact they 

are coupled through the emission term that appears in both the radiative transfer equations and the 

plasma energy density equation. This coupling is broken using an explicit treatment of the solution 

of these equations, that is the radiative transfer equations are updated from tn to tn+1 using values of 

plasma parameters at tn. The plasma energy is updated using an emission term evaluated at tn  and 

an absorption term evaluated at tn+1. This time centering inconsistency allows sequential solution 

of these equations, but introduces errors and possibly numerical instabilities that must be 

controlled. 

Taking moments of the radiative transfer equations with respect to their angular 

dependence and truncating after zeroth and first moments produces k equations and k+1 unknown 

functions. This can also be viewed as expanding the specific intensity in a power series in the 

angular variable and retaining only the zeroth and first order terms. In either case, assuming a 

transport law that relates the gradient of the radiation energy density to the radiation flux in the 

form of Fick’s Law closes the resulting radiation energy density equation: 
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where D is the flux-limited diffusion coefficient. The diffusion form of the radiative transfer 

equation is [2] 
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It is this equation, in multi-frequency form, that is solved in DRACO. The emission and the 

absorption terms that couple the radiation diffusion equations to the plasma energy density 
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equation are simply cell-wise quantities. There is no spatial finite differencing process involved in 

representing these quantities.  

The major challenge in solving these equations is the spatial finite difference 

approximation to the diffusion term. This is the term that transports the radiation from one cell to 

another. Furthermore, DRACO [3] is a 2D lagrangian code, so the finite difference mesh is 

composed of quadrilateral cells in a structured mesh. By this we mean that cells map to a regular 

logical index mesh, but the geometric relationship of a cell and its surrounding cells can be 

arbitrarily distorted as shown in Figure 1. DRACO also uses either x-y or r-z coordinates. For x-y 

coordinates and orthogonal cell boundaries there are numerous finite difference approximations to 

the so-called diffusion operator. For r-z coordinates and arbitrary quadrilateral cells, there are few 

published finite difference schemes. 

 

Fig. 1.1 Logical coordinates and quadrant numbering for a quadrilateral cell on a logically rectangular 
mesh. 

 

David Kershaw developed the finite difference scheme that is best documented in the published 

literature and we hereafter refer to this as the “Kershaw scheme” [4]. 

 In Section 2, we give a description of the Kershaw scheme by following his paper. We also 

discuss the boundary condition treatment and the different types of the flux limiters. Detailed 

information about the matrix and the corresponding symbols appearing in the diffusion equation is 

also given. In Section 3, we present the results of simple test problems in the contour graphs. We 
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also compare the numerical results to the exact solutions for several problems that have analytical 

solutions. In Section 4, we list some variables related to the code implementation and the input 

options for users. 

2. Kershaw difference scheme for the diffusion equation on an arbitrary r-z quadrilateral 
grid 

2.1  Differencing the diffusion operator [4] 

To difference the diffusion operator, one observes from Fig. 1.1 that 

)),(),,(( LKZLKRff �  .       (2.1) 

R and Z are the familiar Eulerian coordinates, R being either Cartesian or cylindrical and Z always 

being Cartesian.  (The following derivations will be carried out in cylindrical coordinates.)  K and 

L are the mesh point indices coordinates, with K = 1, …, KMAX and L = 1, …, LMAX. 

The expression �   in cylindrical coordinates is: fD��

1
R

d
dR

DR
df
dR

�

d
dZ

D
df
dZ

  .                                          (2.2) 

If K and L are treated as continuous variables of R and Z, one can transform the coordinates from 

(R,Z) to (K,L) using the relationships 

df df dK df dL
dR dK dR dL dR

df df dK df dL
dZ dK dZ dL dZ

� �

� �

    .                                             (2.3) 

We can define the area Jacobian of the cell as 

j �
d(R, Z )
d(K, L)
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dK

�

dZ
dL

�

dZ
dK

�

dR
dL

  .                                (2.4) 

We define 
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Then working through the partial derivatives, one gets 
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The difference approximation to this equation is derived using a technique based on a variational 

formulation of the solution.  Using the identity 

�� ( fD�f ) � f�� D�f � D(�f )2  

one can write the equation 

2( ) ( ) ( )RdRdZf D f RdRdZ fD f RdRdZD f�� � � � � � � �� � �      ( 2.7) 

      2( ) ( ) ( )RdRdZf D f RdRdZ fD f RdRdZD f�� � � � � � � �� � �  

       ( )RdRdZ fD f�� � �� 0,

since by the divergence theorem 

( )RdRdZ fD f fDdS f�� � � ��� �  

and on the boundary of the problem, it is assumed that   Occasionally one has 

 on the boundary.  When this occurs, the terms in (Af)

0 or 0.f dS f� �� �

0Bf f� � K,L that involve fB are now known 

and can be moved to the right-hand side of Eq. 2.5 when it is finite differenced.  Then the 

remaining matrix A, which operates on the vector of unknowns, is the same as if f = 0 on the 

boundary. 
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Then Eq. (2.7)  is written 

2( ) ( ) .RdRdZf D f RdRdZD f�� � � � �� �     (2.8) 

The finite difference analogue of the differentials in Eq. (2.8) is 

2
, , , ,

, ,

( )K L K L K L K L
K L K L

f Af V Bf� �� �      (2.9) 

where 

, , zone volume / 2K L K LV Rj �� �   . 

and A is the matrix to be determined.  The matrix B will be used to define A. 

2.2  Definition of the elements of the finite difference operator 

The form of (Bf) is chosen so that: 

2

,,

4

1

2

4
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����   .         (2.10) 

The reason for choosing to divide by 1/4 is not immediately obvious, but will become apparent 

later on.  The left hand side integral is transformed to (K,L) coordinates (again treating K and L as 

continuous variables) to get 

1
2

2

2

( ) L K
DR d dRdRdZD f dKdL R R f

j dK dL

� �
� � � �� �� � 	 � �
 � 
 �� �� 
� 
� �� �

� � .      (2.11) 

From this, one can define:  

)()()( 2/1
, dL

dfR
dK
dfR

j
DRBf KLLK ��    .          (2.12) 

This can be written: 

   
��
� �  Bf K, L ˜ ��kK ,L RL � �K, LRK

where 
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k and �� are face centered quantities because they involve �
df
dK

and 
df
dL

, so they can be differenced 

                    (2.14) , , 1, ,

, , , 1 ,
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)

where � �
1

2
,K L DR j� �  and is suitably averaged between the zones (K,L) and (K+1,L), and 

� �
1

2
,K L DR j� �  is suitably averaged between the zones (K,L) and (K,L+1).  Since K and L are 

actually discrete variables, the partial derivatives have been differenced as 
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One choice for a suitable  is given by ,  and K L K L� �

 
� �, ,2
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, 1
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K L K L
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,
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LK

LK

LK

LK

LKLK
LK

D
j

D
j

RR
    .    (2.16) 

 

The terms kK,L and ��� K,L are represented in diagram form in Figs. 2.1a,b. 
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(K-1,L)  (K,L)    (K-1,L)           (K,L) 

 

 

(K-1,L-1)  (K,L-1)  (K-1,L-1)          (K,L-1) 

 

 Fig. 2.1a.  kK,L     Fig. 2.2b.  ��K,L 

 

Remember that 

K

dR
dKR
dZ
dK

� �
� �
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Z

dR
dLR
dZ
dL
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� �
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� �
� �
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and let RK,L = (RK,L, ZK,L), then (RK)K,L and (RL)K,L are differenced 

 

� �
� � � �, , 1 1, 1,

, 2 2
K L K L K L K L

K K L

R R R R
R � � �

� �

� �
1�    (2.17) 

 

 

(K-1,L)  (K,L)  

 

    O          O 

 

(K-1,L-1)  (K,L-1) 

 

 

� � � �, 1, , 1 1,
,( )

2 2
K L K L K L K L

L K L

R R R R
R � � �

� �

� �
1�          (2.18) 
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(K-1,L)  (K,L)  

                        O 

  

                        O 

(K-1,L-1)  (K,L-1) 

 

 

Then (B1f) is chosen to be 

 

��
B1 f� �K ,L

� kK, L RL� �K ,L � �K, L(RK )K, L     (2.19) 
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K L K L K L K L
K L K L K L

R R R R
B f f f

R R R R
f f
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�

� � � �

�

�
� �� �

� � � �� �
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� �� �
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� �	 

    (2.20a) 

 

(Bf)K,L is also a zone-centered quantity and combining Figs. 2.1a and 2.1b gives 

 

(K-1,L)  (K,L)  

 

  

  

(K-1,L-1)  (K,L-1) 

           (B1f) 

 

There are three other equally valid choices for (Bif) 
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(K-1,L)  (K,L)  

 

 

 

(K-1,L-1)  (K,L-1) 

 

��
B2 f� �� kK, L(RL)K, L � �K ,L�1 RK� �K, L      (2.20b) 

 

(K-1,L)  (K,L)  

 

 

(K-1,L-1)  (K,L-1) 

 

��
B3 f� �� kK �1,L(RL)K, L � �K, L RK� �K ,L      (2.20c) 

 

(K-1,L)  (K,L)  

 

 

 

(K-1,L-1)  (K,L-1) 

��
B4 f� �� kK, L(RL)K, L � �K ,L�1 RK� �K, L      (2.20d) 

 

Since any of these is equally valid, an average of the four is taken 

���� �����

� LK
LKLKLK

LKLK i

i VAfffBfRdRdZD
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4
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4
1)(         (2.21) 
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then 

� � � �
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4 2

, ,,,, 1 ,

4 2

, ,,1

1
4
1
4

i
K L K LK LK LK L i K L

i
K L K LK Li

B f f Af

B f f Af V

�

�
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V
    (2.22) 

and finally, 

� � � �
4

1

1
4

T
i i

i

B B V
�

� � A�   .     (2.23) 

 

Eq. (2.20a) and the counterparts for (B2F), (B3f) and (B4f) are substituted into Eq. (2.23).  On the 

left side, the coefficients of fK,LfK’,L’ are collected and equated with the coefficients of fK,LfK’,L’ on 

the right side to get 

 

� �

, ( , ),( , ) ( , ) ( 1, ) ( , ) ( , 1)

1 2 3 4
( , ) ( , ) ( 1, ) ( , )

1                    
2

K L K L K L K L K L K L K L

K L K L K L K L

V A � � � �

� � � �

� �

�

� � � � �
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    (2.24a) 

� �1 2 3 4
, ( , ),( 1, ) ( , ) ( , ) ( 1, ) ( 1, ) ( , )

1
4K L K L K L K L K L K L K L K LV A � � � � �

� �
� � � � �

�
  (2.24b) 

� �1 2 3 4
, ( , ),( , 1) ( , ) ( , ) ( , 1) ( , ) ( , 1)

1
4K L K L K L K L K L K L K L K LV A � � � � �

� �
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�
  (2.24c) 

� 3 4
, ( , ),( 1, 1) ( 1, ) ( , 1)

1
4K L K L K L K L K LV A � �

� � � �
� � � �     (2.24d) 

� 1 2
, ( , ),( 1, 1) ( 1, ) ( , 1)

1
4K L K L K L K L K LV A � �

� � � �
� � �     (2.24e) 

where 
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              (2.25) 

and 

   C     .                     (2.26) LKLLKKLK RR ,,, )()( ��

Since VA is symmetric 

   , ( , ), ( , ) , ( , ), ( , )K L K L K L K L K L K LV A
� � � � � �

�V A                    (2.27) 

and all elements of A not defined by Eqs. 2.24a-e to 2.26 are zero. 

2.3  Some derivations related to the code implementation 

As shown before, the diffusion equation including the absorption and emission terms is: 

IBID
tc

I
aa
''4 ���

�
������

�

�  .                 (2.28) 

Using I=cE, and multiplying by the volume, the equation becomes 

EVcBVEDVc
t
EV aa

''4 ���
�
������

�

�
                     (2.29) 

Using the implicit differencing scheme for the time variable, 

1''1

1''
1

4)(

4
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������
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�

n
aa

nn

n
aa

nn

EtVcBtVEDtVcEEV

EVcBVEDVc
t

EEV

���

���

�

�         (2.30) 

Replace ED���  by AE as shown before, 

1''11 4)( ���

�������
n

aa
nnn EtVcBtVtVcAEEEV ���

�
   (2.31) 
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Rearrange the above equation: 

�
��� BtVVEEVVAtcV a

nn
a

'1' 4)}({ ������
�          (2.32) 

From the Kershaw scheme, we know the spatial differential matrix Ã=VA, and the volume for the 

last time step is V , n

�
��� BtVEVEVAtcV a

nnnn
a

n '11'1 4)}~({ ���

������       (2.33) 

Therefore, the diagonal elements and the nondiagonal elements are, 

Diagonal = )~( '
,,

1
, aiiii

n
ii VAtc ����

�V  

Nondiagonal = jiAtc ,
~

��  

Further define for convenience: 

)~( '1
a

n VAtcVA �����
�                          (2.34) 

The last equation becomes, 

�
�� BtVEVEA a

nnnn '11 4��

���   .       (2.35) 

Define nnn EEE ���
�� 11 , 

�
�� BtVEAEVEA a

nnnnn '11 4��

�����    .     (2.36) 

This is the final form that is solved by DRACO radiation diffusion transport module. As we can 

see, the actual result solved by the linear equation solver is the change of the radiation energy 

density, rather than the radiation energy density itself. 

2.4  Variables in the code 

In the situation that users want to understand how the scheme is actually implemented, we 

give brief descriptions about the variables in the code and their corresponding symbols in the 

equation. In the radiation module in the DRACO code, variable cmac_14 represents the diagonal 

elements of the matrix, and other 8 variables cmac_10-13, cmac_15-18 represent the nondiagonal 
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parts of the matrix. The code segment of implementation of the above equations in DRACO is 

listed as follows, 

 
         cmac_14(is:ie,js:je,1,igr) = cmac_14(is:ie,js:je,1,igr)  

                                      - opacity_zone(is:ie,js:je,1,igr,iemiss)*vol(is:ie,js:je,1) 

         cmac_10(is:ie,js:je,1,igr)  = cmac_10(is:ie,js:je,1,igr) *const1 

         cmac_11(is:ie,js:je,1,igr)  = cmac_11(is:ie,js:je,1,igr) *const1 

         cmac_12(is:ie,js:je,1,igr)  = cmac_12(is:ie,js:je,1,igr) *const1 

         cmac_13(is:ie,js:je,1,igr)  = cmac_13(is:ie,js:je,1,igr) *const1 

         cmac_14(is:ie,js:je,1,igr)  = cmac_14(is:ie,js:je,1,igr) *const1 

         cmac_15(is:ie,js:je,1,igr)  = cmac_15(is:ie,js:je,1,igr) *const1 

         cmac_16(is:ie,js:je,1,igr)  = cmac_16(is:ie,js:je,1,igr) *const1 

         cmac_17(is:ie,js:je,1,igr)  = cmac_17(is:ie,js:je,1,igr) *const1 

         cmac_18(is:ie,js:je,1,igr)  = cmac_18(is:ie,js:je,1,igr) *const1 

         cmac_rhs(is:ie,js:je,1,igr) = cmac_rhs(is:ie,js:je,1,igr) +  

                                       radiation_energy_emission(is:ie,js:je,1,igr)*dt*vol(is:ie,js:je,1) 

         cmac_14(is:ie,js:je,1,igr) = vol(is:ie,js:je,1) - cmac_14(is:ie,js:je,1,igr) 

         cmac_rhs(is:ie,js:je,1,igr) = cmac_rhs(is:ie,js:je,1,igr) +  

              vollast(is:ie,js:je,1)*radiation_energy_density(is:ie,js:je,1,igr) 

         cmac_rhs(is:ie,js:je,1,igr) = cmac_rhs(is:ie,js:je,1,igr)  

            + cmac_10(is:ie,js:je,1,igr)*radiation_energy_density(is-1:ie-1,js-1:je-1,1,igr)  

            + cmac_11(is:ie,js:je,1,igr)*radiation_energy_density(is  :ie  ,js-1:je-1,1,igr)  

            + cmac_12(is:ie,js:je,1,igr)*radiation_energy_density(is+1:ie+1,js-1:je-1,1,igr)  

            + cmac_13(is:ie,js:je,1,igr)*radiation_energy_density(is-1:ie-1,js  :je  ,1,igr)  

            - cmac_14(is:ie,js:je,1,igr)*radiation_energy_density(is  :ie  ,js  :je  ,1,igr)  

            + cmac_15(is:ie,js:je,1,igr)*radiation_energy_density(is+1:ie+1,js  :je  ,1,igr)  

            + cmac_16(is:ie,js:je,1,igr)*radiation_energy_density(is-1:ie-1,js+1:je+1,1,igr)  

            + cmac_17(is:ie,js:je,1,igr)*radiation_energy_density(is  :ie  ,js+1:je+1,1,igr)  

            + cmac_18(is:ie,js:je,1,igr)*radiation_energy_density(is+1:ie+1,js+1:je+1,1,igr) 

 

The variables in the code corresponding to the symbols in the equation are listed in the table, 
vol 1

,
�n

iiV  
const1 
 

tc�  

vollast n
iiV ,  

opacity_zone '
a�  

radiation_energy_emission 
�

�� Ba
'4  

cmac A  
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We also want to point out the difference between the current implementation of the above 

eaquation and Verdon’s implementation. (We don’t know exactly Verdon’s scheme. We can only 

tell the slight implementation difference from the code segment.) 

The Verdon’s code segment is: 

      cmac_14(i,j,1,igr) = dt*cmac_14(i,j,1,igr)-(const3*alpha)-(const4*alpha) 

      cmac_14(i,j,1,igr) = cmac_14(i,j,1,igr)*vol(i,j,1) 

      cmac_17(i,j,1,igr) = cmac_17(i,j,1,igr)*const5 

      cmac_18(i,j,1,igr) = cmac_18(i,j,1,igr)*const5 

      cmac_15(i,j,1,igr) = cmac_15(i,j,1,igr)*const5 

      cmac_12(i,j,1,igr) = cmac_12(i,j,1,igr)*const5 

      cmac_11(i,j,1,igr) = cmac_11(i,j,1,igr)*const5 

      cmac_10(i,j,1,igr) = cmac_10(i,j,1,igr)*const5 

      cmac_13(i,j,1,igr) = cmac_13(i,j,1,igr)*const5 

      cmac_16(i,j,1,igr) = cmac_16(i,j,1,igr)*const5 

      cmac_rhs(i,j,1,igr) = radiation_energy_emission(i,j,1,igr)*const5 

 

      cmac_rhs(i,j,1,igr) = cmac_rhs(i,j,1,igr) + 

        ((cmac_14(i,j,1,igr)*radiation_energy_density(i  ,j  ,1,igr) +  

           cmac_17(i,j,1,igr)*radiation_energy_density(i  ,j+1,1,igr) +  

           cmac_18(i,j,1,igr)*radiation_energy_density(i+1,j+1,1,igr) +  

           cmac_15(i,j,1,igr)*radiation_energy_density(i+1,j  ,1,igr) +  

           cmac_12(i,j,1,igr)*radiation_energy_density(i+1,j-1,1,igr) +  

           cmac_11(i,j,1,igr)*radiation_energy_density(i  ,j-1,1,igr) +  

           cmac_10(i,j,1,igr)*radiation_energy_density(i-1,j-1,1,igr) +  

           cmac_13(i,j,1,igr)*radiation_energy_density(i-1,j  ,1,igr) +  

           cmac_16(i,j,1,igr)*radiation_energy_density(i-1,j+1,1,igr)) * rtalphai) 

           cmac_14(i,j,1,igr)    = vollast(i,j,1)-cmac_14(i,j,1,igr) 

 

From this code, we guess Verdon followed the derivation like this: 

From Equation (2.32):  

�
��� BtVEVEVAtcV a

nnnn
a

n '11'1 4)}~({ ���

������  .          (2.37) 

Write )~( '
aVAtc ���  as A

�

 (we use A
�

 to distinguish from the above matrix symbol), 

�
�� BtVEVEAEV a

nnnnnn '111 4���

����

�

  .                        (2.38) 
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Note  in Equation (2.37) changes to V  in Equation (2.38), and we also 

define

1�nV

n

n

nn EEE ��
�11

�
� , 

�
�� BtVEAEAV a

nnnn '11 4)( ��

�����

��

    .                      (2.39) 

Therefore, the difference comes from the treatment of the volume and the definition of the 

intermediate matrix . A
�

2.5  Boundary Conditions 

The logical mesh consists of two types of zones:  physical and vacuum or ghost zones.  The 

vacuum zones completely surround the physical zones.  With the use of vacuum zones, it is 

possible to have irregular-shaped physical zone boundaries while still maintaining the rectangular 

logical mesh (i.e., for a given K = 1, …, KMAX and L = 1, …, LMAX, KMAX and LMAX are 

constant throughout the mesh). 

The two types of boundary conditions considered are the Dirichlet condition or “escape” 

boundary 

    f = fB 

where fB is a specified flux in the vacuum, and the reflective or “no escape” boundary 

    dS · �f = 0. 

To implement these boundary conditions, it is necessary to revise the definitions of �K,L and �K,L 

on the boundaries.  The revisions depend upon the type of zone it is and whether the neighboring 

zones are vacuum or physical zones.  The following rules are used to determine the components 

�K,L and �K,L.  The rules are defined for �K,L, which connects the zone (K,L) with the zone 

(K+1,L).  An analogous sent of rules applies for �K,L, which connects the zone (K,L) with the zone 

(K,L+1). 
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1) If (K,L) and (K+1,L) are both physical zones �K,L (RL)K,L and �K,L (RL)K+1,L are defined as 

previously (using Eqs. 2.16). This is corresponding to the physical region for the problem. 

2) If (K,L) and (K+1,L) are both vacuum zones, �K,L = 0. 

3) If (K,L) is a physical zone and (K+1,L) is a vacuum zone and the face separating them has 

a “no escape” boundary condition, n ��f = 0, where n is the unit normal to the  vacuum surface 

then �K,L = 0 and (RK)K,L is replaced by 

    n (n � (RK)K,L) 

4) If (K,L) is a physical zone and (K+1,L) is a vacuum zone and the face separating them has 

an “escape” boundary condition, then �K,L (RL)K,L remains defined as previously (Eqs. 2.6), but 

now in the expression 

�K,L (RL)K+1,L, 

we use 

(RL)K+1,L= RK,L – RK,L-1,  

since RK+1,L and RK+1,L-1 do not exist, and  (RK)K,L is replaced by 

    n (n � (RK)K,L) 

n is the unit normal to the  vacuum surface. �K,L is now � �
1

2DR j  suitably averaged between zone 

(K,L) and the vacuum, but since D is not defined in the vacuum zone, �K,L is defined by 

    , ,2
,

,

1
2

K L K L
K L

K L

D R
j

� �
� � �� �� �

� 	
 

The above cases (3) and (4) correspond to the right-side boundary for the problem. 

5) If (K,L) is a vacuum zone and (K+1,L) is a physical zone and the face separating them has 

a “no escape” boundary condition, n � �f = 0, then �K,L = 0 and (RK)K+1,L is replaced by  

    n (n � (RK)K+1,L) 

17 



6) If (K,L) is a vacuum zone and (K+1,L) is a physical zone and the face separating them has 

an “escape” boundary condition, f = fB, then in the expression  

�K,L(RL)K,L),  

we use 

(RL)K,L = RK,L  - RK,L-1 

(RK)K,L is replaced by 

    n (n � (RK)K+1,L) 

The above cases (5) and (6) correspond to the left-side boundary for the problem. 

7) If (K,L) is a physical zone and (K,L+1) is a vacuum zone and the face separating them has 

a “no escape” boundary condition, n ��f = 0, where n is the unit normal to the  vacuum surface 

then �K,L = 0 and (R L)K,L is replaced by 

    n (n � (R L )K,L) 

8) If (K,L) is a physical zone and (K,L+1) is a vacuum zone and the face separating them has 

an “escape” boundary condition, then �K,L (RK)K,L remains defined as previously (Eqs. 2.6), but 

now in the expression 

�K,L (RK)K,L+1, 

we use 

(RK)K,L+1= RK,L – RK-1,L,  

since RK,L+1 and RK-1,L+1 do not exist, and  (R L)K,L is replaced by 

    n (n � (R L)K,L) 

n is the unit normal to the  vacuum surface. �K,L is now � �
1

2DR j  suitably averaged between zone 

(K,L) and the vacuum, but since D is not defined in the vacuum zone, �K,L is defined by 
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The above cases (7) and (8) correspond to the top-side boundary for the problem. 

9) If (K,L) is a vacuum zone and (K,L+1) is a physical zone and the face separating them has 

a “no escape” boundary condition, n � �f = 0, then �K,L = 0 and (RL)K,L+1 is replaced by  

    n (n � (R L)K,L+1) 

10) If (K,L) is a vacuum zone and (K,L+1) is a physical zone and the face separating them has 

an “escape” boundary condition, f = fB, then in the expression  

�K,L(RL)K,L),  

we use 

(RL)K,L = RK,L  - RK,L-1 

and  (R L)K,L is replaced by 

    n (n � (R L)K,L) 

The above cases (9) and (10) correspond to the bottom-side boundary for the problem. 

 

In summary, the treatment of the nonescape boundary condition is much easier than the 

free surface boundary condition since we know the values at the boundary because of the 

reflection and adiabatic property of the boundary. However, for the free escape boundary 

condition, we don’t know the exact solution at the boundary. The best we can do is assume at some 

extrapolated distance the value of f goes to zero, as described in Milne’s problem [5]. In DRACO, 

we use this approximation. We use the right-side boundary as an example (Fig. 2.2) 
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Fig. 2.2.  Milne right-side boundary condition. 

 
E = 0.71�, where � is the transport mean free path. In addition, the calculation of  (Eq. 2.16) 

which is averaged between the last zone and the vacuum zone is changed to include the area 

defined by the extrapolated length as follows 

LK ,�

LK

LKLK
LK A

DR

,

,,2
,

�
��  

and the Jacobian area , where  is the Jacobian area determined by the 

extrapolated length. 

ExLKLK AjA �� ,, ExA

 

2.6   Flux limiter                             

 When dealing with the moment of the transport equation, there always appears one 

unknown quantity. To close the set of equations, an  approximation is needed to break the chain 

[5]. The P1 equation is obtained by setting the radiation pressure equal to one-third of the energy 

density. It has first-order accuracy in the optically thick limit, while in the optically thin limit it has 

an incorrect propagation velocity. The diffusion equation makes a further approximation to the P1 

equation by omitting the gradient of the flux such that the cutoff equation is in the form of the 
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Fick’s law. Morel [6] has shown in the diffusive limit the diffusion equation has the first-order 

accuracy comparable with the P1 equation. However, in the optically thin limit, this equation has 

an infinite propagation velocity. To correct this problem, the flux limiter is always introduced. 

 In DRACO, four options are available [7] beside one option (flux_limiter_type=0) that has 

no flux limiter included.  

a) Option 1  

Option 1 uses the summation form of the transport cross section and the gradient. It is called the 

“sum” flux limiter.  

E
E

D
tr ��

�
�

�3

1
   . 

The factor � is an adjustable parameter for which we set a default value of one. In the optically 

thick limit, the gradient of the energy density is small compared to the transport mean free path 

and therefore the equation tends to be diffusive. In the thin limit, the gradient dominates the 

denominator of the diffusion coefficient and the flow is limited to the speed of light, as desired. 

The introduction of the gradient leads the equation to be nonlinear in the energy density. Morel has 

shown this form is only zero order accurate in the thick limit but gets the correct approximation in 

the optically thin limit. 

b) Option 2 

Larsen [7] has suggested a modified form which retains the first-order accuracy in the optically 

thick limit: 
n

nn
tr E

E

D

/1

)()3(

1

�
�
�
�

�

�

�
�
�

�

�

��

	
�

�

. 

In DRACO, we use n=2.  

 

21 



c) Option 3 

The maximum of the transport cross section and the gradient is used. It is called the “max” flux 

limiter. The form also retains the first-order accuracy in the thick limit when the cross section is 

larger than the gradient term. However, this flux limiter has discontinuous derivatives.  

),3max(

1

E
E

D
tr �

�
�

�

 

d) Option 4 

Another flux limiter is proposed by Levermore and Pomraning (LP) [8] by solving exactly  a 

particular transport problem. Olson has shown this flux limiter exhibits some nonphysical 

behavior. A simplified form of this kind of limiter is suggested by Zimmerman: 

tr

D
�

�� )(
�  

��
���

11)coth()( �
�

�
�
�

�
��  

E
E

tr�
�

�
�   . 

These options can be selected by setting the “flux_limiter_type” in the input parameters. 

 

3. Test problems                   

We have done a series of tests to look at the correctness of the implementation by running 

the code in different geometries and different meshes. Two kinds of meshes are used in the test 

problem as shown in Fig. 3.1 and Fig. 3.2. Both meshes are also applied to the planar and 

cylindrical geometries. All of the simple test problems were run with graphics. Figures 3.3-3.17 

illustrate the time evolution of the radiation energy under various boundary conditions and meshes. 

The graphical results are easily understandable with the brief graphic description.  

To test the accuracy of the scheme, we use three simple problems that have an exact 

analytical solution. Figure 3.18 shows the result for the problem that has the left boundary 

condition with the energy density equal to zero and the right boundary condition with the energy 
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density equal to 8. There is an exact solution for this problem in one dimension, that is, f = 8Z. We 

simulate the one dimension by setting the reflective boundary condition for both top and bottom 

boundaries. We can see the numerical result agrees with the exact solution very well. The second 

problem we solved is the wave propagation with a delta function source in the middle of the one-

dimensional plane. To be more specific, the diffusion equation under this case is [9] 

x
TD

xt
T

�

�

�

�
�

�

�
 

with the initial condition of T(x/2,0) = Q�(x/2). The solution to the problem for the constant 

diffusion coefficient is 

)
4

)2/(exp(
4

2
0

Dt
xx

Dt
QT �

��

�

. 

The simulation starts with a distribution of the above form at some initial time. Figure 3.19 shows 

the comparison of the exact solution and the numerical result. While Fig. 3.19 shows the result for 

the linear conduction, Fig. 3.20 shows the result for the nonlinear wave conduction. The diffusion 

equation for this case is 

x
TT

x
a

t
T

�

�

�

�
�

�

� 5 . 

The diffusion equation is nonlinear because the diffusion coefficient is a function of T. The coefficient has 

also very large gradient since it is a function of T to the fifth power. Again, the delta source Q is added at 

the middle of the plane at the initial time. The exact solution for this case [9] is 

5/1
2

2

)1(
2

12.1
ff x

x
x
QT ��  

)2(
1

)(77.0 �

�
nn

f taQx     . 
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We compare the numerical result with the exact solution in Fig. 3.20. Again, they agree very well 

except that there is a little discrepancy at the wave front. This results from the average treatment of 

the diffusion coefficient at the cell face center, as in Eq. (2.16).  

 

 

 
 

Fig. 3.1. Orthogonal mesh (Omesh) (50 by 50). 

 

 
 

Fig. 3.2.  Distorted mesh (Zmesh) (50 by 50). 

 

 

 

Notation used in the figure captions: 

 

Omesh:  orthogonal mesh as Fig. 3.1 

Zmesh:   distorted mesh as Fig. 3.2 

Planar:   planar geometry 

Cyd:   cylindrical geometry 

R:   right 

L:   left 

T:   top 

B:   bottom 

Escape bc:  escape boundary condition ( f=0),  

otherwise, adiabatic boundary condition. 
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Fig. 3.3.  Omesh, planar, L&R escape bc. 
 

 
 
Fig. 3.4.  Zmesh, planar, L&R escape bc. 
 

 
 
Fig. 3.5.  Omesh, planar, T&B escape bc. 
 

 
 
Fig. 3.6.  Zmesh, planar, T&B escape bc. 
 

 
 
Fig. 3.7.  Omesh, planar, T&B&L&R escape bc. 
 

 
 
Fig. 3.8.  Zmesh, planar, T&B&L&R escape 
bc. 
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Fig. 3.9.  Omesh, cyd, T&R escape bc. 

 
 
Fig. 3.10.   Zmesh, cyd, T&R escape bc. 
 

 
 
Fig. 3.11.  Omesh, cyd, T&L escape bc. 
 

 
 
Fig. 3.12.  Zmesh, cyd, T&L escape bc. 
 

 
 
Fig. 3.13.  Omesh, cyd, T&L&R escape bc. 
 

 
 
Fig. 3.14.  Zmesh, cyd, T&L&R escape bc. 
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Fig. 3.15. Zmesh, cyd, f=8(T). 

 

 
 

Fig. 3.16. Zmesh, planar, f=0(B) f=8(T). 

 
 

Fig. 3.17. Omesh, planar, f=0(L) f=8(R). 

 
Fig. 3.18. Comparison with exact solution for Fig. 3.17. 

 
Fig. 3.19. Omesh, planar, Gaussian distribution 

test. 

 
Fig. 3.20. Omesh, planar, nonlinear diffusion coef test. 
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4. Subroutines and namelist options  

This section is devoted to describe the subroutines related to the radiation transport module in 

DRACO and the namelist options in the input file. We list the subroutines and their purpose in 

Table 4.1.  

Figures 4.1-4 show the flow chart of radiation transport. 

If only the radiation emission is considered, no radiation transport will be carried out. The 

energy contribution for electron source from radiation is simply from the radiation emission. Two 

diffusion schemes are available for building the 9-point diffusion matrix, that is, the Kershaw 

scheme and the Verdon scheme. After the matrix is set up, it is solved by the same solver routine 

“math_solver_rad_trans_2d”. 

 

Table 4.1  Subroutines in the radiation transport module 

rad_trans_control controls the radiation transport routines 

rad_trans_emission_lte determine the frequency dependent emission 

rad_trans_opac_offtable_lte determine the frequency dependent local thermal 
equilibrium opacities 

rad_trans_opac_table_lte get frequency dependent local thermal equilibrium 
opacities via table lookup 

rad_trans_elec_srce_trms_2d determines the electron source terms determined by 
the change of in the radiation field 

elec_srce_trms_2d_no_transport determines the electron source terms determined by 
the total emission 

rad_gradient_2d calculate the radiation energy gradient 

math_solver_rad_trans_2d solve for the change in radiation energy density with 
multiple solver options 

rad_trans_coefs_2d determines the matrix for the radiation diffusion under 
the old Verdon’s scheme 

rad_trans_coefs_2d_kershaw determines the matrix for the radiation diffusion under 
the Kershaw’s scheme 
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Fig. 4.1.  Main control of the radiation transport. 
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Fig. 4.2a.  Flow chart of Kershaw scheme. 

 

          

Fig. 4.2b.  Flow chart of Kershaw scheme. 
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Fig. 4.3. Flow chart of math solver for the diffusion differencing linear equation. 
 

 

Fig. 4.4.  Coupling of radiation and plasma. The radiation contributes the pressure to the hydrodynamics 
and energy (only emission energy or with the absorption energy) to the electron energy source 
term. 
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The namelist options are listed in Table 4.2 

Variables Def. 
value 

Dim. Meaning 

opacity_table_format lle s Opacity table format. Three options are available: 
“Wisconsin”, “TOPS”, “lle”. 

rad_trans_bc_ism zero s Left-side boundary condition. Two options are 
available: “zero”-no escape, reflective; “none”- 
free boundary, escape. 

rad_trans_bc_iep none s Right-side boundary condition. Options as in 
rad_trans_bc_ism. 

rad_trans_bc_jsm zero s Bottom-side boundary condition. Options as in 
rad_trans_bc_ism. 

rad_trans_bc_jep zero s Top-side boundary condition. Options as in 
rad_trans_bc_ism. 

rad_trans_bc_ksm zero s For three dimension problem.  

Not implemented yet. 

rad_trans_bc_kep zero s For three dimension problem.  

Not implemented yet. 

number_of_radiation 
_freq_groups 

0 s Number of radiation frequency groups. 

solver_option_rt iccg s Choice of radiation diffusion matrix solver. Four 
options are available:  

“yale” – Yale direct solver;  
“iccg” - iccg iterative solver;  
“petsc” - parallel PETSC library [10] solver 
across all processors;  
“petscd” - parallel PETSC library solver group-
wised. 

petsc_ksp_type_rt preonly s Krylov Subspace method choice. Twelve options 
are available:   
'richardson' - Richardson method; 
'chebychev' - Chebychev method;  
'cg' - Conjugate Gradient method;  
'bicg' - BiConjugate Gradient method;  
'gmres' - Gen. Min. Residual method;  
'bcgs' - BiCGSTAB method;  
'cgs' - Con. Gradient sq. method;  
'tfqmr' - Trans-free QMR 1 method;  
'tcqmr' - Trans-free QMR 2 method;  
'cr' - Conjugate Residual method;  
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'lsqr' - Least Squares method;  
'preonly' - Shell for no KSP method. 

petsc_pc_type_rt lu s Choice of preconditioner types. Thirteen options 
are available:  
'jacobi' - Jacobi precondictioner;  
'bjacobi' - Block Jacobi preconditioner;  
'sor' - SOR  method;  
'eisenstat' - SOR w/Eisenstat preconditioner; 
'icc' - Incomplete Cholesky preconditioner; 
'ilu' - Incomplete LU preconditioner;  
'asm' - Additive Schwarz preconditioner;  
'sles' - Linear solver preconditioner; 
'composite' - Combin. preconditioners; 
'lu' - LU preconditioner;  
'cholesky' - Cholesky preconditioner;  
'none' - no preconditioner;  
'shell' - Shell for user defined preconditioner. 

radiation_schema kershaw s Verdon’s diffusion matrix scheme. 

Kershaw’s diffusion matrix scheme. 

verbose_rt false s Prints solver iterations each time step. 

mprtfrt 99999 s Radiation transport information print frequency. 

number_iters_limit_ 
solver_rt 

1000 s Maximum number of iterations for iterative 
solver. 

number_iters_max_ 
solver_rt 

1000 s Maximum number iterations per cycle for 
radiation transport solver. 

tot_its_group_rt 1000 1 total iterations per group for radiation. 

solver_atol_rt 10 s absolute size of residual norm for rt solver 

solver_dtol_rt 1.0E100 s Relative increase in the residual. 

solver_rtol_rt 1.0E-06 s Relative converge test. 

rad_trans_energy_ 
limit 

1.0E-10 s radiation transport energy limit, if less than this 
value, no radiation transport. 

flux_limiter_type 1 s radiation transport flux_limiter_type. Five options 
are available:  

0 – no limiter;  
1 – sum limiter; 
2 – quadrilateral limiter;  
3 – max limiter;  4 – LP limiter.  

emission_only false s Only sink term for radiation. No radiation 
transport. 

s denotes scalar value. 
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