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1 Introduction

The BUCKY radiation-hydrodynamics code has been used to model high energy-density
plasmas over a wide range of plasma conditions. Depending on the properties of both the
material(s) and the radiation field, different approximations to the Boltzmann transport
equation can predict significantly different solutions for the spectral and spatial distri-
bution of the radiation energy density. Therefore, properly modeling the dynamics of a
plasma requires a good understanding of the different transport approximations, and a
high confidence in the implementation of these approximations within the code.

The two radiation transport approximations in common use in BUCKY are flux-limited
diffusion (FLD), and multi-angle short-characteristics (short-c). Both require a number of
test problems to verify the accuracy of the finite difference equations as implemented in
the code. This verification is accomplished in essentially three parts: First, a few simple
test problems are solved analytically by both time-independent transport and diffusion,
and are compared to BUCKY calculations using both FLD and short-c. Second, some ana-
lytic problems specific to the FLD equations are compared to BUCKY calculations to ver-
ify each of the terms specific to FLD (such as the flux-limiter). Third, two time-dependent
benchmark problems, which are intended to verify both the radiation transport and the
associated coupling between the radiation energy and the plasma energy, are compared
to both FLD and short-c.

Most of these problems are only applicable to planar geometries, and therefore the ma-
jority of the discussion takes place in Cartesian coordinates. However, because the FLD
equations are also implemented for cylindrical and spherical geometries, a few problems
that are specific to FLD are also tested in these coordinate systems.

After completion of this test suite, one can have confidence that the finite difference
equations in each transport approximation are properly implemented to solve the equa-

tions for which they are intended. One should note, however, that this says nothing of



the applicability of each transport approximation to a particular problem. This is a much

more complicated issue, and must usually be addressed on a case-by-case basis.

2 The Transport Equation

In a material with only isotropic elastic scattering and isotropic external sources, the ra-
diation transport equation in 1-D Cartesian coordinates can be written as [I]:

101(r,t, p,v) N oI(r,t, pu,v)
= [

- ot Or - _Ut(r7t7 V)](Tatmua V)

1 1
+ ias(r,t, V)/ I(rt, p" — p,v)dy! (1)
—1

+ 2710 (r, t,v)B,(r, t,v) + 2nS(r, t,v)

where
-~ .o . . . . J
I(r,t, u, v)= the specific intensity in units of T
S(r,t,v)= an external source term in units of —_— H,
cmP sstHz

1= the cosine of the angle between I and the unit vector in the r direction,

c= the speed of light in cm/s,

o,= the total opacity (absorption + scattering) in cm™*,

os= the scattering opacity in em™!,
o.= the emission opacity in cm ™!,

B, (r,t,v)= the Planck function in units of —Z—— given by:

cm? sst Hz
3
2 (75)
B, = ——Tp K : 2
h3c? " (67}3; —1 ( )
for Ty the radiation temperature in eV'.

In BUCKY, some approximations to Eq.[can be solved by diffusion or short-characteristics.

'In many benchmark calculations, it may be more convenient to define a blackbody radiation temper-
ature as the external source term. In this case, the external source term will have a functional form as in
Eq.[ and one must also define an artificial emission opacity, o, in units of cm~! (i.e. S(r,t,v) = 0, B, (T)).



2.1 Diffusion and Flux-Limited Diffusion

The simplest (and quickest) solution to Eq.[is the diffusion approximation. One way to

derive the diffusion equation is to take the 0"* and 1° moments of the transport equation:

1 1 1 1
/ lg + ,ug dp = / —o + —Us/ Idy +2mo.B, +27S ) du 3)
4 \cot or —1 2 )

b1l I ! 1 !
/ 1 Lor + ua— dp = / | —od + —05/ Idy' + 2mwo.B, + 27S | du. 4)
1 \cot or 1 27 ),

Defining I, = f_ll Idpand I, = f_ll pldp, and carrying out the integrations by assuming

that all opacities are isotropic gives:

10L, ol

—p + g = —0ulo 470, B, + 4mS ©)
10, 0O
cor Tapdh= oy ©

where f is the normalized Eddington factor defined by:
1 1
f=1 / pldpe. )
0.J-1
In the diffusion approximation, it is assumed that the specific intensity has only a linear

dependence on angle in the form [2]:

1 3
I(r,p,t) = 510 + 5!”1, (8)

so that the Eddington factor is evaluated as f = 3. Finally, assuming that I, is steady state,

then Eq.[Hand Eq. Blcan be combined to give the time-dependent 1-D diffusion equation:

E
aﬁ—t —VeDVE = —co, B + 4o B, + 41 S, 9)

where E = 1] is the radiation energy density in units of J/cm?, and D = L is the
t

classical diffusion coefficient. While, for simplicity, this equation was derived in planar
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geometry, it has the exact same form in any orthogonal coordinate system [2], and there-
fore can be applied in Cartesian, cylindrical, and spherical geometries.

Eq.Blis simple to solve, and can provide an accurate description of the radiation field
in materials that have very short optical depths (high opacities). However, for very
long optical depths or very large gradients in the radiation energy density, it can in-
stantaneously transport radiation everywhere. For example, in a cold, purely scattering

medium with no external sources, Eq. Blreduces to:

oF 0  _O0F

on
ot

If 0, approaches 0, or £ approaches "o", then

Iz ="o00", which propagates radiation

everywhere instantaneously. To fix this, one can apply a flux-limiter to the diffusion co-

efficient so that, for |22 | >> ¢, the time-rate of change in the energy density evaluates to

98 — ¢2E which is the correct free-streaming limit.

There are many forms of the diffusion flux-limiter that have been proposed [3]. The

four most commonly used are the SUM limiter:

oE

or } ' (1)

)} N (12)
H - (13)

and the Simplified Levermore-Pomraning (L-P) limiter [H]:

D= {3@ +E7!

the MAX limiter:
oF

D= {max (30t,E_1 —
or

the Larsen limiter:
oFE

D = {(3(”)" + <E—1 o

4

O'tE )

D L {cothR — i} , for R =

= 14
O'tR R ( )

The effect that each of these limiters has on the diffusion coefficient is illustrated in Fig-

ure[ll
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Figure 1. Flux-limited diffusion coefficients versus the scaled energy density gradient, R =

2.1.1 Diffusion Boundary Conditions

Obtaining a solution to Eq. Blrequires a definition of £ on each boundary. The boundary
conditions for diffusion can be defined through the incoming and outgoing partial flux
(F = (Fin + Fou)7) as:

0

By — — / uldp (15)

1

1
Fout = / pldp. (16)
0
These can be solved by applying the diffusion approximation from Eq. 8] including the

evaluation of I; from Eq.[to give:

1 1 1 0F

“F,=-E—(h-f)-D— 1
c 4 (A r)2 or (17)
1 1 1 0F

“Fpy=-E+ (R -$)=D—

c out 4 + (l’l I‘)2 07“ ) (18)

for i the unit vector outward normal to the boundary surface.
There are many types of boundary conditions that are of interest in diffusion calcula-

tions. All can be prescribed by some combination of Eq.[I7and Eq. To simplify this
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Boundary Condition A B C
Dirichlet 1 0 E,
Vacuum —1/2 1 0
Source —1/2 1| 215, = —Z B, (Tiource)
Reflection 0 1 0
Albedo s(a—1)/(a+1) ] 1 0

Table 1. Coefficients for the diffusion boundary conditions [B]. « is the fraction of radiation
reflected by the albedo boundary.
prescription, these equations can be generalized into a single expression that is valid for

any boundary condition [[]]:

AE — (8- $)BD 5" = C. (19)

Table Mlists the factors A, B, and C for Dirichlet, source, vacuum, and albedo boundary

conditions.
2.1.2 Diffusion Finite Difference Equations

In order to solve Eq.[]in BUCKY, it must be converted to Lagrangian coordinates and
written in finite-difference form. Lagrangian coordinates are, by definition, in the refer-
ence frame of the fluid particle and must therefore automatically conserve mass. Thus, the
conversion from Eulerian (observer) to Lagrangian (particle) coordinates can be written

as:

dm = p(r)r®tdr, (20)

where p is the fluid density and ¢ is a geometry-dependent factor which is 1 for planar
geometry, 2 for cylindrical geometry, and 3 for spherical geometry.

Applying this conversion to Eq.[@and re-arranging terms gives:

OE _ 0 (Lo LOEN o dnouB, + Vans, (21)
ot Om

cm?
g

where o,, 0,, and o, have been converted to units of , and V is the specific volume



given by:

V=", (22)
p

This description is precise for static fluids, but requires a correction to account for a time-
dependent zone thickness in a Lagrangian description where no particles are allowed to
cross a zone boundary. This correction is derived from the first law of thermodynamics

in the particle reference frame [[]:

Oe, P oV

o o~ )

where e, is the specific radiation energy in units of i, P, is the radiation pressure in —Z;,

and (), is the heating term equivalent to everything on the right hand side of Eq. 2Tl

Converting the specific radiation energy to the radiation energy density by e, = EV then

gives:
oE ov av .
LB 4+pP 0.
Vor P e =@ @
Finally, inserting the classical form of the radiation pressure, P, = :E, gives the full

Lagrangian description of the radiation diffusion equation:

or ) 4 9V
Var =@ 3B (25)
or expanding Q, from Eq.CTH
OE 0 [ 5., 1 OE\ 4 _0V
o _ Y L oEN 4.0V |
Yot = om <T Vs, 87") sEor = ol Hdmo By VATS (26)

As derived in the Lagrangian reference frame, this equation is applicable to planar, cylin-
drical, and spherical coordinates.

Solving Eq. 26 in BUCKY requires binning the photon energies into groups. This
means making some choice about how to weight the opacities. Typically, this weighting is
done by assuming the plasma to be at near LTE so that the radiation field is well-modeled

as a Planckian distribution. Under this assumption, the three opacities in Eq. 26 can be
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Figure 2. Finite difference grid in BUCKY for J — 1 zones with J boundaries.

binned into the Planck emission opacity:

. f:gg“ o.B,dv
Ope = W’ (27)

the Planck absorption opacity:

O’g o fI/I;ngl JaBde (28)
Pa f;gg“ B,dv ’

and the Rosseland opacity:
[ = Bdv

1,

Y 7 S —— 29
oh 7 Budv )

where v, are the group boundaries (in eV’) for G total radiation groups. Then, the multi-

group radiation diffusion equation is written as:

E9 E9 4
Vaa—t = % < o=l %aa—r) — Eggaa—‘t/ — CO'?D’GEQ + 47TU}q37eBg + V47TSQ, (30)

where each term has been integrated from v, to vy, k% is the radiation conductivity
given by:
cV

li% = ﬂ = C.Dg, (31)

and the multi-group diffusion coefficient, D, can be flux-limited by any one of the flux-
limiters listed in Section 211

In BUCKY, the radiation energy densities are stored as zone-centered values. There-
fore, given the finite grid shown in Figure [, the finite difference form of Eq. B0l can be

written as:



g,n+1 g,n [ + ]
VBT =BT 1 -1 gty
yite 7z =3 _ J R.j (Egn—i-l Eg,n+1)
J72 Atn+% Am]_l Arn+% +2 J—3
B .
L J _
- ) hn
5—1"t2 gnts
1 Tj—l HRJ—l EQ n+1 E97n+1
A n+1 -3 —5
m;_1 Arj

14043 gt 1 gn+} pgnts
— B9V — o 2E9”+ +dmop, 2 B2
_1 Pe. _1

3 J 2 ]7% 7.7

ol
where n is the time index, and the work term, an_z? , is given by:
2

Tn+% 6-1 un—i—% _ /rn % 6-1 un—i—%
n+3 o J J J—1 Jj—1

n 1 . . .
for u 2 the fluid velocity evaluated at time n + 3.

(32)

(33)

In addition, the radiation conductivity has a different implementation for each of the

various forms of the flux-limiter. The finite-difference equations for each of these limiters

are given for the SUM-limiter:
-1
g,n _ g,n
I, — B

n+1 n -1
Ky 2 =c 307 +2V 2+2<E9’1+E9’ )

2 = o
RJ R 3 n+
Ar; 2
J
the MAX-limiter:
1
" | S| B —E
gmn 1 _
Kp. > = C |max 30R 2V 12, <E‘7’”1 +E“.”n1> S
J 2] -3 J+35 J—3 ATT»H—i
j
the Larsen-limiter:
n' _$
g+l gntl ntl 1 Egn Fjjg,_nl
AR (3 A4 ) + 2<E9’”1 +E9’"1) s S 1
J R -5 i3 Jt3 J—3 A’l“n+§

J

and the approximate simplified Levermore-Pomraning-limiter:

gntg

n4+l
2 4 RO

Rrj = =€ I
MT 3
R?]_7V

for Rjg-’

1 1
R Tl (o

1

% {6 +3R]"

1
2

5y (Rg%ﬂ

Rj-1"j-1 ntl
: Ar; "2

J

1 | BTN —Eg’
! i+3 -3

(34)

(35)

(36)

(37)



For convenience, Eq. BZ can be reduced to [[]:

n+i 1 gn+i 1 1 gn+i 1 1
o/ T (B - B ) = e (B - B gt (B - B
2 2

7—1

- i3 J i+3 i3 -3 i3 (38)
S P | gnt+i Lgntl gn+3
— . BT W PRI B
J=3 J72 2 J=3 J=3
by definition of the coefficients:
n+i i Ay
a =V 7’ ) (39)
J 2 J 2 Atn+§
. ) Kg,n+§
g7n+* _qnt3 R,'
a;” * :rf ! 277;; (40)
Ar; 2
J
n-l—% 4 ntt
==V 2Am,._. 41
Ti- T3l T (1)
gmn+z gn+3
w2 ZCUPA?lAmj_; (42)
J—3 i-g 2
9+ gty pgnty nt3 1
B =dmop, P BT EAm, L+ V] PArSYT  Amy s (43)
J=3 G- wiTs 2 J=3 J—3 2

Finally, collecting terms in Eq. B8l gives the tri-diagonal matrix equation for the radia-

tion energy density at time n + 1:

gn+3 1 gn+3 1 gn+3 1 gin+y
—AT TR e L gt gt o T gt = DIt (44)
J—3 Jt3 J—3 J—3 J—3 J—3 J—3
where the matrix coefficients are given by:

gn+3 gn+3

Aj_% = a; (45)
gn+3 n+i gn+s gn+z n+i gn+s
=3 =3 J J =3 =3
gin+3 gin+y

Cj_% =a; 47)
gn+s gty | Nty g,

D 1 2 = ﬁ‘_l 2 + _ng_nl (48)
i—3 i—3 i—3 i1

It should be noted that each of these matrix coefficients are listed as being evaluated at
time n + 5. In reality, these coefficients depend on the energy density, which is not yet
known at time n + 3, so that they are actually evaluated based on the energy density

at time n. This solution to the diffusion equation is therefore semi-implicit. In some
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instances, the solution can be made more implicit by iterating over a time step until these
coefficients (or the radiation energy density itself) converge on the value at time n + 1.
However, there is no guarantee that the iteration will converge in every situation, and
may occasionally lead to erroneous solutions. Additionally, because these equations are
derived in a 1-D coordinate system, the constant Lagrangian mass term, Am;_1, is given
in units of —4;em®~!. Thus, the formulation of the diffusion equation given in Eq. B4lis
applicable in planar, cylindrical, and spherical coordinates.

Because the radiation energy density, £, is a zone-centered quantity in BUCKY, then
the matrix coefficients in Eq. B4l are only good for 3 < j < J — 1. The matrix values

on the edges must therefore be evaluated using the boundary conditions from Eq. 19

Discretizing the boundary condition at j = 2 and j = J on the finite grid of Figure [
gives:
Eg,n—i—l . Ei},n
AE9”+1+BZ P —— | =" (49)
Ary 2

1 4n
ABS" B, P 2 =t (50)

where Eq.[d9 is applied on the left boundary (j; = 1) and Eq. B0l is applied on the right
boundary (j = J). The radiation energy density on these boundaries (E; and E;) are

defined on the first and last node (not the zone centers) so that rp 1,5 and Arq 5 are

defined for:
1 1 1 1
n+2 - n+2 B n+2
Ar, * = 5 (7“2 T ) (51)
n+i 1 n+ n
ArytE = 2 (i - 5. (52)

Then, solving for the boundary values and plugging into Eq. 44l gives:

R 1
-| B9
7n+§ 2
6— 1n+26n+1

n+ Cry

ro= 1 ts n+s
] cA; — Bay 2

B g,n—l—%

gvn+l ,n+1 gvn"’_l gvn+l
_A3 QEg _'_ B3 2 —|—CL1 2
> > > crd -1t ‘A — Ba

1 L — Pl

(53)

1
g’n""* 9,
= D" 4
2
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B g,n—l—%

g+ gv”“‘ rQ g g,n+1 g,n—i—% g,n-+1
AN ASE BT ot g

J= — n+%— 97”4‘* J_l
: eV P A, — Ba
6—1 +2 +1 (54)
- D" PRI o S R
5—17t3 gn+2
cry A, — Bra
which implies that the matrix coefficients at j = 2 and j = J are given by:
gmn+s gmn+s
2
gmn+3
gn+z n+i n+31 gn+s n+i g n+i Blal
B§ 220{5 2+a2 2+a1 2+r>/é 2"'_(,()5 2+ n+ gn+ (56)
? ? crl A - Bal
gn+3
2
1
5—1""2 ant1
i i n+l g cr C
D" :52 2+a3 QEgn ai" " +1 l = (58)
2 6—1" gnty
erd VP A = Bay
and
n+3
AT =0 (59)
—3
g,n+ gn+2 2 n—l—% g 2 gn—|— B gn—|—
B 1+aJ +ai" P w +a (60)
J J 5— 1n+2 gn+—
cry A, — B.a
gn+3 gn+3
CJ_lQ :CLJ_IQ (61)
2
5-1"% ng1
e+l ntl w4l gn+d cr ¢
Di 12:@? 12+0‘J %Ei’nl"’_aJ ’ +J - +3 (62)
-5 -5 -5 -5 n ,n
2 2 2 2 C’l“fS] 1 EA B 9

The Thomas algorithm [§] can then be used to solve Eq.[44 by defining the forward-

elimination variables FF and F'F as:

EES™ = ppImte = (63)
2 2
7n+
- A .
EEJ';l = gmn+3 grf—i—l g,n+1 , for 2=j=J (64)
’ Bf; _Oj’_AQEEQQ
2 2 2
n n n 1
L DU RR
FFJt";l 2 — ni 2 2 Jfor  2< < (65)
2 B = CM P EET
_§ 2 2



and then back-substituting to solve for the radiation energy density at time n + 1 using

the equations:

n4+l
BT = PR (66)
2 2
1 a1
Eomt = pptttrpentl L pEOTTE oy 2< i< J— 1. (67)
=3 i=3  it3 =3

The mapping of variable names in BUCKY to the various quantities listed throughout
this section is shown in Table[d Additionally, a flowchart of the subroutines in BUCKY for
computing the flux-limited diffusion solution is shown in Figure [3, where a description

of the calculations in each subroutine is listed in Table[3
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Variable | Type | Dimensions | Units Description
erfd2a R*8 Gmaza - om3 group Ejh_n;_l
* J g,TQL
erfd2c R*8 Graz> Imaz o3 group Ejl_%
stfd2b | R*8 | Guae Jnar | 7o | A700e B
esfd2b R*8 Gmawa Jmaz m 47TS;J,_TLL+ :
si2b | R* | Gooes e | 2 ot
g Rj—3
cm? gnt+s
Sp2b R*8 Gmam Jmaz g O-P,aj_%
cm?2 g,n+%
SpQZb R*8 Gmam Jmaz g O-P,e]._%
ss2b R*8 Gmam Jmaz % gjii
hnul R*8 Gae + 1 eV Vg
xkrplb | R*8 Jmaz + 1 em? /g?%’f;f?
xkrm1b | R*8 | Jpew + 1 em? K2
dmass2 | R*8 maz = Amy;_1
v2b | R*8 Tonas 't Ve
vdot2b | R*8 s orn? v
1 2 0—1
rslb R*8 Jmaw +1 Cm6_1 (7‘;—"_5)
dr2b R*8 Imaz cm Ar?+§
al222b | R*8 T e’ ot
2
aa221b | R*8 | Jyuw + 1 e’ al""?
gm222b | R*8 Tna ! Y
om222b | R*8 Jomas em’ ik
bet22b | R*8 e - gy
a22r | R*8 Jomas em’ AT
b22 | R*8 Jomas em’ B
22 | R*8 s - co
2 | R*8 s - D"
dtb R*8 1 5 At"a

Table 2. Radiation transport variables in BUCKY for flux-limited diffusion. J,,4, is the maximum
allowed number of zones and G/, is the maximum allowed number of groups.
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Figure 3. Flow diagram for BUCKY flux-limited diffusion subroutines.

Subroutine Description
radtr2 Outer frequency loop
Thomas back-substitution
Calculate £/ i
emissn Calculate 4707, R B jn+_2
3 73
plkint Calculate [ i = dx
n n 1 n
abcrd?2 Calculate Aq’ ra Bj_fQ, Oj’_f% and Dq’ +2
Thomas forward e11m1nat1on
extsource Calculate 47rSg R
radcof Calculate a/.+3, a? +2, : +F, wj[.] f 2 and ﬁg E
i=3 J=3 ' =3 3
rcond Calculate /QZ{’T?
diffbc Calculate Ay’mr Bg R Cff; , and Djffi for j=(2,])
2 2

Table 3. Description of subroutines for BUCKY flux-limited diffusion.
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2.2 Multi-Angle Short Characteristics

As mentioned in Section [2]], flux-limited diffusion has the advantage of being a very ef-
ficient approximation to Eq. [l However, while the flux-limiter expands the phase-space
where diffusion may be applicable, it still has many limitations. Namely, if the conditions
in a material are such that the scaled radiation energy density gradient (R in Figure [I)
has the value 0.1 < R < 100, then the diffusion length, D, is entirely dependent on an
ad-hoc interpolation. Additionally, because diffusion is only applicable for near-isotropic
radiation fields, then the value of E near the boundaries is usually incorrect. Therefore, a
different transport approximation may be required in order to properly model the radia-
tive transfer in some problems.

If it is assumed that the radiation field is steady state over a particular time-step, and
that scattering is not an important contribution to the transport dynamics, then Eq. [lcan

be simplified to:

ol(r,t, v
(Ot v)

5 = —ou(r, t,v)I(r,t,u,v) + 210 (r,t,v)B,(r, t,v) + 2nS(r, t,v). (68)
-

Defining the monochromatic optical depth, 7, as:
or = o,0r, (69)
then Eq. |68 can be transformed to optical depth space as:
ol
,uaaa— = —0,l +27w0.B, + 278S. (70)
T

Or, multiplying through by (u0,) 'er gives:

0 T 27 T
— (m) = (0B + 5 ek (71)

Separating this equation into outward (0 < ¢ < 1) and inward (—1 < p < 0) going rays,

and integrating along characteristics (paths at some angle y) from some nearby point in
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{ w; 1

N =2 111 0.5000000000 | 0.2113248654
2 | 0.5000000000 | 0.7886751346

N =51]110.1184634425 | 0.0469100770
21 0.2393143352 | 0.2307653449
3 1 0.2844444444 | 0.5000000000
41 0.2393143352 | 0.7692346551
51 0.1184634425 | 0.9530899230

Table 4. Integration angle cosines and weights for multi-angle short-characteristics in BUCKY

[Ia1.

the slab (denoted by 7;,_; and 744,) gives:

Tk

I (1)e L o ™ 1 T/
0<p<l: / o, d <I’67) = —/ — (0.B, + S)endr (72)
I (th_q)e B K Jr,_y Oa
I (Tk) Tk o 27T Tk 1 -
—1<pu<0: / _— d([’@ﬁ> :—/ — (0.B, + S)ewdr'. (73)
I (Tpppye # 1% Tht1 Oaq

Finally, carrying out the integrals at discrete values of ;1 gives the analytic equations of

multi-angle short-characteristics [J] at the point 7:

_emme—n) 2 o] —<r r
Fr) =1 (e o +— [ Z(oB,+S)e »dr (74)
Hi Jr,_y Oa
: : G op (™1 -~
I (7x) = I, (Tka1)e e 2T — (0B, + S)e Tl dT (75)

|IU“71| Tk+1 O—a

such that the radiation energy density can be computed as:

Tk; sz[z Tk, V +I (lelj) ) (76)

where N is the total number of angles computed in each direction. Table[dlists the angle
cosines and corresponding integration weights for N = 2 and N = 5 [I0].

It should be noted that, unlike the implementation of the diffusion equation in BUCKY,
the method of short-characteristics described here is only applicable in planar geometry,
and is only derived for time-independent radiation transport. This places serious restric-
tions on the usefulness of short-characteristics for many problems, and thought should

be given to its applicability before evoking it for a particular simulation.
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2.2.1 Short-Characteristics Finite Difference Equations

In order to solve Eq.[Z4 and Eq.[Z3in BUCKY, they must be cast onto a finite difference
grid. However, this requires making a choice about how to transform the finite grid from
the spatial distribution in Figure [2to an optical depth distribution. Because the radiation
energy density is stored as a zone centered quantity in BUCKY, the choice has been made
to have twice the number of grid points in optical depth space as in position space (so that
solutions exist on each zone center). The transform is then given by a finite differencing

of Eq.[E@ at time n + 1 as:

_n9nts _gnty  _gntg [ ndy  ndg ,
71 = 0.7, —Thia D =0pe 5\ T T ) 2<5<J (77)
2
gnti 17 gn+l gn+y
k1 T o \Tett T T Th2 ) T T2 (78)

where k is the optical depth grid index given by & = 2j — 1, and the opacity has been
grouped as in Eq. P8land assumed to be constant across zone j h.
Given the finite difference grid defined by Eq.[/Z Eq.[Zdand Eq. /3 can be integrated

between radiation group boundaries and written in finite difference form as:

gn+3

1 AT,
+g,n+1 +g,n+1 _ g,n+§ i,k—1 g7n+l _ ,
I, =1, , efme1 4 Sy TR AT ANT (79)
0
gnt s
g+l g+l ATg-,nJr% Ar 2 g+l A ,
_AS , _Ar
]ivk — ]Z,k—‘rl (& ik + ST 26 dAT 5 (80)
0

where the optical depth interval, A7, is defined as:

ntl T,
ATig}g T3 _ Ukl ™ k 7 (81)
’ i

’ +l g,n-i-l
(et =

and the total source function, Sr, is defined as:

gin+3 2m gn+3 pgnts 1
ST = gt Ope ‘B, 2+Sg,n+2 ’ (82)
) 2 ’
Pa

1
ZBecause afgz+ ? is likely to be different between radiation groups, then the separation between nodes
a1

on the optical dept}zl grid is likely to be different for each group.
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Linear Interpolation

Quadratic Interpolation

eo 1 — (AT +2AT, _1)er i

+ €1,k
O Cok — Ay €ok + AT 1 (AT +ATR_1)
ﬁ‘f‘ _C1k (At +AT,_1)er k—eak

k ATk—l ATk_lATk

+ 0 ea k—AT_1€1 1
71@ ATk(ATk-i-ATk_l)
- 0 €2 k1 —ATpe1 ki1

k ATy (AT +ATE 1)
3 €1 kt1 (AT +ATE_1)e1 kr1—€2k+1

k ATy, ATl _1 ATy,

— €1,kt1 e k1~ (AT 1 +2A7)er ki1
Tk €ok+1 — A1y ok+1 + ATy (AT +AT, 1)

Table 5. Coefficients for solving the source integrals for linear or quadratic interpolation of Sy in
the multi-angle short-characteristics equations [].

for op. defined as in Eq.

The integrals in Eq. /9 and Eq. B0 can be evaluated by assuming either a linear or

quadratic variation of Sr (in optical depth space). In either case, the solution can be

written as a three coefficient evaluation:

+
/ Sre” 8T dAT = Oé;fST,k;q + ﬁ;:gtST,k + ’YkiST,k:H;

(83)

where the subscripts, 7, g, and n have been suppressed for clarity. Table[lists the values of

these coefficients for both linear and quadratic interpolations of S7-, where the exponential

functions, e 1,2) are given by [M:

_ATk—l

eor=1—e
€1k = ATy — €0,k

6271C = (ATk_1)2 — 2617]6.

Therefore, the full set of (4.J—2) finite difference equations for multi-angle short-characteristics
are written as:

+g,n+1 +g,n+1

i1 = Lpeyi (84)
_g,n+1 _g,n+1
i, K =1, be,i (85)
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Source Vacuum | Periodic Albedo
ig,n+1 g,n—i—% $g.,'rL+1 $g n+1
beyi 21 By (Tr) 0 Ii, 1 N Zz 1 z

K K

Table 6. Boundary conditions for the partial specific intensity in the finite difference equations for
multi-angle short-characteristics. « is the albedo, and T, is the radiation temperature specified on
the boundary.

+9mtl +9:mtl —AT%H+2 +9n+2 g,n++ gn+s n+ gn+3 n+3
o - ) 2 —+ 2 g7 2 + 2 9, 2
ik T e Tl Fa Str—1 + 07 + %% STkl (86)
_g,n+l1 _g,n+l1 g, "+* + n
_ —AT; _9n+3 gnti gt gm+ _onts gnt3
Ly =l e 7 4o St i+ Bk Stk T+ Yie  Strsis (87)

,n+1
where K is the maximum grid index (KX = 2J—1), and /, zfz " are the boundary conditions
as listed in Table[d
,n+1
Once the values of ]: Z are known at every value of ¢ and k, then the radiation

energy density can be computed at each zone center from Eq.[Zf as:

N
1 g,n+1 _g,n+1
n+1 + .
Ef_j - Zwi |:]i,2j—2 + ]z’,2j—2 , 2<5j<J (88)
1=1
Alternatively, in order to better conserve flux at the zone boundaries for significantly large
values of A, the energy density can be computed by integrating Eq. /0l over ; using

the calculated values of ;" to evaluate the streaming term. Then, the finite difference

equations can be written on the Lagrangian grid in Figure [ as:

N RS +9m+1 _g,n+1 _g,n+1 (89)
(Ii,2j—1 - Ii,2j—3> + < i,2j—-3 ~ 4,251 ) )
_ E Wi i - - , 2<j53<J
: gn+3 g,n+3
i=1 C\T2j—1" — T25-3

The mapping of variable names in BUCKY to the various quantities listed above is

shown in Table[] Additionally, a flowchart of the short-characteristics subroutines in
BUCKY is shown in Figure B where a description of the calculations in each subroutine

is listed in Table
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Variable | Type | Dimensions Units Description
erfd2a R*8 Gmaz» Jmaz om3 group Ejh_n;_l
2
J g,n—l—l g,n+3
srfd2b R*8 Gmax » Imae g s group 47TUP,6] _2% B[/’j— ;
n l
esfd2b R*8 Gmaz» Jmaz m 47-(55’_;_2
2
em? n+s gn+s
Sp2b R*8 Gma:c ) Jma:c g 2 — %2 UP,a] _2%
n+i n+z
Sp€2b R*8 Gma:ca Jma:c ? V;'_EQ %,6:2%
T
ss2b | R*8 | Gaes Jonas . it
2
hnul R*8 Goaz + 1 eV Vg
J 1 ag:nt+ z
sourcefn | R*8 2Jmar =1 | Gasirgrow o
n+1
simins R*8 2Jmae — 1 m 5l ;LZ
: N 7 L _g,n+1
SIPIUS R*8 2Jmae — 1 cm? s sr group 27 "4k
T Y
dtau R*8 2<]ma$ 2 - ]? i — Ig’—1+2
s
dtaumu | R*8 | 2], — 2 — AT
alpham | R*8 | 2/, — 1 - e
g,n+
betam R*8 2 max 1 B 67,-; ;
gammam | R*8 2Jmax — 1 — 4 : e
il
alphap R*8 2 Jmaac 1 B Oéz_lj B
il
betap R*8 2']maz 1 - ﬁz_lj B
il
gammap R*8 2 Jmaz 1 B Pyz_lj B
wtangl R*8 5 — w;
xmu R*8 D — | ]
n l n l
dr2b R*8 Imaz cm T T 7’:12

Table 7. Radiation transport variables in BUCKY for multi-angle short-characteristics. J;qz is the
maximum allowed number of zones and G, is the maximum allowed number of groups.
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Figure 4. Flow diagram for BUCKY multi-angle short-characteristics subroutines.

Subroutine Description
radtr3 Outer frequency loop
opacmg | Set-up optical depth grid (Calculate 70" — 77" "2)
n 1
Calculate L S5
. [Z e 1 k,,S
plkint Calculate fyl”r dx
extsource Calculate 47rS§.”_”j5
1 ig,7%+1
shortc Calculate 5-1;
Calculate Ej.’f‘f !
2
rtangl Define w; and ||

Table 8. Description of subroutines for BUCKY multi-angle short-characteristics.
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3 Analytic Solutions for Transport and Diffusion

There are a few simple problems in cartesian coordinates where both the steady-state
transport equation and the steady-state diffusion equation can be solved analytically.
These problems are a good place to start in verifying the finite difference equations de-
scribed in Section Plbecause they are also instructive in comparing diffusive solutions to
true transport solutions.

All of the problems described in this section assume a purely absorbing cold (non-
radiating) slab of thickness # = X in 1-D cartesian coordinates. Under these circum-
stances, the steady-state monoenergetic transport equation can be simplified from Eq.
to give:

0 (I(x)eT) = 2—7T5'(x)eT. (90)

Breaking the specific intensity into forward and backward propagating rays, and inte-

grating over x gives:

—0aZ 2 z O'a,fE/ —0aZT
0<p<l: I (@) =1 (0, p)e v + [—W/ S(x')e w dx’} e n (91)
K Jo
_ _ ga(X—x) 271— r ’ oqz’ ’ —oa®
—1<pu<0: I (z,p)=1 (X,p)e = + m S(x)e » da'| e, (92)
X

where it has been assumed that o, is constant throughout the slab. Furthermore, if it is

assumed that the source function, S, can be described by an N order polynomial of the

form:
N
S(x) =) esit', (93)
i=0
then the integrals can be evaluated to give:
= 2
O<pu<l: I () =1(0,p)e » + — cs,i’y;(x,,u) (94)
@ =0
_ _ ga(X—x) 27T _
—1<p<0 () =1 (X,pe = +==3 esi (o), (95)
@ i=0
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where the coefficients ;" are given by:

—oaq

Yo =[1—e #]

W
v = [ —i— vf]

— ga(X—x) (96)
Yo =[1—e "]
. ca(X-—z) . _
v =t = Xle v — Zﬁ%—l]'
o
Finally, if the boundary values, /" (0) and I (X), are independent of 1, then integrating

Eq.04and Eq.[95 over 11 gives the radiation energy density as:
1 0 B +1
B =1 | [ edns [ 1 i
0

c /-
o - ©7)
n - s
=~ [ (0B (002) + I (X)Ex(oa(X — )] + - ; esi |6 (@) + ¢ (@)
where the coefficients ¢; are given by:
: ien |
— | —1) 4 (—1) S
Z z—n'a“n+1( ) (=) ol i+2(%)
(98)

Z e [ - X Bt - )|

— ( Nor |n+1
and the functions E, (o,z) and E, (0,(X — x)) belong to the general family of functions

called the exponential integrals given by:
E,(z) = 2" / ie‘”du. (99)

If either of the boundary values depend on 1 (as in the case of an albedo boundary con-
dition), then the boundary terms in Eq.BZlmust be integrated independently. In this case,

the equation for the radiation energy density is given as:

1 1 + )\ e ’ 0 _ ’ ga(X—x) ’ 271— N + _
E(x)zz{/ I (0,1)e # du +/ I (X,pu)e W du}—l—ca ch,i[ei(x)—i-ei(x) :
0 —1 a’i_o
(100)

Therefore, given the boundary conditions at z = (0, X') and the spatial variation in the
external source term, S(z), then either Eq.[97 or Eq. 100 provides the general solution for

the steady-state radiation energy density in a cold purely absorbing 1-D slab.
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An analytic solution to this same problem can be defined for diffusion by simplifying
Eq.Bto give:

co _Tip= g (101)

If it is again assumed that the opacities are constant through the slab, and that the source

function, S, can be described by an N* order polynomial as in Eq.[03] then Eq.[I0T]can be

solved by the superposition approach to give:

N
E(z) = ae™ 4+ be ™™ + Z e, (102)

1=0

where ) is the inverse diffusion length, A\ = /%, and the coeffecients c; are determined

by:

4m

CN = —Cg N
co,

4m

CN_1 = CS N—1 (103)
4 D

¢ = W057i+—(i+2)(i+1)0i+2, 0<i<N-2.

a a

The coeffecients of the homogeneous solution (¢ and b) must be determined from the
coupled set of boundary conditions defined in SectionZ 11l Thus, plugging Eq. into
Eq.Mgives:

a[Al + BZD)\] + b[Al - BZDA] = Cl — (AlCo + Bchl) (104)

alA.e™ — B.DXeM] + b[A.e M + B.DAe ]

§ | (105)
— Cr + Z(ZByD - A?'X)Cin_l - ATCO] ?

i=1

where Eq.[[04lis applied at the left boundary (z = 0) and Eq. is applied at the right

boundary (x = X). Then, solving these for the coefficients a and b gives:
a _Cl - (AlCO + Bchl) — b[.Al - BlD)\]

A+ B,DA (106)
[CT + <Z£\;1(iBTD - ArX)CiXi_l - Arco)] (A + B,DX)
b= (A; + B.DX) (A, + B.DX) e X — (A; — BIDX) (A, — B.D\) e*X (107)

[Cl — (.AICO + Bchl)] (Ar - BTD)\) €>\X
(A, + BIDX) (A, + B,DX) e X — (A, — B.DA) (A, — B,DX) e*X
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Therefore, the analytic solution to the diffusion equation for the steady-state radiation en-
ergy density in a cold purely absorbing 1-D slab is given by Eq.[I02J where the coefficients
are described by Eq. 03] and

3.1 Source and Vacuum Boundaries with No External Sources

The simplest case to consider in solving the equations in Section [§ is a cold slab with no
external sources, where a radiation temperature source is applied on one boundary and a

vacuum condition on the other boundary. Under these conditions, Eq. [97 reduces to:

1 475
E(zr) = EI+(0)E2(%$) = WTSLQ(%IE% (108)

where 7 is the radiation temperature applied at the left boundary. Similarly for diffusion,
Eq.M02 can be reduced to:

E( ) - Ard - [(% _ D)\) eMa=X) _ (% + D>\> eA(X—x)}
€T _15h3c3 0 (D)\—%)Qe_AX—(DA+%)26)‘X

(109)

For convenience in comparison to BUCKY output, the radiation energy density can then

be converted to an effective radiation temperature, 7, by:

T,(z) = <EE($))i : (110)

4 JsB

where ogp is the Stephan-Boltzmann constant.

Figure [ shows the solutions of Eq. and Eq. [[09]in comparison to that calculated
by BUCKY for short-characteristics, diffusion, and flux-limited diffusion. The values for
each of the variables in the equations are shown in Table[d This comparison is done for
two different opacities. In Figure Bla), one mean free path is approximately 1.8 times
the thickness of the slab. In this case, the distribution of radiation as calculated by the
diffusion solution is significantly different than that calculated by the transport solution,
and diffusion overpredicts the amount of radiation everywhere in the slab. This is not

surprising since this problem violates most of the assumptions in the derivation of the
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Figure 5. Comparison between the analytic transport (Eq. (black stars) and diffusion (Eq.[I09)
(red stars) solutions to those calculated by BUCKY for short-characteristics (black line), diffusion
(red line), and flux-limited diffusion (blue line). All calculations are done assuming no external
sources, source and vacuum conditions on the left and right boundaries respectively, and an ab-
sorption opacity of (a) 0.5558 ¢! and (b) 5.558 cm L.

diffusion equation. The average R value (as shown in Figure [I) throughout the slab is
2.17 (calculated from the transport solution). Under these conditions, one would expect
the flux-limited diffusion solution to be a better approximation to the true transport char-
acteristics (as evidenced by the figure).

In Figure [B(b), one mean free path is approximately 0.18 times the thickness of the
slab. In this case, the diffusion approximation does a much better job of capturing the true
radiation distribution. The average R value for this radiation field is 1.35, which is only a
modest difference from that in case (a). Surprisingly, Figure Blb) indicates that, for these
conditions, the flux-limiter restricts the radiation too much, and actually looks less like
the transport solution than pure diffusion. However, because this problem is calculated
for a purely absorbing, nonradiating slab, it still violates the assumption in diffusion that
requires the radiation field to be nearly isotropic. The primary points are that: the finite
difference equations in BUCKY properly reproduce the analytic results, diffusion looks
much more like transport when the optical depths are small compared to the size of the

slab, and that flux-limited diffusion is not always better than pure diffusion.
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X TO Oq ¢
Value | 1.0cm | 100.0eV | 0.5558 em™! or 5.558 em™" | o,

Table 9. Values used for each variable in comparing BUCKY short-characteristics and diffusion
to the analytic equations.

3.2 Vacuum Boundaries With a Linear External Source

A slightly more complicated solution to the equations in Section[is to consider the case
of a cold slab with vacuum boundaries, and a linearly dependent external source. If the

source term has the form:
T

S(x) = So(1 - ), (111)
a

then Eq. B4 reduces to:

Br) = — S, l2(1- %)~ B + LB (x E ] (112)
(1) = 52550 [2 (1 = ) — Balowr) + 5 [By(ou(X =) — By(owr)]|

and Eq.[I02 reduces to:

E(z) = ae™ +be ™ + 2Lg, (1—5), (113)
co, a

where the coefficients are given by:

L An (R43) G-DN) e + 2 (5 + DA
o, (DA—1)2 e — (DA + 1)7 X
dn o (R+3) G+DN) M+ R (5 - DY)

oy (DA— 122X — (DA + )2 X

Assuming that the imposed external source function has a blackbody distribution, then

Sp in Eq.[I11] can be described by:

4
2m 4

50 = Oeqppsalos

(114)

where 0, is an artificial emission opacity H

3In BUCKY, this artificial emission opacity is assigned as a zone dependent value of the form:

z

Or = Og ( 1-% ), so that the external source function is conveniently defined as in Eq.[IT1]
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Figure 6. Comparison between the analytic transport (Eq.[I12) (black stars) and diffusion (Eq.[IT3)
(red stars) solutions to those calculated by BUCKY for short-characteristics (black line), diffusion
(red line), and flux-limited diffusion (blue line). All calculations are done assuming a linear exter-
nal source, vacuum conditions on both boundaries, and an absorption opacity of (a) 0.5558 cm ™
and (b) 5.558 em L.

The comparisons between BUCKY and the analytic results in Eq. and Eq. are
shown in Figure [ for the same set of values listed in Table[d In each case, there is very
good agreement between the BUCKY calculated results and the analytic solutions. In ad-
dition, Figure [({b) shows that diffusion is a good approximation to true transport when
one mean free path is much less than the total thickness of the slab. This is not surpris-
ing since the external source function is isotropic, and meets the primary criteria in the
derivation of the diffusion equation (with the exception of the value near the boundary
where radiation is allowed to escape). The agreement between diffusion and transport is
not nearly as good in Figure [f{a) where one mean free path is 2.2 times the thickness of
the slab. Even though the external source function is isotropic, the low opacity allows the
radiation to stream to the boundaries resulting in a significant nonisotropic component to
the radiation flow. It is also worth noting that, in each of these cases, the flux-limiter pro-
vides no significant benefit over pure diffusion. The calculated R values for Figure [6(a)

and (b) are 2.3 and 0.1 respectively.
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3.3 An External Source with a Source Boundary Condition

A more realistic case to consider in the comparison between transport and diffusion is
that of a distributed external source function with a source boundary condition applied
on one side. This may be thought of as a model for a sample that is being radiatively
heated by a nearby source. To identify a realistic source function, Eq. 97 is iterated by
initially assuming a cold material, and then fitting a polynomial to the resulting radia-
tion distribution. This polynomial is then applied as the external source function for the
next iteration, and the process is continued until a ‘convergence” of the polynomial fit is
achieved. The result is essentially modeling a sample that has come to equilibrium with
the driving radiation source.

For the optically thin case (o, = 0.5558 cm™!), assuming a constant blackbody source
on the left boundary at a temperature of 100 eV, the resulting external source function is

represented by a 4" order polynomial of the form:

S(x) = (12.617 — 8.4037x + 4.04732% — 2.69862° + 0.00476242") * 1.e11 . (115)

cm? s sr
Likewise for the optically thick case (0, = 5.5558 cm™ 1), the source function is represented

by:

S(z) = (165.44 — 163.75x 4 37.4712% — 22.6512% — 0.507282") * 1.e11

(116)

cm3 s sr

These polynomials are then interpolated onto the BUCKY finite difference grid (again
using the artificial emission opacity to distribute the source), and calculated for short-
characteristics, diffusion, and flux-limited diffusion. The results are shown in Figure[]

The first thing to notice about this figure is that the diffusion solution looks very much
like true transport. This is especially true in Figure[(b) where one mean free path is much
less than the thickness of the slab. This is a good illustration of why diffusion is such a
popular way of computing the radiation transport. In plasmas driven by a steady state

external radiation source, diffusion is a good approximation to true transport over a wide
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Figure 7. Comparison between the analytic transport (Eq.[12)) (black stars) and diffusion (Eq.[IT3)
(red stars) solutions to those calculated by BUCKY for short-characteristics (black line), diffu-
sion (red line), and flux-limited diffusion (blue line). All calculations assume an external source
function given by (a) Eq. and (b) Eq. [16 source and vacuum conditions on the left and
right boundaries respectively, and an absorption/emission opacity of (a) 0.5558 cm ™! and (b)
5.558 em 1.

range of optical depths when the plasma temperature has enough time to equilibrate with
the driving radiation source. The simple reason for this is that, at any particular point in
the slab, the plasma is isotropically radiating at the same intensity as the anisotropic com-
ponent of the radiation field that is contributed from the source applied at the boundary.
Thus, the total radiation field has only a weakly anisotropic component, and therefore

satisfies the primary assumptions in the derivation of the diffusion equation.

3.4 A Boundary Source and an Albedo Boundary Condition

One final problem that can be applied to both short-characteristics and diffusion is in-
tended to test the implementation of the albedo boundary condition. In this simple prob-
lem, a cold slab with no external source term has a source condition applied on the left
boundary and an albedo condition applied to the right boundary.

Under these circumstances, Eq.@Z reduces to:

47®

B(z) = 15255 T0 [B2(007) + aBa(0,X) Ex(00(X = 2))] (117)
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Figure 8. Comparison between the analytic transport (Eq.[12) (black stars) and diffusion (Eq.[IT8)
(red stars) solutions to those calculated by BUCKY for short-characteristics (black line), diffusion
(red line), and flux-limited diffusion (blue line). All calculations are done assuming no external
sources, source and albedo (o = 0.75) conditions on the left and right boundaries respectively, and
an absorption opacity of (a) 0.5558 cm ™! and (b) 5.558 em L.

where « is the albedo of the boundary at + = X. Similarly for diffusion, Eq. can be

reduced to:
E(z) = ae™ 4 be ™, (118)

for the coefficients a and b given by:

_ 15h3¢3
‘= DA—1)
b — 47T5 T4 (%g—;l B D>\) eAX
150337 (DA — 1) (DA + 223) e AX — (DA + 1) (DA — Lad) X

The comparison between these equations and the BUCKY calculated result is shown
in Figure Blfor the values in Table@and an albedo of a = 0.75. The results look very much
like those from Section Bl except that the radiation temperature is elevated due to the

radiation energy that is reflected at the right boundary.

4 Solutions Specific to the Diffusion Equation

The problems in Section B nearly provide a complete benchmarking of the steady-state

diffusion equations as implemented in BUCKY. However, because Eq. 26 contains a term
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that is dependent on the coordinate system, the diffusion equations in BUCKY must also

be verified in cylindrical and spherical coordinates.

4.1 Steady-State Diffusion in Cylindrical Coordinates

Assuming that there are no external source functions, Eq. [[01l can be rewritten in cylin-

drical coordinates as:

PE(p)  OE(p) o4
ot gy =P Ew) (119)

where p is the radial coordinate (p = /22 + y?). The solution to this equation is given

by [II:
E(p) =" To(Ap), (120)

where [ is the modified Bessel function of the first kind. Plugging this into the general
boundary condition in Eq.[I9at p = pmax and solving for ' then gives:

C

Ep) = ATy (Mpmae) — BDN L (A pmar)

To(Ap). (121)

In the case of a source boundary condition applied at p = pmax, Eq.[I2ZIl can be written as:

_ 4>, Io(Ap)
15h3¢3 70 L1(Apmax) + DAL (A pmax)

E(p) (122)

Figure Bl shows the comparison between this analytic result and BUCKY calculated
diffusion for a boundary temperature of 7j = 100 eV applied at a maximum radius of
Pmax = 0.5643 cm. The material is assumed to both absorb and scatter radiation with opac-
ities of 0, = 0.5558 em ™! and o, = 5.558 em ™! respectively (o, = o, + 05). As evidenced

by the figure, the BUCKY calculated result compares well with the analytic solution.

4.2 Steady-State Diffusion in Spherical Coordinates

Again assuming that there are no external source functions, Eq. [0l can be rewritten in

spherical coordinates as:

O?E(r) OE(r) T4
2 2
o + 2r o =" —E(r), (123)
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Figure 9. Comparison between BUCKY calculated diffusion (solid line) and the steady state
analytic result for cylindrical coordinates in Eq.[122](red stars) where the absorption and scattering
opacities are given by o, = 0.5558 cm ™! and o = 5.558 cm ! respectively.

where r is the radial coordinate (r = /2% + y? + 22). The solution to this equation is given
by [:
sinh(Ar)

r

E(p) =1 (124)

Plugging this into the general boundary condition in Eq.[19at r = 7.« and solving for O/

then gives:

E(r) = Crmax | smh()\r). (125)
A sinh(Armax) — BD [ A cosh(Mrmax) — smh()\rmax)] r

Tmax

In the case of a source boundary condition applied at r = rmay, Eq.[[28 can be written as:

45 4 Tmax sinh(Ar)

- Ty :
15h%¢3 £ sinh(Armax) D [)\ cosh( A max) — 731nh(/\rmax)}

E(p) (126)

Figure [I0 shows the comparison between this analytic result and BUCKY calculated
diffusion for a boundary temperature of 7, = 100 eV applied at a maximum radius of
rmax = 0.6204 cm. The material is assumed to both absorb and scatter radiation with
opacities of o, = 0.5558 em™! and o, = 5.558 em ™! respectively (0, = 0, + 05). As evi-
denced by the figure, the BUCKY calculated result again compares well with the analytic

solution.
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Figure 10. Comparison between BUCKY calculated diffusion (solid line) and the steady state
analytic result for spherical coordinates in Eq.[126] (red stars) where the absorption and scattering
opacities are given by o, = 0.5558 cm ™! and o = 5.558 cm ! respectively.

4.3 Flux-Limiters

As was demonstrated in Section B] the flux-limiter in the diffusion coefficient can signif-
icantly alter the radiation profile calculated by diffusion. Thus, it is important to bench-
mark the implementation of each flux-limiter. However, because the flux-limiter makes
the diffusion equation nonlinear, this is somewhat difficult to accomplish by attempt-
ing a direct analytic solution to the flux-limited diffusion equation(s). Instead, one can
manufacture a solution for the radiation energy density distribution, and then plug the
solution into Eq. I0T]to determine the external source function that will produce that radi-
ation distribution. This initial source function can then be input into BUCKY as an initial
condition, and the resulting radiation energy density checked to verify the reproduction
of the manufactured solution.

Assuming for simplicity that the test slab is cold, the flux-limited diffusion equation
can be written as:

0 OE(x)
%D(a:) ox

— 0o B(z) - 47”5(:5). (127)

Furthermore, assuming that the solution for some source function S(z) has a linear dis-
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tribution of the form:

E(z) =az + 0, (128)

the coefficients a and b are dictated by the conditions of the radiation field at the bound-

aries. Thus, plugging Eq. into Eq. [ assuming Dirichlet conditions at the left and

right boundary gives:
b= 2B, (1)
C
= £ ZBATR) — B(TL) -
a = X ¢ v\41 R v\+ L)

where 77, and Ty are the radiation temperatures at the left and right boundaries respec-
tively, and X is the total thickness of the slab.

Solving Eq.[[22 for each of the flux-limiters in Section 2Tl gives different source func-

tions for:
the SUM Limiter:
S(z) { (az +b) lale” } c (130)
pr— O'a —_ _’
(30, (az + b) + |a])? | 47
the MAX Limiter:
oq(ax +b)=, 30, > 4
S(l’) _ ( )47r 3 az+b (131)
p)— @ c 3 lal
[Ja(CLZE—F ) ‘ll| ) O—t < az—i—b
the Larsen Limiter:
la|™a? c
S(x) = |ou(ax +b) — —, (132)

(o + (225) " (e + s

and the Simplified Levermore-Pomraning Limiter:

(133)

S(z) = [%(&Hb) B a* (a + 4o, (ax + b)) } c

(a% + 30ya(ax + b) + 602(az + b)?)° dr’
Figure [[T(a) shows the range of R values throughout a 1.0 c¢m thick slab for a total
opacity of 0.5558 ¢cm ™!, and a fixed temperature on the left and right boundaries of 100 eV’

and 141.42 eV respectively. According to Figure[l] this range is within the region where all
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Figure 11. (a)Calculated R values for an assumed energy density of £ = B,(100 eV) +
B,(131.61 eV)x and a total opacity of 0.5558 cm~t. (b)External source functions for the SUM-
limiter (black), the Levermore-Pomraning-limiter (red), the Larsen-limiter (blue), and the MAX-
limiter (green).

the flux-limiters have a significant influence on the diffusion coefficient, and is therefore
an acceptable place to test the implementation of the various flux-limiters. Figure [II(b)
shows the plots of the calculated source functions for each of these limiters. In addi-
tion to the parameters listed above, these calculations assume an absorption opacity of
5.558 em™! (a factor of 10 higher than the total opacity) in order to keep the source func-
tion positive.

The relative errors between the BUCKY solutions and the linear radiation energy den-
sity in Eq. are shown in Figures [[2]a) and (b). In each case, the BUCKY calculated
solution is taken after 100 cycles. The solutions using the SUM-, Larsen-, and Levermore-
Pomraning-limiters as shown in[I2{a) all agree to better than 0.04%. However, the MAX-
limiter shown in[12(b) has maximum errors up to 1%. This is an artifact of the discontinu-
ity that exists in the form of the MAX-limited diffusion coefficient, and is a good reason
to avoid this form of the flux-limiter.

While BUCKY reproduces the expected solutions rather well, these cases only test

the implementation of the numerics in the interior of the slab. Because the test cases
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Figure 12. Relative errors between the assumed radiation energy density in Eq. [28 and that cal-
culated by BUCKY for the (a) SUM (black), Larsen n=2 (red), and Levermore-Pomraning-limiters
(blue), and (b) that calculated for the MAX-limiter.

assumed Dirichlet conditions on each boundary, the value of the radiation energy density
on the left and right boundaries are well fixed and therefore not very demanding on the
numerics. A more realistic case to consider would be that of a source condition on the left
boundary of the slab and a vacuum condition on the right boundary. Solving Eq.[19 for
these boundary conditions then gives the values of the coefficients in Eq. as:

4 14 307X

b= TB”(TL)?)(l +orX) (134)

a=—b/X.

The comparison between the BUCKY calculated results (using the SUM-limiter) and
the assumed form of the radiation energy density (using the coefficients in Eq. [[34) is
shown in Figure [3] (where 0, = or = 0.5558 cm™* and T}, = 100 V). In this case, the
BUCKY calculation never settles on a single solution, but rather oscillates between 10
different distributions (5 of which are shown in the figure). This numerical periodicity
occurs because the gradients at each edge are calculated based on the result of the cal-
culation from the previous cycle. However, the boundary value of the energy density is

calculated based on the gradient at each edge on the current cycle. Because the diffusion
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Figure 13. Comparison between the BUCKY calculated radiation energy density for the SUM-
limiter (solid lines) and the assumed value using the coefficients in Eq.[[34 (stars). The calculations
assume a source condition on the left boundary and a vacuum condition on the right boundary.

equation is elliptical, the values at each boundary affect the values throughout the entire
sample, thereby changing the gradient at each boundary (and thus the calculation of the
boundary value). This leads to a periodic solution which, in this case, has a period of
10. According to Figure [L3] these solutions oscillate around the assumed solution, but
have relative errors up to 35%. This is a problem inherent with the first order implemen-
tation of the finite-differencing scheme, and may only be fixed by using a higher order

(nonlinear) solver.

4.4 Time Dependent Solutions

In addition to (all) the analytic steady state solutions presented up to this point, the im-
plementation of the time-dependency of the diffusion equation in BUCKY also requires
verification. Because of the difficulty in solving Eq.[B for real geometries, these solutions
are all calculated for an infinite medium (thereby permitting the application of Fourier

transform methods).
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4.4.1 Planar Geometry

In the case of an infinitesimally thin, steady state planar source in a medium with constant

opacities, the diffusion equation can be written as:

OE(x,t) ¢ PE(x,t)

ot 30, o B (13%)

under the initial condition:

E(QL", to) = Eo(S([C — ZEo), (136)

where z is the position of the radiation source, ¢, is the time when the source is turned

on (and off), and Ej is the total energy (in —%;). Eq.[[33 can be solved in E(k, s) space by

cm

taking the Laplace (¢ — s) and Fourier (x — k) transforms to give [LI]:
Eo
V2T (s + % + caa>

The inverse transforms then yield the analytic, time-dependent radiation energy density

E(k,s) = (137)

distribution as:

o2
304 e—caa(t—to)e—i?wt(z z0)

Ea 138
4ret ' ( )

E(iﬂ,t) = EO

Figure [4 shows the comparison between the BUCKY calculated results and the so-
lution to Eq. at times of 1 ps, 10 ps, 20 ps, and 30 ps. Each calculation assumes
0, =0, =5.558cm™,ty =0s,and Fy, = 13751.9 Cm% In BUCKY, the source is seeded with
the analytical distribution at a time of 1 ps, and is centered on an initial source position of
xo = 50.0 em. The source input is done this way to avoid complications associated with
trying to model a delta function in time and space as a finite value in BUCKY. According

to Figure [[4] the BUCKY calculation compares well to the analytic results at each time.
4.4.2 Spherical Geometry

Following the analysis by Brunner [[T]], the solution to the infinite planar source solution

in Eq.[I38 can be transformed to a point source solution by:

Epoint(r> t) - T 5__

(139)



30f

25}

201

15}

10}

Radiation Temp (eV)

48 49 50 51 52

Figure 14. Time-dependent radiation temperature in planar geometry as calculated by BUCKY
(solid lines) and the analytic result in Eq. [[38] (stars) at times of 1 ps (black), 10 ps (red), 20 ps
(green), and 30 ps (blue).

The resulting equation for the time-dependent radiation energy density in spherical ge-

ometry can be written as:

30't 3/2 301&’“2
Brt) =B Lmt} emeremle e, (140)

where E|j is now given in units of J, and it has been assumed that the initial source loca-
tion is oy = 0.

Figure [[5]shows the comparison between the BUCKY calculated results and the solu-
tion to Eq. at times of 1 ps, 10 ps, 20 ps, and 30 ps. The BUCKY calculation is again
seeded with the analytical energy density at a time of 1 ps, for a total initial energy of

E, =13751.9 J.
4.4.3 Cylindrical Geometry

Finally, verifying the time-dependence in cylindrical geometry simply requires defining

an infinite line source. This can be done by integrating Eq.[[40Jover the line as:

Eline(pa t) = / Epoint( 02 + 22, t)dZ (141)

— 00
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Figure 15. Time-dependent radiation temperature in spherical geometry as calculated by BUCKY
(solid lines) and the analytic result in Eq. [40] (stars) at times of 1 ps (black), 10 ps (red), 20 ps
(green), and 30 ps (blue).

Then, the solution for the case of an infinite line source in cylindrical geometry can be

written as:

__ 30t >

3Ut e_co-a(t—t())e act (142)

4ret

E(p, t) - EO

for Ej the total initial energy now given units of -Z.

Figure [[6lshows the comparison between the BUCKY calculated results and the solu-
tion to Eq. at times of 1 ps, 10 ps, 20 ps, and 30 ps. The BUCKY calculation is again
seeded with the analytical energy density at a time of 1 ps, for a total initial energy of
Ey=13751.9 % As in each of the comparisons above, the solutions calculated in BUCKY

compare very well with the analytic results.

5 Radiatively Heated Plasmas

One final class of problems which requires proper verification is the case of a radiatively
heated plasma. Any transport code which is intended to model the radiation conditions
inside a plasma with real temperature dependent material properties must include an en-
ergy conservation equation which couples the plasma conditions to the radiation field.

This coupling is accomplished through the radiative emission and absorption terms that
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Figure 16. Time-dependent radiation temperature in cylindrical geometry as calculated by
BUCKY (solid lines) and the analytic result in Eq.[[42 (stars) at times of 1 ps (black), 10 ps (red),
20 ps (green), and 30 ps (blue).

appear in each equation. In BUCKY, the conservation of energy is expressed as a temper-

ature diffusion equation, and is written in Lagrangian coordinates as []:

0T, _ 9 (50, 95\ _ 9B, o) OV _
Co g = B (7‘ Kp 8V+P 8tTp+A J + Sy, (143)

where T, is the plasma temperature, c, is the heat capacity, x, is the plasma thermal con-
ductivity, P is the plasma pressure, S, is an external source term, and A and J are the
radiation absorption and emission terms respectively. As in the radiation transport equa-

tion, the radiation absorption and emission are given by:
A=cop,FE (144)
J =A4nop, / B, (T,)dv. (145)
0

In order to calculate an analytic solution to the coupled set of equations (between the
radiation transport and the energy conservation equations), Eq.[43lis typically simplified
by assuming that thermal conductivity is negligible (x,, = 0), the plasma is static (0V/0t =
0), and there are no external sources (S, = 0). Then, if it is assumed that the heat capacity

is proportional to the plasma temperature to the third power by:
ey = T3, (146)

43



then Eq. I43 can be written as:

oT,(r,t 1
pa(t ) = T3 (CO’p@E(’f’, t) - UP,eO—SBT;l) s (147)

where o is the Stephan-Boltzmann constant (= 1.02825x10°J/cm?/s/eV*), and E(r,t) is
the radiation energy density given by either Eq.Blor Eq.[/6]l These equations are solved by
Su and Olson for both a Marshak wave in a semi-infinite slab [I2] and a time-dependent

finite source in an infinite slab [I3].

5.1 The Marshak Wave Problem

The Marshak wave problem is a classic benchmark for radiation transport codes. The
premise is very simple: An isotropic radiation source condition is placed on the boundary
of an initially cold, semi-infinite slab. The radiation from the boundary source penetrates
and heats the material, which itself radiates isotropically at the local plasma temperature.
The result is two well-defined, propagating wavefronts corresponding to the penetrating
radiation and thermal energy. These wavefronts eventually coalesce, and the total energy
wave propagates deep into the plasma.

This problem has been solved analytically in the single group radiation diffusion ap-
proximation by Su and Olson [I2]. Their solution is expressed as a function of 4 dimen-

sionless variables given in the nomenclature of this document as:

z = /30'r (148)
o (160230’) . (149)
= () [B
v(z,7) = {%’r (151)

where ¢'/p = op = 0p. = 0p,, 1) is the radiation temperature of the boundary source,

and E(r,t) is given by Eq.Bl After a great deal of mathematics, their solutions for the
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dependent variables, u and v, are expressed as:

wlor) 1 23 / [anm()wlmn]dn

3+ 47 (n) (152)
_ ie”/ —7/en / sin[zy2(n) + 62(n)] d
1— n(1+en)\/3 + 473 (n)
v(x,T) :/0 e~ Tz, 7')d7, (153)
where
- ! 154)
() =mny e+ T—r (
() = \/ - (e+2) (155)
0, (n) = ! 3 =1,2 (156)
R (M.

for the transport parameter ¢ = 16055/ac. These integrals must then be solved numer-
ically for some value of e. Table [IQ lists the calculated values of Eq. and for
e=0.1, (o« = 160055/c).

Figure [Z(a) and (b) show the comparison between the analytic calculations and the
conditions simulated by BUCKY. As evidenced by the figure, the BUCKY calculations

compare very well to the analytic results at the plotted times of 7 = 0.1, 1, and 10.

5.2 Non-Equilibrium Transport in an Infinite Medium

Su and Olson have defined a second benchmark problem for non-equilibrium radiative
transfer where they have constructed analytic solutions for both radiation diffusion and
true transport [I3]. In this problem, a finite radiation source in a region —zy < = < x
is active for a time 0 < 7 < 7, within an infinite slab. The solutions are expressed in the
same dimensionless variables given in Eq. except that 7} is now the temperature
of the isotropic blackbody source. These problems are rather complex, and the reader is

directed to the reference for the derivation and final expression of the solutions. Table 1]
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[x [[7=001] 01 | 1 | 10 |[ x [[r=001] 01 | 1 | 10
0 || 0.23997 | 0.43876 | 055182 | 0.79720 | [ 0 | 0.00170 | 0.03446 | 0.32030 | 0.78318
0.1 || 0.17979 | 0.39240 | 0.51412 | 0.77644 | | 0.1 || 0.00110 | 0.02955 | 0.29429 | 0.76448
0.25 || 0.11006 | 0.33075 | 0.46198 | 0.75004 | | 0.25 || 0.00055 | 0.02339 | 0.25915 | 0.73676
0.5 || 0.04104 | 0.24629 | 0.38541 | 0.70679 | | 0.5 || 0.00012 | 0.01566 | 0.20925 | 0.69139
0.75 || 0.01214 | 0.18087 | 0.32046 | 0.66458 | | 0.75 0.01030 | 0.16862 | 0.64730
1 [ 0.00268 | 0.13089 | 0.26564 | 0.62353 | | 1 0.00672 | 0.13563 | 0.60461
25 0.01274 | 0.08147 | 0.40703 | [ 25 0.00035 | 0.03539 | 0.38320
5 0.009%1 | 0.17142 | | 5 0.00334 | 0.15285
75 0.00097 | 0.06123 | | 75 0.00028 | 0.05166
10 0.01909 | [ 10 0.01527
5 0.00135 | | 15 0.00098

u(x, T) v(z,7)

Table 10. Analytic solutions to the Su and Olson Marshak wave problem for e = 0.1 [12]
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Figure 17. Comparison between a BUCKY simulation (lines) and the analytic calculations (stars)
of the scaled (a) radiation energy, v, and (b) plasma energy, v, for the Su and Olson Marshak wave
problem [I2] at times of 7 = 0.1 (black), 1 (red), and 10 (blue).
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and [[2list the analytic evaluations of the diffusion and transport solutions respectively
for a source with e = 1, 7y = 10, and zy = 0.5.

The comparison between the analytic solutions and those calculated by BUCKY for
the radiation diffusion case are shown in Figure[I8(a) and (b). As evidenced by the figure,
BUCKY compares well at each time. Because Su and Olson have also provided solutions
for the case of true radiation transport, this problem provides a unique opportunity to
investigate the accuracy of flux-limited diffusion. Figure [Y(a) shows the comparison
between the analytic solutions for the transport case, and those calculated by flux-limited
diffusion (Levermore-Pomraning limiter). Figure [[9b) shows the comparison between
the analytic solution at a time of 7 = 1.0, and the flux-limited diffusion solution for each
flux-limiter. Clearly, flux-limited diffusion does a decent job of approximating the analytic
result. Also plotted in Figure [[9b) is the short-characteristics solution to this problem at
a time of 7 = 1.0. Under these circumstances, the short-characteristics solution transports
radiation far too quickly. This is not surprising since the Su and Olson benchmark is
intentionally a time-dependent problem, and the implementation of short-characteristics
in BUCKY is time-independent. However, this serves as a reminder that, although short-
characteristics is a much better approximation to true transport in problems with slowly
varying radiation fields, there are some instances when flux-limited diffusion will provide

a more accurate result.
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[ x [ =01 ] 1 [ 10 [ 10 ][ x [ =01 ] 1 [ 10 [ 100 |
0.01000 || 0.09403 | 0.50359 | 1.86585 | 0.35365 0.01000 || 0.00466 | 0.21859 | 1.75359 | 0.35554
0.10000 || 0.09326 | 0.49716 | 1.85424 | 0.35360 0.10000 || 0.00464 | 0.21565 | 1.74218 | 0.35548
0.31623 || 0.08230 | 0.43743 | 1.74866 | 0.35309 0.31623 || 0.00424 | 0.18765 | 1.63837 | 0.35497
0.50000 || 0.04766 | 0.33271 | 1.57237 | 0.35225 0.50000 || 0.00234 | 0.13590 | 1.46494 | 0.35411
0.75000 || 0.00755 | 0.18879 | 1.29758 | 0.35051 0.75000 || 0.00023 | 0.06746 | 1.19584 | 0.35235

1.00000 || 0.00064 | 0.10150 | 1.06011 | 0.34809 | | 1.00000 0.03173 | 0.96571 | 0.34988

1.33352 0.04060 | 0.79696 | 0.34382 | | 1.33352 0.01063 | 0.71412 | 0.34555

177828 0.01011 | 0.52980 | 0.33636 | | 1.77828 0.00210 | 0.46369 | 0.33797

3.16228 0.00003 | 0.12187 | 0.30185 | | 3.16228 0.09834 | 0.30294

5.62341 0.00445 | 0.21453 | | 5.62341 0.00306 | 0.21452

10.0000 0.07351 | | 10.0000 0.07269
u(x, T) v(z,7)

Table 11. Analytic radiation diffusion solutions to the Su and Olson non-equilibrium transport
problem in an infinite medium for e = 1,79 = 10,and z = 0.5 [I3].

[ x [ =01 ] T [ 10 [ 100 ][ x [ =01 ] 1 [ 10 | 100 |
0.01000 || 0.09531 | 0.64308 | 2.23575 | 0.35720 | [ 0.01000 || 0.00468 | 0.27126 | 2.11186 | 0.35914
0.10000 || 0.09531 | 0.63585 | 2.21944 | 0.35714 | | 0.10000 || 0.00468 | 0.26839 | 2.09585 | 0.35908
0.31623 || 0.09529 | 0.56187 | 2.06448 | 0.35664 | | 0.31623 || 0.00468 | 0.23978 | 1.94365 | 0.35854
0.50000 || 0.04765 | 0.35801 | 1.73178 | 0.35574 | | 050000 || 0.00234 | 0.14187 | 1.61536 | 0.35766
0.75000 0.11430 | 1.27398 | 0.35393 | | 0.75000 0.03014 | 1.16591 | 0.35581
1.00000 0.03648 | 0.98782 | 0.35141 | | 1.00000 0.00625 | 0.88992 | 0.35326
1.33352 0.00291 | 0.70822 | 0.34697 | | 1.33352 0.00017 | 0.62521 | 0.34875
1.77828 0.45016 | 0.33924 | | 1.77828 0.38688 | 0.34086
3.16228 0.09673 | 0.30346 | | 3.16228 0.07642 | 0.30517
5.62341 0.00375 | 0.21382 | | 5.62341 0.00253 | 0.21377
10.0000 0.07200 | | 10.0000 0.07122
u(x, T) v(z,7)

Table 12. Analytic radiation transport solutions to the Su and Olson non-equilibrium transport
problem in an infinite medium for e = 1, 79 = 10,and z¢ = 0.5.
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Figure 18. Comparison between a BUCKY simulation (lines) and the analytic calculations (stars)
of the scaled (a) radiation energy, u, and (b) plasma energy, v, for the diffusion solution to the Su
and Olson non-equilibrium transport problem at times of 7 = 0.1 (black), 1 (red), 10 (green), and
100 (blue).
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Figure 19. (a) Comparison between a BUCKY simulation using the Levermore-Pomraning ver-
sion of flux-limited diffusion (lines) and the analytic calculations (stars) of the scaled radiation
energy, u, for the transport solution to the Su and Olson non-equilibrium transport problem at
times of 7 = 0.1 (black), 1 (red), 10 (green), and 100 (blue). (b) Comparison between the analytic
calculation (stars) and a BUCKY simulation using the (a) SUM-limiter, (b) Levermore-Pomraning-
limiter, (c) Larsen-limiter (n=2), and (d) MAX-limiter at a time of 7 = 1. Also shown is a BUCKY
calculation using short-characteristics (dashed).
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A BUCKY Namelist Files

A.1 Source and Vacuum Boundaries With No External Sources

(Section B.1)
isw(4) = 26
Sinput nvregn = 1
Jjmax = 120
nmax = 100 jmat (1) = 120*1
tmax = 1.0e-9 jmn (1) =1
ta = 0.0e-9 Jmx (1) = 120
dtb = 1l.e-13 jznl (1) = 40
tscte = 0.05 jzn3 (1) = 40
tsctn = 0.05 zonfcl(1l) = 0.
tsctr = 0.10 zonfc3 (1) = 0.
tscv = 0.05 regmas(l) = 1.661le-3
tscc = 0.10 regmsl(l) = 5.537e-4
dtmin = 1l.e-13 regms3 (1) = 5.537e-4
dtmax = 1l.e-13
isw(3) =1
isw(9) =1 dn2b (1) = 120*1.e21
isw(35) =0 do2b (1) = 120*1.e21
isw(36) =1 atw2b (1) = 120*1.0
isw(37) =0 atwo (1) = 120*1.0
isw(38) =0 atn2b (1) = 120*1.0
srccon(l) = 120*1. zo2b (1) = 120*1.0
iradbc = 1 tn2c (1) = 120*0.1
irad = 3 te2c (1) = 120*0.1
nrtang = 5 tr2c (1) = 121*0.1
nfg = 1
tbc=0.025 isw(66) =1
filerh(1l)="benchmark_radbc’ io(l) = 5*1000
iobin = 1000
isw(6) = 1 io_netcdf = 100
ideos(1l) = 3 dtpout (1) = 10.0e-9
idopac(l) = 3 tprbeg(l) = 0.0e-9
fileos(l) = ’'eos.dat.uw.benchmark’ dtbout (1) = 0.0001e-9
filses(l) = ’'eos.dat.uw.benchmark’ tpbbeg (1) = 0.0e-9
radcon(1l,1)=3.346e+02
radcon(1l,2)=3.346e+02 nfdout = 100000
radcon(1l,3)=1.e-30
isw(l6) = 1 Send
isw(96) = -9
idelta = 1
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A.2 Vacuum Boudaries With a Linear External Source

(Section[3.2)

ss2b(22) = 0.4562
Sinput ss2b(23) 0.4515

ss2b(24) 0.4469
nmax = 100 ss2b(25) 0.4423
tmax = 1.0e-9 ss2b(26) 0.4376
ta = 0.0e-9 ss2b(27) 0.4330
dtb = 1l.e-13 ss2b(28) 0.4284
tscte = 0.05 ss2b(29) 0.4237
tsctn = 0.05 ss2b(30) 0.4191
tsctr = 0.10 ss2b(31) 0.4145
tscv = 0.05 ss2b(32) 0.4098
tscc = 0.10 ss2b(33) 0.4052
dtmin = 1.e-13 ss2b(34) 0.4006
dtmax = 1l.e-13 ss2b(35) 0.3959

ss2b(36) 0.3913
isw(9) =1 ss2b(37) 0.3867
isw(35) = -1 ss2b(38) 0.3820
isw(36) =1 ss2b(39) 0.3774
isw(37) =0 ss2b (40) 0.3728
isw(38) =1 ss2b(41) 0.3681
srccon(l) = 120*1. ss2b(42) 0.3635
iradbc = 0 ss2b(43) 0.3589
irad =2 ss2b (44) 0.3542
nrtang = 5 ss2b (45) 0.3496
nfg = 1 ss2b (46) 0.3450
tbc=0.025 ss2b (47) 0.3403
filerx(l)='Uniform_extsource’ ss2b(48) 0.3357

ss2b(49) 0.3311
ss2b (1) = 0.5535 ss2b (50) 0.3264
ss2b(2) = 0.5488 ss2b(51) 0.3218
ss2b(3) = 0.5442 ss2b(52) 0.3172
ss2b(4) = 0.5396 ss2b(53) = 0.3126
ss2b(5) = 0.5349 ss2b(54) = 0.3079
ss2b(6) = 0.5303 ss2b(55) 0.3033
ss2b(7) = 0.5257 ss2b (56) 0.2987
ss2b(8) = 0.5210 ss2b (57) 0.2940
ss2b(9) = 0.5164 ss2b(58) = 0.2894
ss2b(10)= 0.5118 ss2b(59) = 0.2848
ss2b(11) = 0.5071 ss2b (60) 0.2801
ss2b(12) 0.5025 ss2b(61) 0.2755
ss2b(13) 0.4979 ss2b(62) 0.2709
ss2b(14) = 0.4932 ss2b(63) = 0.2662
ss2b(15) = 0.4886 ss2b(64) = 0.2616
ss2b(16) 0.4840 ss2b (65) 0.2570
ss2b(17) 0.4793 ss2b (66) 0.2523
ss2b(18) 0.4747 ss2b(67) 0.2477
ss2b(19) 0.4701 ss2b(68) 0.2431
ss2b(20) 0.4654 ss2b(69) 0.2384
ss2b(21) = 0.4608 ss2b(70) = 0.2338




ss2b(71) = 0.2292

ss2b(72) 0.2245

ss2b(73) 0.2199

ss2b(74) 0.2153

ss2b(75) 0.2106

ss2b (76) 0.2060

ss2b (77) 0.2014

ss2b(78) 0.1968

ss2b(79) 0.1921

ss2b(80) 0.1875

ss2b(81) 0.1829

ss2b(82) 0.1782

ss2b(83) 0.1736

ss2b(84) 0.1690

ss2b(85) 0.1643

ss2b(86) = 0.1597

ss2b(87) = 0.1551

ss2b(88) 0.1504

ss2b(89) 0.1458

ss2b(90) 0.1412

ss2b(91) = 0.1365

ss2b(92) = 0.1319

ss2b(93) 0.1273

ss2b(94) 0.1226

ss2b(95) 0.1180

ss2b(96) = 0.1134

ss2b(97) = 0.1087

ss2b(98) 0.1041

ss2b(99) = 0.0995

ss2b(100) = 0.0948
ss2b(101) = 0.0902
ss2b(102) = 0.0856
ss2b(103) = 0.0809
ss2b(104) = 0.0763
ss2b(105) = 0.0717
ss2b(106) = 0.0670
ss2b(107) = 0.0624
ss2b(108) = 0.0578
ss2b(109) = 0.0531
ss2b(110) = 0.0485
ss2b(111) = 0.0439
ss2b(112) = 0.0392
ss2b(113) = 0.0346
ss2b(114) = 0.0300
ss2b(115) = 0.0253
ss2b(116) = 0.0207
ss2b(117) = 0.0161
ss2b(118) = 0.0114
ss2b(119) = 0.0068
ss2b(120) = 0.0022
isw(6) =1

1deos(1)
(1)
(1)
filses (1)
radcon (1
radcon (1
radcon (1
isw(16)
isw(96)

’

’

idelta
isw(4)
nvregn =
jmax

jmat (1)
Jmn (1

isw(66) =
io(1)
iobin =

nfdout =

Send
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3

3

= ’'eos.dat.uw.benchmark’
"eos.dat.uw.benchmark’

=3.346e+02

3.346e+02

1.e-30

1
2
3

)
)
)
1

-9

26

120

120*1

= 120
= 40
= 40

.661le-3
.537e-4
.537e-4

Il
Ul Ul O

= 120*1.e21
= 120*1.e21
= 120*1.
120*1.
= 120*1.
= 120*1.
= 120%*0.
= 120*0.
= 120*0.

P PP OOOOo

5*%1000
1000

10.0e-9
0.0e-9
0.0001e-9
= 0.0e-9

100000



A.3 An External Source With a Source Boundary Condition

(Section[3.3)

Sinput ss2b(21) = 3.4489e-001

ss2b(22) 3.4305e-001
nmax = 100 ss2b(23) 3.4122e-001
tmax = 1.0e-9 ss2b(24) 3.3940e-001
ta = 0.0e-9 ss2b(25) 3.3759e-001
dtb = 1l.e-13 ss2b(26) 3.3579e-001
tscte = 0.05 ss2b(27) 3.3400e-001
tsctn = 0.05 ss2b(28) 3.3221e-001
tsctr = 0.10 ss2b(29) 3.3044e-001
tscv = 0.05 ss2b(30) 3.2868e-001
tscc = 0.10 ss2b(31) 3.2692e-001
dtmin = 1.e-13 ss2b(32) 3.2518e-001
dtmax = 1l.e-13 ss2b(33) 3.2344e-001

ss2b(34) 3.2171e-001

ss2b(35) 3.1999e-001
isw(9) =1 ss2b (36) 3.1828e-001
isw(35) = -1 ss2b(37) 3.1657e-001
isw(36) =1 ss2b(38) 3.1487e-001
isw(37) =0 ss2b(39) 3.1317e-001
isw(38) =1 ss2b (40) 3.1148e-001
srccon(l) = 120*1. ss2b(41) 3.0980e-001
iradbc = 1 ss2b(42) 3.0813e-001
irad = 3 ss2b (43) 3.0646e-001
nrtang = 5 ss2b (44) 3.0479e-001
nfg = 1 ss2b (45) 3.0313e-001
tbc=0.025 ss2b (46) 3.0147e-001
filerh(1l)="benchmark_ radbc’ ss2b(47) 2.9982e-001
filerx(l)='Uniform_extsource’ ss2b(48) 2.9817e-001

ss2b(49) 2.9652e-001
ss2b (1) = 3.8451e-001 ss2b (50) 2.9488e-001
ss2b(2) = 3.8239e-001 ss2b(51) 2.9324e-001
ss2b(3) = 3.8028e-001 ss2b(52) = 2.9161e-001
ss2b(4) = 3.7819e-001 ss2b(53) = 2.8997e-001
ss2b(5) = 3.7612e-001 ss2b(54) 2.8834e-001
ss2b(6) = 3.7406e-001 ss2b (55) 2.8671e-001
ss2b(7) = 3.7202e-001 ss2b (56) 2.8508e-001
ss2b(8) = 3.6999e-001 ss2b(57) = 2.8345e-001
ss2b(9) = 3.6798e-001 ss2b(58) = 2.8183e-001
ss2b(10) = 3.6598e-001 ss2b(59) 2.8020e-001
ss2b(11) 3.6400e-001 ss2b (60) 2.7858e-001
ss2b(12) 3.6203e-001 ss2b(61) 2.7695e-001
ss2b(13) = 3.6007e-001 ss2b(62) = 2.7533e-001
ss2b(14) = 3.5813e-001 ss2b(63) = 2.7370e-001
ss2b (15) 3.5620e-001 ss2b(64) 2.7208e-001
ss2b(16) 3.5428e-001 ss2b (65) 2.7045e-001
ss2b (17) 3.5238e-001 ss2b (66) 2.6882e-001
ss2b(18) 3.5049e-001 ss2b (67) 2.6719e-001
ss2b(19) 3.4861e-001 ss2b (68) 2.6556e-001
ss2b(20) = 3.4675e-001 ss2b(69) = 2.6393e-001




DD DNDNDDNDDNDDNDNDDNDDNDDNDDNDDNDNDNDDDDNNDNDDNNDDNDDNDDNDDNDDNDDNDDNDDNDDN

FRRPRPPRPRPEREEEEPRPPRPPRPERENDDNDNDNDN

.6229e-001
.6065e-001
.5901e-001
.5737e-001
.5572e-001
.5407e-001
.5241e-001
.5075e-001
.4909e-001
.4742e-001
.4574e-001
.4406e-001
.4237e-001
.4068e-001
.3898e-001
.3727e-001
.3556e-001
.3384e-001
.3211e-001
.3037e-001
.2863e-001
.2688e-001
.2511e-001
.2334e-001
.2157e-001
.1978e-001
.1798e-001
.1617e-001
.1435e-001
.1252e-001

.1068e-001
.0883e-001
.0696e-001
.0509e-001
.0320e-001
.0130e-001
.9939e-001
.9746e-001
.9552e-001
.9357e-001
.9160e-001
.8962e-001
.8763e-001
.8562e-001
.8360e-001
.8156e-001
.7950e-001
.7743e-001
.7534e-001
.7324e-001
.7112e-001

isw(6) =1

ideos (1) = 3
idopac(l) = 3
fileos(l) = 'eos.dat.uw.benchmark’
filses(l) = ’'eos.dat.uw.benchmark’
radcon(1l,1)=3.346e+02
radcon(1l,2)=3.346e+02
radcon(1l,3)=1.e-30
isw(l6) =1

isw(96) = -9

idelta = 1

isw(4) = 26

nvregn = 1

jmax = 120

jmat (1) = 120*1

Jmn (1) =1

Jmx (1) = 120

jznl (1) = 40

jzn3 (1) = 40
zonfcl(1l) = 0.

zonfc3 (1) = 0.
regmas(l) = 1.661le-3
regmsl(l) = 5.537e-4
regms3(l) = 5.537e-4
isw(3) =1

dn2b (1) = 120*1.e21
do2b (1) = 120*1.e21
atw2b (1) = 120*1.0
atwo (1) = 120*%1.0
atn2b (1) = 120*1.0
zo2b (1) = 120*1.0
tn2c (1) = 120*0.1
te2c (1) = 120*0.1
tr2c (1) = 120*0.1
isw(66) =1

io(1l) = 5*1000

iobin = 1000

dtpout (1) = 10.0e-9
tprbeg(l) = 0.0e-9
dtbout (1) = 0.0001le-9
tpbbeg(l) = 0.0e-9

nfdout = 100000

Send
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A.4 A Boundary Source and an Albedo Boundary Condition

(Section[3.4)
Sinput
nmax = 100
tmax = 1.0e-9
ta = 0.0e-9
dtb = 1l.e-13
tscte = 0.05
tsctn = 0.05
tsctr = 0.10
tscv = 0.05
tscc = 0.10
dtmin = 1.e-13
dtmax = 1l.e-13
isw(9) = 3
isw(35) = -1
isw(36) 1
isw(37) =0
isw(38) =0
iradbc = 1
irad =2
nrtang = 5
nfg = 1
tbc=0.025

filerh(1l)="benchmark_radbc’
con(73)=0.75

isw(6) =1

ideos (1) = 3

idopac(l) = 3

fileos(l) = ’'eos.dat.uw.benchmark’
filses(l) = ’eos.dat.uw.benchmark’
radcon(1l,1)=3.346e+03
radcon(l,2)=3.346e+03
radcon(l,3)=1.e-30

isw(l6) =1

isw(96) = -9

idelta
isw(4)
nvregn
jmax

jmat (1)
jmn (1
Jmx (1

nfdout =

Send
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26

120

120*1

= 120
= 40
= 40

1.66le-3
5.537e-4
5.537e-4

120*1.e21

= 120*1.e21

= 120*1.

= 120*1.

120*1.

120*1.
120*0.
120*0.
121*0.

P PP OOOOo

= 5*1000

1000

10.0e-9
0.0e-9
0.0001e-9
0.0e-9

100000



A.5 Steady-State Diffusion in Cylindrical Coordinates

(Section
Sinput
nmax = 100
tmax = 10.0e-9
ta = 0.0e-9
dtb = 1l.e-14
tscte = 0.05
tsctn = 0.05
tsctr = 0.10
tscv = 0.05
tscc = 0.10
dtmin = 1.e-14
dtmax = 1l.e-14
isw(9) = 2
isw(35) = -1
isw(36) 1
isw(37) =0
isw(38) =0
iradbc = -1
irad =2
nrtang = 5
nfg = 1
tbc=0.025

filerh(1l)="benchmark_radbc’

isw(6) =1

ideos (1) 3

idopac(l) = 3

fileos(l) = ’'eos.dat.uw.benchmark’
filses(l) = ’'eos.dat.uw.benchmark’
radcon(1l,1)=3.6806e+03
radcon(1l,2)=3.346e+02
radcon(l,3)=1.e-30

isw(l6) =1

isw(96) = -9

idelta = 2

isw(4)
nvregn
jmax

Jmat (1)

(1)
tprbeg (1)
dtbout (1)
tpbbeg (1)

nfdout =

Send
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26

120

120*1

= 120
= 40
= 40

= 120*1.
= 120*1.

= 120*1.

1.66le-3
5.537e-4
5.537e-4

120*1.e21

e2l

120*1.

120*1.
120*0.
120*0.
120*0.

PR PO OOOo

= 5*1000

1000

10.0e-9
0.0e-9
0.0001e-9
0.0e-9

100000



A.6 Steady-State Diffusion in Spherical Coordinates

(Section
Sinput
nmax = 100
tmax = 10.0e-9
ta = 0.0e-9
dtb = 1l.e-14
tscte = 0.05
tsctn = 0.05
tsctr = 0.10
tscv = 0.05
tscc = 0.10
dtmin = 1.e-14
dtmax = 1l.e-14
isw(9) = 2
isw(35) = -1
isw(36) =1
isw(37) =0
isw(38) =0
iradbc = -1
irad = 2
nrtang = 5
nfg = 1
tbc=0.025

filerh(1l)="benchmark_radbc’

isw(6) =1

ideos (1) 3

idopac(l) = 3

fileos(l) = ’'eos.dat.uw.benchmark’
filses(l) = ’'eos.dat.uw.benchmark’
radcon(1l,1)=3.6806e+03
radcon(1l,2)=3.346e+02
radcon(l,3)=1.e-30

isw(l6) =1

isw(96) = -9

idelta = 3

isw(4)
nvregn
jmax

Jmat (1)

iobin =

tprbeg
dtbout

(1)
(1)
(1)
tpbbeg (1)

nfdout =

Send
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26

120

120*1

= 120
= 40
= 40

1.66le-3
5.537e-4
5.537e-4

120*1.e21

= 120*1.e21

= 120*1.

= 120*1.

120*1.

120*1.
120*0.
120*0.
120*0.

PR PO OOOo

= 5*1000

1000

10.0e-9
0.0e-9
0.0001e-9
0.0e-9

100000



A.7 Flux-Limiters (Section[4.3)
A.7.1 Dirichlet Boundary Conditions: SUM-Limiter

Sinput ss2b(20) = 7.3695e+000

ss2b(21) 7.5221e+000
nmax = 100 ss2b(22) 7.6743e+000
tmax = 1.0e-9 ss2b(23) = 7.8263e+000
ta = 0.0e-9 ss2b(24) = 7.9778e+000
dtb = 1l.e-13 ss2b (25) 8.1293e+000
tscte = 0.05 ss2b(26) 8.2804e+000
tsctn = 0.05 ss2b(27) 8.4312e+000
tsctr = 0.10 ss2b(28) = 8.5818e+000
tscv = 0.05 ss2b(29) = 8.7321e+000
tscc = 0.10 ss2b(30) 8.8822e+000
dtmin = 1.e-13 ss2b(31) 9.0322e+000
dtmax = 1.e-13 ss2b(32) 9.1817e+000

ss2b (33) 9.3312e+000
isw(9) =1 ss2b(34) 9.4803e+000
isw(35) =0 ss2b(35) 9.6294e+000
isw(36) =1 ss2b (36) 9.7782e+000
isw(37) =1 ss2b(37) 9.9267e+000
isw(38) =1 ss2b(38) 1.0075e+001
srccon(l) = 120*1. ss2b(39) 1.0223e+001
iradbc = 1 ss2b(40) 1.0371e+001
irad = 2 ss2b(41) 1.0519e+001
nrtang = 5 ss2b(42) 1.0667e+001
nfg = 1 ss2b (43) 1.0814e+001
tbc = 0.025 ss2b (44) 1.0962e+001
filerh(1l)="benchmark_ radbc’ ss2b(45) 1.1109e+001
filerx(l)='Uniform_extsource’ ss2b(46) 1.1256e+001
con(74)=1.4142 ss2b (47) 1.1403e+001
ibench(3)=1 ss2b (48) 1.1550e+001

ss2b (49) 1.1696e+001
ss2b (1) = 4.3989e+000 ss2b (50) 1.1843e+001
ss2b(2) = 4.5595e+000 ss2b(51) 1.1989e+001
ss2b(3) = 4.7195e+000 ss2b(52) 1.2135e+001
ss2b(4) = 4.8790e+000 ss2b (53) 1.2281e+001
ss2b(5) = 5.0379e+000 ss2b(54) 1.2427e+001
ss2b(6) = 5.1964e+000 ss2b (55) 1.2573e+001
ss2b(7) = 5.3543e+000 ss2b (56) 1.2718e+001
ss2b(8) = 5.5118e+000 ss2b (57) 1.2864e+001
ss2b(9) = 5.6688e+000 ss2b (58) 1.3009e+001
ss2b(10) = 5.8253e+000 ss2b(59) 1.3155e+001
ss2b(11) 5.9815e+000 ss2b (60) 1.3300e+001
ss2b(12) 6.1372e+000 ss2b(61) 1.3445e+001
ss2b(13) 6.2925e+000 ss2b (62) 1.3590e+001
ss2b(14) 6.4475e+000 ss2b (63) 1.3735e+001
ss2b (15) 6.6020e+000 ss2b (64) 1.3880e+001
ss2b(16) 6.7563e+000 ss2b (65) 1.4024e+001
ss2b(17) = 6.9100e+000 ss2b(66) = 1.4169e+001
ss2b(18) = 7.0636e+000 ss2b(67) = 1.4313e+001
ss2b(19) = 7.2168e+000 ss2b(68) = 1.4458e+001
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.4602e+001
.4746e+001
.4890e+001
.5034e+001
.5178e+001
.5322e+001
.5466e+001
.5610e+001
.5754e+001
.5897e+001
.6041e+001
.6184e+001
.6327e+001
.6471e+001
.6614e+001
.6757e+001
.6900e+001
.7043e+001
.7186e+001
.7329e+001
.7472e+001
.7615e+001
.7758e+001
.7901e+001
.8043e+001
.8186e+001
.8329e+001
.8471e+001
.8613e+001
.8756e+001
.8898e+001

.9041e+001
.9183e+001
.9325e+001
.9467e+001
.9609e+001
.9751e+001
.9893e+001
.0035e+001
.0177e+001
.0319e+001
.0461e+001
.0603e+001
.0745e+001
.0887e+001
.1028e+001
.1170e+001
.1312e+001
.1453e+001
.1595e+001
.1737e+001
.1878e+001

isw(6) =1

ideos (1) = 3
idopac(l) = 3
fileos(l) = 'eos.dat.uw.benchmark’
filses(l) = ’'eos.dat.uw.benchmark’
radcon(1l,1)=3.346e+02
radcon(1l,2)=3.346e+03
radcon(1l,3)=1.e-30
isw(l6) =1

isw(96) = -9

idelta = 1

isw(4) = 26

nvregn = 1

jmax = 120

jmat (1) = 120*1

Jmn (1) =1

Jmx (1) = 120

jznl (1) = 40

jzn3 (1) = 40
zonfcl(1l) = 0.

zonfc3 (1) = 0.
regmas(l) = 1.661le-3
regmsl(l) = 5.537e-4
regms3(l) = 5.537e-4
isw(3) =1

dn2b (1) = 120*1.e21
do2b (1) = 120*1.e21
atw2b (1) = 120*1.0
atwo (1) = 120*%1.0
atn2b (1) = 120*1.0
zo2b (1) = 120*1.0
tn2c (1) = 120*0.1
te2c (1) = 120*0.1
tr2c (1) = 120*0.1
isw(66) =1

io(1l) = 5*1000

iobin = 1000

dtpout (1) = 10.0e-9
tprbeg(l) = 0.0e-9
dtbout (1) = 0.0001le-9
tpbbeg(l) = 0.0e-9

nfdout = 100000

Send
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A.7.2 Dirichlet Boundary Conditions: MAX-Limiter

Sinput ss2b(22) = 5.5463e+000

ss2b(23) = 5.6854e+000
nmax = 100 ss2b(24) = 5.8243e+000
tmax = 1.0e-9 ss2b(25) 5.9634e+000
ta = 0.0e-9 ss2b(26) 6.1024e+000
dtb = 1l.e-13 ss2b(27) 6.2413e+000
tscte = 0.05 ss2b(28) = 6.3804e+000
tsctn = 0.05 ss2b(29) = 6.5193e+000
tsctr = 0.10 ss2b(30) 6.6584e+000
tscv = 0.05 ss2b(31) 6.7975e+000
tscc = 0.10 ss2b(32) 6.9364e+000
dtmin = 1.e-13 ss2b(33) = 1.0076e+001
dtmax = 1l.e-13 ss2b(34) = 1.0215e+001

ss2b (35) 1.0354e+001
isw(9) =1 ss2b(36) 1.0493e+001
isw(35) =1 ss2b(37) 1.0632e+001
isw(36) =1 ss2b(38) 1.0771e+001
isw(37) =1 ss2b(39) 1.0910e+001
isw(38) =1 ss2b (40) 1.1049e+001
srccon(l) = 120*1. ss2b(41) 1.1188e+001
iradbc = 1 ss2b (42) 1.1327e+001
irad = 2 ss2b (43) 1.1466e+001
nrtang = 5 ss2b(44) 1.1605e+001
nfg = 1 ss2b (45) 1.1744e+001
tbc = 0.025 ss2b (46) 1.1883e+001
filerh(1l)="benchmark_ radbc’ ss2b(47) 1.2022e+001
filerx(1l)='Uniform_extsource’ ss2b(48) 1.2161e+001
con(74)=1.4142 ss2b(49) 1.2299e+001
ibench(3)=1 ss2b (50) 1.2439e+001

ss2b(51) 1.2577e+001
ss2b(1l) = 2.6273e+000 ss2b(52) 1.2716e+001
ss2b(2) = 2.7663e+000 ss2b (53) 1.2855e+001
ss2b(3) = 2.9053e+000 ss2b(54) 1.2994e+001
ss2b(4) = 3.0443e+000 ss2b (55) 1.3133e+001
ss2b(5) = 3.1833e+000 ss2b (56) 1.3272e+001
ss2b(6) = 3.3223e+000 ss2b(57) 1.3411e+001
ss2b(7) = 3.4613e+000 ss2b (58) 1.3550e+001
ss2b(8) = 3.6003e+000 ss2b(59) 1.3689%9e+001
ss2b(9) = 3.7393e+000 ss2b (60) 1.3828e+001
ss2b(10) = 3.8783e+000 ss2b(61) 1.3967e+001
ss2b(11) 4.0173e+000 ss2b (62) 1.4106e+001
ss2b(12) 4.1563e+000 ss2b (63) 1.4245e+001
ss2b (13) 4.2953e+000 ss2b(64) 1.4384e+001
ss2b(14) 4.4344e+000 ss2b (65) 1.4523e+001
ss2b(15) = 4.5733e+000 ss2b(66) = 1.4662e+001
ss2b(16) = 4.7124e+000 ss2b(67) = 1.4801e+001
ss2b(17) 4.8513e+000 ss2b (68) 1.4940e+001
ss2b(18) 4.9904e+000 ss2b (69) 1.5079e+001
ss2b(19) 5.1294e+000 ss2b (70) 1.5218e+001
ss2b(20) = 5.2683e+000 ss2b(71) = 1.5357e+001
ss2b(21) = 5.4074e+000 ss2b(72) = 1.5496e+001
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.5635e+001
.5774e+001
.5913e+001
.6052e+001
.6191e+001
.6330e+001
.6469e+001
.6608e+001
.6747e+001
.6886e+001
.7025e+001
.7164e+001
.7303e+001
.7442e+001
.7581e+001
.7720e+001
.7859e+001
.7998e+001
.8137e+001
.8276e+001
.8415e+001
.8554e+001
.8693e+001
.8832e+001
.8971e+001
.9110e+001
.9249e+001
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.9388e+001
.9527e+001
.9666e+001
.9805e+001
.9944e+001
.0083e+001
.0222e+001
.0361e+001
.0500e+001
.0639e+001
.0778e+001
.0917e+001
.1056e+001
.1195e+001
.1334e+001
.1473e+001
.1612e+001
.1751e+001
.1890e+001
.2029e+001
.2168e+001

ideos (1)
idopac (1)
fileos (1)
filses (1)
radcon (1
radcon (1

(1

6)

6)

’

’

’

idelta
isw(4)
nvregn
jmax =

Jmat (1)

isw(66) =
io(1l) =
iobin =

dtpout (1)
tprbeg (1)
dtbout (1)
tpbbeg (1)

nfdout =

Send
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= 3

3

= ’'eos.dat.uw.benchmark’
= ’'eos.dat.uw.benchmark’
)=3.346e+02

)=3.346e+03

)=1.e-30
1

1
2
3

-9

26

120

= 120*1
= 120

= 40
= 40

.66le-3
.537e-4
.537e-4

|
U U= O

120*1.e21
= 120*1.e21
= 120*1.
120*1.
= 120*1.
= 120*1.
= 120%*0.
= 120%*0.
= 120%*0.
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5*1000
1000

10.0e-9
0.0e-9
0.0001e-9
0.0e-9
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A.7.3 Dirichlet Boundary Conditions: Larsen-Limiter

Sinput

nmax
tmax
ta

filerh
fllerx

1
0.
(1
(1
2)
4)
(

3

.0e-9
.0e-9
.e-13
.05
.05
.10
.05
.10
.e-13
.e-13

PP OOOOORFr OoO-Rr

S = )

) = 120*1.

025

) ='benchmark_radbc’
)='Uniform_extsource’
1.

)=

2
4142
1

.6416e+000
.8159e+000
.9900e+000
.1639e+000
.3374e+000
.5107e+000
.6837e+000
.8563e+000
.0286e+000
.2004e+000
.3719e+000
.5430e+000
.7136e+000
.8839e+000
.0535e+000
.2229e+000
.3915e+000
.5600e+000
.7279e+000
.8952e+000

1]
O s s b www

|
a0y Oy O O O U1 U1 U1 U1 U1

AR ErRErERRErEErERrERRErERErERrERErERRErERErERERErERERrPRRRRRRERE O OO0 OO IWOO0OO0O0OO00O00 NSN3

.0621e+000
.2284e+000
.3944e+000
.5597e+000
.7247e+000
.8892e+000
.0530e+000
.2166e+000
.3794e+000
.5420e+000
.7041e+000
.8656e+000
.0268e+000
.1873e+000
.3476e+000
.5074e+000
.6666e+000
.8255e+000
.9839e+000
.0142e+001
.0300e+001
.0457e+001
.0613e+001
.0770e+001
.0926e+001
.1082e+001
.1237e+001
.1392e+001
.1546e+001
.1700e+001
.1854e+001
.2008e+001
.2161e+001
.2314e+001
.2466e+001
.2618e+001
.2770e+001
.2922e+001
.3074e+001
.3224e+001
.3375e+001
.3526e+001
.3676e+001
.3826e+001
.3976e+001
.4125e+001
.4275e+001
.4424e+001
.4573e+001
.4721e+001
.4870e+001
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.5018e+001
.5166e+001
.5313e+001
.5461e+001
.5608e+001
.5756e+001
.5903e+001
.6049e+001
.6196e+001
.6342e+001
.6489e+001
.6635e+001
.6781e+001
.6927e+001
.7073e+001
.7218e+001
.7364e+001
.7509e+001
.7654e+001
.7799e+001
.7944e+001
.8089e+001
.8233e+001
.8378e+001
.8522e+001
.8667e+001
.8811e+001
.8955e+001
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.9099e+001
.9243e+001
.9387e+001
.9530e+001
.9674e+001
.9817e+001
.9961e+001
.0104e+001
.0247e+001
.0390e+001
.0533e+001
.0676e+001
.0819e+001
.0962e+001
.1105e+001
.1247e+001
.1390e+001
.1532e+001
.1675e+001
.1817e+001
.1959e+001

1deos(1)
(1)
(1)
filses (1)
radcon (1
radcon (1
radcon (1
isw(16)
isw(96)

’

’

idelta =
isw(4)
nvregn
jmax

jmat (1)
jmn (1
Jmx (1

iobin =

nfdout =

Send
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1)
2)
3)
1

26

12

3
3
"eos.dat.uw.benchmark’
"eos.dat.uw.benchmark’
=3.346e+02
3.346e+03
1.e-30

9

0

120*1

= 120
= 40

40

1.66le-3
5.537e-4
5.537e-4

120*1.e21

= 120*1.e21

= 120*1.

= 120*1.

10

10

120*1.

120*1.
120*0.
120*0.
120*0.

P PP OOOOo

= 5*1000

00

10.0e-9
0.0e-9
0.0001le-9
0.0e-9

0000



A.74 Dirichlet Boundary Conditions: Levermore-Pomraning-Limiter

Sinput ss2b(22) = 7.3758e+000

ss2b(23) = 7.5343e+000
nmax = 100 ss2b(24) = 7.6922e+000
tmax = 1.0e-9 ss2b(25) 7.8500e+000
ta = 0.0e-9 ss2b(26) 8.0075e+000
dtb = 1l.e-13 ss2b(27) 8.1644e+000
tscte = 0.05 ss2b(28) = 8.3212e+000
tsctn = 0.05 ss2b(29) = 8.4774e+000
tsctr = 0.10 ss2b(30) 8.6335e+000
tscv = 0.05 ss2b(31) 8.7894e+000
tscc = 0.10 ss2b(32) 8.9447e+000
dtmin = 1.e-13 ss2b(33) = 9.0999e+000
dtmax = 1l.e-13 ss2b(34) = 9.2546e+000

ss2b (35) 9.4092e+000
isw(9) =1 ss2b(36) 9.5635e+000
isw(35) = 3 ss2b(37) 9.7173e+000
isw(36) =1 ss2b(38) 9.8711e+000
isw(37) =1 ss2b(39) 1.0024e+001
isw(38) =1 ss2b (40) 1.0178e+001
srccon(l) = 120*1. ss2b(41) 1.0331e+001
iradbc = 1 ss2b (42) 1.0483e+001
irad = 2 ss2b (43) 1.0635e+001
nrtang = 5 ss2b(44) 1.0787e+001
nfg = 1 ss2b(45) 1.0939e+001
tbc = 0.025 ss2b (46) 1.1091e+001
filerh(1l)="benchmark_ radbc’ ss2b(47) 1.1242e+001
filerx(1l)='Uniform_extsource’ ss2b(48) 1.1393e+001
con(74)=1.4142 ss2b(49) 1.1544e+001
ibench(3)=1 ss2b (50) 1.1695e+001

ss2b(51) 1.1845e+001
ss2b (1) = 3.9585e+000 ss2b(52) 1.1996e+001
ss2b(2) = 4.1254e+000 ss2b (53) 1.2146e+001
ss2b(3) = 4.2919e+000 ss2b(54) 1.2295e+001
ss2b(4) = 4.4579e+000 ss2b (55) 1.2445e+001
ss2b(5) = 4.6235e+000 ss2b (56) 1.2595e+001
ss2b(6) = 4.7887e+000 ss2b(57) 1.2744e+001
ss2b(7) = 4.9535e+000 ss2b (58) 1.2893e+001
ss2b(8) = 5.1178e+000 ss2b(59) 1.3042e+001
ss2b(9) = 5.2817e+000 ss2b (60) 1.3190e+001
ss2b(10) = 5.4452e+000 ss2b(61) 1.3339%9e+001
ss2b(11) 5.6083e+000 ss2b (62) 1.3487e+001
ss2b(12) 5.7709e+000 ss2b (63) 1.3635e+001
ss2b (13) 5.9332e+000 ss2b(64) 1.3784e+001
ss2b(14) 6.0951e+000 ss2b (65) 1.3931e+001
ss2b(15) = 6.2565e+000 ss2b(66) = 1.4079e+001
ss2b(16) = 6.4176e+000 ss2b(67) = 1.4227e+001
ss2b(17) 6.5781e+000 ss2b (68) 1.4374e+001
ss2b(18) 6.7385e+000 ss2b (69) 1.4521e+001
ss2b(19) 6.8985e+000 ss2b (70) 1.4668e+001
ss2b(20) = 7.0579e+000 ss2b(71) = 1.4815e+001
ss2b(21) = 7.2171e+000 ss2b(72) = 1.4962e+001
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.5109e+001
.5255e+001
.5402e+001
.5548e+001
.5694e+001
.5840e+001
.5986e+001
.6132e+001
.6277e+001
.6423e+001
.6568e+001
.6713e+001
.6859e+001
.7004e+001
.7149e+001
.7294e+001
.7438e+001
.7583e+001
.7728e+001
.7872e+001
.8017e+001
.8161e+001
.8305e+001
.8449e+001
.8593e+001
.8737e+001
.8881e+001
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.9025e+001
.9169e+001
.9312e+001
.9456e+001
.9600e+001
.9743e+001
.9886e+001
.0030e+001
.0173e+001
.0316e+001
.0459e+001
.0602e+001
.0745e+001
.0888e+001
.1031e+001
.1174e+001
.1316e+001
.1459e+001
.1601e+001
.1744e+001
.1887e+001

ideos (1)
idopac (1)
fileos (1)
filses (1)
radcon (1
radcon (1

(1

6)

6)

’

’

’

idelta
isw(4)
nvregn
jmax =

Jmat (1)

isw(66) =
io(1l) =
iobin =

dtpout (1)
tprbeg (1)
dtbout (1)
tpbbeg (1)

nfdout =

Send
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= 3

3

= ’'eos.dat.uw.benchmark’
= ’'eos.dat.uw.benchmark’
)=3.346e+02

)=3.346e+03

)=1.e-30
1

1
2
3
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26

120

= 120*1
= 120

= 40
= 40

.66le-3
.537e-4
.537e-4

|
U U= O

120*1.e21
= 120*1.e21
= 120*1.
120*1.
= 120*1.
= 120*1.
= 120%*0.
= 120%*0.
= 120%*0.

PR PO OOoOOo

5*1000
1000

10.0e-9
0.0e-9
0.0001e-9
0.0e-9

100000



A.7.5 Source and Vacuum Boundary Conditions: SUM-Limiter

Sinput

nmax = 100
tmax = 1.0e-9
ta = 0.0e-9
dtb = 1.e-13
tscte = 0.05
tsctn = 0.05
tsctr = 0.10
tscv = 0.05
tscc = 0.10
dtmin = 1.e-13
dtmax = 1l.e-13
isw(9) =1
isw(35) =0
isw(36) =1
isw(37) =0
isw(38) =1
srccon(l) = 120*1.
iradbc = 1

irad = 2

nrtang = 5

nfg = 1
tbc=0.025

filerh(1l)="benchmark_radbc’
filerx(l)='Uniform_extsource’

ss2b (1) = 2.3557e-001
ss2b(2) = 2.3207e-001
ss2b(3) = 2.2856e-001
ss2b(4) = 2.2504e-001
ss2b(5) = 2.2150e-001
ss2b(6) = 2.1794e-001
ss2b(7) = 2.1437e-001
ss2b(8) = 2.1079e-001
ss2b(9) = 2.0719%9e-001
ss2b(10) = 2.0358e-001
ss2b(11) 1.9995e-001
ss2b(12) 1.9630e-001
ss2b(13) 1.9263e-001
ss2b(14) 1.8895e-001
ss2b(15) 1.8526e-001
ss2b(16) 1.8154e-001
ss2b(17) = 1.7781e-001
ss2b(18) = 1.7405e-001
ss2b(19) 1.7028e-001
ss2b(20) 1.6649e-001
ss2b(21) 1.6267e-001
ss2b(22) = 1.5884e-001
ss2b(23) = 1.5499e-001

R RFPNNMNWWEDRO VU T00W0OORRERERRRRRRRRRR R

.5111e-001
.4721e-001
.4329%9e-001
.3935e-001
.3538e-001
.3139%9e-001
.2738e-001
.2333e-001
.1927e-001
.1517e-001
.1105e-001
.0690e-001
.0272e-001
.8511e-002
.4269e-002
.0001e-002
.5697e-002
.1359e-002
.6993e-002
.2592e-002
.8150e-002
.3677e-002
.9161e-002
.4612e-002
.0017e-002
.5388e-002
.0710e-002
.5996e-002
.1237e-002
.6426e-002
.1574e-002
.6669e-002
.1719e-002
.7119e-003
.6582e-003
.4559e-003
.6199e-003
.3842e-002
.9129e-002
.4472e-002
.9884e-002
.5355e-002
.0900e-002
.6507e-002
.2194e-002
.7947e-002
.3777e-002
.9693e-002
.5683e-002
.1765e-002
.7927e-002



ss2b(75) = -9
ss2b(76) = -1
ss2b(77) = -1
ss2b(78) = -1
ss2b(79) = -1
ss2b(80) = -1
ss2b(81) = -1
ss2b(82) = -1
ss2b(83) = -1
ss2b(84) = -1
ss2b(85) = -1
ss2b(86) = -1
ss2b(87) = -1
ss2b(88) = -1
ss2b(89) = -1
ss2b(90) = -2
ss2b(91) = -2
ss2b(92) = -2
ss2b(93) = -2
ss2b(94) = -2
ss2b(95) = -2
ss2b(96) = -2
ss2b(97) = -2
ss2b(98) = -2
ss2b(99) = -2
ss2b(100) = -2
ss2b(101) = -3
ss2b(102) -3
ss2b(103) -3
ss2b(104) -3
ss2b (105) -3
ss2b(106) -3
ss2b(107) -3
ss2b(108) -3
ss2b(109) = -3
ss2b(110) = -4.
ss2b(111) = -4
ss2b(112) -4
ss2b(113) -4
ss2b(114) -4
ss2b(115) -4
ss2b(116) -4
ss2b(117) -5
ss2b(118) -5
ss2b(119) -5
ss2b(120) = -5
isw(6) =1
ideos(l) = 3

.4187e-002
.0053e-001
.0698e-001
.1352e-001
.2017e-001
.2693e-001
.3379%9e-001
.4078e-001
.4789e-001
.5511e-001
.6247e-001
.6995e-001
.7758e-001
.8536e-001
.9327e-001
.0135e-001
.0959e-001
.1799%9e-001
.2658e-001
.3533e-001
.4429e-001
.5343e-001
.6279e-001
.7236e-001
.8214e-001

.9217e-001
.0243e-001
.1296e-001
.2375e-001
.3481e-001
.4617e-001
.5782e-001
.6980e-001
.8210e-001
.9477e-001

0780e-001

.2121e-001
.3503e-001
.4926e-001
.6396e-001
.7912e-001
.9476e-001
.1094e-001
.2765e-001
.4496e-001
.6288e-001

)
)
)

’

idopac (
fileos(
filses(
radcon (
radcon (
radcon (
isw(16)
isw(96)

’

1
1
1
1
1
1

idelta =
isw(4) =
nvregn =
Jjmax =

Jmat (1)
Jmn (1
jmx (1

iobin =
io_netcdf

dtpout
tprbeg
dtbout

(1)
(1)
(1)
tpbbeg (1)

1)
2)
3)
1

26

12

3
"eos.dat.uw.benchmark’
"eos.dat.uw.benchmark’

=3.346e+02
3.346e+02
1.e-30

9

0
120*1

120

0.

1.66le-3
5.537e-4
5.537e-4

120*1.e21

= 120*1.e21

= 120*1.

= 120*1.

10

120*1.

120*1.
120*0.
120*0.
120*0.

PP P OO OO

= 5*1000

00
100

10.0e-9
0.0e-9
0.0001e-9
0.0e-9

nfdout = 100000

Send
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A.8 Time Dependent Diffusion in Planar Coordinates
(Section [4.4.1)

Sinput

nmax =
tmax =

nfg = 1

1deos(1)
(1)
(1)
filses (1)
radcon (1
radcon (1
radcon (1
isw(16)
isw(96)

’

’

idelta =
isw(4)
nvregn
jmax

jmat (1)
jmn (1)
mx (1)
jznl (1)

jzn3 (1)

zonfcl (1)
zonfc3 (1)

10000
.1le-9
.001le-9
.e-16
.05
.05
.10
.05
.10
.e-13
.e-13

PR OOOOOoORr OO

O~ O |

3

3

= ’'eos.dat.uw.benchmark’
"eos.dat.uw.benchmark’
3.346e+03

3.346e+03

1.e-30

1
2
3

)
)
)
1
-9
26

240

240*1

= 240
= 99
= 99
= -0.1
-0.1

regmas (1)
regmsl (1)
regms3 (1)

70

= 240*1.

l1.66le-1
8.3045e-2
8.3045e-2

240*1.e21
e2l
240%*1.
240%*1.
240*1.
240*1.
240%*0.
240*0.1
46*1.0000e-001
.6610e-001
.4382e-001
.3334e+000
.3710e+000
.7731e+000
.5450e+000
.5062e+000
.6007e+000
.1700e+001
.3686e+001
.5472e+001
.7128e+001
.8618e+001
.9806e+001
.0925e+001
.1755e+001
.2519e+001
.3124e+001
.3592e+001
.4008e+001
.4315e+001
.4532e+001
.4724e+001
.4890e+001
.4996e+001
.5088e+001
.5164e+001
.5206e+001
.5256e+001
.5280e+001
.5290e+001
.5304e+001
.5308e+001
.5312e+001

R O O O O

N

NDNDDNDNNDNDDNDDNNDDNDNNDNMNDMNNNNMNDMNMNNNMNNDMNMNNNRRRERPRRREREODUWNDEREO



tr2c(81l) = 2.5311le+001 tr2c(134) = 2.5115e+001
tr2c(82) 2.5308e+001 tr2c(135) = 2.5115e+001
tr2c(83) 2.5304e+001 tr2c(136) = 2.5115e+001
tr2c(84) 2.5298e+001 tr2c(137) = 2.5115e+001
tr2c(85) 2.5298e+001 tr2c(138) = 2.5115e+001
tr2c(86) 2.5290e+001 tr2c(139) = 2.5115e+001
tr2c(87) 2.5280e+001 tr2c(140) = 2.5088e+001
tr2c(88) 2.5280e+001 tr2c(141) = 2.5088e+001
tr2c(89) 2.5269e+001 tr2c(142) = 2.5088e+001
tr2c(90) 2.5269e+001 tr2c(143) = 2.5088e+001
tr2c(91) 2.5256e+001 tr2c(144) = 2.5088e+001
tr2c(92) 2.5256e+001 tr2c(145) = 2.5088e+001
tr2c(93) 2.5256e+001 tr2c(146) = 2.5059e+001
tr2c(94) 2.5241e+001 tr2c(147) = 2.5059e+001
tr2c (95) 2.5241e+001 tr2c(148) = 2.5059e+001
tr2c(96) = 2.5241e+001 tr2c(149) = 2.5028e+001
tr2c(97) = 2.5241e+001 tr2c(150) = 2.5028e+001
tr2c(98) 2.5241e+001 tr2c(151) = 2.5028e+001
tr2c(99) = 2.5224e+001 tr2c(152) = 2.4996e+001
tr2c(100) = 2.5224e+001 tr2c(153) = 2.4996e+001
tr2c(101) = 2.5224e+001 tr2c(154) = 2.4962e+001
tr2c(102) = 2.5224e+001 tr2c(155) = 2.4962e+001
tr2c(103) = 2.5224e+001 tr2c(156) = 2.4927e+001
tr2c(104) = 2.5224e+001 tr2c(157) = 2.4890e+001
tr2c(105) = 2.5224e+001 tr2c(158) = 2.4851e+001
tr2c(106) = 2.5206e+001 tr2c(159) = 2.4810e+001
tr2c(107) = 2.5206e+001 tr2c(160) = 2.4768e+001
tr2c(108) = 2.5206e+001 tr2c(l6l) = 2.4724e+001
tr2c(109) = 2.5206e+001 tr2c(162) = 2.4679e+001
tr2c(110) = 2.5206e+001 tr2c(163) = 2.4632e+001
tr2c(111) = 2.5206e+001 tr2c(1l64) = 2.4532e+001
tr2c(112) = 2.5206e+001 tr2c(165) = 2.4427e+001
tr2c(113) = 2.5186e+001 tr2c(166) = 2.4315e+001
tr2c(114) = 2.5186e+001 tr2c(167) = 2.4197e+001
tr2c(115) = 2.5186e+001 tr2c(168) = 2.4073e+001
tr2c(116) = 2.5186e+001 tr2c(169) = 2.3875e+001
tr2c(117) = 2.5186e+001 tr2c(170) = 2.3665e+001
tr2c(118) = 2.5186e+001 tr2c(171) = 2.3441e+001
tr2c(119) = 2.5186e+001 tr2c(172) = 2.3124e+001
tr2c(120) = 2.5164e+001 tr2c(173) = 2.2786e+001
tr2c(121) = 2.5164e+001 tr2c(174) = 2.2335e+001
tr2c(122) = 2.5164e+001 tr2c(175) = 2.1855e+001
tr2c(123) = 2.5164e+001 tr2c(176) = 2.1348e+001
tr2c(124) = 2.5164e+001 tr2c(177) = 2.0708e+001
tr2c(125) = 2.5164e+001 tr2c(178) = 1.9922e+001
tr2c(126) = 2.5164e+001 tr2c(179) = 1.8981e+001
tr2c(127) = 2.5140e+001 tr2c(180) = 1.7880e+001
tr2c(128) = 2.5140e+001 tr2c(181) = 1.6748e+001
tr2c(129) = 2.5140e+001 tr2c(182) = 1.5344e+001
tr2c(130) = 2.5140e+001 tr2c(183) = 1.3940e+001
tr2c(131) = 2.5140e+001 tr2c(184) = 1.2311e+001
tr2c(132) = 2.5140e+001 tr2c(185) = 1.0512e+001
tr2c(133) = 2.5115e+001 tr2c(186) = 8.7298e+000
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.9342e+000
.2289e+000
.7121e+000
.4584e+000
.4740e+000
.6965e-001
.5813e-001
.3879e-001
6*1.0000e-001

B R W dRFRE NN WO

iobin =

io_netcdf =

dtpout (
tprbeg (
dtbout (

(

1
1
1
tpbbeg (1

)
)
)
)
nfdout =

Send
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A9 Time Dependent Diffusion in Spherical Coordinates
(Section [4.4.2)

Sinput

nmax =
tmax =

1deos(1)
(1)
(1)
filses (1)
radcon (1
radcon (1
radcon (1
isw(16)
isw(96)

’

’

idelta =
isw(4)
nvregn
jmax

jmat (1)
jmn (1)
mx (1)
jznl (1)

jzn3 (1)

zonfcl (1)
zonfc3 (1)

10000
.1le-9
.001le-9
.e-16
.05
.05
.10
.05
.10
.e-13
.e-13

PR OOOOOoORr OO

O~ O |

3

3

= ’'eos.dat.uw.benchmark’
"eos.dat.uw.benchmark’
3.346e+03

3.346e+03

1.e-30

1
2
3

)
)
)
1
-9

26

200

200*1

= 200

= 99

= 99

= 0.15
-0.09

regmas (1)
regmsl (1)
regms3 (1)

73

= 200*1.

W Wwwwwwwww

869.6976
0.08119
869.604

200*1.e21
e2l
200%*1.
200%*1.
200*1.
200*1.
200%*0.
200*0.

PP OOOOoO

.9682e+002

.9462e+002

.9328e+002

.9199e+002

.9068e+002

.8933e+002

.8792e+002

.8642e+002

.8482e+002

.8311e+002
.8127e+002
.7929e+002
.7716e+002
.7485e+002
.7236e+002
.6966e+002
.6673e+002
.6357e+002
.6014e+002
.5642e+002
.5241e+002
.4806e+002
.4336e+002
.3829e+002
.3282e+002
.2692e+002
.2058e+002
.1377e+002
.0646e+002
.9865e+002
.9031e+002
.8143e+002
.7199e+002
.6201e+002

DD DNDDNDDNWWWWWWWWWWWWWWWWWWwWwWwWw
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.5148e+002
.4040e+002
.2881e+002
.1675e+002
.0423e+002
.9132e+002
.7809e+002
.6462e+002
.5100e+002
.3737e+002
.2380e+002
.1045e+002
.7445e+001
.4935e+001
.3041e+001
.1893e+001
.1607e+001
.2278e+001
.3962e+001
.6708e+001
.0515e+001
.5358e+001
.1175e+001
.8843e+000

tr2c(59) = 5.3760e+000
tr2c(60) 3.5315e+000
tr2c(61) 2.2266e+000
tr2c(62) 1.3420e+000
tr2c (63) 7.6974e-001
tr2c(64) 4.1819e-001
tr2c(65) 2.1402e-001
tr2c(66) = 1.0263e-001
tr2c(67) = 134*1.0000e-001
isw(66) =1

io(1) = 5*1000

iobin = 1000
io_netcdf = 100

dtpout (1) 1.0e-12
tprbeg(l) = 0.0e-9
dtbout (1) 0.5e-12
tpbbeg (1) = 0.0e-9

nfdout = 100000

Send
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(Section [4.4.3)

nfg = 1

1deos(1)
(1)
(1)
filses (1)
radcon (1
radcon (1
radcon (1
isw(16)
isw(96)

’

’

idelta =
isw(4)
nvregn
jmax

jmat (1)
jmn (1)
mx (1)
jznl (1)

jzn3 (1)

zonfcl (1)
zonfc3 (1)

10000
.1le-9
.001le-9
.e-16
.05
.05
.10
.05
.10
.e-13
.e-13

PR OOOOOoORr OO

O~ O |

3

3

= ’'eos.dat.uw.benchmark’
"eos.dat.uw.benchmark’
3.346e+03

3.346e+03

1.e-30

1
2
3

)
)
)
1
-9
26

200

200*1

= 200

= 99

= 99

= 0.1
-0.088

regmas (1)
regmsl (1)
regms3 (1)

75

= 200*1.

DD NDDNDDNDNDNDDND

Time Dependent Diffusion in Cylindrical Coordinates

13.0455
1.3045-3
13.0439

200*1.e21
e2l
200%*1.
200%*1.
200*1.
200*1.
200%*0.
200*0.1
.4740e+002
.4738e+002
.4736e+002
.4733e+002
.4731e+002
.4728e+002
.4726e+002
.4722e+002
.4719e+002
.4715e+002
.4711e+002
.4706e+002
.4701e+002
.4695e+002
.4689e+002
.4682e+002
.4675e+002
.4666e+002
.4657e+002
.4647e+002
.4636e+002
.4624e+002
.4611e+002
.4597e+002
.4581e+002
.4563e+002
.4544e+002
.4522e+002
.4499e+002
.4473e+002
.4445e+002
.4414e+002
.4380e+002
.4342e+002
.4301e+002

R O O O O
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.4256e+002 tr2c(75) = 1.0667e+002
.4206e+002 tr2c(76) 9.8055e+001
.4152e+002 tr2c(77) 8.9382e+001
.4092e+002 tr2c(78) 8.0733e+001
.4027e+002 tr2c(79) 7.2171e+001
.3955e+002 tr2c (80) 6.3796e+001
.3876e+002 tr2c(81) 5.5708e+001
.3790e+002 tr2c(82) 4.7990e+001
.3695e+002 tr2c(83) 4.0726e+001
.3591e+002 tr2c(84) 3.4003e+001
.3478e+002 tr2c(85) 2.7879e+001
.3353e+002 tr2c(86) 2.2412e+001
.3217e+002 tr2c(87) 1.7627e+001
.3069e+002 tr2c(88) 1.3533e+001
.2906e+002 tr2c(89) 1.0119e+001
.2729e+002 tr2c(90) = 7.3505e+000
.2536e+002 tr2c(91) = 5.1707e+000
.2325e+002 tr2c(92) 3.5122e+000
.2095e+002 tr2c(93) 2.2949e+000
.1845e+002 tr2c(94) 1.4367e+000
.1573e+002 tr2c(95) = 8.5867e-001
.1278e+002 tr2c(96) = 4.8725e-001
.0959e+002 tr2c(97) 2.6136e-001
.0612e+002 tr2c(98) 1.3167e-001
.0238e+002 tr2c(99) = 104*0.1000e+000
.9834e+002

.9399e+002 isw(66) =1

.8932e+002 io(l) = 5*1000
.8431e+002 iobin = 1000
.7895e+002 io_netcdf = 100
.7324e+002

.6716e+002 dtpout (1) = 1.0e-12
.6072e+002 tprbeg(l) = 0.0e-9
.5393e+002 dtbout (1) = 0.5e-12
.4678e+002 tpbbeg (1) = 0.0e-9
.3931e+002

.3152e+002 nfdout = 100000
.2346e+002

.1516e+002 Send
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A1l

Sinput

nmax = 500000
tmax = 3.0e-10
ta = 0.0
dtb = 1l.e-15
tscte = 0.05
tsctn = 0.05
tsctr = 0.10
tscv = 0.05
tscc = 0.10
dtmin = 1.e-15
dtmax = 1l.e-15
isw(9) =1
isw(35) = -1
isw(36) =
isw(37) =0
iradbc = 1

irad = 2

nrtang = 2

nfg = 1
tbc=0.025

filerh(1l)="SuOlson_radbc’

isw(6) =1

ideos (1) = 3
idopac(l) = 3
fileos(l) = ’'eos.dat.uw.benchmark’
radcon(1l,1)=11.547
radcon(1l,2)=11.547
radcon(1l,3)=11.547
ibench(2) =1
con(60) = 5.48792e-4
isw(1l6) = 1

isw(96) = -9

idelta = 1

isw(4) = 26

nvregn = 1

jmax = 200

Jmat (1) = 200*1
jmn (1) =1

jmx (1)
jznl (1
jzn3 (1

io(1l) =

dtpout
tprbeg
dtbout
tpbbeg
dtbout
tpbbeg
dtbout

nfdout =

Send

77

isw(66) =

Su and Olson Marshak Wave Problem (Section 5.1)

200

= 99
= 99

1

= 200*6.

= 200*1.

0.05
-0.05
1.0000e+1
5.0000e-2
9.9444e00

200*6.02e23
02e23
0000
0000
0000

0000

200*1.
200*1.

200*1.
202*1.
202*1.
202*1.

5*%1000

.0e-11
.e-11
.001le-12
.880e-12
.e-12
.890e-12
.001le-11
.880e-11
.e-11
.890e-11
.001le-10
.880e-10
.e-10
.890e-10

NEFENONMNENONENOOLR

100000



B BUCKY Resource Files

B.1 eos.dat.uw.benchmark

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPRPPPPPPPPPPPPPPPPPRPPPPPPPPPPPRPPPPPPPPPPPRPPD

* ok Kk Kk

* Kk Kk Kk Kk

* ok Kk Kk

* Kk Kk Kk Kk

* kKK Kk

* Kk Kk Kk Kk

* Kk Kk Kk Kk

* ok Kk Kk

* Kk Kk Kk Kk

* ok Kk Kk

* Kk Kk Kk Kk

EOS AND OPACITY TABLE

for
Benchmark

(The calculation is done on MM-DD-YY)

* ok Kk Kk Kk

* Kk kK Kk

Kok k KKk

* k k k%

Kok k KKk

* k k k%

* k k k%

Kok Kk KKk

* k k k%

* ok k Kk Kk

* k k k%

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWHWWWWWWWWWWTVWT VWV VWV VW VT VT VWV VWWVWT VWV VWV
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPRPPPPPPPPPPPPPRPPPPPPPPPPPPPPPPPPPPPPPPRPPRPP

atomic #s of gases:

relative fractions:
PR R R SRS ESEEEESEEEREEES

o R

KAKAKK KKK KKK KK XK KKK ** 0T (Temp (i) ,1i=1,
Kkkkkkkkkxkkkkkkxkk* pnp, (deni(i),izl,
KEKAKKFX KKK K I KR KA KRF*X rho0 (g/cm3)
2
1.0000E-01 1.0000E+05
2
1.0000E+18 1.0000E+23
0.0000E+00

KhkKkkhkhkhkkhkhkhhkhkhkx kK

EE R R R R nT,

EE R R R R R nD,

1
1.00E+00

mesh parameters for EoS
temperature (eV) ,

mesh parameters for opacity
(Temp (1) ,1=1,
(deni(i),1i=1,

KKK KKK K kK kK kkkkkkkxk Ngroup

density (cm-3)
nT)
nD)

nT)
nD)

2
1.0000E-01 1.0000E+05
2
1.0000E+18 1.0000E+23
1
hhkkkhkhkkhkhkkhkhkkhkhk*x group structure (eV)
1.000E-02 1.000E+06
kkkkkkkkhkkkkkkkkkkkx 7bar
1.0000000000E-05 1.0000000000E-05 1.0000000000E-05
kkkkhkkkkhkkkkkkkkkkkx Eint (J/9)
2.0000000000E-30 2.0000000000E-30 2.0000000000E-30
kkkkhkkhkkhkkkkkkkkkkkx dE/AT (J/g/eV)
2.0000000000E-30 2.0000000000E-30 2.0000000000E-30
kkkkhkkhkkhkkkkkkkkkkkx dE/dN
1.0000000000E-30 1.0000000000E-30 1.0000000000E-30
Kok ok Kok Kok ok ok Kok Kk Kok ok ok ok ok K Eion (J/g)
1.0000000000E-30 1.0000000000E-30 1.0000000000E-30
Kok ok Kok Kok Kok Kok Kk Kk ok ok Kk K Eele (J/g)
1.0000000000E-30 1.0000000000E-30 1.0000000000E-30
Kok ok Kok ok ok ok ok ok ok Kk ok ok ok ok ok ok ok dELi/dT (J/g/eV)
1.0000000000E-30 1.0000000000E-30 1.0000000000E-30
Kok ok ok ok Kok ok ok ok ok Kok ok ok ok ok ok ok ok dEe/dT (J/g/eV)
1.0000000000E-30 1.0000000000E-30 1.0000000000E-30
kkkkkkhkkhkkhkkkkkkkkk* Pion (dyne/cm**2)
1.0000000000E-30 1.0000000000E-30 1.0000000000E-30
kkkkhkkhkkhkkhkkkkkkkkk* Pele (dyne/cm**2)
1.0000000000E-30 1.0000000000E-30 1.0000000000E-30
kkkkhkkhkkhkkhkkkkkkkkk* dPi/dT (dyne/cm**2/eV)
1.0000000000E-30 1.0000000000E-30 1.0000000000E-30
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and group

B R

kkhkkhkkhkkhkhkhkhkhkxx*k

R R R R

kkkkhkkhkkhkhhkhkhkhkxkx*k

R R R R

kkkhkhkkhkkhkhkhkhkhkxkx*k

R R

R R R R

kkkkhkkhkkhkhkhkhkhkkx*k

kkkhkhkkhkhkkkhkhkhkhkx*k

*kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkx*x

.0000000000E-05

*kkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkhkkkkkx

.0000000000E-30

R

.0000000000E-30

*kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkk*x

.0000000000E-30

kkkkhkkhkkhkhhkhkhkhkkx*k

.0000000000E-30

kkkhkhkkhkkhkhhkhkhkhkkx*k

.0000000000E-30

kkkkhkkhkkhkhkhkhkhkhkkx*k

.0000000000E-30

kkkkhkkhkkhkhhkhkhkhkkx*k

.0000000000E-30

kkhkkhkkhkkhkkhkhkkhkkhkkhkkhkhkhkhkhkkkkkx*x

.0000000000E-30

*kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkhkhkkhkkkkkx*x

.0000000000E-30

kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkhkkkkkx*x

.0000000000E-30



Kok ok k ok ok Kk Kk Kk ok Kk Kk K dpe/dT (dyne/cm**2/eV) dok kKK kK kR KKk kK kKK kK
1.0000000000E-30 1.0000000000E-30 1.0000000000E-30 1.0000000000E-30
Kok ok ok ok ok Kk Kk ok ok ok Kk Kk Kk K Rosseland Mean Opacity (cm**2/g) kKK Kk k kR KKKk kKK kK
1.000E+00 1.000E+00 1.000E+00 1.000E+00
KA KkKKEFE KK XK KK R XK X% omisgion Planck Mean ODACity (CIM**2/q) %% &k ko &k &k ok ko &k ok
1.000E+00 1.000E+00 1.000E+00 1.000E+00
KKk KKK ERK AR KRR R A% ghsorption Planck Mean Opacity (CIM**2/g) * %% %kt ks ks xkx*
1.000E+00 1.000E+00 1.000E+00 1.000E+00
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B.2 benchmark radbc

#
#
#
#
#
#
#

S

Radiation drive for rad transport benchmarks

time (psec) T_rad (eV) T _bright_bc
0. 100.0 100.0
100000. 100.0 100.0
-1. -1. -1.

B.3 Uniform_extsource

#
#
#
#
#
#
#

S

H o3 FH FH o

External source for rad transport benchmarks

time (psec) T_rad (eV) T _bright_bc
0. 100.0 100.0
100000. 100.0 100.0
-1. -1. -1.

time (psec) T _rad (eV) T _bright_bc
0. 0.1 0.1
0.01000 1000.0 1000.0
100000. 1000.0 1000.0
-1. -1. -1.

B.5 SuOlson_extsource

#
#
#
#
#
#
#

S

External source for Su Olson non-equilibrium prblm

time (psec) T_rad (eV) T _bright_bc
0. 0.1 0.1
0.001 100.0 100.0
16.678 100.0 100.0
16.679 0.0 0.0

-1 -1. -1
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C Descriptions of BUCKY Namelist Variables

c ... TIME CONTROL PARAMETERS

c RS SRS S S S EE SRS S SRS SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

C o Parameter Descriptions ............... {} for default

c

C e nmax => maximum # Of TUN CYCLES . ittt ittt et e e e e et e e e e e e e e e e {0}

[ tmax => maximum simulation Lime .. ... ...t e e e e {0.}

C o ta => beginning simulation Lime . ... ...ttt ittt e e e e e {0.}

C e dtb => beginning simulation time SLeD . ...ttt ittt et e e e e e {l.e-12}
C e tscte => time step control - (delta Te) /T . ittt e e e e e e et e e {0.05}

C e tsctn => time step control - (delta Ti)/Ti ...ttt e e eeee {0.05}

C e tsctr => time step control - (delta Er) /Er ...ttt ettt et e e {0.1}

C et tscv  => time step control - (delta V) /V .ttt e e e e e e e e {0.05}

C e tscc => time step control — COUTaANL ... ittt ettt et et e e et et e e e e {0.05}

C i dtmin => minimum delta © ...ttt e e e e e e e e {0.1*dtb}
[ dtmax => maximum delta € ...t e e e e e e e e e e e e {0.01*tmax}
c ... RADIATION TRANSPORT PARAMETERS AND BOUNDARY CONDITIONS

c RS R R S S S S S EEE SR RS S ESEREEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEE]

C e Parameter Descriptions ............... {} for default

c

C e isw(9) => radiation boundary condition LypPe ... ...ttt et {0}

C e j=1 j=jmaxpl

[ =1; trans. trans.

C i = 2; refl. trans.

[ = 3; trans. refl.

[ not 1, 2, or 3 **x**not allowed****

c trrrrrrrit isw(35) => diffusion flux-limiter control .. ... ...ttt ittt {0}

[ = 0; SUM flux-limiter

0
C ot = 1; MAX flux-limiter
C i = 2; Larsen flux-limiter
3
0

Q
|

; Simplified Approximate Levermore-Pomraning flux-limiter

[ < 0; No flux-limiter (classical diffusion)

c ittt isw(36) => time-dependent diffusion control ... ...ttt e e e {0}
C e = 0; time-dependent diffusion (alpha is evaluated)

C e = 1; time-independent diffusion (alpha = 0)

c it dsw(37) => Boundary source type COnErol ...ttt e e e e {0}
C o = 0; Boundary source specified for radiation flowing into sample

C v = 1; Dirichlet boundary source (E is fixed on boundary)

c trrrrrrril isw(38) => External radiation source control . ... ... ... e {0}
[ = 0; no external radiation source

C o = 1; external radiation input at j = jext(*) in format:

[ timrbc, tradbc

C o = 2; external radiation input at j = jext(*) in format:

C et timrbc, tradbc, t_bright_bc

c 1t sreccon(j) => multiplier on external source term for zone J . ....viiinneeennnn.. {0.}
c tirrrrrrrl o ss2b(3j) => effective emission opacity for external sources

C et defined as a temperature source {cm™-1} ... ...t {1.}
c it ibench(3) => Control for benchmark problems . ....... ittt eeeneenennn {0}
C e = 0; no effect on the diffusion boundary conditions

C v = 1; force Dirichlet BC at j=jmax with a value of B(T')

[ for T’=con(74) *T (radbc)

C ot iradbc => radiation SOULCE LM . .. ..ttt ittt ettt ettt et et e e e {0}
C e = 0; no radiation source

C o = 1; radiation incident at j = 1 in format:

[ timrbc, tradbc

C o = 2; radiation incident at j = 1 in format:

C o timrbc, tradbc, t_bright_bc

C e = 3; time and frequency dependent radiation bc at j = 1

C o *note: any value < 0 puts radiation bc at j = jmax +1

C e irad => radiation transport mModel . ... ...ttt e e e e e {2}
[ = 2; multi-group diffusion

C e = 3; multi-group/multi-angle short characteristics

C ot nrtang => # of angles in MG MA rt model (2 OFr 5) ...ttt {2}
C et nfg => # Of freqUeNCY groUDS v ittt ittt et e e e e e e e e e e e e e e e e e e {0}



C o tbc => initial temperature boundary condition . ..........i ittt {0.}
C e filerh(l) => file containing time-dependant radiation BC specs

C o con(4) => avoid divide by zero in flux-limiter ............i it emennnnnenn {l.e-10}
[ con(23) => emission coefficient . ... ... e e e {6.33e04}
c ittt con(72) => n factor in the Larsen flux limiter ............iuiiniiniinnenennnnn.. {2.}
c ittt con(73) => reflectivity (albedo) for reflective BC ...ttt ittt e {1.}
C o con(74) => multiplier for flux/group input in freg-dep BC ..........ciiuiieenunn.. {1.}
C e con(75) => multiplier for radiation temperature BC .........iiiimreeennnneenen. {1.}
c >>>>>>>>>> regroup_visrad_inc_flux_data => Boolean flag to indicate a

C et regrouping of the f-dep bc............ {.false.}
c ... HYDRODYNAMICS PARAMETERS AND BOUNDARY CONDITIONS

c RS R RS S S S EEEE SRR EE S ESEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEE]

C e Parameter Descriptions ............... {} for default

c

C o 1sW(6) => hydro sSWitCh ...t e e e e e e {0}
C e = 0; hydro motion is computed

[ = 1; no hydro motion

C e isw(7) => hydro boundary CoOnditions . ...ttt ettt e ettt e e {0}
C i = 0; both boundaries fixed

C o = 1; allow free expansion of both boundaries

C e = 2; allow free expansion of outer boundary

C e 1sw(13) => quiet start OPLIOM vttt ittt et e e e e e e e e e e e e {0}
C e = 0; quiet start off

C et = 1; quiet start on, zones can only move if

C e T > con(19) for it and the surrounding zones.

c rrrrrrrrnd = 2; quiet start on, inner zone boundary can only

C i move if T > con(1l9) in that zone.

C e con(19) => quiet start temperature (EV) . ... ...ttt et e e et e e e {0.15}
c ... EQUATION OF STATE AND OPACITY PARAMETERS

c RS R R S S S S S EEE SRR EE S ESEREEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEE]

C e Parameter Descriptions ............... {} for default

C o isw(12) => ideal gas OPL IO .ttt i ittt i e e e e e e e e {0}
C e = 0; do not use ideal gas

C o = 1; use ideal gas (Z_bar = 0)

C i = 2; use ideal gas (Z_bar = 1)

c trrrrrrrny = 3; use ideal gas {Z_bar = EOSOPA table look-up}

C et con(5) => constant value for log(lambda) .........u ittt teeeannns {0.}
C e = 1 for ideal gas

C o 1deos (1) => EOS fale LyDe & vt ittt it ettt e e e e et e e e e e e e e e e e e e e e {-1}
C e = 0; Uw/wWp file format

C ot = 1; UW/IONMIX file format

[ = 2; SESAME file format

[ = 3; UW/EOSOPA new file format

C e < 0; ideal gas

C e idopac(l) => Opacity file LyDe ..ttt e e e e e e e e e e e e e e e e e e {-1}
[ = 0; UW/WP file format

[ = 1; UW/IONMIX file format

C i = 2; UW/EOSOPA old file format

[ 3; UW/EOSOPA new file format

C e < 0; ideal gas

c it ibench(2) => Control for benchmark problems to set Cv = aT™3 ...ttt {0}
C e = 0; read heat capacity from table

C e = 1; set heat capacity to Cv=aT”3

c tirrrrrrit con(60) => Value for a in Cv = aTl 3 ..ttt ittt e e e e e e e e e e e {1}
C i fileos(1l) => file(s) containing the EOSOPA data...........ouuiiuiiinnenenenennnn {none}
C e filses(l) => file(s) containing the SESAME data. ... ..ottt eeennneenennns {none}
C et radcon(i,1l) => opacity multipier for the rosseland absorption

[ in the 1/th material. ... ... e {1}
C e radcon(i,2) => opacity multipier for the planck absorption

C ot in the 1/th material. ... ... e e {1}
C e radcon(i,3) => opacity multipier for the planck emission

[ in the 1/th material. ... ...t e e {1}
C e isw(16) => negative temperature CONtrOl. ... ...t iii ettt et eeee e {0}
C i = 0; if T < 0, then stop calculation
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S>S>>>>>>>>
SS5>>>>>>>
SS>>>>>>>>

SSS>>>>>>>

= 1; if T < 0, then fix it and go on, but notify user
isw(96) => control for eos grid boundary extrapolation
= -9; do not stop if off UW EOS grid, do extrapolation
regroup_eosopa_mg_opacs => Boolean flag for indicating a regroup
num_rad_group_sections => number of different regroup sections
num_groups_in_section(1l)=> number of rad groups in each section
*note: total number specified overides the specified nfg!!!
rad_group_section_energy(1l)=> the group bounds for each section
*note: you must specify 1 more boundary than number of sections
t_cutoff_ideal_gas => cut-off temperature before which to use ideal gas EOS....

LAGRANGIAN ZONING PARAMETERS

EE R R R R

Parameter Descriptions ............... {} for default

idelta => geometry SpeCification ... ...ttt e e e e

= 1; 1-D planar

= 2; 1-D cylindrical

= 3; 1-D spherical
isw(4) => automatic zoning Model . .. .. ...ttt e e e e

= 0; manual zoning

= 1; ZONERP

= 2-9; ZONER2

= 10-15; ZONERC

= 20-25; ZONER3

= 26-30; ZONER4
nvregn => number of regions in the spatial mesh ............0itiitinnnenn..
jmax => total number of zones in the spatial mesh ............. ... . ...
jmat (i) => material assignment to each zone "#zones*mat#" in region i ........
jmn (1) => zone number of first zone in region 1 ........ ...ttt eeennnn.
Jmx (1) => zone number of last zone in region 1 ..........iiiiiiiiiaan
jznl (i) => in ZONER4 -> number of zones in first sub-region in region i.......
jzn3 (i) => in ZONER4 -> number of zones in third sub-region in region i.......
zonfcl (i)=> in ZONER4 -> mass multiplier in first sub-redion in region 1i.......
zonfc3 (i)=> in ZONER4 -> mass multiplier in third sub-redion in region i.......
regmas (i)=> total mass in region i1 (in g/cm”2 for planar, ...........ooeueeeene..

g/cm for cylindrical, and g for spherical)
in ZONER4 -> total mass in first sub-region in region i
in ZONER4 -> total mass in third sub-region in region i

PLASMA/TARGET PARAMETERS

khkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdddrdrdrrFrrrrrxrxxxxx%x

Parameter Descriptions {} for default

isw(3) => Plasma Model . . ... e e e e e e e e e e

= 1; 1-T model (Te=Ti)

= 2; 2-T model (Te .ne. Ti)

= 3; simultaneous solution of TR and pl.E (1-T)
mxtiter => number of iterations in the plasma temperature solution ...........
con(84) => convergence criteria for ion (plasma) temperature solution ........
con(85) => convergence criteria for electron temperature solution ............
dn2b(i) => ion number density of zones in region i "#zones*density" ..........
do2b (i) => number density of non-DT species in region i "#zones*density"......
dd2b(i) => number density of D species in region i "#zones*density" ..........
dt2b(i) => number density of T species in region i "#zones*density" ..........
atwb (i) => atomic weight of species in region i "#zones*A" .......... ... ...,
atob (i) => atomic weight of non-DT species in region i "#zones*A" ............
atnb(i) => atomic number of species in region i "#zones*Z" ............. ...
zo2b (i) => atomic number of non-DT species in region 1 "#zones*Z" ............

OUTPUT PARAMETERS

khkkhkkhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdddrdrdrdFrrrrrxrxrxxx*x%x

Parameter Descriptions {} for default

isw(66) => output control

{0.3}



= 0; based on number of hydro cycles
= 1; based on simulation time

io (1) => output controller for text fi1le; ... .ttt et e e

i < 0; none

i 1; hydro quantities

i = 2; energy conservation

i 3; number densities

i = 4; short edit

i = 5; multi-frequency radiation

i = 6; fusion burn

i = 9; CRE post-processing
iobin => binary output frequency (cyclesS/dump) .. ..... e emmnneeeennnns
nfdout => number of binary outputs per freg-dep binary output ...............
dtpout (i) => time between each print to output file ........ ...t
tprbeg(i)=> time to begin i’th AtpPoUL .. ...ttt e e e e e e e e
dtbout (i)=> time between each write to binary file ....... ...
tpbbeg (i)=> time to begin i’th Atbout . ..... ...ttt e e eeenn
tpfbeg(i)=> time to begin i’th freg-dep binary outputs ................ieiinn..
tpfend(i)=> time to end i’th freg-dep binary oULPULS . ..... ..t eenenennn.

****% freg-dep dumps are made at the same frequency
**** g5 the binary write
**** g > tpbbeg(j), but tpfend(i) is < tpbbeg(j+1)
tpnbeg(i)=> time to begin i’th dtnout
dtnout (i1)=> time between each write to netcdf file .......... .. .. .. ...
isw(5) => frequency of tabulation of overpressure and heat flux .............

at the outer boundary

(dtbout (j)) where tpfbeg(i)

io_netcdf => netcdf (exodus) format output frequency (cycles/dump) .............

84



	BUCKY_vs_Transport.pdf
	1 Introduction
	2 The Transport Equation
	2.1 Diffusion and Flux-Limited Diffusion
	2.1.1 Diffusion Boundary Conditions
	2.1.2 Diffusion Finite Difference Equations

	2.2 Multi-Angle Short Characteristics
	2.2.1 Short-Characteristics Finite Difference Equations


	3 Analytic Solutions for Transport and Diffusion
	3.1 Source and Vacuum Boundaries with No External Sources
	3.2 Vacuum Boundaries With a Linear External Source
	3.3 An External Source with a Source Boundary Condition
	3.4 A Boundary Source and an Albedo Boundary Condition

	4 Solutions Specific to the Diffusion Equation
	4.1 Steady-State Diffusion in Cylindrical Coordinates
	4.2 Steady-State Diffusion in Spherical Coordinates
	4.3 Flux-Limiters
	4.4 Time Dependent Solutions
	4.4.1 Planar Geometry
	4.4.2 Spherical Geometry
	4.4.3 Cylindrical Geometry


	5 Radiatively Heated Plasmas
	5.1 The Marshak Wave Problem
	5.2 Non-Equilibrium Transport in an Infinite Medium

	A BUCKY Namelist Files
	A.1 Source and Vacuum Boundaries With No External Sources (Section 3.1)
	A.2 Vacuum Boudaries With a Linear External Source (Section 3.2)
	A.3 An External Source With a Source Boundary Condition (Section 3.3)
	A.4 A Boundary Source and an Albedo Boundary Condition (Section 3.4)
	A.5 Steady-State Diffusion in Cylindrical Coordinates (Section 4.1)
	A.6 Steady-State Diffusion in Spherical Coordinates (Section 4.2)
	A.7 Flux-Limiters (Section 4.3)
	A.7.1 Dirichlet Boundary Conditions: SUM-Limiter
	A.7.2 Dirichlet Boundary Conditions: MAX-Limiter
	A.7.3 Dirichlet Boundary Conditions: Larsen-Limiter
	A.7.4 Dirichlet Boundary Conditions: Levermore-Pomraning-Limiter
	A.7.5 Source and Vacuum Boundary Conditions: SUM-Limiter

	A.8 Time Dependent Diffusion in Planar Coordinates  (Section 4.4.1)
	A.9 Time Dependent Diffusion in Spherical Coordinates  (Section 4.4.2)
	A.10 Time Dependent Diffusion in Cylindrical Coordinates  (Section 4.4.3)
	A.11 Su and Olson Marshak Wave Problem (Section 5.1)

	B BUCKY Resource Files
	B.1 eos.dat.uw.benchmark
	B.2 benchmark_radbc
	B.3 Uniform_extsource
	B.4 SuOlson_radbc
	B.5 SuOlson_extsource

	C Descriptions of BUCKY Namelist Variables




