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Abstract 

A two-dimensional multigroup diffusion equation for particle transport has been 

solved using Kershaw’s differencing scheme. For the charged particle mean free path and 

the stopping power, we apply the form that includes the effect of large-angle scattering 

and also the effect of electron degeneracy in the Coulomb logarithm. The differencing 

scheme is first tested using a simple � source problem having an analytical solution. Then 

we compare the energy deposition to ions and electrons with Corman’s model. Finally, 

the two-dimensional multigroup diffusion module in the computer code DRACO for 

charged particle transport is benchmarked by performing realistic thermonuclear burns. 

We reproduce results for three cases from the paper by G. S. Fraley, E. J. Linnebur, R. J. 

Mason, and R. L. Morse (The Physics of Fluids, Vol. 17, 474, 1974), that is, volume 

ignition with and without a fixed boundary, and central spark ignition and propagating 

burn (however, under the framework of a two-dimensional scheme). Good agreement is 

achieved.



1. Introduction 

Bootstrap heating by deposition of charged particle energy produced in the fusion reaction (especially, 
alpha particles in the case of deuterium-tritium (DT) fuel) back to the fusion plasma is important for burn 
ignition in order to achieve thermonuclear energy [1,2]. The simplest approach to the energy deposition is 
based on the approximation of local energy release. This approach assumes that the particles have a very 
short mean free path so that they are stopped as soon as they are generated. For thermonuclear burn, this 
condition is not fulfilled since the mean free path of fast charged particles is comparable to the size of the 
target under compression. Therefore, the nonlocal characteristic of thermonuclear energy release should be 
taken into account. Two methods are often used for transport of the charged particles. Under the condition 
that the mean free path is shorter than the hydrodynamic scale length, the diffusion approximation applies. 
With the energy variable discretized by groups, a multigroup diffusion equation is usually solved with flux 
limit modification. The alternative Monte Carlo method provides a more accurate approach by tracking the 
time and spatial evolution of the charged particle [3]. Unfortunately, this approach is computationally 
expensive, especially for multidimensional simulations. In this work, we use the multigroup diffusion 
method. 

There are several different schemes for differencing the diffusion operator in the diffusion equation on the 
quadrilateral meshes associated with Lagrangian hydrodynamics codes, such as the cell-centered variational 
and finite-difference methods [4,5,6] based on a smooth mapping between the logical mesh and the spatial 
coordinates, and finite element methods that do not require smooth mapping but need the unknowns at the 
cell corners. The finite element methods [7] pose considerably more difficulty in coupling with standard 
Lagrangian hydrodynamic codes than the finite differencing method. In this work, Kershaw’s differencing 
scheme [4] is used. In contrast to the differencing scheme proposed by J. E. Morel, et al. [5], the diffusion 
matrix in Kershaw’s scheme is symmetric, which costs much less computing time than solving the 
asymmetric matrix, as shown in Ref. 5. Also, the scheme is equivalent to the standard five-point cell-
centered scheme on an orthogonal mesh and is energy conserved. However, Morel’s scheme is more 
accurate for problems with highly skewed meshes than Kershaw’s scheme. 

The main purpose of this paper is to test the correctness of our Kershaw’s scheme implementation within 
the framework of two-dimensional geometry, to illustrate energy deposition of alpha particles to both ions 
and electrons, and to benchmark the charged particle transport module in the computer code DRACO [8] by 
simulating the ICF central ignition and propagating burns in Ref. 2. 

This paper is organized as follows. In Section 2, we present the formulas for stopping power and mean free 
path of charged particles that are required by solving the diffusion equation. In Section 3, we give the 
multigroup diffusion equation and Kershaw’s differencing scheme. In Section 4, we present the results for 
the simple �  source problem, Corman’s model, and also the realistic ignition burn problem. The 2-D effect 
is examined by adding a perturbation layer in the target configuration. 

2. Stopping power for charged particles 

      The stopping of charged particles from fusion reactions is a mechanism whereby charged particles 
deposit their kinetic energy back into the pellet so that the ignition burn propagates into the outer main fuel 



 

layer [2]. The stopping power measures capability of the charged particles to penetrate through the hot 
dense plasma. Two major approaches are applied for the theoretical calculation of the stopping power. One 
is based on the Bohr theory which is dependent on the impact parameter between the trajectory particle and 
the target atom in the classical mechanic limit and the Bethe-Bloch equation which is dependent on 
momentum transfer from the particle to the target in the quantum mechanical limit. The other approach is 
based on the Fokker-Planck equation to evaluate the collision term of the Boltzmann equation. In our work, 
we use the formulas derived by C. Li and R. D. Petrasso [9], which properly treats the effects of large-angle 
scattering as well as small-angle collisions by retaining the third-order term in the Taylor expansion of the 
collision operator in the Fokker-Planck equation.      

There are two required quantities to solve the multigroup diffusion equation [10], as shown in the next 
section. One is the particle mean free path and the other is the particle relaxation time from group g+1 to the 
next lower group g. The mean free path relates to the 90 degree deflection rate given by 
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where the modified form of the deflection rate which includes the large-angle scattering is used,  is the 
trajectory particle energy, e (e ) is the trajectory (field) particle charge, ( ) is the trajectory (field) 

particle mass), n  is the number density of the field particles, 
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uses the formula by S. Skupsky [11],  
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which is obtained from the random-phase-approximation form of the quantum-mechanical dielectric 
function. � is the standard Coulomb logarithm ( ). The effect of electron degeneracy � is 

calculated through the relation of the Fermi integral and the electron number density, 
s /12 DkmT ��
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The relaxation time g�  from the upper group g+1 to lower group g is defined by 
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where � is the trajectory energy loss rate interacting with electrons (ions),  )( i
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where �  is the plasma frequency and  pf

)ln/()(/)( btftf mmmmG ������� ����� .            (6) 

Note in the case of alpha particle and electron interactions, G  approaches 2/3)(� 2/3x  because of the mass 

ratio ( ) and 410�

� 1��x . Thus, v  is independent of the trajectory particle energy . Using this 

observation, the above relaxation time integral can be analytically integrated:  
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the relaxation time g�  can be calculated. The results of stopping power and macroscopic cross section will 

be given in Section 4.2. 

3. Multigroup diffusion equation and numerical scheme 

The multigroup equation for the charged particle diffusion [10] can be written as 
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The number of particles in group g is defined as . �
�
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E Eg dEtrNN � g�  is the relaxation time from 

group g+1 to the next lower group g, as discussed in the previous section. The equation has a clear meaning, 
i.e., the change rate of the particle number in group g is equal to the summation of the rates at which 
particles leave the differencing volume ( ) and group g (gg ND ��� ggN �/ ), and a source term 

( 11 /
�� ggN � ) that represents the rate at which particles enter group g from an upper energy group g+1.  

is the flux limited diffusion coefficient. The flux limiter originates from the approximation that the diffusion 
theory makes to close the infinite chained equations when dealing with the moment of the transport 
equation. By omitting the gradient of the flux, the closure equation is in the form of Fick’s law. The closure 
equation has nonphysical behavior in the optically thin limit, that is, it has an infinite propagation velocity. 
To correct this problem, the flux limiter is always introduced. Several flux limiter forms exist [12]. For 
example, the “sum” flux limiter takes the form 
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The average diffusion direction �  representing the deviation from an isotropic distribution is 
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ggg NN ����

�� �� , 

where is the particle mean free path with velocity g� tggg mEE /)( 1���v  as defined in the previous 

section. Another flux limiter form used in Ref. 13 is proposed by Levermore and Pomraning (LP) [13]. In 
Ref. 13, the authors argue that the LP diffusion model is better than the “sum” form in terms of the 
evaluation of the ignition condition and the gain. In our work, we also use the LP flux limiter: 
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The energy deposition to electrons (ions) is calculated using the expression 
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The above equations completely describe the multigroup diffusion transport. The next issue is to solve the 
equation numerically. There are several different schemes for solving the above diffusion equation on two-
dimension quadrilateral meshes. For instance, Kershaw has developed a nine-point cell-centered 
differencing scheme based on the variational method. Morel and his colleagues have developed a new cell-
centered diffusion scheme which is more accurate than Kershaw’s scheme when the mesh is significantly 
skewed. However, Morel’s scheme is more costly since it uses the cell-edge unknown in addition to the 
cell-center unknowns and the associated diffusion matrix is asymmetric. In this work, we use Kershaw’s 
scheme. For clarity and completeness, we rewrite the matrix of Kershaw’s diffusion operator and the 
building blocks in a way that it is easier for implementation. 

The basic coordinates are denoted by R and Z to conform to the cylindrical symmetry notation. In the case 
of planar geometry, R corresponds to Y and Z corresponds to X. Each quadrilateral zone is labeled by the 
smallest (K,L) pair in contrast to the largest (K,L) pair in Ref. 4, as shown in Fig. 1.  

 

 

Figure 1. Labeling of the quadrilateral zone. 
 

The zone corners are indexed by integers and the zone edge center is indexed by half integers. Following 
Kershaw’s paper, the diagonal element and the four upper diagonal elements are  
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J is the Jacobian of the transformation from physical mesh (R,Z) to logical mesh (K,L), and it is
as 
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Substituting the diffusion matrix A  into the diffusion equation and multiplying by the volume V , we have 
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Using implicit time differencing and defining � , the actual equation that is solved is a 

linear equation defined by 
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where matrix )/( 11
g

nn VAtVA �
��

���� . 

The resulting matrix is a nine-point-non-zero banded matrix, which can be solved by using either a direct 
solver or an iterative solver. For problems with small mesh size, the direct Gaussian eliminating method is 
enough. However, for a typical ICF simulation, the mesh size easily goes up to 100 by 100 (2-D cases). 
Under such circumstances, the iterative solver or parallel linear system solver should be used. In our work, 
the PETSC parallel solver library is employed as an addition to the direct solver and the ICCG iterative 
solver. 

4. Numerical simulation results 

4.1. Testing of the scheme 

We first test the correctness and the accuracy of the code. We consider a simple 1-D wave propagation 
problem with a heat source Q at the origin r=0 and time t=0. The diffusion equation in this case takes the 
form  

)(1 2
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rrt
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The solution of this problem with linear heat conduction (constant ) is well known: D
)]4/(exp[)4/( 22/3 DtrDtQN �� � . The one-dimensional spherical geometry can be simulated on a 

two-dimensional cylindrical mesh by degenerating the left-side edge to the origin and letting the right-side 
edge be the spherical surface and also imposing reflective boundary conditions for the top and bottom edges 
of the mesh. The comparison between the calculation and the exact solution is shown in Fig. 2.  
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Figure 2. Comparison of the numerical simulation with the analytical solution for the �  source problem. 

 

We can see that the calculation agrees with the exact solution very well. Having this in mind, we move 
forward to solve the diffusion equation for charged particle transport by plugging in the coefficients of 
stopping power and mean free path. 

4.2. Stopping power and charged particle diffusion 

The macroscopic cross section vs. energy of the injected � particle is shown in Fig. 3 at a plasma density of 
3000 g/cm3. For ions, the cross section does not change much as a function of plasma temperature but this is 
not the case for electrons. As indicated in Eq. 1, the effect of temperature mainly comes from the Coulomb 
logarithm and the velocity ratio. The variation of the Coulomb logarithm for electrons is larger than the 
variation for ions when the temperature changes. Another quantity that measures the particle stopping 
power is the areal density

�
�� , which is calculated as 
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Figure 4 displays this result as a function of plasma temperature for several different densities. To illustrate 
the effect of large-angle scattering in stopping power, we present the result in Fig. 5. We found that there is 
about up to 3.1% decrease in 

�
�� contributing from pure electrons, and an almost constant 5.8% decrease 

contributing from pure ions, and up to a 4.7% decrease contributing from both electrons and ions. 

To the best of our knowledge, there is no published report for two-dimensional charged particle diffusion 
that we can compare with. Therefore, we choose the 1-D spherical test problem used in Ref. 10. Again, we 
use the same method to simulate 1-D spherical geometry with the 2-D cylindrical mesh. The case studied is 
3.5 MeV alpha particles injected isotropically in a 50 keV equimolar deuterium and tritium plasma. 
Following the same notation in Ref. 10, we show the time-dependent total energy deposition and its 
partition between electrons and ions for different groups in Fig. 6. The energy deposition to electrons 
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Figure 3. The macroscopic cross section vs. energy of the injected � particle.  

 

 

Figure 4. 
�

��  as a function of plasma temperature for several different densities. 
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Figure 5. 
�

�� for pure electron stopping, pure ion stopping and both electrons and ions. The dashed lines 
represent the results without the large-scattering effect in the stopping power calculation. 

 

 

Figure 6. Energy deposition and its partitioning to electrons and ions for 3.5 MeV � particle injected into a 
50 keV DT plasma.
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dominates before the time ratio 0.2. After that, the energy deposition to ions surpasses the deposition to 
electrons. We can see that the ratio of the energy deposition to ions and electrons is 66/34, which agrees 
with the result in Table 1 from Ref. 9 very well.  

4.3. Ignition and burn simulations 

In previous sections, we first test Kershaw’s scheme implementation for the two-dimensional cylindrical 
geometry by comparing the numerical result with the analytic solution for a simple � source problem, then 
we apply the stopping power and the absorption cross section to the diffusion equation to study the time and 
spatial deposition of the energetic alpha particles to both ions and electrons. In this section, we perform 
realistic ignition and burn simulations one step further. We have implemented the above charged particle 
diffusion model in the computer code DRACO [8], which is an Arbitrary Lagrangian-Eulerian code 
designed to run in multidimensional geometry. It includes all kinds of ICF physics such as energy exchange 
among the fields, refractive ray tracing, classical ion and electron conductivity, multigroup radiation 
diffusion, and nonlocal alpha particle diffusion energy deposition. Although the code is capable of 
simulating the growing instability in multidimensional geometry, we instead use the code to simulate the 
one-dimensional problem but under the two-dimensional scheme using the same technique as above, since 
the purpose of this work is to verify the correctness of the implementation of Kershaw’s scheme and also to 
study the particle energy deposition. 

Three thermonuclear burn cases have been studied in Ref. 2.  The first one assumes that the uniformly 
burning sphere has an artificially fixed boundary which means an infinite confinement time, and initially, T 
= 3 keV, � = 3000 g/cm3, and R = 4.3x10-4 cm. Our stopping power calculation gives 

�
�� = 0.256, and 

thus  = 0.2. Therefore, the fusion generated alpha particles are effectively recaptured. The time 

dependence of the cell-averaged ion and electron temperature is shown in Fig. 7. The ion temperature rises 
up to 100 keV by t = 12 ps while the electron temperature rises up to 70 keV. The energy loss through 
radiation begins to cool the burn after t = 12 ps and eventually quenches the burn. In the figure, we also plot 
the results from Ref. 10. We can see they agree very well.  

R/
�
�

Instead of assuming a fixed boundary condition, the second case study assumes a free boundary, which 
allows disassembly of the sphere. The same initial condition as above is used except T = 20 keV initially. 
The spatial ion temperature distribution with time evolution is given in Fig. 8. The sphere is heated almost 
uniformly up to 35 keV and then the temperature decreases gradually on the edges. At t = 1.31 ps, the ion 
temperature at the center is about 52 keV, and the sphere expands to double size of the radius. The sphere 
cools down after t = 1.31 ps and expansion terminates the burn at about t = 4 ps. The fuel burns up to 18%. 

The third case is the central ignition and propagating burn. In order to improve the gain factor, the concept 
of central spark ignition and propagation burn, as an alternative to volume ignition, is investigated by many 
authors.  For example, a 5.2-fold multiplication in the gain factor is achieved in Ref. 2. 91% of the yield of 
the volume ignition case is released by investing 18% of its energy with central ignition. We use the same 
configuration as in Ref. 2. The sphere is initially uniform at �  = 6000 g/cm3 and R = 7.4 cm. The inner part 
of the sphere has a temperature of 20 keV with a radius of 3.4 cm. It contains 10% of the total mass. The 
temperature of the outer layer of the sphere is at 1 keV initially. Evolution of the density and ion 
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Figure 7.   Time-dependence of the cell-averaged ion and electron temperature for volume ignition with 
fixed boundary for Fraley’s [2] test case 1. 

 

 

Figure 8.   The spatial ion temperature distribution with time evolution for the volume ignition with free 
expansive boundary for Fraley’s [2] test case 2. 
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temperature is shown in Fig. 9 and Fig. 10, respectively. The density curve at t = 0.3 ps depicts the process 
that the outer region is compressed by the inner expansion caused by the center bootstrap heating, and 
generates the wave-like structure. The central expansion pushes the fuel mass to the outer region, and then 
the outer region burns to high temperature by 1.2 ps while the center temperature decreases because of high 
depletion. The outer region expansion re-implodes the center at t = 1.6 ps and pushes the center temperature 
up to 175 keV. Then, the density and temperature decrease by sphere expansion and finally the burn is 
quenched with the fuel burning up to 40%.  The above pictures agree with those in Ref. 2 very well. Finally, 
the 2-D effect is examined by putting a perturbation layer in the middle of the sphere. The grid setup (60 by 
60) and the ion temperature contour for simulation time at 2 ps is shown in Fig. 11(a) and Fig. 11(b), 
respectively. Figure 11(b) shows that the perturbation in the middle is pushed to the wavefront and also 
amplified. The effect on the cell average ion temperature is given in Fig. 12. We can see that the 
perturbation seems to have little effect on the peak time (about 1.4 ps), however, the average ion 
temperature under perturbation is increased by 12%. 

5. Summary 

We have solved the two-dimensional multigroup diffusion equation for charged particle transport in 
Kershaw’s scheme. The code is first tested against a simple � source transport which has an analytical 
solution under the framework of the two-dimensional geometry. Then the equation is solved with actual 
diffusion coefficients. For stopping power and mean free path, we apply the form with the large-scattering 
modification. Comparing with 

�
��

�

results calculated from the classical formulas without the large-
scattering effect, we found that �� for pure electrons, pure ions and the cumulative effects of electrons 

and ions with the large-scattering effect is about 3.1%, 5.8%, and 4.7% lower, respectively.  

We have installed this model in the computer code DRACO, which is an ALE multidimensional code with 
many ICF physics. We have carried out simulations of the thermonuclear burn in DT microspheres, 
emphasizing the bootstrap heating and central spark ignition and propagating burn. The simulations include 
multigroup radiation transport, thermal transport and coupling for electrons and ions. We compare our 2-D-
for-1-D results for all study cases with Ref. 2. Good agreement is found for each case in terms of the 
heating rate, time and spatial mass and ion temperature distribution.  Running the simulation in the full 2-D 
calculation shows an increase of 12% of the average ion temperature under the perturbation configuration. 
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Figure 9.  Evolution of the spatial density for central spark ignition and propagating burn for Fraley’s [2]  
test case 3. 

 

Figure 10.  Evolution of the spatial ion temperature for the central spark ignition and propagating burn for 
Fraley’s [2] test case 3. 
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Figure 11.  (a) Perturbation mesh with size of 60 by 60.  (b) The spatial ion temperature with a perturbation 
in the middle of the sphere at time 2 ps. 
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Figure 12.  Comparison of the average ion temperature for the target configuration with and without 
perturbation. 
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