
•

W I S C O N SI N

•

F
U

S
IO

N
•

TECHNOLOGY
• IN
S

T
IT

U
T

E

FUSION TECHNOLOGY INSTITUTE

UNIVERSITY OF WISCONSIN

MADISON WISCONSIN

High Performance Computation and Database
of Radiative Properties with an Interface for

ICF Applications

Jiankui Yuan

December 2001

UWFDM-1164

HIGH PERFORMANCE COMPUTATION AND DATABASE OF

RADIATIVE PROPERTIES WITH AN INTERFACE

FOR ICF APPLICATIONS

by

JIANKUI YUAN

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

(Nuclear Engineering and Engineering Physics)

at the

UNIVERSITY OF WISCONSIN – MADISON

2001

 1

Chapter 1

Introduction

This thesis introduces the creation and use of an object-oriented relational database

containing radiative properties of hot dense plasmas in radiation hydrodynamics

calculations to simulate laser fusion experiments and in spectroscopic analysis of laser

fusion experiments. Atomic physics computations are done in a distributed environment.

Technologies such as MPI, CORBA and EJB are involved. The Oracle 8i object oriented

relational database management system is used to serve the data and Java technology is

used to construct a portal for the plasma physics user to access and use the data. This

supports dense plasma physics research in the Fusion Technology Institute (FTI) at the

University of Wisconsin and other organizations if they so desire.

The layout of the thesis is as follows: In Chapter 1, we start with the discussion

of difficulties in large-scale atomic data calculations and the goals of the thesis. In

Section 1.2, we give a brief overview of various atomic models in hot dense plasmas. In

Section 1.3, we introduce high performance computing technologies using parallel

computing infrastructure such as MPI, OpenMP, and PVM, which are usually adopted in

 2

scientific computing environment, and distributed object computing such as CORBA,

EJB, which are commonly used in the commercial systems.

In Chapter 2, we present more details of the information technologies that are

used in the thesis. Starting with the comparison of parallel and distributed computing,

the description of the architectures and main components of the two most popular

distributed object-oriented computing frameworks CORBA and EJB are then provided.

Several aspects of Java technology such as thread, networking and JDBC are also

touched. Finally, the Oracle DBMS, which serves as the database manager, is discussed.

Chapter 3 covers the physics underlying the various atomic models used in the

thesis. First, the calculation of atomic structure in the non-relativistic theory is

discussed. From the Hamiltonian operator to the antisymmetrization of the electron

waves and to the Slater integrals and the energy matrix, we describe the conventional

ways of treating atomic structure under perturbation theory. Then, many atomic

processes are discussed and some formulas used in the program are provided. In Section

3.2, we give a description of the plasma models and various rate coefficients that are

used in the current opacity NLTE model. In the following section, the RSSOPA model

based on the UTA method is discussed.

In Chapter 4, we discuss the implementation of the atomic data distributed

computing system. First, we verify the accuracy of ATBASE codes and the RSSUTA

model. Then we demonstrate the importance of JJ coupling by studying the transition

spectra patterns and comparing a Nb spectrum with experiment. The speed up of our

 3

parallel implementation of the RSSUTA code is also presented. Finally, we describe the

database and its graphic user interface.

In Chapter 5, we come to the conclusions. A User’s Manual is also given in the

Appendix.

1.1 Atomic Database Using Distributed Object

Oriented Technology

A suite of codes named ATBASE [PW96] had been developed by Dr. P. Wang, Dr. J. J.

MacFarlane, Dr. G. A. Moses and other members in the FTI. These codes have been

successfully used to analyze the experiments of light ion fusion [CCW98], laser-driven

inertial confinement fusion [MCW98] and other dense plasma research. The ATBASE

codes consist of three parts: the atomic data generator, the plasma population modeling

and the muffin-tin EOS calculation. The atomic data generator is based on Cowan’s non-

relativistic code [COW81]. It provides very accurate atomic data such as energy levels,

transition oscillator strengths, photoexcitation cross sections and other radiative and

collisional properties. The second part of ATBASE calculates the plasma state

populations with several options: the LTE Saha model, the Coronal Equilibrium model

and the full CRE steady state model. The EOS muffin-tin model includes sophisticated

 4

treatments for both bound and free electron density distributions in the plasma by

solving the self-consistent-field Dirac equation. It provides very good EOS data.

However, there are several areas that can be improved. First, ATBASE lacks a

graphic interface to effectively assist users’ access to the data. In ATBASE calculations,

there are many important input parameters that users should be aware of and various

computing models that are based on different physical assumptions. A graphic user

interface helps users specify the problem, interact with the program dynamically and

also help users analyze the output.

Secondly, the atomic data produced by ATBASE are stored in many scattered

flat-files. Because of the drawbacks of using flat-files, such as management difficulties

and less efficient IO operations, it is desirable to store these atomic data in a database

management system (DBMS). In this way, we can avoid the time-consuming repeated

computations for the same atomic data and the data diagnosis is also much easier. Once

the database has been built up, various technologies such as CORBA, EJB and JSP can

be applied to make the database accessible from the Web.

Thirdly, although ATBASE is able to provide accurate radiative properties such

as transition energies and opacities using the UTA method, it is less accurate to apply to

the high-Z spectroscopy analysis (see Fig. 4.1.3). The difficulty for ATBASE to

simulate the high-Z spectra is the inherent complexity of enormous numbers of

transition lines for high Z elements using the DTA method and the non-relativistic

treatment of the UTA method. We have built a new model named RSSOPA (the

 5

relativistic single-configuration-single-electron opacity model), which overcomes the

complexity of enormous transition lines by using the UTA method but in the fully

relativistic treatment, and therefore giving us more accurate results (see Fig. 4.1.3 and

Fig. 4.1.4). In the RSSOPA model, the atomic data are in the JJ coupling approximation.

Furthermore, the RSSOPA model is implemented for parallel computation using MPI.

The goals of the thesis are:

I. To build a distributed computing system for the high performance computing of

atomic data.

II. To establish an atomic database to store the data such as EOS and opacities used in

ICF applications.

III. To build a graphic user interface for ICF applications.

IV. To validate the atomic data in the database and perform spectrum analysis for

medium to high Z elements using the RSSUTA model.

1.2 Atomic Physics in Hot Dense Plasmas

Atomic physics plays an important role in the investigation of the properties and

behavior of hot laboratory and astrophysical plasmas containing highly stripped atoms.

An understanding of the physical processes of the ionized atoms in hot dense plasmas

has various applications in astrophysics, fusion research, X-ray laser and other branches

of modern physics. Recent technical advances have made it possible to study the

 6

spectroscopy from negative ions to hydrogen-like Uranium ion U , as well as the

collisional characteristics of the resonant processes arising from collisional excitation

and dielectronic recombination [GPR97][PDS91].

91�

The interests of atomic physics in hot plasmas are mainly in three general fields.

The first is to study the influence of the plasma environment on the atomic structure,

such as the bound electron wave function, energy levels and ionization degrees. The

second is the study of the collision processes among electrons, photons and ions inside

the plasma. These processes determine the charge and excited state distributions. The

quantities to describe the probabilities of these processes are their cross-sections and

rates. The third is the subject of the emission and absorption spectra of the plasma.

With the increase of plasma density, the atomic properties transition from the

free atom model, which means the interaction among atoms is so weak that one atom

moves as if no other atoms exist, to the screened electron cloud regime and then to the

quasi-molecular regime. There are several models to address the effect of the plasma

environment on the atomic structure.

�� The Debye-Hückel (DH) model

The DH model is based on the Poisson equation and the Boltzmann statistical

distribution for the ions and electrons. The important quantities in the DH model are the

Debye screen length, Debye sphere and Debye screened potential. The Debye sphere

defines the extent range the other ions can affect the central ion. The DH model is not

valid at very high density.

 7

�� The Thomas-Fermi (TF) model

 The TF model is based on the micro-view of the Poisson equation and the Fermi-

Dirac (FD) statistics instead of the Boltzmann distribution. In this model, both bound

and free electrons conform to the FD distribution and all electrons move in a confined

sphere. The Thomas-Fermi-Dirac (TFD) model includes the corrections due to the

exchange interaction of the electrons.

�� The Ion Sphere (IS) model [RZ72][YSZ96]

This model is similar to the TF model except that it treats the bound electrons

differently. For the bound electrons, the IS model uses the quantum mechanic

Schrödinger equation instead of the statistical distribution. This model is also referred to

as the average atom model, which has many applications in the EOS calculations and the

analysis of complicated spectra of plasmas. This model can also treat the free electrons

quantum mechanically by solving the wave equation.

�� The Ion Correlation (IC) model [DP82][EKK76]

The IC model is the most adequate model to describe the atomic structure in

plasmas. It includes the consideration of ion-ion correlation. This model needs to solve a

hypernetted chain (HNC) equation to count the interaction of the ions besides the

electron-ion interaction for the two-component plasma.

 The effect of the environmental ions modifies the potential of the central ion

with an additional repulsive potential and thereby reduces the binding energies of the

electrons of the central ion. The two important phenomena of these effects are ionization

 8

potential lowering or continuum lowering and atomic level shifting. Because of the

complexity of involving the plasma effect into the atomic structure, people usually use

the atomic data generated under the free atom assumption, which is the topic of Section

3.1.1.

 There are a dozen important processes involved in the plasma interactions as

listed in Table 3.2.1. The fully quantum mechanical treatments of these processes are so

difficult that the empirical formulas or fitting formulas are often used, for example, the

Lotz’s formula [LZ68] for electron impact ionization, the Burgess-Merts’ formula

[BC83] for the dielectronic recombination and the Gaunt modification to the classical

formulas. We discuss the various radiative, collisional and resonant processes in Section

3.1.2.

 The radiation emitted from hot plasmas is an important diagnostics tool. The

emitted radiation intensity and spectral distribution are determined by the plasma density

and temperature. Through the analysis of the satellite line intensity ratios of the emission

spectrum, we can infer the plasma condition [MMS94]. The typical emission spectra of

highly ionized plasmas are shown in Fig. 1.1.1. The line-by-line modeling method

[COW81] which is adequate for low-Z plasmas consisting of ions with a small number

of bound electrons is not practical to interpret the cluster spectral structure coming from

the high-Z highly stripped plasmas. The more powerful method is the UTA model,

which is also a practical approximation to calculate the plasma opacity. We discuss this

model in Section 3.2.

 9

Fig. 1.1.1 Experimental gold (a) and tantalum (b) spectra from laser-produced

plasmas. Comparison of the 4.7-5.2 Å region of the spectrum from the gold

plasma (c) with computational results (d) yield the best fit for a 240eV ionization

temperature [GMA86].

 10

1.3 High Performance Computing: Parallel and

Distributed

The speed of high performance computers continues to dramatically increase as a result

of a hierarchy of processor parallelism and a hierarchy of memory access. On-chip

parallelism in the circuitry of the processor functional units leads to superscalar

performance by fetching and executing multiple instructions (~4) per clock cycle. Multi-

level caches (L1 and L2 and sometimes L3) provide data locality to the processor

registers that reduces fetches to main memory and improves processor performance.

Shared memory parallelism (SMP) has several processors (~4-32) sharing data through

the same main memory through high speed memory access technology. An alternative to

this, massively parallel computers, have each processor with its own main memory and

the processors share data through a network architecture where the program must

explicitly request that data be retrieved from and sent to a distant processor. In the last

five years, a hybrid high performance computing architecture that has clusters of SMP's

connected by high speed interconnects, has gained favor. These can either be packaged

together by a vendor such as the IBM SP computer or they can be"home built" from

commodity chips such as the Intel Pentium and run the Linux operating system.

From the programmer's point of view, there are several levels of complexity

involved in programming these computers. Using standard MPI [GLS99] or Java,

distributed programming models run on SMP's. However, an alternative fine grained

 11

programming model for SMP's called OpenMP allows the programmer to take

advantage of the shared memory features. Mixed OpenMP and MPI programming

models are just now being studied for their potential in improved performance.

The tools and standards for assembling distributed computing applications have

been developed over the past 10 years. From the low-level data transmission APIs and

protocols such as Remote Procedure Call (RPC) and Distributed Computing

Environment (DCE) to object-based distributed schemes such as Common Object

Request Broker Architecture (CORBA) [WOMG] and Remote Method Invocation

(RMI) and OpenDoc, the distributed computing environment has evolved to a robust,

platform-independent, flexible and extensible framework.

Java as one of the most important object-oriented (OO) programming language

supports distributed computing. From low-level network communications to distributed

objects and agents, Java offers an environment that encompasses various levels of

distributed computing development. Java’s API for socket URLs and other networking

facilities is much simpler than what is offered by other programming languages like C

and C++. Java RMI [WSUN] is a framework that allows objects to invoke methods on

remote objects in the same way as methods of local objects. Java also has built-in

support for writing multithread programs such as the synchronized keyword which is

used to lock objects and classes to control concurrent access to data. The recent interests

in using Java for scientific computing has even led to efforts to produce a message

 12

passing interface to support parallel computation, such as mpiJava, an object-oriented

Java interface to MPI.

The most important architectures that play major roles in the distributed object-

oriented computing world are OMG’s CORBA, Java RMI, EJB, Java IDL [WSUN] and

Microsoft’s DCOM. CORBA is a specification for a technology that allows objects on

one machine to communicate with objects running on any number of different machines

using different programming languages. The unique feature of Java RMI is its support

for the dynamic code loading, the ability to download the bytecodes of an object’s class

if the class is not defined in the receiver’s virtual machine. EJB, a framework for

distributed object computing and specific to Java, becomes a powerful standard to build

a web database-based distributed object computing system. A main task of this thesis is

to create a system using CORBA and EJB against the Oracle DBMS. We further discuss

these technologies in Chapter 2.

 13

Chapter 2

Information Technology

In Chapter 2, we describe most of the information technologies that are used in the

thesis. We begin with the comparison of distributed computing and distributed object

computing and their architectures. In the following three sections, we first give a brief

description of each technology we use in the thesis and then discuss how it is applied in

the project. Some code fragments and results are also provided.

2.1 Overview of Distributed Computing and

Distributed Object Computing

Parallel or distributed computing has become a key component of high performance

computing. A parallel or distributed architecture is one that consists of a collection of

processing units that cooperate to solve different parts of the problem simultaneously.

According to the way that the computers communicate, the computer architectures are

basically of two types: tightly coupled systems and loosely coupled systems [SN97].

Tightly coupled systems have a single system wide primary memory that is shared by all

 14

the processors as shown in Fig. 2.1.1(a). Usually, tightly coupled systems are referred to

as parallel processing systems. In loosely coupled systems, the processors do not share

memory, and each processor has its own memory (Fig. 2.1.1(b)). So all physical

communications between the processors are done by passing messages across the

network that connects the processors. The loosely coupled systems are often referred to

as distributed computing systems.

C P U C P U
S ystem W ide

S hared M em ory C P U C P U

In terconnection H ardw are

L ocal
M em ory

C P U

L ocal
M em ory

C P U

L ocal
M em ory

C P U

C om m unication N etw ork

(a)

(b)

Fig. 2.1.1 Difference between tightly and loosely coupled multiprocessor systems:

(a) tighly coupled system; (b) loosely coupled system.

 Currently the most popular software environment that is used in the distributed

computing is DCE (Distributed Computing Environment), which is defined by the Open

Software Foundation (OSF). DCE is an integrated set of services and tools that can be

 15

installed as a coherent environment on top of existing operating systems and serves as a

platform for building and running distributed applications. The main components of

DCE are threads package, remote procedure call (RPC) facility, distributed time service,

name service and distributed file service. As shown in Fig. 2.1.2, the DCE software

layer on top of the operating system and networking layer hides the differences between

machines by automatically performing data-type conversions. Therefore, the

heterogeneous nature of the system is transparent to the application programmers,

making the distributed application development much simpler.

Distributed Applications

Network
Management

Event Service Distributed
File Service

Directory
Service

Distributed
Time Service

Security
Service

Remote Procedure Call

Thread Service

Native Operating System and Network Services

Fig. 2.1.2 OSF DCE Architecture

 Another competing computing environment is the Object Management Group

(OMG)’s Common Object Request Broker Architecture (CORBA). The most important

difference between OSF DCE and OMG CORBA is their programming paradigms: DCE

 16

was designed to support distributed procedural programming, while CORBA was

designed to support distributed object-oriented programming. However, there are many

similarities between DCE and CORBA. They both define an Interface Definition

Language (IDL), and use IDL to define the interface that a server implements and is

compiled into a client stub and a server skeleton. A client application calls the client stub

to request a service, and then the client stub interfaces to the runtime system, which

eventually invokes the server code that implements the requested service through the

appropriate server skeleton. A high level architecture of CORBA is shown in Fig. 2.1.3.

Distributed Applications

Vertical CORBA Facilities

Horizontal CORBA Facilities

CORBA Service

Native Operating System and Network Services

Naming Concurrency Events Persistence
Query Tranactions Security Time etc.

User Interface Information Management
System Management Task Management

Accounting Application Development Ditributed Simulation
Information Superhighways Mapping Telecommunications

Fig.2.1.3 OMG CORBA Architecture

 As shown in the above figures of DCE and CORBA architectures, both of them

act as middleware layered between the applications layer and the operating system and

networking layer. Their basic purposes are handling the transmission of service requests

 17

and responses between clients and servers, shielding the user applications from concerns

like the location of clients and servers on the network, differences between hardware

platforms, operating systems, and implementation languages and networking protocols.

 While DCE supports procedural programming, CORBA was designed to support

Object-oriented (OO) programming. The characteristics of OO environment are:

encapsulation of data and the functions that manipulate the data which enforces data

integration and hiding; inheritance of interfaces and implementations which embodies

the reusability of OO programming; polymorphism, which is the ability for a request for

a specific operation to be handled differently depending on the type of object on which it

is invoked. As one of several main OO programming languages, Java has built-in

support for distributed computing. Java’s API for sockets, URLs and other networking

facilities is much simpler than that offered by other programming languages like C and

C++.

 The most common computing technology used in the scientific computing is

MPI, which is the standard for distributed computing under DCE architecture. In this

project, we use MPI to calculate all relativistic JJ coupling atomic data of the RSSOPA

model. The computing flow chart is given in Section 3.2.2. For handling the graphic user

interfaces and data management, the better choice is to use CORBA architecture, which

supports object-oriented programming such as C++ and Java. This project uses CORBA

technology to implement most of the computing. The Java programming language is

 18

used. In the next three sections, we describe these technologies as they are in each

project in the thesis.

2.2 Distributed Atomic Data Computing System

Using CORBA and EJB

The distributed atomic data computing system is mainly CORBA-based. Because the

CORBA components are portable across languages, operating systems and networks, it

is a good choice for multi-tier database applications. There are two important projects,

JEOSOPA and SPECTRA (see the list of projects) that use CORBA. In the following,

we give a brief description of CORBA technology, and its application in these two

projects. Description of EJB is also given, which is used in the project MIXOPA.

2.2.1 CORBA Architecture

Common Object Request Broker Architecture (CORBA) is a specification for a

technology that allows objects on one machine to communicate with objects running on

any number of different machines. It was designed to be the middleware glue allowing

different languages to implement objects on different platforms. The Object bus

provides an Object Request Broker (ORB) that lets clients invoke methods on remote

objects either statically or dynamically. Fig. 2.2.1 shows the CORBA communication

model.

 19

Client Server

ORB CORE

DII Stub ORB
Interface Skeleton OA

Implementation
Repository

Interface
Repository

Fig.2.2.1 CORBA Architecture

The idea behind CORBA is to shield the developer from any of the low-level

complexities of having one program communicate via a network to a program on

another physical host. Using an ORB, a client object can transparently invoke a method

on a server object, which can be on the same machine or across a network. The ORB

intercepts the call and finds an object that can implement the request, passes it the

parameters, invokes its method, and returns the results. The client does not have to be

aware of where the object is located, its programming language or its operating system.

It is the responsibility of the ORB to establish the remote communication with

distributed objects and handle all network interactions in passing data between objects.

The ORB itself is simply the software bus that can move messages between objects that

are written in different languages on different hardware platforms implemented by

different vendors.

 20

 The boundaries and the contractual interfaces between client and server are

defined through IDL. IDL is a descriptive language that describes the interfaces being

implemented by the remote objects. IDL defines the name of the interface, the names of

each of the attributes and methods, the arguments for each method, and the return type.

The specified IDL compiler maps the language neutral IDL into the native programming

languages like C, C++ or Java. The separation of interface from implementation lets

different languages communicate easily via CORBA.

 The way that the IDL bridges the gap between client implementation and server

implementation is through the generation of static stubs and skeletons. A stub is a client-

side source file that implements a local proxy object, which defines how clients invoke

corresponding services on the servers. The client interacts directly with the client stub. It

is the responsibility of the client stub to make the invocation to the actual server object

implementation. A skeleton refers to the server-side source that the server object

implementation registers with. The skeleton’s responsibility is to receive requests and

dispatch these requests to the server object implementations. The process of creating

client stub and server skeleton from an IDL file is shown below:

 21

O R B

ID L F ile

ID L C o m p ile r

C lie n t
S tu b

S erver
S ke le to n

S er ver
Im p l.

C lie n t
Im p l.

F ig.2 .2 .2 D ef in in g S er v ice : F ro m ID L to In terfac e S tub s

Static stubs and skeletons must be generated at build time and compiled in with

the source code. With the DII and DSI, it is not necessary to use IDL to generate static

stubs and skeletons. The DII allows clients to query the ORB’s Interface Repository (IR)

for available objects and construct method request on the fly. The IR is a standard

CORBA component, which contains meta-data describing the object available. From the

IR, the client can determine what interfaces are available, and what their method,

parameters and return types are, then it can dynamically create a method request using

the DII. The server object receives the request having no knowledge of whether the

client was built with static stubs or with the DII interface. Similarly, the server object

does not need to be compiled in with a static skeleton to receive requests. The DSI

automatically enables new objects to receive requests without having inherited from the

IDL generated skeleton.

 22

The Object Adapter (OA) is the main way by which object implementations

access services via the ORB. It sits on top of the ORB’s core communication services

and accepts requests for service on behalf of the server’s objects. When an object is

created, the OA is responsible for creating a unique Internet Object Reference (IOR) and

keeping a table of all registrations. Other objects use an object’s IOR to locate and

establish communication with it. The object implementation can also register policies

under which the OA activates new instances and deactivates existing instances. The OA

contacts with the IR that contains objects with all the information needed for the OA to

activate object implementations. The OA keeps an internal reference count of activated

instances. When the reference count has been reduced to zero, the instance is destroyed.

CORBA specifies that each ORB must support a standard adapter called the Basic

Object Adapter (BOA).

CORBA uses Internet Inter-ORB Protocol (IIOP), which specifies how General

Inter-ORB Protocol (GIOP) messages are exchanged over a TCP/IP network. GIOP

specifies a set of message formats and common data representations for communications

between ORBs. The IIOP makes it possible to use the Internet itself as backbone ORB.

It provides interoperations for TCP/IP based ORBs.

Projects implemented using CORBA

 Project JEOSOPA performs the task of computing the EOS and opacity based on

the code UTAOPA. Since UTAOPA is written in FORTRAN, we need to wrap it in a

Java module using Java native interfaces. Java native interfaces allow a Java program to

 23

call FORTRAN subroutines and pass through the argument parameters. JDBC is used to

access the Oracle database for the atomic data, which is required in the opacity

calculations.

 The basic outline of JEOSOPA computing takes the following forms:

1. User sends the request that includes all needed information to perform the UTAOPA

calculation.

2. The server object retrieves the needed atomic data from Oracle database through

JDBC.

3. The Java version of UTAOPA is executed, and results are sent back to the user or

saved into database if the user has permission.

4. User uses OPAVIEWER to view the output data.

Project SPECTRA performs the task of analyzing spectra from high-Z plasmas.

Currently, only an LTE option is implemented. Because it involves intensive

calculations, the module for spectrum computing is written in FORTRAN. Java native

interfaces are also needed to cooperate with a Java program.

The basic outline of SPECTRA computing is as follows:

1. User specifies the plasma condition (single temperature and density pair is allowed)

and invokes the spectrum calculation on the remote server.

2. The server opens a connection to the database, collects all needed atomic data and

does LTE calculations.

 24

3. User displays the spectrum result using Java 2D technology and analyzes the

spectrum with the aid of atomic database.

4. If the user is not satisfied with the result, the user repeats the calculation by setting a

different plasma condition.

2.2.2 Enterprise JavaBeans

Java has been recognized as an excellent platform for developing distributed

server-side applications, producing implementation-independent abstractions for

common enterprise technologies. For example, JDBC provides a vendor-independent

Java interface for accessing SQL relational databases, JNDI (Java Naming and Directory

Interface) provides an interface for abstracting directory services, EJB (Enterprise

JavaBeans) [RM99] provides an abstraction for component transaction monitors

(CTMs). Component transaction monitors provide a robust, component-based

environment that simplifies distributed development while automatically managing the

most complex aspects of enterprise computing, such as object brokering, transaction

management, security, persistence, and concurrency.

 EJB server-side components have two fundamentally different types: entity

beans and session beans. Entity beans model real-world objects; these objects are

usually persistent records in a database. Session beans are an extension of the client

application and are responsible for managing processes or tasks. The activity that a

session bean represents is fundamentally transient. It doesn’t represent something in a

 25

database. To implement an enterprise bean, two interfaces and one or two classes need

to be defined:

(1) Remote interface. The remote interface for an enterprise bean defines the bean’s

business methods: the methods a bean presents to the outside world to do its work. The

remote interface extends javax.ejb.EJBObject, which in turn extends java.rmi.Remote.

(2) Home interface. The home interface defines the bean’s life cycle methods:

methods for creating new beans, removing beans, and finding beans. The home interface

extends javax.ejb.EJBHome, which also in turn extends java.rmi.Remote.

(3) Bean class. The bean class actually implements the bean’s business methods. The

bean class usually doesn’t implement the bean’s home or remote interfaces, but it must

have methods matching the signatures of the methods defined in the remote interface

and must have methods corresponding to some of the methods in the home interface. An

entity bean must implement javax.ejb.EntityBean; a session bean must implement

javax.ejb.SessionBean.

(4) Primary key. The primary key is a very simple class that provides a pointer into the

database. Only entity beans need a primary key; the only requirement for this class is

that it implements java.io.Serializable.

(5) Deployment descriptor. Deployment descriptors serve a function very similar to

property files. They are used to customize behavior of enterprise beans at runtime

without having to change the software itself. Once the deployment descriptor is

complete and saved to a file, the bean can be packaged in a JAR file for deployment.

 26

The JAR’s path is given to the container’s deployment tools, which read the JAR file.

The container uses the deployment descriptor to learn about the beans contained in the

JAR file and how to manage the bean at runtime.

 EJB explicitly supports two mechanisms to manage large numbers of beans at

runtime: instance pooling and activation. In the instance pooling, the EJB container

creates several instances of a bean class and holds on in a pool. As clients make method

requests, beans instance from the pool are assigned to the EJB object associated with the

clients. When the EJB object doesn’t need the instance any more, the instance returns to

the instance pool. Instance pooling reduces the number of component instances and

therefore resources needed to service client requests. It is less expensive to reuse pooled

instances than to frequently create and destroy instances. For stateful session beans, they

don’t participate in instance pooling like stateless session beans and entity beans. Instead

activation is used with stateful session beans to conserve resources. The EJB server can

evict stateful session beans from memory by disassociating the stateful bean instance

from its EJB object and serializing the bean’s state to a secondary storage. Activating a

bean is the act of restoring a stateful bean instance’s state. When a method on the

passivated EJB object is invoked, the container automatically instantiates a new instance

and sets its field equal to the data stored during passivation.

Projects implemented using EJB

Project MIXOPA calculates the mixed opacities for arbitrary element

combinations. All data for pure elements are stored in the database, and the mixed

 27

opacities are calculated from these data for pure elements in a form of linear

combination. This project is written in the pure Java programming language. The

processing scenario of this project is:

1. EOS and opacity data are calculated using EOSOPA. The opacity grids for photon

energy are 100 groups. These data are stored in the database.

2. User invokes the mixing method on the server after giving the mixing specification.

3. The server obtains the EOS and opacity data for each pure element, does the mixing

calculation, and sends the results back to the user.

4. User saves the results on the local machine.

2.3 Java Thread, Network Programming and

JDBC

This section gives descriptions for three basic Java computing technologies that are used

often in the Java programming in this thesis. Java thread is used to perform a task in the

parallel style. Understanding Java network programming is the basis of distributed

object computing in Java. With a database involved in the applications, JDBC is often

used to access the database.

 28

2.3.1 Java Thread

A thread is a path of code execution through a program, and each thread has its own

local variables, program counter and lifetime. If the underlying OS and the

implementation of Java VM exploits the use of real multiple processors, multithread

Java programs can achieve true simultaneous thread execution.

Threads can be created in two ways. One is to extend the Thread class, the other

is to create the thread by implementing the Runnable interface. For example, the code

fragment which spawns a new thread by extending the Thread class is like:

Public class NewThread extends Thread {

 Public void run() { // … }

}

NewThread nt = new NewThread();

nt.start();

The subclass NewThread consequently inherits the protected and public members from

the Thread class. By invoking the start() method on the object nt, a new thread starts and

invokes the run method of the Thread object. Meanwhile, the original thread is free to

continue executing the statements that follow the start() call. The code fragment using

the Runnable Interface is as following:

Public class MyClass extends SuperClass implements Runnable {

 Public void run() { // … }

}

Runnable r = new MyClass();

 29

Thread t = new Thread(r);

t.start();

In this method, we also need to create an actual Thread object by passing the Runnable

MyClass object reference to the constructor of the Thread. When t.start() is executed,

the newly spawned thread begins execution by invoking the run() method of the

MyClass object. This feature of execution is used often in the GUI programming and

concurrent programming in the projects.

In order to ensure that the threads don’t adversely affect one other, Java provides

the thread concurrent control mechanism, such as the synchronized and volatile

keywords, to control concurrent access to objects and variables. The volatile keyword is

used to tell the VM that it should not keep a private copy of a variable and should

instead interact directly with the shared copy. The synchronized modifier to a method

declaration ensures that only one thread is allowed inside the method at a time, which is

useful in the case that the state of an object is temporarily inconsistent. In Java, threads

can be grouped together and associated with an instance of ThreadGroup. A thread

group can be used to facilitate the management of threads. Thread groups allow the

threads of the VM to be organized and can provide some inter-group security. Java also

provides a thread scheduling mechanism to determine which thread is currently running

on the processor and how long it is allowed to run before it is swapped off the processor

to allow another thread to run.

 30

2.3.2 Java Networking Programming

The java.net package provides an object-oriented framework for networking. The core

of java networking support is the Socket and DatagramSocket classes. These classes

define channels for communication between processes over an IP network. A new

socket is created by specifying a host, either by name or with an InetAddress object, and

a port number on the host. There are two basic kinds of network sockets on IP networks:

sockets using TCP(Transport Control Protocol) and DatagramSocket using UDP

(Unreliable Datagram Protocol). TCP is a reliable protocol in which data packets are

guaranteed to be delivered correctly; while UDP makes no guarantee about the delivery

of packets, or the order in which the packets are delivered. TCP sockets allow the user to

treat a network connection as a stream; UDP doesn’t allow this. Using UDP, the user

always works with the individual datagram, which is an independent, self-contained

message sent over the network and the arrival, arrival time and content are not

guaranteed. The typical usage of Socket class and DatagramSocket class is like this:

 31

 Server-side
ServerSocket s = new ServerSocket(5000);

// wait for a connection request from a client

Socket connect = s.accept();

InputStream in=connect.getInputStream();

OutputStream

out=connect.getOutputStream();

 Client-side
InetAddress addr =

 InetAddress.getByName(“rhost”);

Socket s = new Socket(addr, 5000);

InputStream in = s.getInputStream();

OuputStream out=s.getOuputStream();

 Server-side
DatagramSocket udps =

 new DatagramSocket(5000);

byte[] dbf = {‘H’,’I’};

InetAddress

ad=InetAddress.getByName(“..”);

DatagramPacket p = new

 DatagramPacket(dbf,dbf.length,ad,5000);

udps.send(p);

 Client-side
DatagramSocket udps =

 new datagramSocket(5000);

byte[] dbf = new byte[1024];

DatagramPacket p =

 new DatagramPacket(dbf,1024);

udps.receive(p);

Table 2.3.1 Code fragments in Java network programming

2.3.3 Java Database Connectivity

Java Database Connectivity (JDBC) is the database connectivity package included in the

core Java API. JDBC provides a database-independent interface for opening a

connection to a relational database, issuing SQL calls to the database, and receiving a set

of data as the result. JDBC acts as a Java implementation of the standard SQL call-level

interface and is supported by most major relational database vendors. A JDBC driver

 32

provides a bridge between the JDBC method calls and the native database interface. The

architecture of JDBC is shown in Fig. 2.3.1, which illustrates the several ways that a

JDBC driver can be configured to interact with an RDBS.

A p p lic a t io n s

J D B C A P I

J D B C -O D B C

O D B C d r iv e r

J D B C -
R D B M S
d r iv e r

F ig . 2 .3 .1 J D B C d r iv e r c o n f ig u r a t io n

 The JDBC API offers DriverManager, Connection, Statement and ResultSet

interfaces that mirror the basic concepts surrounding relational databases. The

DriverManager class provides the means to load database drivers into a Java application

or applet by searching a set of available drivers specified by the sql.Driver’s Java

property. Once the necessary drivers have been loaded by the DriverManager, a

connection to a database can be made by calling the DriverManager’s static

getConnection() method. The desired database is specified with a String argument that

acts as an URL-like address to the database. The getConnection() method on

DriveManager either returns a Connection object that represents the connection to the

named database, or throws an exception if the connection couldn’t be established. The

 33

Connection interface allows the user to create query statements to the database. Query

statements are represented as Statement objects, such as createStatement(),

prepareStatement(), and prepareCall(). The first method is used for simple SQL

statements that don’t involve any parameters. An SQL statement involving input

parameters or for multiple execution times can be created using the prepareStatement()

method, which returns a PreparedStatement object. A stored SQL procedure can be

accessed through an SQL statement created through the prepareCall() method on a

connection object, which returns a CallableStatement object. Rows of data returns from

the execution of a statement against a database are represented as ResultSet objects in

JDBC. A ResultSet object provides ways to iterate through the rows of data returns as

the result of an SQL query, through its next() method and data fields within each row

can be retrieved by name or by column index number using its get methods.

Projects implemented Using Java technology

The above three technologies are used in all projects in this thesis. We

distinguish the projects by using Java threads, or JDBC or networking according to the

dominant technology applied in the project.

 Project ECGEN, which uses Java threads more often, generates all possible

electron configurations if given the total electron number and some restrictions for the

electron orbitals. The solution for this problem is like solving linear multiple variable

equations with constraints. To operate this program, some senses of generating electron

configurations are needed. The program first finds all possible electron distributions on

 34

the N level shells, computing threads are then created for each possible distribution. All

these computing threads start to do the calculation simultaneously. A master thread

waits to assemble the final electron configurations according to all possible

configurations.

 Project OPAVIEWER is used to view the EOS and opacity data calculated by

EOSOPA. The server-side process sends the requested data to the client, and the client

renders the data in a graph using Java 2D.

2.4 Atomic Web Database Using Oracle DBMS

The core of this thesis is to set up an atomic database, which contains most of the data

needed by the ICF applications, such as the atomic data, EOS and opacities. In this

section, we first give an introduction of the architecture of the Oracle database

management system, which is extensively used in this thesis. Then, we discuss the

atomic web database using Oracle DBMS. Section 2.4.2 shows the Oracle network

computing architecture, which provides a powerful tool for the application deployment

for all projects in this thesis.

2.4.1 Oracle Database Architecture

An Oracle database [WORC] separates the physical structure from the logical structure

such that the physical storage of data can be managed without affecting the access to

logical storage structures. The Oracle database’s physical structure consists of three

 35

types of files: one or more datafiles, two or more redo log files and one or more control

files. These files provide the actual physical storage for database information. The data

file contains tables, indexes, clusters, sequences, data dictionary and so on. The control

file contains information about the database’s physical structure and status. It has

information about the total number of data files, log files, redo log members, name and

location of each data file, etc. Oracle records all changes in the redo log file and uses it

to regenerate the transaction changes in case of failure. An Oracle instance writes to redo

log group in cyclical order. The Oracle database’s logical structure consists of one or

more tablespaces and the database’s schema objects. Tablespaces are logical storages

that group related logical structures. A schema is a collection of database objects, which

are the logical structures that directly refer to the database’s data. Schema objects

include such structures as tables, views, sequences, stored procedures, synonyms,

indexes, clusters and database links. Oracle also allows fine-grained control of disk

space use through the logical structures, including blocks, extents and segments.

 An Oracle server uses memory structures and processes to manage and access

the database. To enable efficient data manipulation and communication among the

various processes, Oracle uses a shared global area (SGA). The SGA is a shared

memory region that contains data and control information for one Oracle instance. An

Oracle instance consists of an SGA and the Oracle background processes. Each instance

has its own system global area and Oracle allocates the SGA when an instance starts and

deallocates it when the instance shuts down. When a server process is started Oracle also

 36

creates a program global area which is a memory buffer that contains data and control

information for a server process. An Oracle server has two general types of processes:

user processes and Oracle processes. User processes are created and maintained to

execute the software code of an application program and communicate with the server

processes through the program interface. Oracle processes include server processes and

background processes. A server process is in charge of communicating with the user

process and interacting with Oracle to carry out requests of the associated user process.

A set of background processes also is created for each instance. The background

processes, such as Database Writer, Log Writer, Checkpoint, System Monitor, Process

Monitor, Archiver, Recoverer, Dispatcher, Lock, Job Queue and Queue Monitor,

asynchronously perform I/O and monitor other Oracle processes to provide parallelism

for better performance and reliability.

Implementation of atomic database

The atomic database stores the UTA-based atomic data for UTAOPA model and

RSSOPA model. It also stores EOS data and opacities on a predefined temperature and

density grid. According to the complexity of the atomic data structure, we store the data

either in the pure relational model or in the object-relational model.

An entity OPERATION represents a calculation process. It records the author of

the calculation, the model used in the calculation and the elements used. The SQL

language used to create a schema of OPERATION table is as following:

Create table OPERATION (

 37

 OID number(5) CONSTRAINT Operation_OID_pk PRIMARY KEY,

 Element ELEMENT_OBJTYP, Model varchar2(10),

 Author varchar2(30), Version varchar2(10),

 Operation_date DATE).

For UTAOPA and RSSOPA models, there are three basic tables: one for storing

the photoionization cross sections, one for the photoexcitation and one for the average

configuration energies. Because UTAOPA uses LS coupling while RSSOPA uses JJ

coupling, the object types for orbitals are different. Also because the strategies used in

RSSOPA are different from those used in UTAOPA (while the RSSOPA model

explicitly calculates the transition width for every transition line and therefore the

transition width can be stored in the database, the UTAOPA model embeds the transition

width calculation in the opacity calculation and therefore the transition width can not be

stored in the database), the data structures are slightly different. More details on these

tables can be found in Appendix A. These tables are used in Project JEOSOPA and

SPECTRA.

For EOS data, the element name, the temperature ID, the density ID and the

calculation model construct the primary key to uniquely identify each record. All EOS

data, such as electron pressures, ion pressures and total energies are stored in the single

table EOSTABLE. These tables are used in Project OPAVIEWER and MIXOPA.

For opacity data, we use the element name, the temperature ID, the density ID

and the calculation model as the primary key. Additionally, we need another attribute to

describe the photon energy grid. These tables are used in Project MIXOPA.

 38

2.4.2 Oracle Network Computing Architecture

Oracle possesses a very good position in the competition of the network computing

world. Its vision for the infrastructure is based on the premise that no single technology

or standard will win in the foreseeable future, and therefore Oracle’s strategy is to

support them all. Oracle achieves this based on its CORBA-based Network Computing

Architecture (NCA).

 NCA is the cross-platform infrastructure for developing and deploying object-

based, network-centric applications in an open, heterogeneous environment. As shown

in Fig. 2.4.1, the core of the architecture are two standards: CORBA and HTTP.

CORBA provides a distributed object computing environment, includes IIOP for object

interoperability and IDL for language-neutral interfaces. With the addition of HTTP

transaction services, Oracle provides a robust web environment.

 39

HTTP IIOP SQL*NET, Mobil

Web
Cartridge

Application
Cartridge

Legacy
Cartridge

Java(URL) Java (IDL) C/C++ (IDL)

Legacy
System

Web
Request
Broker

Obeject
Request
Broker

Connectivity
Broker

 Fig. 2.4.1 Architecture of Oracle Universal Application Server in NCA

The NCA architecture consists of pluggable objects called cartridges, a software

bus called Inter-Cartridge Exchange (ICX) and extensible clients, application servers

and database servers. A cartridge is a manageable object that uses an IDL to identify

itself to other objects in the distributed system. Cartridges have access to Universal

Cartridge services such as registration service, instantiation service, invocation service,

security service and others. ICX enables cartridges distributed across a network to

communicate with each other using IIOP and HTTP protocols. The Universal

Application Server (as shown in Fig. 2.4.1) plays a center role in the NCA. It acts as a

platform for application logic and make the NCA client side thin, and the applications

centric manageable. Oracle Universal Server provides robust, scalable data storage. By

 40

adding procedures to the data stored in the database, Oracle data server provides

significant performance and management advantages in many applications, and with

object-relational database technology, it can create new data types with sophisticated

functionality.

Application deployment under NCA architecture

In order to make our application available and accessible from the Internet, we

need an application server to provide these services. In this thesis, we deploy our

applications under NCA architecture. Fig. 2.4.2 displays the logic architecture of the

atomic database computing system.

Atomic
Database

Opacity

EOS

Spectrum

ORB

IIOP

HTTP

Web Browser

Application

Client Application Server Database Server

Fig.2.4.2 The logic architecture of the atomic database computing system

 41

As shown in the figure, there are two kinds of clients: one connecting the

application servers through HTTP protocol and the other through IIOP protocol. The

application logic such as calculating the EOS opacities and spectrum analysis is on the

application server and connects with the atomic database through JDBC.

2.5 Summary of Information Technologies Used

for Implementation

As indicated by its title, this thesis has four parts. The first part is the high performance

computation of atomic data. Besides the original ATBASE model, we develop a new

atomic model - RSSOPA to calculate JJ coupling atomic data based on the UTA

method. MPI is used in the parallel computing environment to speed up the calculation

since enormous number of transitions are involved. The second part is to create a

database to store the data such as energy levels, EOS and opacities needed by the ICF

applications. The third part is to develop applications that allow users to generate data

such as EOS, mixed opacities and spectrum for ICF applications based on the database.

The fourth part is the graphic user interface, which provides users an easy way to

interact with the program. The following figure illustrates the four parts in the

distributed atomic data computing system.

 42

Original
ATBASE

model

RSSOPA
 model

(Parallel)

Atomic Database
(E, f, �, etc.)

ICF Applications
(Opacity, Spectrum, EOS)

Java appl. Java applet

Computing
Engine Layer

Database
Layer

Application
Logic Layer

Data
Presentation
Layer

 Fig. 2.5.1 Four Parts in the Distributed Atomic Data Computing
System

In order to integrate these four parts and make them accessible from the Internet,

the CORBA architecture and some other frameworks are also used. According to the

functionalities they provide, this thesis breaks up into seven projects, which are shown

in the list of projects at the beginning of the thesis.

The Oracle DBMS is used to manage the atomic data. Depending on the

complexity of the atomic data structure, we store the data either in the relational model

or in the object-relational model.

There is no absolute reason to choose a certain technology. Each technology has

it own strength but also has its weakness. For example, CORBA provides multi-

 43

programming language support, but it is more difficult to program than EJB. We choose

CORBA for Project JEOSOPA and SPECTRA because we need to interact with some

existing programs such as UTAOPA and modules written in FORTRAN. We choose

EJB for Project MIXOPA because we wrote a pure Java program to do the calculation.

EJB makes it much easier to interact with the database and to deploy onto multi-tier

architecture. Technologies such as Java thread, networking and JDBC are basic to

writing efficient Java software.

 44

Chapter 3

Atomic Models and Opacity

Calculations

In this chapter, we delve into the physics that provides the atomic data based on the

specific code. In this thesis, several existing codes are used. ATBASE is used for the

calculation of atomic data under both DTA and UTA assumptions. The DTA part of

ATBASE is based on Cowan’s code, which calculates the non-relativistic atomic

structure. The UTA part of ATBASE calculates quantities for the average configuration

and uses the non-relativistic forms of UTA moments. We discuss the atomic models

used in ATBASE in Section 3.1.1. Another existing code we use to calculate EOS and

opacities is EOSOPA, which consist of two models DTAOPA and UTAOPA. DTAOPA

uses the DTA atomic data generated by ATBASE, while UTAOPA uses the UTA

atomic data. Because no collisional or recombination rate coefficients can be currently

generated under the average configuration approximation, UTAOPA can only run under

the LTE model. DTAOPA can also calculate non-LTE opacities since a lot of atomic

processes such as dielectronic recombination, election collision ionization, can be

 45

obtained from ATBASE under the DTA method. The various atomic processes and

plasma models used in the code are discussed in Section 3.1.2 and 3.2.1. In addition to

the existing codes, we developed a new model, RSSOPA, which is based on the

relativistic average configuration approximation and UTA method. It uses JJ coupling

for the atomic data. This model provides more accurate spectrum data for high-Z

elements. We discuss this model in Section 3.2.2.

3.1 Atomic Models

3.1.1 Non-relativistic Theory of Atomic Structure

The atomic structure of a many-electron system is determined by the solution of a partial

differential equation (called the Schrödinger wave equation),

(1) ,0)(�� �EH

where H is the Hamiltonian operator for the system and E is the total energy. The

operator H depends on the system such as atomic, molecular or solid-state systems and

the quantum mechanical formalism such as non-relativistic and Dirac-Coulomb. The

non-relativistic calculation of atomic structure is based on the non-relativistic

Hamiltonian operator [COW81][FS86]:

(2)
ii

i
ii

ij iji

N

i
i slr

rr
ZH ������� ���

�

)(
2
11)2(

2
1

1

2 � ,

 46

where N is the number of electrons and Z is the nuclear charge of the atom, is the

distance of the i electron from the nucleus, and is the distance between electron i

and electron j. The first term of the Hamiltonian represents the kinetic energy of the

electrons and the Coulomb energy between the electrons and the nucleus. The second

term represents the electrostatic Coulomb interaction among the electrons. The final

term of the Hamiltonian represents the magnetic interaction energy between the spin of

the electrons and their own orbital motion.

ir

th
ijr

 To obtain the eigenvalue and eignenfunction of the Schrödinger equation,

approximations must be used because of the high dimensionality of the equation. The

usual approach is to use perturbation theory. First, the one-electron wavefunctions are

constructed using the central-field model. In the central-field model, one electron is

assumed to move in a time-average electro-magnetic field which is generated by the

nucleus and the other electrons and therefore is spherically symmetric. So the wave

function of the electron is a separable function of only (r,�,�) in the form:

(3)).(),()(1)(izmiimlilni sYrP
r

r
siiiii

�����

Here P(r) is the radial function, Y(�,�) is the spherical harmonic function and �(s) is the

spin function. Secondly, we need to construct the basis function for the entire atom from

the one-electron orbitals � , which should reflect the physical indistinguishable

property of electrons. The antisymmetrized configuration state function is the linear

combination of uncoupled functions, which can be represented as a determinant:

)(ri

 47

(4) .)()...()()1()!(2211
2/1

NN
P

P rrrN ���� ���
�

Finally, the configuration interaction wave function for the states of the entire atom is

written as an expansion of the antisymmetrized configuration functions �.

(5) � � ��

j
jjc

From the eigenequation, the total energy of the atom is given by

(6) ,|| ��� �� HE

if 1| ��� �� . Using the multipole expansion for 1/rij,

(7)),(cos1
1

�
k

k
k

k

ij

P
r
r

r �
�

�

�

�

where are the lesser and greater of and , respectively, and is a

Lengendre polynomial in cos where � is the angle between and r , the energy can

be written as

��
rr , ir jr)(cos�kP

j� ir

qw
qw

qw
k

kstuv
kstuv

qw
qw

ij
qw

k

kstuv

ij
kstuv

ij
ji

ij
ijji

LCvutsRA

LCvutsRAcc

HccE

��

���

�

��

��

�

2
1),;,(

)
2
1),;,((

;
;

;
;

where is the two-dimensional integral, kR

 48

(8)),()()()(),;,('

0
1

'

0

' rPrP
r
rrPrPdrdrvutsR vuk

k

ts
k

� �
�

�

�

�

�

�

and is the one-dimensional integral, qwL

(9)).()1(2)(
0

22

2

rP
r

ll
r
Z

dr
drdrPL wqqw �

�

�
�

�
�
�

� �
��	

The and C are called angular coefficients and can be computed using Racah

algebra. According to the variational principle, the total energy of the atom is an

eigenvalue of the interaction matrix, and the expansion coefficients of the wave function

are the corresponding eigenvector. In order to compute the interaction matrix, the radial

functions need to be computed, which should be chosen to minimize the center-of-

gravity energy for a configuration. Through the derivation using the variation method

with the orthonormalization conditions,

ij
kstuvA ;

ij
qw

(10) �
�

�

0
111

*)()(
jijjii nnlnln drrPrP �

the Hartree-Fock equation for the radial wave function is expressed as

(11)

� �),()()(

)()()1()(2)(2)1(

1)(

1 0
22

2

22

2

rPrBwrP

rPrAwdrrP
r

w
r
Z

r
ll

dr
d

j

q

ij
ijijliljjii

i

q

j
iijijj

ii

�

� �

��

�

�

�

���

�
�

�
�
�

�
			�	

�
�	

���

�

where

(12)
22

2

0
1

2

0
)(2

00014
12)(drrP

r
rlkl

l
lrA ik

k

k

ji

j

i
i ��

�

�

�

�

�

��
�

�
��
�

�

�

�
�

 49

and

(13) .)()(2
0002

1)(222
0

1

2

drrPrP
r

rlkl
rB ijk

k

k

ji
ij ��

�

�

�

�

��
�

�
��
�

�
�

The first three terms arise from the kinetic energy and the nuclear potential energy. The

fourth term comes from the direct portion of the electron-electron interactions ijE for

electrons both equivalent and non-equivalent to i, which has physical meaning as the

potential energy of the i electron in the averaged field of the other N-1 electrons. The

fifth term arises from the exchange portion of the interaction energy between the

electron i and the other equivalent (electrons, which is the correction

corresponding to the partial positional correlation among electrons of parallel spin. The

final term in the above equation arises from the orthogonality requirement. This

equation is generally solved using the self-consistent-field (SCF) method. Because of the

complication involved in solving the HF equations, the local potential approximation is

often used. In this approximation, the Schrödinger equation becomes:

)1�iw

(14)),()()()1(
22

2

rPrPrV
r

ll
dr
d

iii
iii

���
�

�
�
�

�
�

�
�	

where is the potential function that the electron i moves in, for which there are

several kinds of potential forms:

)(rV i

The Hartree-Fock-Slater potential (HFS)

(15) ,24
2
3)(22)(

3/1

1
0 22

2
�
�

�
�
�

�
���	 � �

�

�

�
�

�q

j
jj

i drrP
r

w
r
ZrV

 50

where � is the total spherically averaged electron density.

The Hartree-Statistical-Exchange Potential (HX)

(16) ,24)()()(2)(2)(
3/1

1
0 22

2
�
�

�
�
�

�
����	 � �

�

�

�
�

�
�� frfkdrrP

r
w

r
Zr x

q

j
jijj

iV

which considers the self-energy effect and adds a statistical exchange energy correction

term.

The Hartree-Slater Potential (HS)

(17)
 � �,)2(24)(2)(2)(3/13/1

3/1

1
0 22

2 ��
�

� ��
�

�
�
�

�
����	 � �

�

�

�

s

q

j
jijj

i drrP
r

w
r
ZrV

which is similar to the HX potential but uses a different exchange energy expression.

 After we obtain the radial portion of the wave function and apply the Racah

algebra, we can calculate the energy level structure of the atom. Depending on what

wave functions are used as the basis function in the Hilbert space, we may have the

energy level structure under the single configuration approximation or the interaction

configuration approximation.

 Under the single configuration approximation, the set of basis functions is

constructed according to the general electronic configuration form:

jw
q

j jj ln)(
1�

� .

The energy matrix '||
bb H �� consists of two terms: one term involving one-

electron operator, such as the kinetic energy and the electron-nuclear energy, which is

 51

easy to compute, and an another term involving two-electron operator, that is the

electron-electron Coulomb energy, which can be expressed as follows:

��
��

�

�

q

j

jj

b
ji

ijb

ww
g

1 2
)1(

|| '�� �'||
bijb g ��

 �
�

q

ji
jiww �'||[

bijb g ��]|| '

ex

bijb g �� ,

where is the electron-electron Coulomb energy: ijg

(18) .22
0

1

k
n

k
mk

k

mn

CC
r
r

r
���

�

�

�

�

Applying the Wigner-Eckart Theorem, the matrix element can be written as a product of

a term purely dependent on the angular momentum and a term dependent on the radial

position. After obtaining the matrix elements, we can solve the matrix eigenvalue

problem using some standard methods.

 In order to consider the configuration interaction effect, we need to expand the

wave function of the atom to include other sets of basis functions belonging to their

corresponding configurations. The similar techniques to the single-configuration

method are used to construct the energy matrix for the configuration interaction.

 52

3.1.2 Atomic Radiative and Collision Processes

 In this section, we discuss the atomic radiative and collision processes that are

considered in the code ATBASE. According to the initial and final states, the atomic

radiative processes can be classified into three types; that is, bound-bound transition

(excitation), bound-free transition (photoionization) and free-free transition

(Bremsstrahlung). For collisions, the two most important processes are electron

collisional excitation and ionization. These processes and the formulas that are used by

ATBASE are given in the following sections.

3.1.2.1 Atomic Radiative Processes

1. Bound-Bound transition

The bound-bound transition occurs between two bound states. In the quantum

mechanical theory, the probability per unit time of an atom in a specific state j (��J�M�)

making a transition to a state i (�JM) is

(19) ,||)(||
3

64 2

1

)1(

34

32
0

24

� �
�

���
�

�
q

N

i
qiji MJiCrJM

ch
Eaea ��

�

under the electric dipole approximation. Here q is the polarization direction (

Applying the Wigner-Eckart theorem, the total transition probability from a state ��J�M�

to all states of the level �J is written as

).1,0 �

(20) ,
3

64
34

32
0

24

S
ch

EaegA �
�

�

 53

where which is called the line strength. The

oscillator strength is defined by

,|||)(|||
2

1

)1(
�
�

�����

N

i
i JiCrJS ��

(21) ,
)12(3

S
J
Efij
�

�
�

which has the physical meaning of the total probability of absorption from a specific

lower level i to all (2J�+1) states of the upper level j.

 Under the single-electron transition approximation, the oscillator strength is

reduced to

(22) lnnl
jl

ij P
l
js

j
l

jj
J
Ef ��

���

�
�
�

�
�
�

��
���	

�

� ,

2

2

122

1
)12)(12()1(

)12(3

where

(23) .|)()(|
00

1
0

)12)(12(2

0

2

2
, drrrPrP

ll
llP lnnllnnl ��

�

�� ���
�

�
��
�

� �
���	

The UTA oscillator strength is calculated using Equation(22) in ATBASE. For the

general condition which involves multiple occupied outer subshells, Racah algebra is

needed to handle the angular momentum coupling in the calculation of the transition

matrix elements.

2. Bound-Free Transition

The bound-free transition is similar to the bound-bound transition except that the

final state is a continuum state. The numeric calculation of the continuum wave

 54

functions needs more care than calculations of bound-state wave functions because of

the conditions of the orthogonality and the asymptoticity that the continuum wave

function should satisfy. The transition probability for the photon ionization is usually

expressed in terms of a photoionization cross section:

(24)
�

�

d
df

c
ae ij

ij
�

2
0

224
�Q ,

where is called the oscillator strength density. Under the single-configuration

approximation, the calculation of the oscillator strength density is the same as the

calculation of bound-bound oscillator strength, except that the final wave function is

replaced by the continuum wave function in the radial dipole reduced matrix element.

For highly ionized atoms, configuration-interaction effects between the bound and

continuum states are very small because the continuum states are well separated from

the bound states. In the case of discrete bounded states lying within the energy range of

the continuum states, the configuration interaction effect should be considered. If the

discrete state has a perturbation from the continuum, the discrete state may autoionize

and spread out into a resonance line shape (Fano profile [FN65]) with half-width at half-

maximum � , where

�ddfij /

a �
aA�5.0

aA is the autoionization transition probability rate.

3. Free-Free Transition

The high energy incident electron is decelerated by the Coulomb field of the

scattering atom while a photon is emitted. This process is called Bremsstrahlung. The

initial incoming electron wave interacts with the Coulomb field of the scattering atom

 55

and with the electromagnetic field of the emitted photon. The transition matrix element

 between the initial state fiM i� and the final state � is f

,*
���� dpeM i

riq
ffi

��

�� �

where � describes the interaction of the electron with the radiation field. and

are the photon polarization and wave vector, respectively. � are the initial and

final wave functions which are in the form:

riqpe ��

� �

p
if ,

(25)),(cos)()12(
2
1

0
��

lkl
i

i

l
k PrReli

k
l�

�

�

�� ��

which represent the solution of the Lippman-Schwinger equation in the spherically

symmetric potential. The radial wave function is the solution of the radial

Schrödinger equation corresponding to the energy

)(rRkl

m
k 2

E
2

2
�

� .

 The Bremsstrahlung process contributes to the continuous spectrum. In

ATBASE, it is calculated using the Kramers formula with the Gaunt factor correction,

(26) � , ff
ff

K
ff g��

where � represents the Kramers cross section and represents the Gaunt factor. ff
K ffg

3.1.2.2 Atomic Collision Processes

 In a hot dense plasma, there are many collision processes. The electron-ion collision is

the most important process that contributes to the transition arrays and the redistribution

 56

of the charge states. Depending on the final status of the ion and the electron, the

collision processes are classified into electron collision excitation (deexcitation) and

electron collision ionization (three body recombination). In the electron collision

excitation, a free electron that moves near an ion loses energy by inducing a transition of

a bound electron from a lower state into a higher state; while in the electron collision

ionization, a bound electron is knocked out into the continuum state by a free electron.

 Theoretical calculations for the collision process need approximations [BR83]. If

the relative velocity of the colliding electron is much higher that the velocity of the

optical electron, the Born approximation can be used, which is the first order of the

perturbation theory. In this approximation, the motion of the incident and outgoing

electron are described using the plane waves. In the case of 1��qr , the Born cross

section can be reduced to the Bethe formula:

(27) ,ln
8

10

0

2
0

kk
q

E
fa ji

��
�

�

�

�

where is the oscillator strength. However, the Born approximation does not include

the exchange of the incident and atomic electrons. The effect of the electron exchange is

taken account in the Born-Oppenheimer approximation using antisymmetrical wave

functions.

jif

 In ATBASE, the distorted-wave-exchange (DWE) method is used to calculate

the election collision cross sections. The DWE method takes into account the distortion

of the wave functions by the mean field of the atom or ion. The mean field consists of

 57

the long range Coulomb field
r

zr 1)(�

��U and a short range attractive part . The

short range attraction leads to an increase of the cross section because of the closer

distance. The formula of collision strength in DWE approximation can be found in

reference [PW93].

3.1.2.3 Resonant Processes

The processes of dielectronic recombination (DR), Auger ionization (AI) and resonant

excitation (RE) and ionization (RI) all are based on the reaction of electron capture into

nl-states of an ion : zX

),()(**
1 �� zz XeX ��

�
 nlLSJ��

and then have the second decay stage, which can be the Auger decay emitting an

electron:

,)()(1
** eXX zz ���

�
�� (AI,RE)

,2)()(2
** eXX zz ���

�
�� (RI)

or the radiative transition emitting a photon and transfer to a stable state which is below

the ionization limit:

.)()(**
��� hXX zz ��� (DR)

 58

 The capture is possible only within a narrow interval of the incident electron

energy around the value
��

��� . The width of the energy interval is equal

to the level width � which is defined by the total decay probability

EE ��),(

�

),()((���
�

AW �� �

where W and A are the Auger and radiative decay probabilities. The capture cross

section is given by the dispersion formula

(28)
� � 4/),(

2/
)()|(

22

�

�

�����

��
����

��

� cc� ,

where)(�� depends on the energy c),(��� of the incident electron. The total capture

rate is

(29) � ,)|()()(
0

������� ��� �
� dF cc

where)(�F is the Maxwellian distribution of electrons.

3.2 Opacity Calculations

Theoretical calculation and experimental determination of hot dense plasma opacities

have long been of interest from astrophysics to inertial confinement fusion (ICF)

research. Modeling of the energy transport in hot dense plasmas relies on radiative

opacities. Several opacity models have been applied to calculate the plasma opacities,

such as the detailed term accounting (DTA) method, the detailed configuration

 59

accounting (DCA) method, the unresolved transition array (UTA) method and some

average-atom models based on the statistical theory. These models need validation by

experiments. However, high quality experimental measurements of the x-ray opacities of

highly ionized materials are difficult since the experiment errors must be accurately

specified and the plasma condition must be precisely determined. Such measurements

became possible by the technique of radiative heating using the intense x-rays emitted

by laser-irradiated targets. The point projection spectroscopy technique has been

extensively applied for this kind of experiment. The plasma to be studied is created

either by direct or indirect irradiation. An auxiliary plasma, whose dimensions are small

compared to the main plasma expansion, is generated by a synchronized laser and

generates an x-ray source which probes the main plasma. The attenuation of the x-ray

probe through the expanding plasma is measured with a space resolution on the order of

the point source diameter and with a time resolution of the duration of the auxiliary

source plasma.

The theoretical aspect of opacity research [RS92][BOG89][BOS95] is also very

complex and necessarily uses approximations. The calculation of opacity needs two

components: the atomic radiative quantities determined by the atomic model and the

populations calculated by the radiative dynamics. The radiative processes, as discussed

in Section 3.1, mainly involved three parts: photoexcitation, photoionization and

bremsstrahlung. The atomic theory based on the quantum mechanics has been solidly

established to calculate these processes and several freely-distributed codes are

 60

available, such as Cowan’s code and Grant code. However, these calculations are largely

based on the free atom assumption, that is, they assume the atom is isolated and there are

no interactions between this atom and the environment. This approximation is

appropriate in some plasma condition ranges but does not hold when the plasma is

strongly coupled, in which the Coulomb interaction energies are equal or greater than

the average kinetic energy of the plasma particles, i.e. � , where

 is the inter ion distance. If the plasma environment is considered in

the determination of the atomic structure and transition properties, it is expected that

different behavior will be exhibited, such as formation of energy bands, the shift of

energy levels and pressure ionization. It is more difficult to coherently handle the

problem as a whole rather than single out the atom but include the environment

condition as the additional correlative energy and exchanged energy, which is derived

from the statistical theory (Density Function Theory) and perturbation analysis.

Therefore, the calculation of atomic structure in plasmas is basically the same as the

calculations of free atom except that the modified potential reflects the plasma

environment effects.

1)(2
�� akTze

3/1)4/3(�

� �Na

 In the following sections, we give the three different plasma models that are used

in the code EOSOPA. Because ATBASE currently doesn’t include the calculation of all

of the rate coefficients under the average configuration assumption, UTAOPA can only

run the LTE model.

 61

3.2.1 Plasma Models and Various Rate Coefficients

3.2.1.1 Local Thermodynamic Equilibrium (LTE)

LTE occurs in plasmas whose dimensions are significantly smaller than the mean free

path of the photons emitted from the plasma, but are much longer than the collision

length of the electrons and the ions. The photons may either escape from the plasma or

be reabsorbed in some other part. The electrons and ions are colliding at a high rate and

their distributions of velocities and excited states are in equilibrium. The population

is given by the Saha equation [ST64]:

iN

(30) ,/11 kT

i

ie

i

ei ie
Z
ZZ

N
NN

����
�

where is the number of free electrons, is the ionization potential of ion i , eN i�

,22
2/3

�
�

�
�
�

�
�

h
mZe

�

2

kTe

kTE

m
imi

imegZ /�

�� .

The Saha equation is solved with the constraint of particle conservation

(31) ��

im
imNN

and charge conservation

(32) im
im

ie NqN ��

 62

where N is the specified total particle density, and q is the charge of ion i. The

population distribution of the electrons in the various excited states is given by the

Boltzmann distribution

(33) . kTE
iiilil

ileZNgN /)/(�

�

3.2.1.2 Coronal Equilibrium (CE)

The other extreme is the very low density and optically thin plasma range. Such plasmas

occur frequently under both astrophysical and laboratory conditions. Under the CE

condition, the upward excitation rate by collisions is so low relative to the spontaneous

decay that an electron excited to an upper level will most likely decay to the ground state

before experiencing a second excitation. Moreover, in low density optically thin plasmas

the photoionization and photoexcitation processes have very low rates. The dominant

processes are electron impact ionization and radiative and dielectronic recombinations.

The charge state distribution is calculated by equating the rates of these processes,

(34) ,)2(
1,,11 ���

� iiieiiie RNnINn

(35) .
)()(

)(
)(
1,

)(
1,

,1

1 e
d
iie

r
ii

eii

i

i

TRTR
TI

N
N

��

�

�

�

�

Because all ion stages are assumed in the ground state in CE, this equation is a relation

between the partial densities of the ground states of two adjacent charge states.

 63

3.2.1.3 Collisional Radiative Equilibrium (CRE) Steady State

 The CRE model is an intermediate model between LTE and CE. It tends to the CE in

the low density limit, and to LTE for high density plasma. Consider a plasma of atomic

number Z, electron temperature T and ion density . The densities of the charge state

i and of the excited state j are , respectively. The change rate of the population

of a particular level is affected by several processes and their inverse processes as listed

in Table 3.2.1.

e

iN ,

in

ijN

The rate equation for the CRE steady state model can be written as

(36) ,ji

N

ij
j

N

ij
iji WNWN ��

��

�

where represents the summation of the upward transition processes: stimulated

absorption, collision excitation, photoionization, collision ionization; while W

represents the summation of the downward transition processes: spontaneous and

stimulated emission, collision deexcitation, rediative and dielectronic recombination,

and three-body collision recombination. To calculate accurate rate coefficients for all

kinds of these processes is very difficult. In practice, the empirical formulas are often

used. Reference [PW93] givens these formulas used in ATBASE.

ijW

ji

 64

Table 3.2.1 Atomic Processes involved in the CRE model

Reaction: �hNN m
i

m
i ��

�

(a) (b) (c) (b)

Spontaneous
Decay

mm
i

m
i AN � Stimulated Absorption

�
��

hBNn mm
i

m
�

��

Reaction: eeNeN m
i

m
i ����

�1

(a) (b) (c) (b)

Electron
collisional
Ionization

m
ii

m
ie INn 1, � 3-Body recombination m

iiie RNn)3(
1,1

2
��

Reaction: eNeN m
i

m
i ���

�

(a) (b) (c) (b)

Electron
collisional
excitation

mm
i

m
ie ENn � Electron collisional

Deexcitation
mm

i
m
ie DNn ��

Reaction: eNhN m
i

m
i ���

�

�1�

(a) (b) (c) (b)

Photoionzation mm
ii

mNn �

�1,�
��

 Radiative
recombination

mr
iiie RNn)(

1,1 ��

Reaction: eNN i
mm

i ��
�

� 0
1

(a) (b) (c) (b)

Autoionization mm
ii

mm
iN �

�

�

1,� Dielectronic
recombination

mmd
iiie RNn �

��

)(
1,1

(a): Direct Process (b): Rate Coefficient (c): Inverse Process

 65

3.2.2 RSSOPA Model

The line structure for the bound-bound transitions becomes complicated as the

number of the bound electrons increases. The lines become unresolvably close to each

other. UTAOPA handles such spectrum structures based on the non-relativistic UTA

method. However, for high-Z elements, the non-relativistic treatment is not adequate.

The RSSOPA model uses the JJ coupling based on the relativistic UTA method.

In the RSSOPA model, the wave functions are determined by the Dirac equation:

(37) [����� �����)]()(2 rVcIpc

where � and � are the usual Dirac matrices. V(r) is the potential. The wave function �

has the form

 (38) �
�

�
�
�

�
�

� mmn

mmn
mn

riQ
rP

r ��

��

�

�

�

)(
)(1

�

where P(r) and Q(r) are the radial parts and � is a function of angular and spin

coordinates in the usual notation.

 The Dirac equation is solved numerically to obtain the wave functions for

electron orbitals and the self-consistent potential. The photoexcitation cross sections for

the configuration-to-configuration transition are calculated from the single-electron

transition properties. In the configuration average approximation, the cross section can

be written as

 66

 (39)).()(''

2

��
�

� ��
icc

bb

icc
f

mc
he

��

where is the configuration average oscillator strength, 'icc
f)(�� � is the line shape

function. If the transition energy is assumed to be approximately the same for all lines of

the transition array, the relation of the averaged array oscillator strength to the

single-electron transition oscillator strength is

'icc
f

��f

 (40)
,2||||||

12
12

,)1('

��

�

�

��

��
� �

��

��

�

�
�

T
kg

mf

f
g
qqf

icc

�

where is the photon energy, are the occupation numbers of orbital �, �

respectively, k is the rank of electric multipoles, is the statistical weight for initial

orbital � and

�� �� qq ,

�g

�� �� |||| T is the bound-bound reduced transition matrix element.

 The photoionization cross section for configuration c of ionic stage I can be

written as

(41) ,
2

�

� �

�

�

d
dfq

mc
he

ic ���

where the summation runs over all subshells of the configuration.
�

�

d
df is the density of

oscillator strength, given by

(42) ,||||||
3

2 2
��� ��

�� �

� T
g

m
d
df

�

 67

where �� �� |||| T is the energy-normalized transition matrix element from the initial

bound orbital state � to the continuum orbital state �.

 The line shape)(�� � uses the Voigt function:

 (43)

,
,/)(2ln

,/2ln

,
)(
)exp(),(

),,(2ln)(

22

2

ud

c

c

Ev

a

dx
xva

xavaH

vaH

�����

���

���

��

�
�

�
�

�
��

��

��
�

�

�
��

�

�

where is the Doppler full-width at half maximum (FWHM) given by d�

),()/(10858.3 2/15 eVATkBd ��
�

���

where is expressed in eV, A is the atomic weight expressed in gram-moles, the

transition energy is expressed in eV. � is the Lorentz FWHM due to the collisional

broadening mechanism, which is calculated with the electron impact semiclassical

formulas. The other two quantities are calculated in the UTA

method as the following.

TkB

c

,��
c)355.2(��

cuE ����

 By the UTA method, the average energy and the standard deviation of the

energy distribution of a given electronic configuration are the first and second moments

of the Hamiltonian,

(44) � �
aviiav HE �� ||� ,

 68

and

(45) � �
2 � �

avii H 2|| �� � � avii H 2|| ��� ,

 where H is the sum of the electrostatic and spin-orbit operator,

(46) � �
�� �

���

N

ji

N

i
iii

ij

lsr
r
eH

1 1

2

)(� .

Under the j-j coupling scheme and using the Hermitian properties of the Hamiltonian,

the width of the energy distribution can be expressed in the form

(47) � ,4321
2 DDDD ����

where the formula for are given in Reference [BOG95]. 4,3,2,1D

 The standard deviation of the weighted line wavenumber distribution is the

square root of the variance,

(48) � , 2
12

2
�� ��

where

� �

.||||

,

,||1

2
�

�

�

�

�

��

i
iab

ab
ab

n

ab
abn

braw

wW

bbaaw
W

�

The final numerical formulas for the UTA moments can be written in a concise form:

The UTA average energy

 69

(49)

).(
22

1

,)(
,

,,

0

����

�

�

�

���

�

��

������

�

�

�

jjjj

C

ss
s

sC

CCC

GF
j

q
j

qE

DqDE
EEE

��
�

�
�
�

�
�

�
	

��	

�
	

�

.,,

,||0

��

��

jjjjD

jhjD

sss

D

��

�

The UTA variance

(50) ,))(()(22
sssss

s
sC qgq ������ � ��

��
��

(51) ,
2

)(,
2

2

��

��

�� sss

ss
s j

jjjj
��

�
��

(52) ,,
2)(

������ sssssssss FFEDCBAjjjj ��������

where the terms are related to the radial Slater integral

which are given in Reference [BOG95].

���� sssssss FFEDCBA ,,,,,,

 To calculate opacities, there are a number of configurations for each ion stage.

For each configuration, we need to do the self-consistent field calculation, and then all

the wave function calculations for both bound and free electrons, and finally we can use

these wave functions to calculate the photoexcitation and photoionization cross section

and the UTA width for all possible transitions. The process is very time-consuming

especially for high-Z elements. To give a sense of how many calculations are involved,

we use the medium-Z (Z=50) as an example. Each ion stage has an average of 20

 70

configurations (at least), and each configuration has an average of 4 orbitals, and for

each orbital, there are an average 15 transitions (5 for the bound-bound transition (at

least) and 10 for the bound-free transition). Therefore, there are a total of 60,000

transitions to be calculated, plus the iterations needed for solving the Dirac equation.

Significant computer time is needed for these calculations.

 Nevertheless, this model has a nice feature under the average configuration

approximation, that is, the calculation for each configuration is independent. Therefore,

the parallel computing technique can come into play. In this thesis, we implement the

RSSOPA model using MPI. The flow diagram of RSSOPA model is shown in Fig.

3.2.1. Time measurements for parallel computations are given in Section 4.2.

 71

Read in all configurations

Partition the task
according to the number
of available processors

 Processor #1 … … Processor # N

 For each configuration,
solve Dirac equation, obtain
the wave functions, and
calculate all kinds of Slater
integrals.

For each orbital in each
configuration, calculate all
possible transitions (n up
to 10 and l up to g), and
the UTA width and the
transition energy.

For each orbital in each
configuration, calculate the
bound-free cross section
at 10 photon energy points

Collect all data and write
them into atomic database

For each orbital in each
configuration, calculate the
bound-free cross section
at 10 photon energy points

For each orbital in each
configuration, calculate all
possible transitions (n up
to 10 and l up to g), and
the UTA width and the
transition energy.

For each configuration,
solve Dirac equation, obtain
the wave functions, and
calculate all kinds of Slater
integrals.

Distribute the task
onto each processor

Fig. 3.2.1 Flow diagram of RSSOPA parallel coding

 72

Chapter 4

Implementation of Distributed Atomic

Data Computing System

Advances in architectures, software and networks have shifted the traditional computing

environment to the distributed environment. The advent of high-speed networks and the

needs of harnessing more computer resources in high performance scientific and

engineering applications has led to the possibility of federating resources such as

compute power, data storage and networks into computational grids [GRD99].

Computational grid software infrastructures such as Globus [FK97], Legion [LG96], and

Condor [LLM88] provide abstractions to give users the ability to run applications on a

heterogeneous set of machines as they once did on a single high performance platform.

These infrastructures also provide services such as security, communication, managing

distributed applications and remote data transfer.

While metacomputing systems such as Globus, Legion and Condor provide low

level grid APIs that can be used to implement low tier services, the computational grid

 73

can also build on commodity network technologies, such as CORBA, COM and Java

Beans. These technologies are being used to construct multi-tiered architectures. The top

tier of this model always consists of components such as graphic user interfaces. The

middle tier consists of program logic and other high-level services such as load

balancing and integration of legacy systems. The middle tier mediates between

sophisticated back-end data services and simple front ends. The bottom tier provides

data services from relational and object databases. The decomposition of application

functionality into separate presentation, application and data service results in a

distributed computing architecture for computational grids.

In this chapter, we describe implementation of the distributed atomic data

computing system based on the commodity architecture (as shown in Fig. 2.4.2). The

layout of this chapter is as follows:

 In Section 4.1, we first give some results on the atomic data computing. After

verifying the accuracy of the ATBASE codes by comparing with other theoretical results

and experiments, the importance of JJ coupling for medium- and high-Z elements are

shown in the atomic data calculation and the spectrum analysis. In Section 4.2, we give a

description of the parallel computing of the atomic data under the RSSUTA model.

Through several experimental calculations, we find that the speed-up factor increases

almost linearly with the number of processors. This characteristic results from the

minimization of the requirements of communications. In Section 4.3, we discuss the

atomic database design and prove that the object data model is more suitable than the

 74

relational data model to simulate the atomic data set. A sample of SQL script to create

the object table schema is presented. The coupling of the three-tier of our data

computing system is based on the use of CORBA middleware (for the web-based project

MIXOPA, we use Enterprise Java Beans). We also give a description of the interfaces

used in the CORBA framework. In the following sections, we discuss the graphic user

interfaces for the four application components in this project, which are: the atomic data

calculation, the EOS and opacity calculation, the data visualization tool and the

spectrum analysis. In Section 4.4, we show the graphic user interfaces for the first three

components. For the spectrum analysis, we show the graphic user interface in Section

4.5. Implementation of each component is emphasized. Detailed usage information is

given in the User’s Manual. Finally, we give a very brief description of web-based

projects in Section 4.6.

4.1 Results on Atomic Data Computing

In this section, we first compare the atomic data calculated by ATBASE with other

theoretical results and experiments to test the accuracy of the ATBASE codes, then we

show the importance of jj coupling with increasing of the nuclear charge Z in the atomic

data calculations and the spectrum and opacity calculations.

 75

4.1.1 Verification of the atomic data generated by ATBASE

We list some numerical data of energy levels calculated by ATBASE using the DTA

model and the Cowan’s code from low-Z element (Carbon Z=6) to high-Z element

(Gold Z=79) in Table 4.1.1. As we can see, the agreement between ATBASE and

Cowan’s code are very good. The difference of energy levels calculated by ATBASE

and the Cowan’s code is within 2% and the difference of oscillator strengths is within

10%.

For the spectrum analysis, we care about the accuracy of the detailed transition

lines. However, for the opacity calculation used by hydrodynamic simulations, such

detailed line structures are not necessary because they may be washed out after

integration with the radiation field. The UTA method is a good approximation for this

purpose. In Table 4.1.2, we calculate the UTA results of transition energy for Ni-, Cu-,

Zn- like W ions. We can see the ATBASE results agree with the STA results and

experiments. Because ATBASE does not give the transition width explicitly, we can not

compare the width with the STA results and experiment.

In order to test the accuracy of the transition width, we compare the results

calculated by the fully relativistic RSSUTA model with Bauche’s results [BBK85] in

Table 4.1.3. We chose the transition array in the spectrum of Co-like

sequence of W (Z=74). From Table 4.1.3, we can see the comparison of both wave

position and width are satisfactory.

pdd 433 89
�

 76

Table 4.1.1 Detailed energy levels comparison between ATBASE code and

Cowan’s code.

 C 3 1 � 11222 2212 pssss �

Upper J Lower J’ E(Atbase) E(Cowan) f(Atbase) f(Cowan)

2S}2S 0.5 => 1S}2P 0.5 2136.7278 2124.8903 9.084E-03 9.100E-3
2S}2S 0.5 => 1S}2P 1.5 2132.9080 2121.0379 1.894E-02 1.900E-2
2S}2S 0.5 => 3S}2P 0.5 1253.2146 1237.2361 3.621E-01 3.677E-1
2S}2S 0.5 => 3S}2P 1.5 1252.3782 1236.4062 7.233E-01 7.347E-1

 Ar �9 dpsspss 3221221 522622

�

1S}1S 0.0 => 2P}3P 1.0 42.5717 42.5649 4.839E-03 5.100E-3
1S}1S 0.0 => 2P}3D 1.0 42.0823 42.0864 1.196E-01 1.300E-1
1S}1S 0.0 => 2P}1P 1.0 41.4601 41.4831 2.318E+00 2.279E+00

 Ge 1 �27 fdpspssdpspss 433322133322 862622962622

�

2D}2D 1.5 => 3F}4F 2.5 149.1955 149.3197 1.196E-02 1.640E-02
2D}2D 1.5 => 3F}2P 0.5 148.0378 148.0497 8.886E-02 8.680E-02
2D}2D 2.5 => 3F}4G 2.5 147.0757 147.0887 7.172E-03 7.100E-03
2D}2D 2.5 => 3F}2F 2.5 146.6788 146.7086 2.186E-01 2.079E-01
2D}2D 1.5 => 1D}2P 1.5 144.1430 144.1137 1.868E-02 1.840E-02
2D}2D 2.5 => 1D}2D 2.5 143.2658 143.241 1.901E-01 1.873E-01
2D}2D 2.5 => 3P}2F 3.5 142.1415 142.1176 5.679E-01 5.612E-01

 Xe 1 �26 fdpspssdpspss 433322133322 9626221062622

�

1S}1S 0.0 => 2D}3P 1.0 14.7751 14.7651 9.769E-03 0.0099
1S}1S 0.0 => 2D}3D 1.0 14.6135 14.6124 4.352E-01 0.5270
1S}1S 0.0 => 2D}1P 1.0 14.1986 14.2306 6.322E+00 6.2098

 Au 51 1 � fdpspssdpspss 433322133322 9626221062622

�

--
1S}1S 0.0 => 2D}3P 1.0 5.0066 5.0028 6.496E-04 2.000E-04
1S}1S 0.0 => 2D}3D 1.0 4.9319 4.9324 2.288E+00 2.498E+00
1S}1S 0.0 => 2D}1P 1.0 4.7572 4.7619 6.019E+00 5.795E+00

 77

Table 4.1.2 Comparison of UTA calculated transition energies for W(Z=74)

 Ni-like
Transition E(ATBASE) E(STA) E(Exp)

3d – 5f 4.3737 4.046 4.405
3d – 6f 3.8500 3.8792 3.878
3d – 7f 3.5921 3.6199 3.620

 Cu-like
Transition E(ATBASE) E(STA) E(Exp)

3d – 5f 4.4226 4.455 4.456
3d – 6f 3.9032 3.935 3.932
3d – 7f 3.6468 3.677 3.676

 Zn-like
Transition E(ATBASE) E(STA) E(Exp)

3d – 5f 4.472 4.508 4.506
3d – 6f 3.9573 3.993 3.990
3d – 7f 3.7028 3.737 --

 78

Table 4.1.3 Comparison of details of the position and widths of the subarray of

 transition for W(Z=74) between RSSUTA model and Bauche’s results. pdd 433 89
�

(a) represents the Bauche’s results [BBK85]; (b) represents the RSSUTA reults.

Subarray One-electron

transition

Wave number(Å)

 (a) (b)

 FWHM(Å)

 (a) (b)

2/1
6

2/5
2

2/3
6

2/5
3

2/3 pdddd � 2/12/3 43 pd � 6.9666 6.9677 0.075 0.083

2/3
6

2/5
2

2/3
6

2/5
3

2/3 pdddd � 2/32/3 43 pd � 6.5838 6.5642 0.068 0.064

2/3
5

2/5
3

2/3
6

2/5
3

2/3 pdddd � 2/32/5 43 pd � 6.8155 6.8211 0.046 0.058

2/1
5

2/5
3

2/3
5

2/5
4

2/3 pdddd � 2/12/3 43 pd � 6.9665 6.9715 0.058 0.047

2/3
5

2/5
3

2/3
5

2/5
4

2/3 pdddd � 2/32/3 43 pd � 6.5835 6.5679 0.053 0.038

2/3
4

2/5
4

2/3
5

2/5
4

2/3 pdddd � 2/32/5 43 pd � 6.8227 6.8249 0.057 0.042

4.1.2 Evolution of the transition pattern from low Z to high Z

Under the condition that the electrostatic interaction between electrons are much

stronger than the interaction between the spin of an electron and its own orbital motion,

the appropriate coupling scheme is LS coupling. With increasing nuclear charge Z, the

spin-orbit interactions become increasingly more important. When these interactions

become much stronger than the Coulomb terms, the coupling conditions approach JJ

coupling. In the JJ coupling, basis functions are formed by first coupling the spin of each

electron to its own orbital angular momentum, and then coupling together the various

resultant j in an arbitrary order to obtain the total angular momentum J.

 79

 We use the simple transition array 3 along the isoelectronic

sequence for Kr (Z=36), Mo (Z=42) and Pr (Z=59) to demonstrate the importance of JJ

coupling. We show that the spectrum is split with increasing nuclear charge Z. This

feature can be derived using the crude assumption that the external 3d, 4s, and 4p

orbitals are hydrogenic with the effective nuclear charge . Under this

assumption, the Slater integrals of the electron pair (3d, 3d), (3d, 4s) and (3d, 4p) are

proportional to

pdsd 434 88
�

Z 26*
�� Z

*Z . However, the spin orbit integrals � for orbitals 3d and 4p are

proportional to . Therefore, it is clear that the spin-orbit integrals become

predominant when nuclear charge Z increases and the transition array 3

splits into two subarrays, that is, the longer wavelength transition and the

shorter wavelength transition . Two atomic models are used. For the DTA

model, we use the Cowan’s code for computing the wavelengths and the transition

strengths with relativistic corrections. For the UTA model, we use the RSSUTA model

to obtain the UTA transition position and width. Fig. 4.1.1(a)-(c) show the evolution of

the pattern. The RSSUTA numerical data used to calculate the Gaussian profile is listed

in Table 4.1.4.

pd 43 ,�

4*)(Z

pds 434 8
�

2/1p

d 8

2/1 44s �

2/32/1 44 ps �

 80

Fig. 4.1.1(a) Spectrum for Kr 3 pdsd 434 88

�

Fig. 4.1.1(b) Spectrum for Mo 3 pdsd 434 88
�

 81

Fig. 4.1.1(c) Spectrum for Pr 3 pdsd 434 88
�

Fig. 4.1.1 Calculated spectra in the series for Kr, Mo, Pr. The

vertical lines are calculated using the Cowan’s code. The dashed lines are

calculated using the RSSUTA model. The numerical data used for the Gaussian

shapes are listed in Table 4.1.4. These figures clearly show evolution of the

spectrum pattern with increasing nuclear charge Z. The transition array is split

into two subarrays, that is, and 4 .

pdsd 4343 88
�

2/1 2/1 4s �2/1 44 ps � 2/3p

 82

 Kr (Z=36) 3 pdsd 434 88
�

 Transition Energy (eV) Variance Oscillate Strength
20.08 * 6.68 3.417411E-04 (a)

21.26 ** 14.66 4.563104E-04

19.87 6.68 3.510421E-04 (b)

21.36 14.81 6.915320E-04

(c) 19.66 6.68 1.515523E-04

 21.46 14.79 5.588995E-04

Mo (Z=42) 3 pdsd 434 88
�

 Transition Energy (eV) Variance Oscillate Strength
31.16 5.54 6.933621E-04 (a)

35.19 13.06 9.395431E-04

31.05 5.54 6.910049E-04 (b)

35.36 13.05 1.430757E-03

31.02 5.54 2.735523E-04 (c)

35.47 13.06 1.161781E-03

Pr (Z=59) 3 pdsd 434 88
�

 Transition Energy (eV) Variance Oscillate Strength
64.24 3.7 2.308677E-03 (a)

95.83 11.9 3.088790E-03

63.72 3.8 2.249766E-03 (b)

96.08 11.8 4.729155E-03

63.21 3.7 2.292728E-03 (c)

96.32 11.8 3.860142E-03

(a) : (b): (c): 3 2/1

6
2/5

2
2/3 433 sdd 2/1

5
2/5

3
2/3 433 sdd 2/1

4
2/5

4
2/3 43 sdd

(*): (**): 2/12/1 44 ps � 2/32/1 44 ps �

Table 4.1.4 Numerical transition data for array for Kr, Mo, Pr pdsd 4343 88
�

 83

4.1.3 The effect of JJ coupling on spectrum simulations

In Fig. 4.1.2, we compare the ATBASE DTA transmission calculation with the UTA

result for an Al plasma. As we expect, there are no split subarrays. The different peaks

are corresponding to different ion stages (B-like, C-like, N-like ions). Comparing with

experiment, we know that the DTA results for both transition energy position and the

strength agree with experiment very well. For UTA simulations, we notice that: 1) under

the same plasma condition (T=40eV), the UTA spectrum shift toward higher energy

side. This means the ATBASE UTA predicts more over-stripped ions. On the contrary,

we can see the ATBASE UTA simulation under the plasma condition T=30eV

underestimates the ionization degree, and therefore the spectrum is toward the low

energy side. The line strength of ATBASE UTA simulation under T=35eV is closer to

experiment. 2) the energy transition positions are different, comparing with the

ATBASE DTA calculation and experiment. The transition energy calculated by

ATBASE UTA method is not accurate enough to form a Gaussian profile to encapsulate

those detailed transition lines. We can also see this from other comparisons.

In Fig. 4.1.3, we compare the transmission spectrum calculated by several

theoretical models and experiment for a Nb plasma (T=47eV, D=0.026). We can

see that the RSSOPA and STA results agree with experiment much better than the

ATBASE UTA. Actually, the ATBASE UTA has no such detailed structures. The

reason is that the ATBASE UTA uses the non-relativistic LS coupling UTA method for

3/ cmg

 84

the transition array. For example, for transition 3d-2p, there are three lines under JJ

coupling :

2/32/32/12/32/32/5 23,23,23 pdpdpd ���

However, under LS coupling, there is only one transition array 3d-2p. That is why we

can only see big bundles around 2200eV and 2450eV. More detailed comparison

between theoretical simulations and experiment is given in Section 4.5 when we discuss

the implementation of the spectrum analysis module. From this example, we can see

clearly the effect of JJ coupling on the medium to high Z spectrum.

In Fig. 4.1.4, we do the similar comparison for Ge plasma (T=76eV

D=0.054). Again, we can see the ATBASE UTA method produces less accurate

transition energy positions and has no such detailed spectral resolution. This

experimental data is also used to test the implementation of our spectrum analysis

module in Section 4.5.

3/ cmg

 We show a comparison of an opacity calculation for a Au plasma in Fig. 4.1.5.

Using this example we argue that enough configurations are needed to the opacity

calculations. Three theoretical models are used: STA by A Bar-Shalom, EOSOPA by

P.Wang and the Average Atom (AA) model of this work. The numerical solution of the

AA model is similar to the RSSOPA model except that the potential is given by an

empirical form using Density Function Theory (DFT). In the AA model, only one virtual

average atom exists in the plasma. We can see some interesting differences. The

ATBASE UTA opacities are below the STA results, which is instead lower than AA

 85

results. The reason is that the current ATBASE UTA does not include enough

configurations for low ionized ions, which contribute mainly to the low energy part of

the opacity. On the other hand , the AA model overestimates the opacity because the AA

model assumes all the ions have equal ionization energy, and what is more, the AA

model has no detailed structure. However, they all have similar continuum opacity

above 1000eV.

 In a summary of the section, we can make a conclusion that the ATBASE code

does very good calculations from low-Z to medium-Z elements under the Detailed Term

Accounting (DTA) model, and for the opacity table generation, the ATBASE UTA

model can also provide very reasonable results. However, for the spectrum analysis

characterized by unresolved overlap transition structures, the ATBASE UTA model is

less accurate than the RSSUTA model. The RSSUTA model is more appropriate for

high Z elements because of its fully relativistic treatment. The summary of numeric

codes for atomic data calculations and their capabilities are given in Appendix C.

 86

Fig. 4.1.2 Transmission comparison between the ATBASE DTA calculation and UTA

calculation for Al plasma (T=40eV, D=0.013). 3/ cmg

 87

Fig. 4.1.3 Comparison of the absorption data calculated by several theoretical models

and experiment for the Nb spectrum. The plasma condition is T=47eV, D=0.026 .3/ cmg

 88

Fig. 4.1.4 Comparison of transmission calculations by ATBASE UTA and

RSSOPA with experiment for Ge (T=76eV, D=0.054). 3/ cmg

 89

Fig. 4.1.5 Opacity comparison for Au plasma (T=100eV, D=0.1). STA data are

read by hand

3/ cmg

 90

4.2 Parallel Computing

As shown in Section 3.1, Schrödinger’s equation for atoms is a kinetic equation for a

many-body system. As the many-body problem is solved to a high level of accuracy, the

prediction of atomic properties is a challenging interaction between computational

techniques and theoretical physics. Large demands on computer resources are required

to obtain accurate atomic data. Using nonrelativistic with low-order relativistic

corrections (MCHF) or a fully relativistic Driac-Fock theory (MCDF), a sparse

interaction matrix as large as 100,000�100,000 is needed to solve for eignvalues and

eignfunctions. It is an astonishing job for a single processor. Since the computation of

each block of the sparse matrix is independent from any other, it is possible to distribute

the computation of each block across processors. C. Froese Fischer has performed a lot

of experiments on the accurate atomic data calculation from implementation on parallel-

vector computer (Cray) to a cluster of IBM/RS6000 using PVM and finally to MPI on

IBM SP2 [FTB94].

While C. Froese Fischer emphasizes high performance computing for accurate

atomic data for diagnosis, we emphasize the atomic data for the opacity calculation and

high Z elements. To calculate opacities, there are a lot of electron configurations needed

to be considered. If we ignore the interactions between configurations, the calculation

for each configuration is independent under the RSSOPA model, as discussed in Section

 91

3.2.2. Therefore, the communication cost can be minimized and hence the throughput

can be maximized. The code structure is listed in Table 4.2.1.

Table 4.2.1 The pseudo-code structure for atomic data parallel computing

 Do i = 0, ionz-1 // loop over the ion stages

 Primary node reads all relativistic configurations and

 partition configurations according to available processors

 each processor has a pair of configuration index

 ip0: // low boundary ip1: // high boundary

 do j = ip0, ip1 // loop over the configurations

 subtask for UTA calculation for each configuration

 end do

 collect the output from each processor

 end do

 We performed several runs to measure performance of the RSSUTA parallel

code implemented in MPI. We use Ti-like (22 electrons) W (Z = 74) as a sample. For

this ion stage, there are 262 relativistic electron configurations. The same calculations

have been repeated on1, 4, 8, 16, 32, 64, 128, 256 processors using the NPACI IBM SP

machine. Wall clock time has been recorded for each processor. The calculation time is

the average of all wall clock time for each run, which is listed in Table 4.2.2. Fig. 4.2.1

shows the speed-up versus the number of processors. From the figure, we can see that

the speed-up is almost linearly increasing with the number of processors.

 92

Table 4.2.2 Calculation time and speed-up versus the number of processors

Number of

processors

Calculation time in

seconds

Speed -up

1 17695.82 1

4 4414.94 4.008

8 2245.24 7.881

16 1098.95 16.102

32 551.79 32.07

64 277.75 63.711

128 143.14 123.626

256 74.29 238.2

0

50

100

150

200

250

300

0 50 100 150 200 250 300

Number of proce ssors

Sp
ee

d-
up

Fig. 4.2.1 The speed-up versus the number of processors.

 93

4.3 Database Design and Distributed Computing

In a traditional computing environment, the computing resource is tightly coupled with

local file systems, i.e. using local disks as data storage, such as in the spectrum and

opacity calculations. In these calculations [PW96][MCW98], the conventional

approach is to generate the atomic data in a flat file first, and then read the whole file

into the opacity or spectrum applications. This approach requires large memory to load

the whole data set at once but the execution is fast. The major drawback of this

approach is that it is difficult to track down the detailed information that is involved in

the calculation. It has to record the detailed information when the program is running

and to use a post-processor to reveal them. It is difficult to answer questions such as

how many configurations have been involved in the calculation and what are the

transition lines appearing in the spectrum. Another potential difficulty in the atomic

data calculation by using flat files on local file systems is the atomic data size may

exceed the disk capacity or run out of the memory capacity. Depending on the atomic

model, the application can generate huge amounts of data containing information about

the atomic structure and the rate coefficients, especially for high Z elements. This

could be a problem when the spectrum and opacity application try to load these huge

amounts of data. They can exhaust the memory resource easily even though only a

small part of the data is actually used. To handle this problem, ATBASE has to

propose an approximation method by averaging the detailed spectrum structures to

reduce the data size in order that the atomic data can fit into the available memory

 94

capacity [PW96]. To overcome these problems, we use a data management system for

storing our atomic data.

There are three types of DBMS that are widely used: relational database

management system, object-oriented database management system and relational-object

database management system. Object-oriented databases (OODBs) have a great

advantage for scientific data management. Usually, a scientific database can contain

large volumes of scientific data involving disparate types such as numeric data, image

data, spatial data and temporal data. The conventional record-oriented database systems

lack the support for the data models and data manipulations that match scientific data

structures and operations. OODBs can directly support complex objects for capturing

hierarchical structures and OODBs generally have collection types, such as lists and

arrays, that are a better basis for the dimensional data common in scientific applications.

With the OODBs’s inherent extensibility, object-oriented databases (OODBs) are in

many ways a better match for scientific data management than conventional record-

oriented database systems.

In this project, we use Oracle object-relational database management system

(DBMS) for quick development. The advantage of using the commercial database

management systems is that they are well established and support most of network

computing technologies, such as CORBA and Java Beans. The Oracle inherent network

computing architecture makes our implementation much easier.

 95

4.3.1 Database Design

We focus on the atomic data required by ICF applications, that is, the opacity data and

spectrum data. We have built 23 tables in the database thus far. For the mixed opacity

calculation, we store the opacity data for elements from Hydrogen (Z=1) to Calcium

(Z=20). The opacity data contains information such as the average ionization stage,

electron and ion pressures, Rossland opacity, Planck emission and absorption opacities

and so on. The mixed opacities can be calculated from these basis tables using the linear

interpolation method, as described in Section 4.6. This part of the database supports

web-based projects MIXOPA and OPAVIEWER. For opacity and spectrum

calculations, we store the transition energy, transition oscillate strength, UTA width,

configuration average energy and other information in the relation-object tables

supported by the Oracle DBMS. These atomic data stored in the database enable us

fairly easily to track down all detailed information in the spectrum analysis using

appropriate queries, as shown in examples of Section 4.4.

The Structured Query Language (SQL) script used to generate some essential

tables are listed as the following:

 96

Table 4.3.1 The SQL script file used to generate the database schema

Create or replace type RELORB_OBJTYP as object

(n number(2), k number(2)) /

create or replace type PHTNCS_OBJTYP as object

(phtne number, phtnos number) /

create table RELCFGAVGENG

(OID number(5) CONSTRAINT relcfgavgeng_oid_fk REFERENCES

OPERATION(OID),

RelConfig varchar2(160) CONSTRAINT relcfgavgeng_relconfig_nn NOT NULL,

Ionstage number(3) CONSTRAINT relcfgavgeng_ionstage_nn NOT NULL,

Cfgweight number CONSTRAINT relcfgavgeng_cfgweight_nn NOT NULL,

Avgenergy number CONSTRAINT relcfgavgeng_avgenergy_nn NOT NULL,

PRIMARY KEY(OID, RelConfig)) /

Create or replace type PHTNCS_NTABTYP as TABLE of PHTNCS_OBJTYP /

Create or replace type RELORBPHTN_OBJTYP as object

(relorb RELORB_OBJTYP,

occup number, orbeng number, qfect number, radi number,

phtncs_ntab PHTNCS_NTABTYP) /

create or replace type RELORBPHTN_REF_NTABTYP as table of REF

RELORBPHTN_OBJTYP /

create or replace type RELCFGPHTNION_OBJTYP as object

(OID number(5), RelConfig varchar2(160),

relorbphtncs_ntab RELORBPHTN_REF_NTABTYP) /

create table RELCFGPHTNION of RELCFGPHTNION_OBJTYP

 97

(OID CONSTRAINT relcfgphtnion_oid_fk REFERENCES OPERATION(OID),

PRIMARY KEY (OID,RelConfig))

Nested table relorbphtncs_ntab store as relorbphtncs_store_ntab /

Create or replace type RELTRAN_OBJTYP as object

(relorbi RELORB_OBJTYP, relorbj RELORB_OBJTYP,

traneng number, tranos number, utawid number) /

create or replace type RELTRAN_NTABTYP as table of RELTRAN_OBJTYP /

create table RELCFGPHTNEXCT

(OID number(5) CONSTRAINT relcfgphtnexct_oid_fk REFERENCES

OPERATION(OID),

RelConfig varchar2(160) CONSTRAINT relcfgphtnexct_relconfig_nn NOT NULL,

Reltran_ntab RELTRAN_NTABTYP)

Nested table reltran_ntab store as reltran_store_ntab /

As shown in the above table, the most important three data tables are

RELCFGAVGENG, RELCFGPHTNION and RELCFGPHTNEXCT. The

RELCFGAVGENG table stores the relativistic configuration average energies for all

ion stages. Under the local thermal equilibrium (LTE) approximation, only this table is

needed to compute the state populations. These configuration energy data are

transferred into the spectrum analysis module to solve the Saha equation to determine

the configuration populations, and then the corresponding photoexcitation data from the

RELCFGPHTNEXCT table and the corresponding photoionization data from the

RELCFGPHTNION table are extracted from the database. Because the size of

RELCFGAVGENG table is small and the program only loads those important

 98

photoexcitation and photoionization data, this approach speeds up the data transfer and

saves the memory usage. The database access diagram for the opacity and spectrum

analysis is shown in Fig. 4.3.1.

Fig. 4.3.1 The database access diagram for the opacity and spectrum calculation

The application module first establishes connection to the atomic database. After

the user specifies the plasma condition, the module retrieves the 10 lowest

configuration average energies for each ion stage to guess the important ion stages that

may exist in this plasma condition (Step 1), we then solve the Saha equation using the

minimum set of configuration energy to obtain the significant ion stages which have

populations greater than some criteria (for example, crit = 0.001) (Step 2). The module

 99

retrieves all configurations for these significant ion stages (Step 3) and repeats the

process of solving the Saha equation to obtain more detailed populations. The important

configurations are then determined by some criteria (Step 4). For these selected

important configurations, the module contacts the data proxy object to get the

photoexcitation and photoionization cross sections (Step 5). Using the population and

the cross section, the module finally constructs the spectrum and opacity (Step 6).

Because we can use the SQL query language against the database, we can easily

identify the spectrum structure and other detailed information. In Section 4.5, we give

several examples. More details can be found in the User’s Manual.

4.3.2 Distributed object computing

The database serves as a data provider in our three-tier architecture. No

significant application logic is done in the database server. An agent object that is

responsible for all kinds of data requests is deployed in the Oracle DBMS under the

CORBA framework. The application server obtains the required atomic data through the

data agent object and does most of the application logic, such as solving the LTE Saha

equation and computing the opacity. CORBA introduces an Interface Definition

Language (IDL) for describing the interface of distributed objects. After the interfaces

have been determined, we can use the IDL compiler to generate the client-side stub and

the server-side skeleton, which are responsible for the network communication and data

serialization. Detailed information about CORBA architecture has been discussed in

 100

Section 2.2.1. The interfaces used for client and server communication in Project

JEOSOPA are listed in the following table:

Table 4.3.2 The CORBA interfaces used for the atomic data transfer

 public interface SPACORBAInterface extends org.omg.CORBA.Object {

 String getAllElements();

 Vector getAvgEng(String tableName, int ionstage);

 Vector getPreAvgEng(String tableName, int ionstage);

 Vector getIoniEng(String element);

 Vector getExctEng(String tableName, String config);

 Vector getRangeExctEng(String tableName, String config,double emin,double emax);

 Vector getRangeBndfree(String tableName, String config,double emin,double emax);

 ….

 }

The function getAllElements returns information about how many data elements are

available in the current database. This information appears in a combo-box in the

graphic user interface. The function getPreAvgEng obtains the lowest 10 configuration

average energies for each ion stage, as we discussed before. The functions

getRangeExctEng and getRangeBndfree obtain the photoexcitation and photoionization

data given an energy range. It is efficient when users only want to calculate the spectrum

for a specified energy range.

 101

 For the web-based project MIXOPA, we use the Enterprise Java Bean (EJB)

framework, which has similar functionality to CORBA, that is, they both provide a

middle-ware that allows distributed objects to communicate with each other across

different machines. Implementation of the EJB has some differences from

implementation of CORBA. To implement an enterprise Java bean, two interfaces and

one or two classes should be defined, that is, the remote interface, the home interface,

the bean implementation class and the deployment descriptor. The definitions of these

interfaces and bean classes are shown in Section 2.2.2. Here we give the remote

interfaces used in project MIXOPA. The purposes of the functions defined in the

interface are easily seen from the function name.

Table 4.3.3 The EJB interface used for project MIXOPA

public interface MixopaEJB extends EJBObject {

 public Vector getPhotonGrid() throws java.sql.SQLException, RemoteException;

 public Vector getEOS(String element, String eos)

 throws java.sql.SQLException, RemoteException;

 public Vector getMixedEOS(String[] elements, double[] fractions)

 throws java.sql.SQLException, RemoteException;

 public OpacityDataSet getMixedOpacity(String[] elements, double[] fractions)

 throws java.sql.SQLException, RemoteException;

 …

 }

 102

4.4 Graphic User Interface Design

As we discussed in Section 1.1, the calculation of atomic data and opacities involves

many control parameters input by users and needs a long batch job script that must be

edited correctly before the calculation. This process is tedious and error-prone. To help

users generate the atomic data for ICF applications, we built graphic user interfaces

(GUIs) to provide a computing environment that integrates the specification of

computing model, the atomic data calculation, the spectrum and opacity calculations and

the graphic data presentation into a single platform. Using this tool, users can easily

obtain almost all needed atomic data for ICF applications.

The interfaces are designed to be as simple as possible. Default values are

predefined when these values are best parameters for the physical model. Users are also

guided through the calculation process. For example, in the atomic data calculation

module, after all data have been calculated for all ion stages, a form automatically

appears to allow users to specify the atomic model that will be used to generate the

atomic data table. The primary layout of the GUI written in Java is shown in Fig. 4.4.1.

 103

Fig. 4.4.1 The graphic user interface for atomic data computing

 104

As we can see, there are four components in the project: the atomic data calculation, the

opacity computation, the spectrum analysis and the EOS and Opacity visual tool. The

atomic data calculation module can be used to calculate the atomic data under the DTA

model for elements from Z = 1-18 and the UTA model for elements from Z = 1-79. For

the DTA model, we can also calculate the atomic data for both LTE and non-LTE

plasma conditions. The non-LTE atomic data include various rate coefficients such as

dielectronic recombination, 3-body recombination. We use ATBASE as the underlying

computing program. However, modifications are made so that these native Fortran

programs can connect with the Java program. A sample screen shot for the atomic data

calculation is shown in Fig. 4.4.1.

The opacity computation module calculates the EOS and opacity data or mixed

opacity using the DTA or UTA atomic data models under the LTE approximation. Non-

LTE opacities can also be obtained under the DTA model for elements ranging from Z =

1 to Z = 18. In the DTA opacity calculations, the program can automatically switch to

non-LTE opacity calculation option if the plasma condition is not suitable for the LTE

model. The criterion of plasma condition that the LTE assumption can be applied may

be written as,

),(106.1 332/112 �

�� cmITn mnee

where is the excitation potential for the transition from n state to m state. mnI

Users can easily generate an EOS and opacity table for hydrodynamic

calculations. The output table can be directly used by the BUCKY radiation

 105

hydrodynamics code. The program also provides flexible controls in the EOS and

opacity table generation, such as the temperature and density grid, and the photon

energy boundaries. A sample screen shot for the EOS and opacity calculation is shown

in Fig. 4.4.2.

Implementations for these two modules are similar. A common abstract panel is

defined as containing three main parts: the first one is the panel used to construct the

computing task. Users give the calculation parameters and specify the computing model

in this panel. The second is the output window which gives the calculation results and

the computing process information. The third is the program status bar. The panel of the

atomic data calculation module and the panel of the EOS and opacity calculation module

inherent from the abstract panel but implement their own functions. In order to avoid the

freezing of the interface when executing the calculations, a separate thread is spawned to

handle the calculation. The thread interruption mechanism is also applied to allow the

underlying processing program to terminate gracefully.

After the EOS and opacity calculation, a menu of visual tools shows up. For a

single temperature and density pair, users can view the results of ion stage populations,

frequency dependent opacities and absorption spectrum. Users can study the opacity

components that contribute to the total opacity. In Fig 4.4.3, we show the total opacity

and its three components for Au plasma (T=100eV, D=10), that is, the bound-

bound, bound-free and free-free transitions.

321 �cm

 106

Fig. 4.4.2 The graphic user interface for EOS and opacity computing

 107

Fig 4.4.3 Sample screen shot of the total opacity and its three components

for Au plasma (T=100eV, D=10). 321 �cm

This module can also be used with the hydrodynamic application to analyze the

plasma condition. For example, in Fig. 4.4.4 (a)-(d) we show a series of spectrum

evolution under the change of plasma temperatures for Ar plasma. The density of Ar

plasma is fixed at 10 and the plasma length is fixed at 10 . The temperature

changes from 25eV, 50eV, 75eV to 100eV. We can see the distinct spectrum changes

with temperature, which therefore reflect the plasma condition. For multiple

320 �cm cm3�

 108

Fig.4.4.4 (a) Ar Spectrum (D =10 T=25eV) 320 �cm

Fig. 4.4.4 (b) Ar Spectrum (D =10 T=50eV) 320 �cm

 109

Fig. 4.4.4 (c) Ar Spectrum (D =10 T=75eV) 320 �cm

Fig. 4.4.4 (d) Ar Spectrum (D =10 T=100eV) 320 �cm

.

 110

temperature and density grids, the program automatically switches to the EOS and

opacity viewer module.

The EOS and opacity viewer module is used to visualize the EOS and opacity

results. It can run either as a standalone Java application or as a Java applet in a web

browser. The data source can be from the local file system for Java application or from a

remote data source for both Java application and Java applet. There are options for users

to choose the part of the EOS and opacities to display. A sample screen shot of this

module is shown in Fig. 4.4.5.

 Implementation for this visual tool needs much more programming efforts than

the previous two modules. The program dynamically determines the number of tabs and

the drawing canvases according to the drawing options. In order to support multiple

panels and reduce the user response time, each drawing canvas has an internal thread

running for the data retrieve and data presentation. A drawing canvas has a maximize, a

minimize and a close button just like a usual window. By right-clicking the drawing

board, the pop up menu appears so that users can manipulate the graph or print the

graph. To support the visual tool, we developed a Java 2D package (AtGraph2D). This

package is built on the top of Sun’s Java 2D package and it can be used as a generic Java

2D graph API. It provides almost all common graphic functionalities, such as the label

definition, the title positioning, data line coloring, and so on. We describe the spectrum

analysis module in the next section.

 111

Fig. 4.4.5 The graphic user interface for the EOS and opacity visualization

 112

4.5 Spectrum Analysis

The spectrum analysis module can be used to simulate the plasma spectra for low Z

elements under the DTA model and for medium to high Z elements under the RSSUTA

model. Its computing model employs the three-tier architecture, which involves three

components: client, application server and database server. We use Oracle object-

relational database management system as our database server, which has been

discussed in Section 4.2. The application logic such as opacity, equation-of-state and

spectrum calculation reside in the application server. JDBC is used as a protocol to

connect with the database. The Object Request Broker (ORB) provides a transparent

mechanism to invoke a method on server objects and establish the remote

communication with distributed objects. The client uses the internet inter-ORB protocol

(IIOP) to connect with the application logic and presents the results using our

AtGraph2D graphic package. We have shown the three-tire architecture in Section 2.4

The graphic user interface includes three panels: the left panel is used to specify

the plasma condition, the right panel is used as the main plotting area and the bottom

panel is used to view the program status and to control the spectrum drawing process.

The plasma condition specification includes the plasma model, the atomic model, the

element which is from the list of all available elements determined by the database, the

plasma temperature and density. Currently, only RSSUTA atomic model is

implemented. The user can also specify the interested spectrum range in either

 113

Angstrom or eV units and choose the electron configurations that will be included in the

simulation. The right window is implemented as a container, which can contain as many

results as necessary for different plasma conditions. The spectrum for each plasma

condition is shown on its own panel. The panel inherits the generic AtGraph2D class (as

discussed before) which provides some basic functions. Besides these basic functions,

the panel can read external data, for example, experimental data into the graph for

comparison (as shown in Fig. 4.5.4 and Fig. 4.5.5). A sample screen shot of this module

is shown in Fig. 4.5.1. This figure shows two simulations: one is for Ge plasma (Z=32),

the temperature is 76eV and the ion density is , the other is for Nb plasma

(Z=41), the temperature is 47eV and the ion density is 10 . We give more detailed

comparison with experiments later.

320 /102 cm�

20 / 3cm

 114

Fig. 4.5.1 The graphic user interface for spectrum analysis

 115

The spectrum analysis calculation process begins after the user clicks the

“Show” button. The program first loads the relativistic configuration average energies

from the database if needed data are not in the data cache, and solves the Saha equation

to obtain the configuration populations, then determines the important configurations

that have populations above a certain criterion. For these important configurations, the

program loads the photoexcition and photoionization data from the database and caches

those data for the next run if the user is not satisfied by the current results. Finally, the

program constructs the spectrum and the results appear on the right panel. A detailed

description about the program and database interaction has been given in Section 4.3.

A powerful feature of the program is that users can access progressively more

detailed data information, such as the ion stages, configurations which are important in

the calculation and configuration populations, the transition arrays involved in the

spectrum, the photoionization edges and so on. This is very convenient for users to

understand the spectrum structure. Figure 4.5.2 shows a sample screen shot of the

detailed transition lines from a Ge absorption spectrum simulation. Using the spectrum

control, users can also plot the individual contribution from each ion stage. Sample

screen shots for showing the individual contribution from each ion stage can be found in

the User’s Manual.

To test the accuracy of this program, we compare our simulation results with

some available experiments.

 116

Fig. 4.5.2 The graphic user interface for detailed data information

Comparison with experiments

Experiments that can be used as benchmarks for validating our opacity model are

difficult to conduct. Because opacity models depend critically upon plasma conditions,

 117

benchmark experiments require complete and precise characterization as well as precise

transition data. The point projection spectroscope technique (PPS) has been extensively

applied for this kind of experiment. The plasma to be studied is created either by direct

or indirect irradiation. An auxiliary point source plasma, whose dimensions are small

compared to the main plasma expansion, simultaneously generates an x-ray source

which probes the main plasma along the target surface. The attenuation of the x-ray

probe through the expanding plasma is measured with a space resolution on the order of

the point source diameter and with a time resolution given by the duration of the point

source plasma. Absorption data can be obtained for different time delay between the

main laser and the diagnostic beam. The typical experiment setup used to measure the

absorption spectrum of a radiatively heated plasma is shown in Fig. 4.5.3 [MCK95].

 118

Fig. 4.5.3 Schematic of the typical experimental arrangement used to measure

the absorption spectrum of a radiatively heated plasma

Ge absorption spectrum

 Reference [FHSR91] presented the transmission spectra of a Ge plasma at T=76eV and

an ion density of 0.05 . Thin foil samples are indirectly heated using thermal x

radiation from separate laser-produced plasmas created by focusing the two main beams

of the HELEN Nd-glass laser onto a gold target. Each beam delivering up to 220J of

energy at 0.53�m wavelength in a 200ps duration pulse. The sample foil contains 3000Å

thickness of germanium which is tamped by 1�m thickness of Parylene-N on both sides.

The experimental data has been analyzed in previous publications [FHSR91][GBD95] .

We also take this example to test the accuracy of our model. For the experimental Ge

3/ cmg

 119

plasma condition, our predicted mean charge state Z from the Boltzmann-Saha equation

is 14.15. There are 274 significant relativistic configurations and 7677 transitions

involved in the calculation. Figure 4.5.4 shows the Ge transmission spectra between

1100eV and 1700eV from experimental measurement and the numerical simulation of

the RSSUTA model. Experimental data is read from an external data file. The detailed

spectrum information can be fairly easily obtained by querying the database. We can

easily identify the prominent features, that is, the spectra at h� = 1300eV, h� = 1350eV

and h� = 1500eV belong to the 2p-3d, 2s-3p and 2p-4d transition arrays, respectively.

We can also view the separate contribution from an individual ion stage or from

photoexcitation and photoionization by using the “Spectrum Control” button. The

agreement between the RSSUTA calculation and experiment is very satisfactory.

Nb absorption spectrum

Perry et al. [PDS91] have reported their absorption measurements on x-ray heated

niobium targets doped with aluminum as a temperature diagnostic. This experiment also

used the point projection spectroscopy (PPS) technique. The simulated target consists of

two 1500Å thickness layers of CH placed on either side of a 3400Å thick Nb element

layer. The experiments provide benchmark data for LTE opacity codes for the moderate-

Z element (Nb). Three different codes HOPE [RL90], ENRICO [WAL91] and STA

[BOG89] were compared with experiment data. All three codes have the broadly correct

spectral character. In this thesis, we also present our results for this case. The plasma

condition in our computation is the same as in the experiments at a temperature of 47eV

 120

and a density of 0.026 . The ionization balance was calculated as 11.86 using the

Boltzmann-Saha equation. The results for

3/ cmg

Z from HOPE, STA and ENRICO

calculations are 11.37, 11.75 and 12.15 respectively. We show the transmission

spectrum for the measured spectral range in Figure 4.5.5, comparing with experiment

data, which is read from Ref. [PDS91]. An instrumental profile width of 1eV is also

convolved in our calculation. We can see that the shapes of the two spectra are very

similar. The simulations are in good agreement with the measurements for 2

and absorption peaks. For high photon energies such as absorption peaks

and , we are required to shift the

calculated peak by about -30eV in order to have a good agreement. The shift is also

needed by the STA method to achieve better agreement [PDS91]. We find the main

contribution to the 2p-3d transition is from the Ni-like(Nb XIV) and Cu-like(Nb XIII)

ions, and again we can easily identify the important configurations using the data

information tool.

2/52/3 3dp �

2/32/1 32 dp �

/12/32/ 2,5 pd� 2/52/321 52 dp �� 2/3 2,4 pd 2/52 42 d�/3p

 121

Fig. 4.5.4 Ge transmission spectra between 1100eV and 1700eV from experimental

measurement [FHSR91](black line) and the numerical simulation of the RSSUTA

model (red line). The plasma condition is shown as T = 76eV and D = .

The plasma path length used in the simulation is 0.008cm.

320102 �

� cm

 122

Fig. 4.5.5 Nb transmission spectra between 2000eV and 2800eV from experimental

measurement [PDS91] (black line) and the numerical simulation of the RSSUTA

model (red line). The plasma condition is shown as T = 47eV and D = 10 . The

plasma path length used in the simulation is 0.013cm. The energy positions for high

energy transitions (2p-4d, 2p-5d) are needed to shift about 30eV in order to have a

better agreement.

320 �cm

 123

Au emission spectrum

The final example is the Au emission spectrum. In laser-produced plasmas, the x-ray

spectrum of highly ionized high Z ions always shows the prominence of M-shell

transitions of nickel-, copper-, zinc- and gallium- like ions. For example, in a gold

plasma, x-ray line spectra of M-shell transitions in the wavelength range from 4.2 to 5.4

Å are important. This type of experiment is usually under non-LTE plasma conditions.

The assumption of the detailed balance of collision and three-body recombination

process is invalid. The dielectronic recombination may be the main process responsible

for the population of the upper energy levels. Therefore, a full rate equation solution that

includes various rate coefficients should be used. However, when the plasma condition

is not very far from the non-LTE, we can still use a LTE plasma model to simulate the

spectrum. The concept of an ionization temperature T is introduced to simulate the

non-LTE population distribution that is not too far from LTE, which is defined by

Z

)()(eLTEnonZLTE TZTZ �� [BA86].

We computed the atomic data in the RSSUTA approximation for all 79 ion

stages on the NPACI “Blue Horizon” IBM SP. The generated data size is about 215M

bytes. All data are moved (ftp) from Blue Horizon (San Diego Supercomputing Center)

to our local machine and stored in the Oracle database. Taking into account the disk

space used by the DBMS internal management, the total disk space needed for storing

the Au RSSUTA model data is about 300M bytes. The emission spectrum is calculated

under the LTE condition. As illustrated in Ref. [BA86], the Au x-ray line spectra have

 124

shown the prominence of M-shell transitions of nickel, copper, zinc, and gallium-like

ions. The spectator electrons contribute the broad red wing. We show the comparison

between our simulation in the graphic user interface and experiment in Fig. 4.5.6(a) and

Fig. 4.5.6(b). Comparing with experiment, we found that when the ionization

temperature is equal to 700eV and the density is 3 (experiment density)

the agreement of the spectral profiles between experiment and simulation is good.

ZT 32210 �

� cm

 125

Fig. 4.5.6(a) Au emission spectrum for laser-produced plasma [BA86]

Fig. 4.5.6(b) Simulated Au emission spectrum under the RSSUTA

model. The ionization temperature T is equal to 700eV. Z

 126

4.6 Web Target Projects

The above GUIs are implemented as standalone Java applications. However, for the

applet to run within a web browser, the sandbox restriction prevents the connections to

hosts other than the original one from where the applet is downloaded. Considering this

restriction, the tasks that the Java standalone application and the Java applet can perform

are different. The Java application can do the atomic data distributed computing in

addition to the database query and opacity calculations. It can calculate all the basic

atomic data using a computer cluster and put the data into the database. However, users

who access through the Java applet can not perform the fundamental atomic data

computing. One reason is performance concern. Because the calculation of atomic data

may need several hours, it is not reasonable to let an applet run in a browser for hours.

The other and the most important reason is the security issue. Therefore, we only

provide three programs that are web-based. The EOS and opacity visualization module

is adapted to run as a Java applet without much programming effort. This tool is for web

users to visualize the EOS and opacities stored in our database. Another tool, which is

used to generate the electron configurations, is also designed as both a Java application

and a Java applet. The MIXOPA program uses Java servlet technology to calculate the

mixed opacity based on the linear interpolation method. The underlying network

architecture is shown in Fig. 2.4.2, in which the Oracle Application Server provides a

middle-ware between the user and the database.

 127

Project MIXOPA employs the Java servlet web programming technology. Several Java

servlets, which implement the mixed opacity calculation procedure, are deployed in the

application server. The linearly mixed EOS and opacities mean that all mixed data are

calculated by the weight of the element fraction. For example, the mixed data for C

are equal to the summation of 1/5 C and 4/5 H. The web page used to do the mixed

opacity calculation is shown in Fig. 4.6.1.

82 H

Fig. 4.6.1 The web page used to the mixed opacity calculation

 128

Project ECGEN generates all possible electron configurations for a given number

of electrons. The following screen shot shows the graphic interface for this program.

After users give the total electron number and specify how these electrons occupy the

principal and the angular quantum states, all possible electron configurations are

generated and presented on the right panel. The usage of this program can be found in

the User’ manual.

Fig. 4.6.2 Graphic user interface for generating electron configurations

 129

Chapter 5

Conclusion

As the result of cross-disciplinary research, this thesis involves three areas: atomic

physics, computational science and information technology. Conclusions will be made

according to these three areas as following:

I. Atomic Physics Aspect:

A primary goal of the thesis is to provide a practical user-friendly environment that

allows users to generate large scale and high quality atomic data for ICF research

applications as well as do spectrum analysis for medium to high Z elements. To

achieve this goal, the computing system integrates the modification of an existing

atomic data calculation suite ATBASE [PW96] and the RSSOPA parallel program

together. The major features of this atomic data computing program are:

�� Atomic data under DTA and UTA models: Atomic data can be calculated under

either the DTA model (Z = 1-18) or the UTA model (Z = 1-79). For the DTA model,

atomic energy levels, oscillator strengths and photoionization cross sections are

calculated using the non-relativistic Hartree-Fock method with options of multi-

configuration interactions and relativistic correction. Comparing with experiments,

the accuracy of the data is quite good. For the UTA model, the average configuration

 130

approximation is used under either the non-relativistic formalism (ATBASE) or the

relativistic formalism (RSSUTA). Because of its relativistic treatment, the RSSUTA

model is more accurate than the ATBASE UTA model. Various rate coefficients can

also be calculated for non-LTE plasmas (Z = 1-18) under the DTA model.

�� EOS and opacity data for ICF applications: The atomic data generated by the

atomic data calculation module are applied automatically to compute the EOS and

opacity under either the LTE plasma condition or the non-LTE plasma condition. For

the LTE condition, current supported models are the UTA atomic model for Z = 1-79

and the DTA atomic model for Z = 1-18. For the non-LTE condition, the supported

model is the DTA atomic model for Z = 1-18. For group opacity, the photon group

structure can be automatically setup or be defined manually by advanced users.

�� Spectrum analysis considering the JJ coupling: Our RSSUTA model uses the

fully relativistic JJ coupling schema. We show the importance of the JJ coupling in

the UTA calculations by illustrating the spectra patterns for transition lines from low

Z to high Z elements. The effect of JJ coupling on opacity and spectrum analysis can

be significant when comparing with experiments. Transition arrays can be split into

subarrays in the JJ coupling, which give more detailed spectrum structure than in the

LS coupling. Compared with the STA theoretical model and experiments, the

accuracy deviation of the RSSUTA model is within a very low percentage (under

5%).

 131

II. Computational Science Aspect

�� Implementation of the RSSUTA model in parallel computing environment

using MPI: Large scale atomic data generation needs high performance

computing technology. To calculate enormous numbers of transition lines and

other radiative properties for high Z elements, we implement our RSSUTA

model in distributed memory parallel fashion. In order to minimize the

communications cost, the relativistic single-configuration single-electron

transition model is applied to ensure the electron configuration independence.

Experimental runs on the NPACI Blue Horizon IBM SP shows that the

speedup reaches the ideal situation, that is, the speedup is linearly dependent

on the number of processors.

�� Distributed computing using CORBA: In order to connect the database and

the front-end applications, the CORBA middle-ware technology is used to

provide an object oriented distributed computing framework. The language

neutral property of CORBA allows the integration of legacy systems

implemented in other programming languages. The decomposition of

application functionality into separate presentation, application and data

services results in a distributed computing architecture for computational grids.

Another similar technology Enterprise Java Bean (EJB) is also applied for

projects in which only the Java programming language is used.

 132

III. Information Technology Aspect

�� Atomic database development: We use the Oracle database management system to

store the atomic data and we focus on the atomic data required by Inertial

Confinement Fusion (ICF) applications, which is the opacity data and spectrum data.

For opacities, we currently store the results of EOS and opacity data for elements Z =

1-20 into the database. These data are used as basic data in the mixed opacity

calculations. For spectra, we store radiative properties such as transition energy,

oscillator strength, UTA width into the relation-object tables in the Oracle database.

A Saha equation solver has been developed to use the atomic data retrieved from the

database to calculate energy level populations. These data provide detailed

information in the spectrum analysis.

�� Graphic user interfaces: For general users in large scale atomic calculations, one

of the difficulties is the preparation of input parameters. We have developed four

major packages to solve the problem: atomic data calculation module, EOS and

opacity calculation module, high-Z spectrum analysis module, and EOS and opacity

visualization module. These modules provide graphic user interfaces from the data

generation to the data visualization. Using these programs, users can easily obtain

almost all atomic data for ICF applications. Other tools such as the Java graphic 2D

package (ATGraph2D) and electron configuration generation tool have also been

developed in the program.

 133

IV. Further considerations

�� Non-LTE high-Z opacities

LTE opacities are valid in cases that collision processes are dominant. In ICF

research, plasmas are often in non-LTE conditions and opacities for non-LTE

conditions are very important. Although our current program can calculate non-LTE

opacities for elements Z = 1-18, it can’t calculate non-LTE opacities for high Z

elements. There are two kinds of difficulties in this situation. One is the lack of

systematic theory for calculations of various rate coefficients. Although there are

existing empirical formulas for three-body collision/recombination, electron

collision excitation/deexcitation, it is difficult to calculate the dielectronic

recombination because of a number of intermediate states involved in the process.

Approximations are usually used in the dielectronic recombination coefficient

calculations. For high Z elements, the other difficulty is the need of enormous

computing efforts.

 The thesis shows the successful use of the three-tier computing architecture in

the atomic data and spectrum analysis. We have shown under the RSSUTA model

the computing speedup is linearly dependent on the number of processors. It is

possible we can use this approach in the high-Z dielectronic recombination rate

coefficient calculations. The database can be used in the high-Z opacity calculations

to serve as a better data provider. The capability of extending the current computing

system to high-Z non-LTE opacity is worth further study.

 134

�� Improvement on the current system

Several improvements can be made to the current atomic data computing system.

First, the SDSC grid portal toolkit (GridPort) [TMB00] can be used to connect with

our applications so that users could invoke the computing program on IBM SP

machines. Currently, users have to physically login to IBM SP machines in order to

run the RSSUTA data calculation and transfer the calculated data to local machines

by ftp. Second, the current system is based on CORBA distributed computing

architecture. It may be possible to migrate the program to computational grid

architecture in order to improve the performance.

 135

Bibliography

[BA86] C. Bauche-Arnoult, et al., Phy. Rev. A 33, 791(1986).

[BBK85] C. Bauche-Arnoult, J. Bauche and M. Klapisch, Phys. Rev. A 20,

2424(1979), Phys. Rev. A 25, 2641(1982), Phys. Rev. A 30,

3026(1984), Phys. Rev. A 31, 2248(1985).

[BC83] A. Burgess, M.C. Chidicjimo, Mon. Not. R. Astr. Soc. 203, 1269

(1983).

[BOG89] A. Bar-Shalom, J. Oreg, W.H. Goldstein, D. Shvarts, A. Zigler, Phys,

Rev. A, Vol. 40, 3183 (1989).

[BOG95] A. Bar-Shalom and J. Oreg, W.H. Goldstein, Phys. Rev. E, Vol. 51,

4882(1995).

[BOS95] A. Bar-Shalom and J. Oreg, J.F. Seely, U. Feldman and C.M. Brown,

B.A. Hammel, R.W. Lee and C.A. Back, Phys. Rev. E, Vol. 52, 6686

(1995).

[BR83] Brian H. Bransden, Atomic Collision Theory, The

Benjamin/Cummings Publishing Company, (1983).

[BS96] Lou Baker and Bradley J. Smith, Parallel Programming, McGraw-

Hill, (1996).

[CCW98] D.H. Cohen, H.K. Chung, P.Wang, J.J. MacFarlane, Atomic

Radiation and Hydrodynamics Modeling in Support of the Sandia

Light Ion Beam Program, UWFDM-1074 (1998).

[COW81] R.D. Cowan, “The Theory of Atomic Structure and Spectra”,

University of California Press, (Berkely, California, 1981).

[DP82] M.W.C. Dharma-wardana and F. Perrot, Phys. Rev. A 26 , 2096

(1982).

[EKK76] W. Ebeling, W.D. Kraft, D. Kremp, “Theory of Bound States and

 136

Ionization Equilibrium in Plasma and Solids”, Berlin: Akdemie,

1976.

[FHSR91] J.M. Foster, D.J. Hoarty, C.C. Smith, P.A. Rosen, and S.J. Davidson,

S.J. Rose, T.S. Perry and F.J.D. Serduke, Phys. Rev. Let, 67,

3255(1991).

[FK97] I. Foster, C. Kesselman, Intl J. Supercomputer Applications,

11(2):115-128, 1997.

[FN65] U. Fano, Phys. Rev. A 140, 67(1965).

[FS86] C.F. Fischer, Comput. Phys. Rep. 3, 273 (1986).

[FTB94] C. Froese Fischer, M. Tong, M. Bentley, Z. Shen, and C. Ravimohan,

J. of Supercomputing 8 , 117-134 (1994).

[GBD95] S. Gary, J. Bruneau, A. Decoster, et al., J. Quant. Spectrosc. Radiat.

Transfer 54, 155 (1995).

[GLS99] William Group, Ewing Lusk, Anthong Skjellum, Using MPI, The

MIT Press, (1999).

[GMA86] J.C. Gauthier, P. Monier, P. Audebert, C. Chenais-Popovics and J.P.

Geindre, Laser Part. Beans, 4, 421(1986).

[GPR97] T.W. Gorezyca, M.S. Pindzola, F. Robicheaux, and N.R. Badnell,

Phys. Rev. A 56, 4742 (1997).

[GRD99] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New

Computing Infrastructure. Morgan Kaufmann Publishers, Inc., San

Francisco, CA, 1999.

[IRW92] C.A. Iglesias, F.J. Rogers, and B.G. Wilson, Ap, J, 397, 717 (1992).

[LEA00] Doug Lea, Concurrent Programming in Java, Addison-Wesley,

(2000).

[LG77] W.A. Lokke and W. Grasberger, LLNL Report, UCRL-52276, (1977).

[LG96] Michael J. Lewis, Andrew Grimshaw, Proceedings of the Fifth IEEE

International Symposium on High Performance Distributed

 137

Computing, IEEE Computer Society Press, CA, 1996.

[LLM88] Litzkow, M., Livny, M., and Mutka, M. W., Proceedings of the 8th

International Conference of Distributed Computing Systems, pp.

104-111, June, 1988.

[LZ68] W. Lotz, Z. Phys. 216, 241 (1968).

[MCK91] A.N. Mostovych, L.Y. Chan, and K.J. Kearney, D. Garren, C.A.

Iglesias, M. Klapisch, and F.J. Rogers, Phys. Rev. Let, 75,

1530(1995).

[MCW98] J.J. MacFarlane, D.H. Cohen, P. Wang, R.R. Peterson, G.A. Moses,

C.A. Back, O.L. Landen, etc, Development of Soft X-ray Tracer

Diagnostics for Hohlraum Experiments, UWFDM-1069 (1998).

[MF89] J.J. MacFarlane, Comput. Phys. Commun, 56, 259 (1989).

[MMS94] D. Mitnik, P. Mandelbaum and J.L. Schwob, etc, Phys. Rev. A, Vol.

50, 4911(1994).

[OHE96] Robert Orfali, Dan Harkey and Jeri Edwards, The Essential

Distributed Objects, (1996).

[PDS91] T.S. Perry, S.J. Davison, F.J.D Serduke, etc, Phys. Rev. Let. Vol. 67,

3784 (1991).

[PW93]

P. Wang, EOSOPA, FTI Report UWFDM-933 (1993);

P. Wang, Computation and Application of Atomic Data for Inertial

Confinement Fusion Plasmas, UWFDM-855 (1991).

[PW96] Ping Wang, ATBASE User’s Guide, FPA-96-8 (1996).

[RL90] B.F. Rozsynai, M. Lamoureux, J. Quant. Spectrosc. Radiat. Transfer

43, 381 (1990).

[RM99] Ed Roman, Mastering Enterprise JavaBeans and the Java 2

Platform, Wiley (1999).

[RS92] S.J. Rose, J. Phys. B: At. Mol. Opt. Phys. 25, 1667 (1992).

 138

[RZ72] B. Rozsnyai, Phys. Rev., A5, 1137 (1972).

[SN97] Pradeep. K. Sinha, Distributed Operating System Concepts and

Design, IEEE Press (1997).

[ST64] M.J. Seaton. Planet. Space. Sci, 12, 55(1964).

[TAN95] A.S. Tanenbaum, Distributed Operating System, Prentice-Hall,

Englewood Cliffs, NJ (1995).

[TMB00] M. Thomas, S. Mock, J. Boisseau, Proceedings of the ninth IEEE

international symposium on High Performance Distributed

computing, P308, Aug. 2000.

[WAL91] B. Wilson, J. Albritton, D. Liberman, in Radiative Properties of Hot

Dense Matter, edited by W.H. Goldstein, C.F. Hooper, J.C. Gauthier,

J.R. Seely, and R.W. Lee (1991).

[WOMG] Web site, http://www.omg.org.

[WORC] Web site, http://www.oracle.com.

[WSUN] Web site, http://java.sun.com.

[YSZ96] J.K. Yuan, Y.S. Sun, S.T. Zheng, Phys. Rev. E 53, 1059 (1996).

http://www.omg.org/
http://www.oracle.com/
http://java.sun.com/

Appendix A

High Performance Computation and Database of Radiative

Properties with an Interface for ICF Applications

User’s Manual

Jiankui Yuan and G. A. Moses

January, 2001

 Fusion Technology Institute

University of Wisconsin-Madison

 A.1

I. Electron Configuration Generation Tool

1. Program outline

This program can be used to generate electron configurations for opacity and

spectrum calculations. It is designed to run as a Java applet in a web browser. It is

written in JDK1.1.8 so that it can run in either Netscape or Internet Explorer without

installing JDK1.2 plug in.

This program basically solves a linear equation with constraints. The total

electron number is the right side of equation. The constraints of each variable are the

possible occupation for each orbitor. The program can generate both non-relativistic

configurations and relativistic configurations. Given the maximum allowed outer shells,

the program can filter those configurations that users do not want.

Users first give the total number of electrons, then decide how many principle

quantum levels those electrons can occupy. By right-clicking on the bar, users can set

the minimum value and the maximum value for that N level. This gives a coarse

refinement. To obtain a reasonable number of configurations, users usually need to

specify the occupation information for the NL levels. By clicking the N level bar, the

corresponding NL level bars will appear on the right side panel. User can also specify

the minimum value and the maximum value for the NL levels by right-clicking on the

bar. Then, by clicking the Compute button, the program first lists all combination

possibilities for the N levels and the Compute button becomes the Continue button. By

 A.2

clicking the Continue button, the program continues the calculation, spawns threads for

concurrent processing for each possible combination. The final results will be shown on

the right text area panel.

Sometimes, users may get configurations having too many outer unfilled shells.

In this case, users can use the Filter button to filter out those configurations that have

outer unfilled shells more than the maximum partially filled shells which is determined

by the user. The corresponding relativistic configurations can also be generated by

clicking the Relativistic button. All these configuration results are listed on the right

text area panel. Users can obtain those configurations by copying and pasting to their

text editors.

2. User Interface

In the following, some screen shots for generating configurations for 20-electron

system are given.

 A.3

Fig. A.1.1 Non-relativistic configuration generation for the 20 electron system

 A.4

Fig. A.1.2 Relativistic configuration generation for the 20 electron system

 A.5

II. Atomic Data Calculation

1. Program Description

 This program is used to calculate atomic data under the Detailed Term

Accounting (DTA) model and the Unresolved Transition Array (UTA) model. It is

designed to make the calculation easier for general users. The underlying computing

engine is based on ATBASE (see ATBASE User’s Guide (version 2), Ping Wang,

1996). The user interface is programmed using Java. JNI (Java native interface) and

other techniques are used to communicate with the native program ATBASE.

2. Executing Environment

 Sun JDK1.2 or above are required. Microsoft Visual Studio 5.0 is used to

compile and execute the FORTRAN code. The ATBASE programs include

1. xdtacfggen.exe: Generate the configurations for DTA model.

2. xutacfggen.exe: Generate the configurations for UTA model.

3. xatdata.exe: Calculate all atomic data such as energy levels and

oscillator strength under both DTA and UTA models.

4. xatmodel.exe: Used by DTA model to apply different approximation to

select atomic data.

5. xattable.exe: Construct final atomic data table used by DTA model.

6. xutatab.exe: Construct final atomic data table used by UTA model.

 A.6

These programs have been tested successfully on Windows NT.

3. Program Outline
 The atomic data calculation module provides a friendly user interface to invoke

the native ATBASE program. Users specify the Atbase home directory so that the

program can locate the executable programs and other parameters required. The output

data will be written in the output directory. Then users input the element name and the

nuclear charge they want to calculate. User can choose to automatically calculate all ion

stages or some ion stages. This is useful because sometimes exceptions occur for some

ion stages and these unsuccessful calculations must be repeated using alternative

options. User also chooses the atomic model UTA or DTA. If user inputs the element

nuclear charge above Ar for DTA model, the program gives a warning and does not

execute. Parameters that control the wave equation algorithm solution and convergence

are given as default.

 The program automatically generates an input file based on user’s specification

and spawns a thread to handle the execution. The executing states and some debug

output are shown on the right panel.

 After all ion stages have been done, the button that constructs the atomic data

table is enabled. By clicking the button, the program will automatically generate an

 A.7

atomic data table if the UTA model is chosen. The UTA atomic data table files are

uta.atomicdata and uta.photonizxx.

 Under the DTA model, before generating the atomic table, users need to specify

the atomic levels they want to include. A default-input form is popped up. After the

user clicks the OK button, the program invokes the xatmodel.exe code to rearrange the

raw atomic data. The construct table button will be enabled after the rearrangement.

Then the program invokes xattable.exe to generate a DTA atomic data. A brief

description about the number of energy levels included is shown on the right panel. The

DTA atomic data table files are atomic.dat and pixfit.dat.

 4. User Interface

 In the following, some screen shots for the DTA and UTA calculations are

given.

 A.8

 Fig. A.2.1 The environment tab for atomic data calculation

 The environment tab contains information about the home directory and the

work directory, the element specification and calculation options. The right panel gives

debug output from the native code and Java code. Users can see the whole calculation

process.

 A.9

Fig. A.2.2 The general input parameter tab for atomic data calculation

 In this tab, the user defines calculation control parameters. If the bound-bound

checkbox is not checked, the bound-bound transitions will not be calculated. For high Z

elements, the user can choose the fast way to calculate the photoionization cross section

which uses the single electron single orbit wave function. The most important

parameter is the atomic model.

 The SCF parameters determine which potential form or algorithm is used in

solving the Schrodinger equation. Other parameters can be left as default (shown in

Fig. A.2.3).

 A.10

Fig. A.2.3 The advanced parameter input tab for atomic data calculation

 For DTA calculations, after all raw atomic data are done, users need to specify

the atomic state that will be included in the atomic table. The following panel is popped

up automatically when the user chooses the DTA atomic model. N represents the

principle quantum number and L represents the angular momentum of the outer orbitor.

The default is the atomic table does not include the LSJ structure, includes LS structure

if the outer orbitor is below 4d and includes the configuration average structure when n

= 5, and above n = 5 the atomic table uses the hydrogen-like approximation.

 A.11

Fig. A.2.4. DTA atomic model specification

 After user gives the DTA atomic model specification, the program invokes

xatmodel.exe code to rearrange the raw atomic data for each ion stage. The user can see

the progress from the right panel. After finishing the rearrangement, the user can

construct final atomic data table by clicking the button. The following figure shows the

sample results.

 A.12

Fig. A.2.5. Atomic table generation

5. Implementation

 The program is a standalone Java program. The java swing package is used

extensively in the graphic user interface. To execute the native code, the program

spawns another thread as shown in the following code segment:

class Runner extends java.lang.Thread {

private String [] PrgArgs;

public Runner (String [] args, Vector ions, String calcType, String outputDir) {

 PrgArgs = args;

 A.13

 }

Process runningProcess = Runtime.getRuntime().exec (PrgArgs);

 InputStream is = runningProcess.getInputStream();

 InputStream es = runningProcess.getErrorStream();

 RunningAppWatcher appWatcher = new RunningAppWatcher(is);

 RunningAppWatcher appErrWatcher = new RunningAppWatcher(es);

 appWatcher.start();

 appErrWatcher.start();

 try {

 runningProcess.waitFor();

 } catch (InterruptedException ie) { }

 int exitVal = runningProcess.exitValue();

 …

}

6. Troubleshooting

A. Error message shows up on the right panel when executing the program.

This results from the failure of ATBASE execution. In this case, you need to redo the

calculation for those ion stages that have exceptions.

 A.14

III. Equation of State (EOS) and Opacity Calculation

1. Program Description

 Most of the time, users doing radiation hydrodynamic calculations want a

complete EOS and opacity table without knowing the details of the atomic data

generation process. This program can be used in this purpose. It can calculate EOS and

opacity data or mixed opacities using atomic data models DTA and UTA under the

LTE approximation. Users can easily generate an EOS and opacity table or do spectrum

analysis, assuming the atomic data exists. Java is used for the graphic user interface.

JNI (Java native interface) and other techniques are used to communicate with the

native code. The underlying native code is based on EOSOPA (see UWFDM-933, Ping

Wang, 1993).

2. Executing Environment

 Sun JDK1.2 or later versions are required. Microsoft Visual Studio 5.0 is used

to compile and execute the FORTRAN code. The native programs include

1. xdtaopa.exe: Calculate LTE and non-LTE EOS and opacity under the DTA

atomic model.

2. xutaopa.exe: Calculate LTE EOS and opacity under the UTA atomic model.

The file structure is shown in Appendix B. This program has been tested successfully

on Windows NT.

 A.15

3. Program Outline

 The EOS and opacity calculation module provides a friendly user interface to

generate an EOS and opacity table for hydrodynamic calculations and for the spectrum

analysis under the LTE approximation. Users specify the Atbase home directory so that

the program can locate the executable programs and other parameters required. The

home directory must be correct since the program detects all available atomic data

automatically according to the home directory. The output directory assigns which

directory the output table will go. Only the LTE plasma model is supported currently.

For the atomic data model, users can choose the DTA model or UTA model. In the

element list box, all available atomic data under the user’s chosen atomic model will be

listed. The fraction list box gives the fraction of this element in the compound. After

clicking the Add button, the element name and the fraction will appear in the plasma

constitution list box.

 Users can also change the temperature grid, the density grid and the photon

energy grid using the T Mesh, D Mesh and P Mesh tabs, respectively. It allows user to

specify the minimum value and the maximum value and the mesh number. Users can

see the grid in the table in either linear scale or log scale. There is an option that lets the

user decide whether to include Stark broadening. For UTA calculations, usually the

Stark broadening should be included. However, for the spectrum analysis in the DTA

model, users are more interested in the individual line and the UTA width should not be

 A.16

included. The program automatically checks this option according to the atomic data

model.

The program executes the native code after users click the Execute button. First,

the validity of input is checked. Then, the corresponding atomic data are copied from

the Atbase home directory to the work directory. The native code is then executed and

the debug output information will show in the right panel. The View Results button will

be enabled after the calculation is finished. By clicking this button, it brings up a menu

which gives the options that display the results. If viewing the table as a graph is

chosen, the program will invoke the OpViewer module (see EOS and Opacity Viewer).

If users want to see the orbital occupation probability or frequency dependent opacity

or absorption spectrum, they must choose one temperature point and one density point,

otherwise, these options will be disabled.

The Orbital Occupation Probability shows the occupation probability for each

orbitor graphically. The Frequency Dependent Opacity displays total opacity and three

components (bound-bound, bound-free and free-free). The user can manipulate the

graph by right-click to pop up a menu (see EOS and Opacity Viewer). The Absorption

Spectrum gives the absorption spectrum based on the optical thin model. Users can

adjust the optical depth. The file names of the output EOS and Opacity tables are

utaopa.TAB for the UTA model and dtaopa.TAB for the DTA model.

 A.17

4. User Interface

 In the following, some screen shots for the EOS and opacity calculations under

both DTA and UTA model are given. Because they are sample screen shots, no detailed

physics implication has been discussed.

Fig. A.3.1. The plasma condition tab in EOS and opacity calculation

 In this tab, users give the Atbase home and output directory by clicking the

directory browsing buttons. Currently, only the LTE plasma model can be used. For the

atomic model, the user can choose to use the UTA model or the DTA model. The

 A.18

available atomic data that will be used in the EOS and opacity calculations will be

automatically searched under the Atbase home directory/native/data/DTAdata or

UTAdata. The DTA atomic data files for each element are atomic.dat and pixfit.dat in

its own directory, while the UTA atomic data files are uta.atomicdata and

uta.photonizxx in its directory. The corresponding data will be copied into the work

directory when issuing the Execute command according to the atomic model used. The

specification of a compound is given by using the Add and Remove button.

Fig. A.3.2. The temperature mesh tab in EOS and opacity calculation

 A.19

In the temperature mesh tab, the user specifies the temperature mesh for the

EOS and opacity table. There are two mesh types: linear and log. The user can see the

mesh by clicking the View button. If the Sesame mesh is used, the first mesh point will

be the first one that is greater than the minimum value and the last one will be the one

that is smaller than the maximum value. If using only one temperature point, the

temperature is the minimum value.

 A.20

Fig. A.3.3. The density mesh tab in EOS and opacity calculation

In the density mesh tab, the user specifies the density mesh for the EOS and

opacity table. There are two mesh types: linear and log. User can see the mesh by

clicking the View button. If using only one density point, the density is the minimum

value.

 A.21

Fig. A.3.4. The photon energy mesh tab in EOS and opacity calculation

In the photon energy mesh tab, the user specifies the group photon energy

boundary mesh for the opacity table. There are two mesh types: linear and log. To

calculate the total opacity quantities, the user can let min=0.01eV, max=1000000eV

and use 1 photon group. Otherwise, given the photon group number and the minimum

and maximum photon energy values, the program can generate an opacity table. Users

can choose to use their own photon boundaries. After clicking the No radio button, a

form appears to allow users to either input the photon boundaries in the text boxes or

 A.22

import a file that specifies the photon boundaries. To analyze the spectrum, the user

should give more mesh points in the spectrum range in order to have a better resolution.

For the UTA calculations, the Stark broadening mechanism is included. For the DTA

calculations, the default is to use the individual lines.

 After the calculation, a menu to display the results is shown. If the user

calculates an EOS and opacity table (T >1 and D>1), the detailed information button

will be disabled as shown in Fig. A.3.5. The user can only use As Graph button to

visualize the results. However, if the user calculates opacity or spectrum for one

temperature and one density, those buttons will be enabled as shown in Fig. A.3.6.

Fig. A.3.5. The menu for displaying results after generating an EOS and Opacity table

 A.23

Fig. A.3.6. The menu for displaying results for a single temperature/density pair.

 The following sample figures show the orbital occupation probabilities for Al

plasma and a mixture of Al, C, H and B.

Fig. A.3.7. The orbital occupation probability for Al plasma.

 A.24

Fig. A.3.8. The orbital occupation probability for the mixture of Al, C, B and H

 A.25

Fig. A.3.9. The three components (bound-free, free-free and scattering) that

contribute to the opacity.

 The above figure shows the three components of the opacity and the total

opacity in the log scale (bound-bound transition can not be shown in the log scale)

using the DTA model.

 The user can see the bound-bound contribution to the total opacity in the linear

scale, as shown in Fig. A.3.10. How to manipulate the graph is discussed in Appendix

A. IV.

 A.26

Fig. A.3.10. The four components of opacity in the linear scale.

 The user can also obtain an LTE optical thin absorption spectrum. By adjusting

the plasma length, user can easily see the effect.

 A.27

Fig. A.3.11. The LTE absorption spectrum using the optical thin model.

5. Implementation

 The program is basically a standalone Java program. The java swing package

and java thread technology are used extensively. The program spawns a new thread

whenever it needs to do an execution in order not to freeze the interface (see the

example in Atomic Data Calculation). Native copy functions are used whenever the

program needs to copy files from one directory to another directory for better

performance. To display the EOS and opacity results, the package JAtbase.AtGraph2d

is used.

 A.28

6. Troubleshooting

A. Error messages like “ error when calculating the heat capacity “ occur.

This results from the failure execution of the UTAOPA or DTAOPA code. These codes

may have problems (underflow or other exceptions) when calculating certain

temperature and density points. In this case, you can adjust the temperature or density

grid a little, hoping it can skip those bad points.

 A.29

IV. EOS and Opacity Viewer

1. Program Description

 This module is used to visualize the EOS and opacity results. It can run both as

a standalone Java application and as a Java applet in a web browser. The data source

can be from the local file system for Java application or from a remote data source for

both Java application and Java applet. The user has options to view each part of the

EOS and opacity. Each panel on the right side concurrently displays the results and a

pop up menu can help manipulate the graph. The user interface and the graph package

are programmed using JDK1.2 API. For the remote data source, several JavaServlets

residing in the application server serve as the remote data provider.

2. Executing Environment

 Sun JDK1.2 or above are required to run this Java application. To run the

program in a web browser (Netscape or Internet Explorer), the Java 1.2 plug-in is

needed.

3. Program Outline

 The EOS and opacity viewer module provides a flexible tool for users to

visualize the EOS and opacity results. The data format that is known by this program is

the BUCKY EOS and opacity data format. Users can load the data from the local

machine by browsing the directory and specifying the data file (usually utaopa.TAB or

dtaopa.TAB). It takes a while for the program to load the data (usually about 3M bytes)

and split it up into smaller parts for the graph display. If user chooses to load data from

 A.30

the remote data source (that is, capsule.neep.wisc.edu), the program first contacts a

JavaServlet residing in the application server and obtains all available elements in the

database. The data source panel will show a list box and all available elements will

appear in that list box.

 The program has options that let the user see each part of the EOS and opacity

table. If View All Data check box is checked, all EOS and opacity data will be

automatically drawn on the right tabbed panels. The user can select some parts to draw

by disselecting the View All Data check box and choose from the check list box on the

Opacity and EOS tabs.

 After the View button is clicked, the program decides the number of tabbed

panels that need to display the data, then each panel spawns a separate thread to load

the data from the data source and render the data. The temperature, density and photon

energy grids are also shown on the panels for reference. The graphs of EOS data will be

automatically drawn on each panel. For opacity data, the user needs to click the upper

bar on the panel to bring up a temperature and density grid panel, which is used to

determine the opacity data set that will be drawn.

 The graphs that users display may be not good because of the large scale of the

data range. Users may manipulate the graph through a graph controller by right-

clicking within the graph frame. In the graph controller, the number of data sets is listed

and other graph controls such as the line size, color, data range, axis labels are shown.

 A.31

Users can use it to obtain a much better graph. The info button tells the size of the data

set and the kind of data. Users can also print the graph from the popup menu.

4. User Interface

 In the following, some screen shots are given. Because they are sample screen

shots, no detailed physics implication has been discussed.

 Fig. A.4.1. Load data from remote source and display all results automatically

 A.32

 The program determines the number of tabbed panels required and draws the

data concurrently in each panel.

Fig. A.4.2. Display selected EOS results.

 Users can select the components of the EOS and opacity. The program

determines the number of tabbed panels required and draws the data in each panel.

 A.33

Fig. A.4.3. Temperature and density grid

 Users can draw opacities in T-P (temperature-photon energy) grid or D-P

(density-photon energy) grid easily by selecting the points shown on the above panel.

Only one temperature point or one density point is allowed, otherwise, there are

warning messages.

 A.34

Fig. A.4.4. Opacity data display

 Figure A.4.4 shows a sample of Rossland 100 group opacities. It is maximized

by clicking the small icon on the upper bar. To restore this graph to its original position,

the restore icon should be clicked. This graph has been manipulated by the graph

controller.

 The graph controller shows information in two categories: data set and axis. In

the data set section, it shows the data information. To disable or enable some data sets,

the user can select the data sets from the left list panel and click the Enable button or

the Disable button. To change color or the line pattern or the line size for a curve, the

 A.35

user need to first select the data set from the left list panel. Otherwise, there is a

warning.

 Because the same GUIs are used for X and Y axis, some fixed orders of

operation are required. In the following, it shows how to change the data range, set axis

labels, draw major and minor grid and set the graph title.

 Fig. A.4.5 Set up the data range and the axis label

 To set the data range to be drawn (see Fig. A.4.5), the user should click the

button in the order of x1 or y1, Auto or Manual, Min or Max Value, Linear or Log, and

then Redraw. Make sure the x1 button is chosen when manipulating with the x axis and

the y1 button is chosen when manipulating with the y axis.

 A.36

 To set the axis label (see Fig. A.4.5), first make sure the axis name button is

chosen, then type the axis title in the text field box and choose the color or the font size

for the axis title, click the Set Title radio button next, and finally click Redraw button.

 Fig. A.4.6 Draw the major and minor grid and set the graph title.

 To add the major grid or the minor grid to the graph, check the Show box and

choose the line pattern and then click the Redraw button (see Fig. A.4.6).

 To set the graph title, first type the graph title in the text filed box and choose

the color and the font size for the graph title, and then choose the graph title position by

clicking the Top or Bottom radio button, finally click the Redraw button (see Fig.

A.4.6).

 A.37

5. Implementation

 The program is designed to run both as a standalone Java program and as a Java

applet. The Java swing package is used for the graphic user interface. Java threads are

used extensively for better drawing performance. A package named

JAtbase.AtGraph2D is designed using Java2D, which can be used as a graphic tool for

general purpose. This package provides the external interface that lets the user plug in

his own graph control object. The implementation of the mouse listener can handle the

mouse operation.

 For the remote data source, several JavaServlets reside on the application server

(capsule.neep.wisc.edu), acting as the data provider. These Java Servlets then contact

with the data server (lapop.ep.wisc.edu) to retrieve the data from the database.

 For the local data source, the Java program directly retrieves the data by reading

the data file. A common data loading interface is designed to unify the data loading

operation from the local data source and remote data source.

6. Troubleshooting

 None.

 A.38

IV. Spectrum Analysis For High Z Plasmas

1. Program Description

This module can be used to perform spectrum analysis for laser-produced high Z

plasmas. The atomic data are calculated using the RSSUTA model on NPACI IBM SP

machines. The data are then imported into the Oracle database. CORBA framework

paves a way to connect the database and the graphic user interface. Currently, only the

LTE plasma model is supported.

2. Executing Environment

This module is based on the commodity three-tier architecture. Oracle 8I database

management system and Oracle Application Server 4.8 are used. Sun JDK1.2 or above

are required to run Java application.

3. Program Outline

After the atomic data have been calculated using the parallel code RSSUTA, they

are transferred to the local machine and then imported into the Oracle database by

running a script. The program first tests the connection between the database and the

graphic user interface. If it succeeds, it will list all available data in the database in the

list box. After specifying the temperature and density points and the photon energy

range, users can invoke the calculation by simply clicking the Show button.

The program loads the first lowest ten relativistic configurations and solves the

Saha equation to guess the most important ion stages, then it retrieves all average

 A.39

configuration energies for each of the important ion stages and caches these data for

later use. The Saha equation is solved to obtain the population of these configurations.

There are generally thousands of configurations involved. Minimum of 1.0E-3 is used

to determine the configurations that will be used in the spectrum generation and to filter

those configurations with too small populations. The program then retrieves the

photoexcitaion and photoionzation cross sections for each of these configurations. The

data required by the UTA spectrum analysis such as energy positions, transition

oscillator strength and width are obtained from the database. With configuration

populations and the spectrum data, the program finally constructs the spectrum and

shows the result on the right panel.

Users can get detailed information by clicking the Data Information button. The

ion stage distribution and the calculated ionization energies are displayed. Users can

see the relativistic electron configurations involved in the calculation for each ion stage

and the transition data and ionization data for each configuration.

4. User Interface

The following will show some screen shots as an example in the spectrum analysis

for Ge plasma (T =76eV and D =). We will only focus on the graphic user

interface instead of physics.

320102 �

� cm

 A.40

Fig. A.5.1 provides general information of this run such as plasma condition,

average ionization and ion stage distribution. The calculated ionization energies for this

element can be obtained by clicking the Ioniz Energy button, as shown in Fig. A.5.2.

Users can see how many configurations are involved for an ion by choosing from the

ion distribution table and clicking the Configurations button.

Fig. A.5.1 General information of plasma condition and ion distribution

 A.41

Fig. A.5.2 The calculated ionization energies

In Fig. A.5.3, we show the relativistic electron configurations for P-like Ge that have

been included in the calculation. The population for each configuration is also shown in

this figure. For each configuration in this table, users can obtain more detailed

information about transition arrays and ionization edges by click the Transition Lines

button and the Photonization Edges button. Samples are shown in Fig. A.5.4 and Fig.

A.5.5.

 A.42

Fig. A.5.3 Display of relativistic electron configurations that are involved in the

calculation for P-like Ge ion. The configuration populations are also shown.

 A.43

Fig. A.5.4 Detailed transition data for three configurations. The configuration is shown

as a label above the subtable. The initial and final orbitals, transition energy, oscillator

strength and UTA width are also given.

 A.44

Fig. A.5.5. Ionization edges for three configurations. A pair of N and K represents the

electron orbital. Label Orb. Eng. represents the orbital binding energy and therefore

the ionization edge. Label Quan. Defect represents the quantum defect of this orbital.

Label Avg. Rad. represents the average radius <r> of this orbital. Labels 1st Eng.,

1st.OS, 2nd Eng., 2nd OS. represent the first two points of the photoionzation oscillator

strength.

 A.45

Users can also visualize the contributions from the bound-bound transitions or the

bound-free transitions or from individual ion stages. The plasma path length is also

shown. Note these contributions are calculated using this path length. Emission

spectrum can also be constructed using the same data retrieved from the database.

.

Fig. A.5.6 Spectrum control panel for viewing different components of the spectrum.

5. Implementation
 The implementation of this module needs knowledge about the client/server

techniques. First, we specify the interfaces that may be used in the program (see

Section 4.3 in the thesis). The interfaces are implemented using CORBA. Then, the

CORBA servers are deployed into the database. The CORBA clients are used as stubs

in the application. For graphic user interfaces, we use inner frame to contain more than

 A.46

one graphs in the window. Detailed information about the GUI design is as following:

SpectraFrame installs three panels: SpectPlasma, ManipulatePanel, and

DrawSpectraPanel. These three panels are accessible from the static copy of itself. In

its constructor, the DrawSpectraPanel is also registered by the DrawManager, which

is in charge of adding the DrawInnerFrame object if no identical copy exists, or

removing the DrawInnerFrame object if it is closed. The DrawSpectraPanel is the

main plotting area that contains the inner frames. DrawManager has a static reference

to the only one copy of DrawSpectraFrame object, which does the actual job to add the

internal frame onto the DrawSpectraFrame. DrawManager also keeps track the plots

that are added on the DrawSpectraFrame. DrawInnerFrame is the actual drawing

object that does the job of contacting the CORBA client objects and drawing the graph

on its own panel. Each DrawInnerFrame has a PlasmaCondition object which contains

the plasma condition and the spectrum range that is constructed after the Show button is

clicked.

5. Troubleshooting

None.

 B.1

Appendix B

File structure of JAtbase native code

 C.1

Appendix C

Summary of codes for atomic data calculations in FTI

Code Model Capability

DTA �� Detailed LSJ, LS coupling radiative atomic data (E, gf)

�� Configuration interaction method with Hartree-Fock

wavefunctions

�� Bound-bound and bound free transitions

�� Z = 1-18 (can be extended to medium Z)

ATBASE

(serial)

UTA �� Single-electron transition approximation

�� Non-relativistic unresolved transition array method

�� Bound-bound and bound-free transitions

�� LS coupling

�� Z = 1-79

LTE �� Saha-Boltzmann distribution

�� Voigt line shapes

�� Pressure ionization effect

�� Z = 1-79

EOSOPA

(serial)

Non-LTE �� Collisional radiative equilibrium (CRE) equation

�� Including electron collision and radiative atomic processes

�� Z = 1-18

RSSOPA

(parallel)

LTE

UTA

�� Single-electron transition approximation

�� Relativistic unresolved transition array method

�� Bound-bound and bound-free transitions

�� JJ coupling

�� Z = 1-79

