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Chapter 1   

Introduction 

 

This thesis introduces the creation and use of an object-oriented relational database 

containing radiative properties of hot dense plasmas in radiation hydrodynamics 

calculations to simulate laser fusion experiments and in spectroscopic analysis of laser 

fusion experiments. Atomic physics computations are done in a distributed environment. 

Technologies such as MPI, CORBA and EJB are involved. The Oracle 8i object oriented 

relational database management system is used to serve the data and Java technology is 

used to construct a portal for the plasma physics user to access and use the data. This 

supports dense plasma physics research in the Fusion Technology Institute (FTI) at the 

University of Wisconsin and other organizations if they so desire. 

The layout of the thesis is as follows: In Chapter 1, we start with the discussion 

of difficulties in large-scale atomic data calculations and the goals of the thesis. In 

Section 1.2, we give a brief overview of various atomic models in hot dense plasmas. In 

Section 1.3, we introduce high performance computing technologies using parallel 

computing infrastructure such as MPI, OpenMP, and PVM, which are usually adopted in 
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scientific computing environment, and distributed object computing such as CORBA, 

EJB, which are commonly used in the commercial systems. 

In Chapter 2, we present more details of the information technologies that are 

used in the thesis. Starting with the comparison of parallel and distributed computing, 

the description of the architectures and main components of the two most popular 

distributed object-oriented computing frameworks CORBA and EJB are then provided. 

Several aspects of Java technology such as thread, networking and JDBC are also 

touched. Finally, the Oracle DBMS, which serves as the database manager, is discussed. 

Chapter 3 covers the physics underlying the various atomic models used in the 

thesis. First, the calculation of atomic structure in the non-relativistic theory is 

discussed. From the Hamiltonian operator to the antisymmetrization of the electron 

waves and to the Slater integrals and the energy matrix, we describe the conventional 

ways of treating atomic structure under perturbation theory. Then, many atomic 

processes are discussed and some formulas used in the program are provided. In Section 

3.2, we give a description of the plasma models and various rate coefficients that are 

used in the current opacity NLTE model. In the following section, the RSSOPA model 

based on the UTA method is discussed. 

In Chapter 4, we discuss the implementation of the atomic data distributed 

computing system. First, we verify the accuracy of ATBASE codes and the RSSUTA 

model. Then we demonstrate the importance of JJ coupling by studying the transition 

spectra patterns and comparing a Nb spectrum with experiment. The speed up of our 
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parallel implementation of the RSSUTA code is also presented. Finally, we describe the 

database and its graphic user interface.  

In Chapter 5, we come to the conclusions. A User’s Manual is also given in the 

Appendix.    

 
 
 
 
 
 

1.1 Atomic Database Using Distributed Object 

Oriented Technology 

A suite of codes named ATBASE [PW96] had been developed by Dr. P. Wang, Dr. J. J. 

MacFarlane, Dr. G. A. Moses and other members in the FTI. These codes have been 

successfully used to analyze the experiments of light ion fusion [CCW98], laser-driven 

inertial confinement fusion [MCW98] and other dense plasma research. The ATBASE 

codes consist of three parts: the atomic data generator, the plasma population modeling 

and the muffin-tin EOS calculation. The atomic data generator is based on Cowan’s non-

relativistic code [COW81]. It provides very accurate atomic data such as energy levels, 

transition oscillator strengths, photoexcitation cross sections and other radiative and 

collisional properties. The second part of ATBASE calculates the plasma state 

populations with several options: the LTE Saha model, the Coronal Equilibrium model 

and the full CRE steady state model. The EOS muffin-tin model includes sophisticated 
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treatments for both bound and free electron density distributions in the plasma by 

solving the self-consistent-field Dirac equation. It provides very good EOS data. 

However, there are several areas that can be improved. First, ATBASE lacks a 

graphic interface to effectively assist users’ access to the data. In ATBASE calculations, 

there are many important input parameters that users should be aware of and various 

computing models that are based on different physical assumptions. A graphic user 

interface helps users specify the problem, interact with the program dynamically and 

also help users analyze the output.  

Secondly, the atomic data produced by ATBASE are stored in many scattered 

flat-files. Because of the drawbacks of using flat-files, such as management difficulties 

and less efficient IO operations, it is desirable to store these atomic data in a database 

management system (DBMS). In this way, we can avoid the time-consuming repeated 

computations for the same atomic data and the data diagnosis is also much easier. Once 

the database has been built up, various technologies such as CORBA, EJB and JSP can 

be applied to make the database accessible from the Web.  

Thirdly, although ATBASE is able to provide accurate radiative properties such 

as transition energies and opacities using the UTA method, it is less accurate to apply to 

the high-Z spectroscopy analysis (see Fig. 4.1.3). The difficulty for ATBASE to 

simulate the high-Z spectra is the inherent complexity of enormous numbers of 

transition lines for high Z elements using the DTA method and the non-relativistic 

treatment of the UTA method. We have built a new model named RSSOPA (the 
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relativistic single-configuration-single-electron opacity model), which overcomes the 

complexity of enormous transition lines by using the UTA method but in the fully 

relativistic treatment, and therefore giving us more accurate results (see Fig. 4.1.3 and 

Fig. 4.1.4). In the RSSOPA model, the atomic data are in the JJ coupling approximation. 

Furthermore, the RSSOPA model is implemented for parallel computation using MPI. 

The goals of the thesis are: 

I. To build a distributed computing system for the high performance computing of  

atomic data.   

II. To establish an atomic database to store the data such as EOS and opacities used in 

ICF applications. 

III. To build a graphic user interface for ICF applications. 

IV. To validate the atomic data in the database and perform spectrum analysis for 

medium to high Z elements using the RSSUTA model. 

 

1.2 Atomic Physics in Hot Dense Plasmas 

Atomic physics plays an important role in the investigation of the properties and 

behavior of hot laboratory and astrophysical plasmas containing highly stripped atoms. 

An understanding of the physical processes of the ionized atoms in hot dense plasmas 

has various applications in astrophysics, fusion research, X-ray laser and other branches 

of modern physics. Recent technical advances have made it possible to study the 
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spectroscopy from negative ions to hydrogen-like Uranium ion U , as well as the 

collisional characteristics of the resonant processes arising from collisional excitation 

and dielectronic recombination [GPR97][PDS91]. 

91�

The interests of atomic physics in hot plasmas are mainly in three general fields. 

The first is to study the influence of the plasma environment on the atomic structure, 

such as the bound electron wave function, energy levels and ionization degrees. The 

second is the study of the collision processes among electrons, photons and ions inside 

the plasma. These processes determine the charge and excited state distributions. The 

quantities to describe the probabilities of these processes are their cross-sections and 

rates. The third is the subject of the emission and absorption spectra of the plasma. 

With the increase of plasma density, the atomic properties transition from the 

free atom model, which means the interaction among atoms is so weak that one atom 

moves as if no other atoms exist, to the screened electron cloud regime and then to the 

quasi-molecular regime. There are several models to address the effect of the plasma 

environment on the atomic structure. 

�� The Debye-Hückel (DH) model 

The DH model is based on the Poisson equation and the Boltzmann statistical 

distribution for the ions and electrons. The important quantities in the DH model are the 

Debye screen length, Debye sphere and Debye screened potential. The Debye sphere 

defines the extent range the other ions can affect the central ion. The DH model is not 

valid at very high density. 
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�� The Thomas-Fermi (TF) model 

   The TF model is based on the micro-view of the Poisson equation and the Fermi-

Dirac (FD) statistics instead of the Boltzmann distribution. In this model, both bound 

and free electrons conform to the FD distribution and all electrons move in a confined 

sphere. The Thomas-Fermi-Dirac (TFD) model includes the corrections due to the 

exchange interaction of the electrons. 

�� The Ion Sphere (IS) model [RZ72][YSZ96] 

This model is similar to the TF model except that it treats the bound electrons 

differently. For the bound electrons, the IS model uses the quantum mechanic 

Schrödinger equation instead of the statistical distribution. This model is also referred to 

as the average atom model, which has many applications in the EOS calculations and the 

analysis of complicated spectra of plasmas. This model can also treat the free electrons 

quantum mechanically by solving the wave equation. 

�� The Ion Correlation (IC) model [DP82][EKK76] 

The IC model is the most adequate model to describe the atomic structure in 

plasmas. It includes the consideration of ion-ion correlation. This model needs to solve a 

hypernetted chain (HNC) equation to count the interaction of the ions besides the 

electron-ion interaction for the two-component plasma. 

 The effect of the environmental ions modifies the potential of the central ion 

with an additional repulsive potential and thereby reduces the binding energies of the 

electrons of the central ion. The two important phenomena of these effects are ionization 



 8

potential lowering or continuum lowering and atomic level shifting. Because of the 

complexity of involving the plasma effect into the atomic structure, people usually use 

the atomic data generated under the free atom assumption, which is the topic of Section 

3.1.1. 

 There are a dozen important processes involved in the plasma interactions as 

listed in Table 3.2.1. The fully quantum mechanical treatments of these processes are so 

difficult that the empirical formulas or fitting formulas are often used, for example, the 

Lotz’s formula [LZ68] for electron impact ionization, the Burgess-Merts’ formula 

[BC83] for the dielectronic recombination and the Gaunt modification to the classical 

formulas. We discuss the various radiative, collisional and resonant processes in Section 

3.1.2. 

 The radiation emitted from hot plasmas is an important diagnostics tool. The 

emitted radiation intensity and spectral distribution are determined by the plasma density 

and temperature. Through the analysis of the satellite line intensity ratios of the emission 

spectrum, we can infer the plasma condition [MMS94]. The typical emission spectra of 

highly ionized plasmas are shown in Fig. 1.1.1.  The line-by-line modeling method 

[COW81] which is adequate for low-Z plasmas consisting of ions with a small number 

of bound electrons is not practical to interpret the cluster spectral structure coming from 

the high-Z highly stripped plasmas. The more powerful method is the UTA model, 

which is also a practical approximation to calculate the plasma opacity. We discuss this 

model in Section 3.2. 
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Fig. 1.1.1 Experimental gold (a) and tantalum (b) spectra from laser-produced 

plasmas. Comparison of the 4.7-5.2 Å region of the spectrum from the gold 

plasma (c) with computational results (d) yield the best fit for a 240eV ionization 

temperature [GMA86]. 
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1.3 High Performance Computing: Parallel and 

Distributed 

The speed of high performance computers continues to dramatically increase as a result 

of a hierarchy of processor parallelism and a hierarchy of memory access. On-chip 

parallelism in the circuitry of the processor functional units leads to superscalar 

performance by fetching and executing multiple instructions (~4) per clock cycle. Multi-

level caches (L1 and L2 and sometimes L3) provide data locality to the processor 

registers that reduces fetches to main memory and improves processor performance. 

Shared memory parallelism (SMP) has several processors (~4-32) sharing data through 

the same main memory through high speed memory access technology. An alternative to 

this, massively parallel computers, have each processor with its own main memory and 

the processors share data through a network architecture where the program must 

explicitly request that data be retrieved from and sent to a distant processor. In the last 

five years, a hybrid high performance computing architecture that has clusters of SMP's 

connected by high speed interconnects, has gained favor. These can either be packaged 

together by a vendor such as the IBM SP computer or they can be"home built" from 

commodity chips such as the Intel Pentium and run the Linux operating system.  

From the programmer's point of view, there are several levels of complexity 

involved in programming these computers. Using standard MPI [GLS99] or Java, 

distributed programming models run on SMP's. However, an alternative fine grained 
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programming model for SMP's called OpenMP allows the programmer to take 

advantage of the shared memory features. Mixed OpenMP and MPI programming 

models are just now being studied for their potential in improved performance. 

The tools and standards for assembling distributed computing applications have 

been developed over the past 10 years. From the low-level data transmission APIs and 

protocols such as Remote Procedure Call (RPC) and Distributed Computing 

Environment (DCE) to object-based distributed schemes such as Common Object 

Request Broker Architecture (CORBA) [WOMG] and Remote Method Invocation 

(RMI) and OpenDoc, the distributed computing environment has evolved to a robust, 

platform-independent, flexible and extensible framework. 

Java as one of the most important object-oriented (OO) programming language 

supports distributed computing. From low-level network communications to distributed 

objects and agents, Java offers an environment that encompasses various levels of 

distributed computing development. Java’s API for socket URLs and other networking 

facilities is much simpler than what is offered by other programming languages like C 

and C++. Java RMI [WSUN] is a framework that allows objects to invoke methods on 

remote objects in the same way as methods of local objects. Java also has built-in 

support for writing multithread programs such as the synchronized keyword which is 

used to lock objects and classes to control concurrent access to data. The recent interests 

in using Java for scientific computing has even led to efforts to produce a message 
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passing interface to support parallel computation, such as mpiJava, an object-oriented 

Java interface to MPI. 

The most important architectures that play major roles in the distributed object-

oriented computing world are OMG’s CORBA, Java RMI, EJB, Java IDL [WSUN] and 

Microsoft’s DCOM. CORBA is a specification for a technology that allows objects on 

one machine to communicate with objects running on any number of different machines 

using different programming languages. The unique feature of Java RMI is its support 

for the dynamic code loading, the ability to download the bytecodes of an object’s class 

if the class is not defined in the receiver’s virtual machine. EJB, a framework for 

distributed object computing and specific to Java, becomes a powerful standard to build 

a web database-based distributed object computing system. A main task of this thesis is 

to create a system using CORBA and EJB against the Oracle DBMS. We further discuss 

these technologies in Chapter 2. 
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Chapter 2   

Information Technology 

 

 

In Chapter 2, we describe most of the information technologies that are used in the 

thesis. We begin with the comparison of distributed computing and distributed object 

computing and their architectures. In the following three sections, we first give a brief 

description of each technology we use in the thesis and then discuss how it is applied in 

the project. Some code fragments and results are also provided. 

 

2.1 Overview of Distributed Computing and 

Distributed Object Computing 

Parallel or distributed computing has become a key component of high performance 

computing. A parallel or distributed architecture is one that consists of a collection of 

processing units that cooperate to solve different parts of the problem simultaneously. 

According to the way that the computers communicate, the computer architectures are 

basically of two types: tightly coupled systems and loosely coupled systems [SN97]. 

Tightly coupled systems have a single system wide primary memory that is shared by all 
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the processors as shown in Fig. 2.1.1(a). Usually, tightly coupled systems are referred to 

as parallel processing systems. In loosely coupled systems, the processors do not share 

memory, and each processor has its own memory (Fig. 2.1.1(b)). So all physical 

communications between the processors are done by passing messages across the 

network that connects the processors. The loosely coupled systems are often referred to 

as distributed computing systems.  

C P U C P U
S ystem  W ide

S hared  M em ory C P U C P U

In terconnection  H ardw are

L ocal 
M em ory

C P U

L ocal 
M em ory

C P U

L ocal 
M em ory

C P U

C om m unication  N etw ork

(a )

(b )
      

Fig. 2.1.1 Difference between tightly and loosely coupled multiprocessor systems:  

(a) tighly coupled system; (b) loosely coupled system. 

 Currently the most popular software environment that is used in the distributed 

computing is DCE (Distributed Computing Environment), which is defined by the Open 

Software Foundation (OSF). DCE is an integrated set of services and tools that can be 
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installed as a coherent environment on top of existing operating systems and serves as a 

platform for building and running distributed applications. The main components of 

DCE are threads package, remote procedure call (RPC) facility, distributed time service, 

name service and distributed file service. As shown in Fig. 2.1.2, the DCE software 

layer on top of the operating system and networking layer hides the differences between 

machines by automatically performing data-type conversions. Therefore, the 

heterogeneous nature of the system is transparent to the application programmers, 

making the distributed application development much simpler.        

Distributed Applications

Network
Management

Event Service Distributed
File Service

Directory
Service

Distributed
Time Service

Security
Service

Remote Procedure Call

Thread Service

Native Operating System and Network Services

 

Fig. 2.1.2 OSF DCE Architecture 

 Another competing computing environment is the Object Management Group 

(OMG)’s Common Object Request Broker Architecture (CORBA). The most important 

difference between OSF DCE and OMG CORBA is their programming paradigms: DCE 
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was designed to support distributed procedural programming, while CORBA was 

designed to support distributed object-oriented programming. However, there are many 

similarities between DCE and CORBA. They both define an Interface Definition 

Language (IDL), and use IDL to define the interface that a server implements and is 

compiled into a client stub and a server skeleton. A client application calls the client stub 

to request a service, and then the client stub interfaces to the runtime system, which 

eventually invokes the server code that implements the requested service through the 

appropriate server skeleton. A high level architecture of CORBA is shown in Fig. 2.1.3. 

Distributed Applications

Vertical CORBA Facilities

Horizontal CORBA Facilities

CORBA Service

Native Operating System and Network Services

Naming          Concurrency         Events             Persistence
Query Tranactions Security          Time     etc.

User Interface                        Information Management  
System Management             Task Management

Accounting   Application Development Ditributed Simulation
Information Superhighways    Mapping   Telecommunications

Fig.2.1.3  OMG CORBA Architecture  

 As shown in the above figures of DCE and CORBA architectures, both of them 

act as  middleware layered between the applications layer and the operating system and 

networking layer. Their basic purposes are handling the transmission of service requests 
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and responses between clients and servers, shielding the user applications from concerns 

like the location of clients and servers on the network, differences between hardware 

platforms, operating systems, and implementation languages and networking protocols.  

 While DCE supports procedural programming, CORBA was designed to support 

Object-oriented (OO) programming. The characteristics of OO environment are: 

encapsulation of data and the functions that manipulate the data which enforces data 

integration and hiding; inheritance of interfaces and implementations which embodies 

the reusability of OO programming; polymorphism, which is the ability for a request for 

a specific operation to be handled differently depending on the type of object on which it 

is invoked.  As one of several main OO programming languages, Java has built-in 

support for distributed computing. Java’s API for sockets, URLs and other networking 

facilities is much simpler than that offered by other programming languages like C and 

C++. 

 The most common computing technology used in the scientific computing is 

MPI, which is the standard for distributed computing under DCE architecture. In this 

project, we use MPI to calculate all relativistic JJ coupling atomic data of the RSSOPA 

model. The computing flow chart is given in Section 3.2.2. For handling the graphic user 

interfaces and data management, the better choice is to use CORBA architecture, which 

supports object-oriented programming such as C++ and Java. This project uses CORBA 

technology to implement most of the computing. The Java programming language is 
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used. In the next three sections, we describe these technologies as they are in each 

project in the thesis. 

  

2.2 Distributed Atomic Data Computing System 

Using  CORBA and EJB 

The distributed atomic data computing system is mainly CORBA-based. Because the 

CORBA components are portable across languages, operating systems and networks, it 

is a good choice for multi-tier database applications. There are two important projects, 

JEOSOPA and SPECTRA (see the list of projects) that use CORBA. In the following, 

we give a brief description of CORBA technology, and its application in these two 

projects. Description of EJB is also given, which is used in the project MIXOPA. 

2.2.1 CORBA Architecture 

Common Object Request Broker Architecture (CORBA) is a specification for a 

technology that allows objects on one machine to communicate with objects running on 

any number of different machines. It was designed to be the middleware glue allowing 

different languages to implement objects on different platforms. The Object bus 

provides an Object Request Broker (ORB) that lets clients invoke methods on remote 

objects either statically or dynamically. Fig. 2.2.1 shows the CORBA communication 

model.  
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Client Server

ORB CORE

DII Stub ORB
Interface Skeleton OA

Implementation
Repository

Interface
Repository

Fig.2.2.1 CORBA Architecture

  

The idea behind CORBA is to shield the developer from any of the low-level 

complexities of having one program communicate via a network to a program on 

another physical host. Using an ORB, a client object can transparently invoke a method 

on a server object, which can be on the same machine or across a network. The ORB 

intercepts the call and finds an object that can implement the request, passes it the 

parameters, invokes its method, and returns the results. The client does not have to be 

aware of where the object is located, its programming language or its operating system. 

It is the responsibility of the ORB to establish the remote communication with 

distributed objects and handle all network interactions in passing data between objects. 

The ORB itself is simply the software bus that can move messages between objects that 

are written in different languages on different hardware platforms implemented by 

different vendors. 
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 The boundaries and the contractual interfaces between client and server are 

defined through IDL. IDL is a descriptive language that describes the interfaces being 

implemented by the remote objects. IDL defines the name of the interface, the names of 

each of the attributes and methods, the arguments for each method, and the return type. 

The specified IDL compiler maps the language neutral IDL into the native programming 

languages like C, C++ or Java. The separation of interface from implementation lets 

different languages communicate easily via CORBA.  

 The way that the IDL bridges the gap between client implementation and server 

implementation is through the generation of static stubs and skeletons. A stub is a client-

side source file that implements a local proxy object, which defines how clients invoke 

corresponding services on the servers. The client interacts directly with the client stub. It 

is the responsibility of the client stub to make the invocation to the actual server object 

implementation. A skeleton refers to the server-side source that the server object 

implementation registers with. The skeleton’s responsibility is to receive requests and 

dispatch these requests to the server object implementations. The process of creating 

client stub and server skeleton from an IDL file is shown below: 
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Static stubs and skeletons must be generated at build time and compiled in with 

the source code. With the DII and DSI, it is not necessary to use IDL to generate static 

stubs and skeletons. The DII allows clients to query the ORB’s Interface Repository (IR) 

for available objects and construct method request on the fly. The IR is a standard 

CORBA component, which contains meta-data describing the object available. From the 

IR, the client can determine what interfaces are available, and what their method, 

parameters and return types are, then it can dynamically create a method request using 

the DII. The server object receives the request having no knowledge of whether the 

client was built with static stubs or with the DII interface. Similarly, the server object 

does not need to be compiled in with a static skeleton to receive requests. The DSI 

automatically enables new objects to receive requests without having inherited from the 

IDL generated skeleton. 
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The Object Adapter (OA) is the main way by which object implementations 

access services via the ORB. It sits on top of the ORB’s core communication services 

and accepts requests for service on behalf of the server’s objects. When an object is 

created, the OA is responsible for creating a unique Internet Object Reference (IOR) and 

keeping a table of all registrations. Other objects use an object’s IOR to locate and 

establish communication with it.  The object implementation can also register policies 

under which the OA activates new instances and deactivates existing instances. The OA 

contacts with the IR that contains objects with all the information needed for the OA to 

activate object implementations. The OA keeps an internal reference count of activated 

instances. When the reference count has been reduced to zero, the instance is destroyed. 

CORBA specifies that each ORB must support a standard adapter called the Basic 

Object Adapter (BOA). 

CORBA uses Internet Inter-ORB Protocol (IIOP), which specifies how General 

Inter-ORB Protocol (GIOP) messages are exchanged over a TCP/IP network. GIOP 

specifies a set of message formats and common data representations for communications 

between ORBs. The IIOP makes it possible to use the Internet itself as backbone ORB. 

It provides interoperations for TCP/IP based ORBs. 

Projects implemented using CORBA 

 Project JEOSOPA performs the task of computing the EOS and opacity based on 

the code UTAOPA. Since UTAOPA is written in FORTRAN, we need to wrap it in a 

Java module using Java native interfaces. Java native interfaces allow a Java program to 
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call FORTRAN subroutines and pass through the argument parameters. JDBC is used to 

access the Oracle database for the atomic data, which is required in the opacity 

calculations. 

 The basic outline of JEOSOPA computing takes the following forms: 

1. User sends the request that includes all needed information to perform the UTAOPA 

calculation. 

2. The server object retrieves the needed atomic data from Oracle database through 

JDBC. 

3. The Java version of UTAOPA is executed, and results are sent back to the user or 

saved into database if the user has permission. 

4. User uses OPAVIEWER to view the output data. 

Project SPECTRA performs the task of analyzing spectra from high-Z plasmas. 

Currently, only an LTE option is implemented. Because it involves intensive 

calculations, the module for spectrum computing is written in FORTRAN. Java native 

interfaces are also needed to cooperate with a Java program.  

The basic outline of SPECTRA computing is as follows: 

1. User specifies the plasma condition (single temperature and density pair is allowed) 

and invokes the spectrum calculation on the remote server. 

2. The server opens a connection to the database, collects all needed atomic data and 

does LTE calculations. 
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3. User displays the spectrum result using Java 2D technology and analyzes the 

spectrum with the aid of atomic database. 

4. If the user is not satisfied with the result, the user repeats the calculation by setting a 

different plasma condition. 

2.2.2 Enterprise JavaBeans 

Java has been recognized as an excellent platform for developing distributed 

server-side applications, producing implementation-independent abstractions for 

common enterprise technologies. For example, JDBC provides a vendor-independent 

Java interface for accessing SQL relational databases, JNDI (Java Naming and Directory 

Interface) provides an interface for abstracting directory services, EJB (Enterprise 

JavaBeans) [RM99] provides an abstraction for component transaction monitors 

(CTMs). Component transaction monitors provide a robust, component-based 

environment that simplifies distributed development while automatically managing the 

most complex aspects of enterprise computing, such as object brokering, transaction 

management, security, persistence, and concurrency. 

 EJB server-side components have two fundamentally different types: entity 

beans and session beans. Entity beans model real-world objects; these objects are 

usually persistent records in a database. Session beans are an extension of the client 

application and are responsible for managing processes or tasks. The activity that a 

session bean represents is fundamentally transient. It doesn’t represent something in a 
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database. To implement an enterprise bean, two interfaces and one or two classes  need 

to be defined: 

(1) Remote interface. The remote interface for an enterprise bean defines the bean’s 

business methods: the methods a bean presents to the outside world to do its work. The 

remote interface extends javax.ejb.EJBObject, which in turn extends java.rmi.Remote. 

(2) Home interface. The home interface defines the bean’s life cycle methods: 

methods for creating new beans, removing beans, and finding beans. The home interface 

extends javax.ejb.EJBHome, which also in turn extends java.rmi.Remote. 

(3) Bean class. The bean class actually implements the bean’s business methods. The 

bean class usually doesn’t implement the bean’s home or remote interfaces, but it must 

have methods matching the signatures of the methods defined in the remote interface 

and must have methods corresponding to some of the methods in the home interface. An 

entity bean must implement javax.ejb.EntityBean; a session bean must implement 

javax.ejb.SessionBean. 

(4) Primary key. The primary key is a very simple class that provides a pointer into the 

database. Only entity beans need a primary key; the only requirement for this class is 

that it implements java.io.Serializable. 

(5) Deployment descriptor. Deployment descriptors serve a function very similar to 

property files. They are used to customize behavior of enterprise beans at runtime 

without having to change the software itself. Once the deployment descriptor is 

complete and saved to a file, the bean can be packaged in a JAR file for deployment. 
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The JAR’s path is given to the container’s deployment tools, which read the JAR file. 

The container uses the deployment descriptor to learn about the beans contained in the 

JAR file and how to manage the bean at runtime. 

 EJB explicitly supports two mechanisms to manage large numbers of beans at 

runtime: instance pooling and activation. In the instance pooling, the EJB container 

creates several instances of a bean class and holds on in a pool. As clients make method 

requests, beans instance from the pool are assigned to the EJB object associated with the 

clients. When the EJB object doesn’t need the instance any more, the instance returns to 

the instance pool. Instance pooling reduces the number of component instances and 

therefore resources needed to service client requests. It is less expensive to reuse pooled 

instances than to frequently create and destroy instances. For stateful session beans, they 

don’t participate in instance pooling like stateless session beans and entity beans. Instead 

activation is used with stateful session beans to conserve resources. The EJB server can 

evict stateful session beans from memory by disassociating the stateful bean instance 

from its EJB object and serializing the bean’s state to a secondary storage. Activating a 

bean is the act of restoring a stateful bean instance’s state. When a method on the 

passivated EJB object is invoked, the container automatically instantiates a new instance 

and sets its field equal to the data stored during passivation. 

Projects implemented using EJB 

Project MIXOPA calculates the mixed opacities for arbitrary element 

combinations. All data for pure elements are stored in the database, and the mixed 
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opacities are calculated from these data for pure elements in a form of linear 

combination. This project is written in the pure Java programming language. The 

processing scenario of this project is: 

1. EOS and opacity data are calculated using EOSOPA. The opacity grids for photon 

energy are 100 groups. These data are stored in the database. 

2. User invokes the mixing method on the server after giving the mixing specification. 

3. The server obtains the EOS and opacity data for each pure element, does the mixing 

calculation, and sends the results back to the user. 

4. User saves the results on the local machine. 

 

 

2.3 Java Thread, Network Programming and 

JDBC 

This section gives descriptions for three basic Java computing technologies that are used 

often in the Java programming in this thesis. Java thread is used to perform a task in the 

parallel style. Understanding Java network programming is the basis of distributed 

object computing in Java. With a database involved in the applications, JDBC is often 

used to access the database. 
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2.3.1 Java Thread 

A thread is a path of code execution through a program, and each thread has its own 

local variables, program counter and lifetime. If the underlying OS and the 

implementation of Java VM exploits the use of real multiple processors, multithread 

Java programs can achieve true simultaneous thread execution.  

Threads can be created in two ways. One is to extend the Thread class, the other 

is to create the thread by implementing the Runnable interface. For example, the code 

fragment which spawns a new thread by extending the Thread class is like: 

Public class NewThread extends Thread { 

         Public void run() {    // … } 

} 

NewThread  nt = new NewThread(); 

nt.start(); 

The subclass NewThread consequently inherits the protected and public members from 

the Thread class. By invoking the start() method on the object nt, a new thread starts and 

invokes the run method of the Thread object. Meanwhile, the original thread is free to 

continue executing the statements that follow the start() call. The code fragment using 

the Runnable Interface is as following: 

Public class MyClass extends SuperClass implements Runnable { 

 Public void run() {   // …  } 

} 

Runnable r = new MyClass(); 
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Thread t = new Thread(r); 

t.start(); 

In this method, we also need to create an actual Thread object by passing the Runnable 

MyClass object reference to the constructor of the Thread. When t.start() is executed, 

the newly spawned thread begins execution by invoking the run() method of the 

MyClass object. This feature of execution is used often in the  GUI programming and 

concurrent programming in the projects. 

In order to ensure that the threads don’t adversely affect one other, Java provides 

the thread concurrent control mechanism, such as the synchronized and volatile 

keywords, to control concurrent access to objects and variables. The volatile keyword is 

used to tell the VM that it should not keep a private copy of a variable and should 

instead interact directly with the shared copy. The synchronized modifier to a method 

declaration ensures that only one thread is allowed inside the method at a time, which is 

useful in the case that the state of an object is temporarily inconsistent. In Java, threads 

can be grouped together and associated with an instance of ThreadGroup. A thread 

group can be used to facilitate the management of threads. Thread groups allow the 

threads of the VM to be organized and can provide some inter-group security. Java also 

provides a thread scheduling mechanism to determine which thread is currently running 

on the processor and how long it is allowed to run before it is swapped off the processor 

to allow another thread to run.  
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2.3.2 Java Networking Programming 

The java.net package provides an object-oriented framework for networking. The core 

of java networking support is the Socket and DatagramSocket classes. These classes 

define channels for communication between processes over an IP network. A new 

socket is created by specifying a host, either by name or with an InetAddress object, and 

a port number on the host. There are two basic kinds of network sockets on IP networks: 

sockets using TCP(Transport Control Protocol) and DatagramSocket using UDP 

(Unreliable Datagram Protocol). TCP is a reliable protocol in which data packets are 

guaranteed to be delivered correctly; while UDP makes no guarantee about the delivery 

of packets, or the order in which the packets are delivered. TCP sockets allow the user to 

treat a network connection as a stream; UDP doesn’t allow this. Using UDP, the user 

always works with the individual datagram, which is an independent, self-contained 

message sent over the network and the arrival, arrival time and content are not 

guaranteed. The typical usage of Socket class and DatagramSocket class is like this: 
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                      Server-side 
ServerSocket s = new ServerSocket(5000); 

// wait for a connection request from a client 

Socket connect = s.accept(); 

InputStream in=connect.getInputStream(); 

OutputStream 

out=connect.getOutputStream(); 

               Client-side 
InetAddress addr = 

           InetAddress.getByName(“rhost”); 

Socket s = new Socket(addr, 5000); 

InputStream in = s.getInputStream(); 

OuputStream out=s.getOuputStream(); 

            Server-side 
DatagramSocket udps = 

           new DatagramSocket(5000); 

byte[] dbf = {‘H’,’I’}; 

InetAddress 

ad=InetAddress.getByName(“..”); 

DatagramPacket p = new 

    DatagramPacket(dbf,dbf.length,ad,5000); 

udps.send(p); 

            Client-side 
DatagramSocket udps = 

                  new datagramSocket(5000); 

byte[] dbf = new byte[1024]; 

 

DatagramPacket p = 

 new DatagramPacket(dbf,1024); 

udps.receive(p); 

 
Table 2.3.1 Code fragments in Java network programming 

 
2.3.3 Java Database Connectivity 

Java Database Connectivity (JDBC) is the database connectivity package included in the 

core Java API. JDBC provides a database-independent interface for opening a 

connection to a relational database, issuing SQL calls to the database, and receiving a set 

of data as the result. JDBC acts as a Java implementation of the standard SQL call-level 

interface and is supported by most major relational database vendors. A JDBC driver 
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provides a bridge between the JDBC method calls and the native database interface. The 

architecture of JDBC is shown in Fig. 2.3.1, which illustrates the several ways that a 

JDBC driver can be configured to interact with an RDBS.  

A p p lic a t io n s

J D B C  A P I

J D B C -O D B C

O D B C  d r iv e r

J D B C -
R D B M S  
d r iv e r

F ig .  2 .3 .1  J D B C  d r iv e r  c o n f ig u r a t io n

 

  The JDBC API offers DriverManager, Connection, Statement and ResultSet 

interfaces that mirror the basic concepts surrounding relational databases.  The 

DriverManager class provides the means to load database drivers into a Java application 

or applet by searching a set of available drivers specified by the sql.Driver’s Java 

property. Once the necessary drivers have been loaded by the DriverManager, a 

connection to a database can be made by calling the DriverManager’s static 

getConnection() method. The desired database is specified with a String argument that 

acts as an URL-like address to the database. The getConnection() method on 

DriveManager either returns a Connection object that represents the connection to the 

named database, or throws an exception if the connection couldn’t be established. The 
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Connection interface allows the user to create query statements to the database. Query 

statements are represented as Statement objects, such as createStatement(), 

prepareStatement(), and prepareCall(). The first method is used for simple SQL 

statements that don’t involve any parameters. An SQL statement involving input 

parameters or for multiple execution times can be created using the prepareStatement() 

method, which returns a PreparedStatement object. A stored SQL procedure can be 

accessed through an SQL statement created through the prepareCall() method on a 

connection object, which returns a CallableStatement object. Rows of data returns from 

the execution of a statement against a database are represented as ResultSet objects in 

JDBC. A ResultSet object provides ways to iterate through the rows of data returns as 

the result of an SQL query, through its next() method and data fields within each row 

can be retrieved by name or by column index number using its get methods. 

Projects implemented Using Java technology 

The above three technologies are used in all projects in this thesis. We 

distinguish the projects by using Java threads, or JDBC or networking according to the 

dominant technology applied in the project. 

 Project ECGEN, which uses Java threads more often, generates all possible 

electron configurations if given the total electron number and some restrictions for the 

electron orbitals.  The solution for this problem is like solving linear multiple variable 

equations with constraints. To operate this program, some senses of generating electron 

configurations are needed. The program first finds all possible electron distributions on 
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the N level shells, computing threads are then created for each possible distribution. All 

these computing threads start to do the calculation simultaneously. A master thread 

waits to assemble the final electron configurations according to all possible 

configurations. 

 Project OPAVIEWER is used to view the EOS and opacity data calculated by 

EOSOPA. The server-side process sends the requested data to the client, and the client 

renders the data in a graph using Java 2D. 

  

2.4 Atomic Web Database Using Oracle DBMS 

The core of this thesis is to set up an atomic database, which contains most of the data 

needed by the ICF applications, such as the atomic data, EOS and opacities. In this 

section, we first give an introduction of the architecture of the Oracle database 

management system, which is extensively used in this thesis. Then, we discuss the 

atomic web database using Oracle DBMS. Section 2.4.2 shows the Oracle network 

computing architecture, which provides a powerful tool for the application deployment 

for all projects in this thesis. 

2.4.1 Oracle Database Architecture  

An Oracle database [WORC] separates the physical structure from the logical structure 

such that the physical storage of data can be managed without affecting the access to 

logical storage structures. The Oracle database’s physical structure consists of three 
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types of files: one or more datafiles, two or more redo log files and one or more control 

files. These files provide the actual physical storage for database information. The data 

file contains tables, indexes, clusters, sequences, data dictionary and so on. The control 

file contains information about the database’s physical structure and status. It has 

information about the total number of data files, log files, redo log members, name and 

location of each data file, etc. Oracle records all changes in the redo log file and uses it 

to regenerate the transaction changes in case of failure. An Oracle instance writes to redo 

log group in cyclical order. The Oracle database’s logical structure consists of one or 

more tablespaces and the database’s schema objects. Tablespaces are logical storages 

that group related logical structures. A schema is a collection of database objects, which 

are the logical structures that directly refer to the database’s data. Schema objects 

include such structures as tables, views, sequences, stored procedures, synonyms, 

indexes, clusters and database links. Oracle also allows fine-grained control of disk 

space use through the logical structures, including blocks, extents and segments. 

      An Oracle server uses memory structures and processes to manage and access 

the database. To enable efficient data manipulation and communication among the 

various processes, Oracle uses a shared global area (SGA). The SGA is a shared 

memory region that contains data and control information for one Oracle instance. An 

Oracle instance consists of an SGA and the Oracle background processes. Each instance 

has its own system global area and Oracle allocates the SGA when an instance starts and 

deallocates it when the instance shuts down. When a server process is started Oracle also 
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creates a program global area which is a memory buffer that contains data and control 

information for a server process. An Oracle server has two general types of processes: 

user processes and Oracle processes. User processes are created and maintained to 

execute the software code of an application program and communicate with the server 

processes through the program interface. Oracle processes include server processes and 

background processes. A server process is in charge of communicating with the user 

process and interacting with Oracle to carry out requests of the associated user process. 

A set of background processes also is created for each instance. The background 

processes, such as Database Writer, Log Writer, Checkpoint, System Monitor, Process 

Monitor, Archiver, Recoverer, Dispatcher, Lock, Job Queue and Queue Monitor, 

asynchronously perform I/O and monitor other Oracle processes to provide parallelism 

for better performance and reliability. 

Implementation of atomic database 

The atomic database stores the UTA-based atomic data for UTAOPA model and 

RSSOPA model. It also stores EOS data and opacities on a predefined temperature and 

density grid. According to the complexity of the atomic data structure, we store the data 

either  in the pure relational model  or in the object-relational model. 

An entity OPERATION represents a calculation process. It records the author of 

the calculation, the model used in the calculation and the elements used. The SQL 

language used to create a schema of OPERATION table is as following: 

Create table OPERATION    ( 
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      OID number(5) CONSTRAINT Operation_OID_pk PRIMARY KEY, 

                  Element      ELEMENT_OBJTYP,      Model       varchar2(10), 

                  Author       varchar2(30),                      Version      varchar2(10), 

                  Operation_date      DATE   ). 

 
For UTAOPA and RSSOPA models, there are three basic tables: one for storing 

the photoionization cross sections, one for the photoexcitation and one for the average 

configuration energies. Because UTAOPA uses LS coupling while RSSOPA uses JJ 

coupling, the object types for orbitals are different. Also because the strategies used in 

RSSOPA are different from those used in UTAOPA (while the RSSOPA model 

explicitly calculates the transition width for every transition line and therefore the 

transition width can be stored in the database, the UTAOPA model embeds the transition 

width calculation in the opacity calculation and therefore the transition width can not be 

stored in the database), the data structures are slightly different. More details on these 

tables can be found in Appendix A. These tables are used in Project JEOSOPA and 

SPECTRA. 

For EOS data, the element name, the temperature ID, the density ID and the 

calculation model construct the primary key to uniquely identify each record. All EOS 

data, such as electron pressures, ion pressures and total energies are stored in the single 

table EOSTABLE. These tables are used in Project OPAVIEWER and MIXOPA. 

For opacity data, we use the element name, the temperature ID, the density ID 

and the calculation model as the primary key. Additionally, we need another attribute to 

describe the photon energy grid. These tables are used in Project MIXOPA. 
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2.4.2 Oracle Network Computing Architecture 

Oracle possesses a very good position in the competition of the network computing 

world. Its vision for the infrastructure is based on the premise that no single technology 

or standard will win in the foreseeable future, and therefore Oracle’s strategy is to 

support them all. Oracle achieves this based on its CORBA-based Network Computing 

Architecture (NCA). 

 NCA is the cross-platform infrastructure for developing and deploying object-

based, network-centric applications in an open, heterogeneous environment. As shown 

in Fig. 2.4.1, the core of the architecture are two standards: CORBA and HTTP. 

CORBA provides a distributed object computing environment, includes IIOP for object 

interoperability and IDL for language-neutral interfaces. With the addition of HTTP 

transaction services, Oracle provides a robust web environment. 
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                Fig. 2.4.1 Architecture of Oracle Universal Application Server in NCA  

The NCA architecture consists of pluggable objects called cartridges, a software 

bus called Inter-Cartridge Exchange (ICX) and extensible clients, application servers 

and database servers. A cartridge is a manageable object that uses an IDL to identify 

itself to other objects in the distributed system. Cartridges have access to Universal 

Cartridge services such as registration service, instantiation service, invocation service, 

security service and others. ICX enables cartridges distributed across a network to 

communicate with each other using IIOP and HTTP protocols. The Universal 

Application Server (as shown in Fig. 2.4.1) plays a center role in the NCA. It acts as a 

platform for application logic and make the NCA client side thin, and the applications 

centric manageable. Oracle Universal Server provides robust, scalable data storage. By 
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adding procedures to the data stored in the database, Oracle data server provides 

significant performance and management advantages in many applications, and with 

object-relational database technology, it can create new data types with sophisticated 

functionality. 

Application deployment under NCA architecture 

In order to make our application available and accessible from the Internet, we 

need an application server to provide these services. In this thesis, we deploy our 

applications under NCA architecture. Fig. 2.4.2 displays the logic architecture of the 

atomic database computing system. 

Atomic 
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Spectrum

ORB

IIOP

HTTP

Web Browser

Application

Client Application Server Database Server

Fig.2.4.2 The logic architecture of the atomic database computing system
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As shown in the figure, there are two kinds of clients: one connecting the 

application servers through HTTP protocol and the other through IIOP protocol. The 

application logic such as calculating the EOS opacities and spectrum analysis is on the 

application server and connects with the atomic database through JDBC. 

2.5 Summary of Information Technologies Used 

for Implementation 

As indicated by its title, this thesis has four parts. The first part is the high performance 

computation of atomic data. Besides the original ATBASE model, we develop a new 

atomic model - RSSOPA to calculate JJ coupling atomic data based on the UTA 

method. MPI is used in the parallel computing environment to speed up the calculation 

since enormous number of transitions are involved. The second part is to create a 

database to store the data such as energy levels, EOS and opacities needed by the ICF 

applications. The third part is to develop applications that allow users to generate data 

such as EOS, mixed opacities and spectrum for ICF applications based on the database. 

The fourth part is the graphic user interface, which provides users an easy way to 

interact with the program. The following figure illustrates the four parts in the 

distributed atomic data computing system. 
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 Fig. 2.5.1 Four Parts in the Distributed Atomic Data Computing 
System  

In order to integrate these four parts and make them accessible from the Internet, 

the CORBA architecture and some other frameworks are also used. According to the 

functionalities they provide, this thesis breaks up into seven projects, which are shown 

in the list of projects at the beginning of the thesis.  

The Oracle DBMS is used to manage the atomic data. Depending on the 

complexity of the atomic data structure, we store the data either in the relational model 

or in the object-relational model.  

There is no absolute reason to choose a certain technology. Each technology has 

it own strength but also has its weakness. For example, CORBA provides multi-
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programming language support, but it is more difficult to program than EJB. We choose 

CORBA for Project JEOSOPA and SPECTRA because we need to interact with some 

existing programs such as UTAOPA and modules written in FORTRAN. We choose 

EJB for Project MIXOPA because we wrote a pure Java program to do the calculation. 

EJB makes it much easier to interact with the database and to deploy onto multi-tier 

architecture. Technologies such as Java thread, networking and JDBC are basic to 

writing efficient Java software. 
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Chapter 3 

Atomic Models and Opacity 

Calculations 

 

 

In this chapter, we delve into the physics that provides the atomic data based on the 

specific code. In this thesis, several existing codes are used. ATBASE is used for the 

calculation of atomic data under both DTA and UTA assumptions. The DTA part of 

ATBASE is based on Cowan’s code, which calculates the non-relativistic atomic 

structure. The UTA part of ATBASE calculates quantities for the average configuration 

and uses the non-relativistic forms of UTA moments. We discuss the atomic models 

used in ATBASE in Section 3.1.1. Another existing code we use to calculate EOS and 

opacities is EOSOPA, which consist of two models DTAOPA and UTAOPA. DTAOPA 

uses the DTA atomic data generated by ATBASE, while UTAOPA uses the UTA 

atomic data. Because no collisional or recombination rate coefficients can be currently 

generated under the average configuration approximation, UTAOPA can only run under 

the LTE model. DTAOPA can also calculate non-LTE opacities since a lot of atomic 

processes such as dielectronic recombination, election collision ionization, can be 
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obtained from ATBASE under the DTA method. The various atomic processes and 

plasma models used in the code are discussed in Section 3.1.2 and 3.2.1. In addition to 

the existing codes, we developed a new model, RSSOPA, which is based on the 

relativistic average configuration approximation and UTA method. It uses JJ coupling 

for the atomic data. This model provides more accurate spectrum data for high-Z 

elements. We discuss this model in Section 3.2.2. 

 

3.1 Atomic Models 

3.1.1 Non-relativistic Theory of Atomic Structure 

The atomic structure of a many-electron system is determined by the solution of a partial 

differential equation (called the Schrödinger wave equation),  

(1)                                     ,0)( �� �EH  

where H is the Hamiltonian operator for the system and E is the total energy. The 

operator H depends on the system such as atomic, molecular or solid-state systems and 

the quantum mechanical formalism such as non-relativistic and Dirac-Coulomb. The 

non-relativistic calculation of atomic structure is based on the non-relativistic 

Hamiltonian operator [COW81][FS86]: 
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where N is the number of electrons and Z is the nuclear charge of the atom,  is the 

distance of the i  electron from the nucleus, and  is the distance between electron i 

and electron j. The first term of the Hamiltonian represents the kinetic energy of the 

electrons and the Coulomb energy between the electrons and the nucleus. The second 

term represents the electrostatic Coulomb interaction among the electrons. The final 

term of the Hamiltonian represents the magnetic interaction energy between the spin of 

the electrons and their own orbital motion.  

ir

th
ijr

 To obtain the eigenvalue and eignenfunction of the Schrödinger equation, 

approximations must be used because of the high dimensionality of the equation. The 

usual approach is to use perturbation theory. First, the one-electron wavefunctions are 

constructed using the central-field model. In the central-field model, one electron is 

assumed to move in a time-average electro-magnetic field which is generated by the 

nucleus and the other electrons and therefore is spherically symmetric. So the wave 

function of the electron is a separable function of only (r,�,�) in the form: 
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Here P(r) is the radial function, Y(�,�) is the spherical harmonic function and �(s) is the 

spin function. Secondly, we need to construct the basis function for the entire atom from 

the one-electron orbitals � , which should reflect the physical indistinguishable 

property of electrons. The antisymmetrized configuration state function is the linear 

combination of uncoupled functions, which can be represented as a determinant: 

)(ri
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Finally, the configuration interaction wave function for the states of the entire atom is 

written as an expansion of  the antisymmetrized configuration functions �. 
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From the eigenequation, the total energy of the atom is given by 
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where  are the lesser and greater of  and , respectively, and  is a 

Lengendre polynomial in cos  where � is the angle between  and r , the energy can 

be written as 
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where  is the two-dimensional integral, kR
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The  and C  are called angular coefficients and can be computed using Racah 

algebra. According to the variational principle, the total energy of the atom is an 

eigenvalue of the interaction matrix, and the expansion coefficients of the wave function 

are the corresponding eigenvector. In order to compute the interaction matrix, the radial 

functions need to be computed, which should be chosen to minimize the center-of-

gravity energy for a configuration. Through the derivation using the variation method 

with the orthonormalization conditions, 
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the Hartree-Fock equation for the radial wave function is expressed as 
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and 
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The first three terms arise from the kinetic energy and the nuclear potential energy.  The 

fourth term comes from the direct portion of the electron-electron interactions ijE  for 

electrons both equivalent and non-equivalent to i, which has physical meaning as the 

potential energy of the i electron in the averaged field of the other N-1 electrons. The 

fifth term arises from the exchange portion of the interaction energy between the 

electron i and the other equivalent (  electrons, which is the correction 

corresponding to the partial positional correlation among electrons of parallel spin. The 

final term in the above equation arises from the orthogonality requirement. This 

equation is generally solved using the self-consistent-field (SCF) method. Because of the 

complication involved in solving the HF equations, the local potential approximation is 

often used. In this approximation, the Schrödinger equation becomes: 
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where  is the potential function that the electron i moves in, for which there are 

several kinds of potential forms: 
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The Hartree-Fock-Slater potential (HFS) 

(15)       ,24
2
3)(22)(

3/1

1
0 22

2
�
�

�
�
�

�
���	 � �

�

�

�
�

�q

j
jj

i drrP
r

w
r
ZrV  



 50

where � is the total spherically averaged electron density. 

The Hartree-Statistical-Exchange Potential (HX) 
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which considers the self-energy effect and adds a statistical exchange energy correction 

term.  

The Hartree-Slater Potential (HS) 
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which is similar to the HX potential but uses a different exchange energy expression.

 After we obtain the radial portion of the wave function and apply the Racah 

algebra, we can calculate the energy level structure of the atom. Depending on what 

wave functions are used as the basis function in the Hilbert space, we may have the 

energy level structure under the single configuration approximation or the interaction 

configuration approximation. 

 Under the single configuration approximation, the set of basis functions is 

constructed according to the general electronic configuration form: 

jw
q

j jj ln )(
1�

� . 

The energy matrix '||
bb H ��  consists of two terms: one term involving one-

electron operator, such as the kinetic energy and the electron-nuclear energy, which is 
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easy to compute, and an another term involving two-electron operator, that is the 

electron-electron Coulomb energy, which can be expressed as follows: 
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where  is the electron-electron Coulomb energy: ijg
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Applying the Wigner-Eckart Theorem, the matrix element can be written as a product of 

a term purely dependent on the angular momentum and a term dependent on the radial 

position. After obtaining the matrix elements, we can solve the matrix eigenvalue 

problem using some standard methods. 

 In order to consider the configuration interaction effect, we need to expand the 

wave function of the atom to include other sets of basis functions belonging to their 

corresponding  configurations. The similar techniques to the single-configuration 

method are used to construct the energy matrix for the configuration interaction.  
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3.1.2 Atomic Radiative and Collision Processes 

 In this section, we discuss the atomic radiative and collision processes that are 

considered in the code ATBASE. According to the initial and final states, the atomic 

radiative processes can be classified into three types; that is, bound-bound transition 

(excitation), bound-free transition (photoionization) and free-free transition 

(Bremsstrahlung). For collisions, the two most important processes are electron 

collisional excitation and ionization. These processes and the formulas that are used by 

ATBASE are given in the following sections. 

3.1.2.1 Atomic Radiative Processes 

1. Bound-Bound transition             

The bound-bound transition occurs between two bound states. In the quantum 

mechanical theory, the probability per unit time of an atom in a specific state j (��J�M�) 

making a transition to a state i (�JM) is 
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under the electric dipole approximation. Here q is the polarization direction (  

Applying the Wigner-Eckart theorem, the total transition probability from a state ��J�M� 

to all states of the level �J is written as 
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where  which is called the line strength. The  

oscillator strength is defined by 
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which has the physical meaning of the total probability of absorption from a specific  

lower level i to all (2J�+1) states of the upper level j. 

 Under the single-electron transition approximation, the oscillator strength is 

reduced to 
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The UTA oscillator strength is calculated using Equation(22) in ATBASE. For the 

general condition which involves multiple occupied outer subshells, Racah algebra is 

needed to handle the angular momentum coupling in the calculation of the transition 

matrix elements. 

2. Bound-Free Transition 

The bound-free transition is similar to the bound-bound transition except that the 

final state is a continuum state. The numeric calculation of the continuum wave 
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functions needs more care than calculations of bound-state wave functions because of 

the conditions of the orthogonality and the asymptoticity that the continuum wave 

function should satisfy. The transition probability for the photon ionization is usually 

expressed in terms of a photoionization cross section: 
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where  is called the oscillator strength density. Under the single-configuration 

approximation, the calculation of the oscillator strength density is the same as the 

calculation of bound-bound oscillator strength, except that the final wave function is 

replaced by the continuum wave function in the radial dipole reduced matrix element. 

For highly ionized atoms, configuration-interaction effects between the bound and 

continuum states are very small because the continuum states are well separated from 

the bound states. In the case of discrete bounded states lying within the energy range of 

the continuum states, the configuration interaction effect should be considered. If the 

discrete state has a perturbation from the continuum, the discrete state may autoionize 

and spread out into a resonance line shape (Fano profile [FN65]) with half-width at half-

maximum � , where 

�ddfij /

a �
aA�5.0

aA  is the autoionization transition probability rate. 

3. Free-Free Transition 

The high energy incident electron is decelerated by the Coulomb field of the 

scattering atom while a photon is emitted. This process is called Bremsstrahlung. The 

initial incoming electron wave interacts with the Coulomb field of the scattering atom 
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and with the electromagnetic field of the emitted photon. The transition matrix element 

 between the initial state fiM i�  and the final state �  is f

,*
���� dpeM i

riq
ffi
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where �  describes the interaction of the electron with the radiation field.  and 

are the photon polarization and wave vector, respectively. �  are the initial and 

final wave functions which are in the form: 
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which represent the solution of the Lippman-Schwinger equation in the spherically 

symmetric potential. The radial wave function  is the solution of the radial 

Schrödinger equation corresponding to the energy 
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 The Bremsstrahlung process contributes to the continuous spectrum. In 

ATBASE, it is calculated using the Kramers formula with the Gaunt factor correction, 

(26)                                                � , ff
ff

K
ff g��

where �  represents the Kramers cross section and  represents the Gaunt factor. ff
K ffg

3.1.2.2 Atomic Collision Processes 

 In a hot dense plasma, there are many collision processes. The electron-ion collision is 

the most important process that contributes to the transition arrays and the redistribution 
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of the charge states. Depending on the final status of the ion and the electron, the 

collision processes are classified into electron collision excitation (deexcitation) and 

electron collision ionization (three body recombination).  In the electron collision 

excitation, a free electron that moves near an ion loses energy by inducing a transition of 

a bound electron from a lower state into a higher state; while in the electron collision 

ionization, a bound electron is knocked out into the continuum state by a free electron. 

 Theoretical calculations for the collision process need approximations [BR83]. If 

the relative velocity of the colliding electron is much higher that the velocity of the 

optical electron, the Born approximation can be used, which is the first order of the 

perturbation theory. In this approximation, the motion of the incident and outgoing 

electron are described using the plane waves. In the case of 1��qr , the Born cross 

section can be reduced to the Bethe formula: 
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where  is the oscillator strength. However, the Born approximation does not include 

the exchange of the incident and atomic electrons. The effect of the electron exchange is 

taken account in the Born-Oppenheimer approximation using antisymmetrical wave 

functions. 

jif

 In ATBASE, the distorted-wave-exchange (DWE) method is used to calculate 

the election collision cross sections. The DWE method takes into account the distortion 

of the wave functions by the mean field of the atom or ion. The mean field consists of 



 57

the long range Coulomb field 
r

zr 1)( �

��U  and a short range attractive part . The 

short range attraction leads to an increase of the cross section because of the closer 

distance. The formula of collision strength in DWE approximation can be found in 

reference [PW93]. 

3.1.2.3 Resonant Processes 

The processes of dielectronic recombination (DR), Auger ionization (AI) and resonant 

excitation (RE) and ionization (RI) all are based on the reaction of electron capture into 

nl-states of an ion : zX

                                    ),()( **
1 �� zz XeX ��

�
             nlLSJ��  

and then have the second decay stage, which can be the Auger decay emitting an 

electron: 

,)()( 1
** eXX zz ���

�
��      (AI,RE) 

,2)()( 2
** eXX zz ���

�
��    (RI) 

or the radiative transition emitting a photon and transfer to a stable state which is below 

the ionization limit: 

.)()(**
��� hXX zz ���     (DR) 
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 The capture is possible only within a narrow interval of the incident electron 

energy around the value 
��

��� . The width of the energy interval is equal 

to the level width �  which is defined by the total decay probability 

EE ��),(

�

),()(( ���
�

AW �� �  

where W and A are the Auger and radiative decay probabilities. The capture cross 

section is given by the dispersion formula 
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where )(��  depends on the energy c ),( ��� of the incident electron. The total capture 

rate is 
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where )(�F  is the Maxwellian distribution of electrons. 

 

3.2 Opacity Calculations 

Theoretical calculation and experimental determination of hot dense plasma opacities 

have long been of interest from astrophysics to inertial confinement fusion (ICF) 

research. Modeling of the energy transport in hot dense plasmas relies on radiative 

opacities. Several opacity models have been applied to calculate the plasma opacities, 

such as the detailed term accounting (DTA) method, the detailed configuration 
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accounting (DCA) method, the unresolved transition array (UTA) method and some 

average-atom models based on the statistical theory. These models need validation by 

experiments. However, high quality experimental measurements of the x-ray opacities of 

highly ionized materials are difficult since the experiment errors must be accurately 

specified and the plasma condition must be precisely determined. Such measurements 

became possible by the technique of radiative heating using the intense x-rays emitted 

by laser-irradiated targets. The point projection spectroscopy technique has been 

extensively applied for this kind of experiment. The plasma to be studied is created 

either by direct or indirect irradiation. An auxiliary plasma, whose dimensions are small 

compared to the main plasma expansion, is generated by a synchronized laser and 

generates an x-ray source which probes the main plasma. The attenuation of the x-ray 

probe through the expanding plasma is measured with a space resolution on the order of 

the point source diameter and with a time resolution of the duration of the auxiliary 

source plasma. 

The theoretical aspect of opacity research [RS92][BOG89][BOS95] is also very 

complex and necessarily uses approximations. The calculation of opacity needs two 

components: the atomic radiative quantities determined by the atomic model and the 

populations calculated by the radiative dynamics. The radiative processes, as discussed 

in Section 3.1, mainly involved three parts: photoexcitation, photoionization and 

bremsstrahlung. The atomic theory based on the quantum mechanics has been solidly 

established to calculate these processes and several freely-distributed codes are 
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available, such as Cowan’s code and Grant code. However, these calculations are largely 

based on the free atom assumption, that is, they assume the atom is isolated and there are 

no interactions between this atom and the environment. This approximation is 

appropriate in some plasma condition ranges but does not hold when the plasma is 

strongly coupled, in which the Coulomb interaction energies are equal or greater than 

the average kinetic energy of the plasma particles, i.e. � , where 

 is the inter ion distance. If the plasma environment is considered in 

the determination of the atomic structure and transition properties, it is expected that 

different behavior will be exhibited, such as formation of energy bands, the shift of 

energy levels and pressure ionization. It is more difficult to coherently handle the 

problem as a whole rather than single out the atom but include the environment 

condition as the additional correlative energy and exchanged energy, which is derived 

from the statistical theory (Density Function Theory) and perturbation analysis. 

Therefore, the calculation of atomic structure in plasmas is basically the same as the 

calculations of free atom except that the modified potential reflects the plasma 

environment effects.  

1)( 2
�� akTze

3/1)4/3( �

� �Na

 In the following sections, we give the three different plasma models that are used 

in the code EOSOPA. Because ATBASE currently doesn’t include the calculation of all 

of the rate coefficients under the average configuration assumption, UTAOPA can only 

run the LTE model.  
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3.2.1 Plasma Models and Various Rate Coefficients 

3.2.1.1 Local Thermodynamic Equilibrium (LTE) 

LTE occurs in plasmas whose dimensions are significantly smaller than the mean free 

path of the photons emitted from the plasma, but are much longer than the collision 

length of the electrons and the ions. The photons may either escape from the plasma or 

be reabsorbed in some other part. The electrons and ions are colliding at a high rate and 

their distributions of velocities and excited states are in equilibrium. The population  

is given by the Saha equation [ST64]: 
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The Saha equation is solved with the constraint of particle conservation  
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where N is the specified total particle density, and q is the charge of ion i. The 

population distribution of the electrons in the various excited states is given by the 

Boltzmann distribution 
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3.2.1.2 Coronal Equilibrium (CE) 

The other extreme is the very low density and optically thin plasma range. Such plasmas 

occur frequently under both astrophysical and laboratory conditions. Under the CE 

condition, the upward excitation rate by collisions is so low relative to the spontaneous 

decay that an electron excited to an upper level will most likely decay to the ground state 

before experiencing a second excitation. Moreover, in low density optically thin plasmas 

the photoionization and photoexcitation processes have very low rates. The dominant 

processes are electron impact ionization and radiative and dielectronic recombinations. 

The charge state distribution is calculated by equating the rates of these processes, 
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Because all ion stages are assumed in the ground state in CE, this equation is a relation 

between the partial densities of the ground states of two adjacent charge states. 
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3.2.1.3 Collisional Radiative Equilibrium (CRE) Steady State 

 The CRE model is an intermediate model between LTE and CE. It tends to the CE in 

the low density limit, and to LTE for high density plasma. Consider a plasma of atomic 

number Z, electron temperature T  and ion density . The densities of the charge state 

i   and of the excited state j are , respectively. The change rate of the population 

of a particular level is affected by several processes and their inverse processes as listed 

in Table 3.2.1. 

e
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ijN

The rate equation for the CRE steady state model can be written as 
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where  represents the summation of the upward transition processes: stimulated 

absorption, collision excitation, photoionization, collision ionization; while W   

represents the summation of the downward transition processes: spontaneous and 

stimulated emission, collision deexcitation, rediative and dielectronic recombination, 

and three-body collision recombination. To calculate accurate rate coefficients for all 

kinds of these processes is very difficult. In practice, the empirical formulas are often 

used. Reference [PW93] givens these formulas used in ATBASE. 
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Table 3.2.1 Atomic Processes involved in the CRE model 
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(a): Direct Process      (b): Rate Coefficient    (c): Inverse Process 
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3.2.2 RSSOPA Model 

The line structure for the bound-bound transitions becomes complicated as the 

number of the bound electrons increases. The lines become unresolvably close to each 

other. UTAOPA handles such spectrum structures based on the non-relativistic UTA 

method. However, for high-Z elements, the non-relativistic treatment is not adequate. 

The RSSOPA model uses the JJ coupling based on the relativistic UTA method. 

In the RSSOPA model, the wave functions are determined by the Dirac equation: 
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where � and � are the usual Dirac matrices. V(r)  is the potential. The wave function  � 

has the form 
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where P(r) and Q(r) are the radial parts and � is a function of angular and spin 

coordinates in the usual notation. 

 The Dirac equation is solved numerically to obtain the wave functions for 

electron orbitals and the self-consistent potential. The photoexcitation cross sections for 

the configuration-to-configuration transition are calculated from the single-electron 

transition properties. In the configuration average approximation, the cross section can 

be written as 
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where  is the configuration average oscillator strength, 'icc
f )( �� �  is the line shape 

function. If the transition energy is assumed to be approximately the same for all lines of 

the transition array, the relation of the averaged array oscillator strength  to the 

single-electron transition oscillator strength  is 
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where  is the photon energy,  are the occupation numbers of orbital �, � 

respectively, k is the rank of electric multipoles,  is the statistical weight for initial 

orbital � and 

�� �� qq ,

�g

�� �� |||| T  is the bound-bound reduced transition matrix element. 

 The photoionization cross section for configuration c of ionic stage I can be 

written as 
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where the summation runs over all subshells of the configuration. 
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oscillator strength, given by 
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where �� �� |||| T  is the energy-normalized transition matrix element from the initial 

bound orbital state � to the continuum orbital state �. 

 The line shape )( �� �  uses the Voigt function: 
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where  is the Doppler full-width at half maximum (FWHM) given by d�

),()/(10858.3 2/15 eVATkBd ��
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where  is expressed in eV, A is the atomic weight expressed in gram-moles, the 

transition energy is expressed in eV. �  is the Lorentz FWHM due to the collisional 

broadening mechanism, which is calculated with the electron impact semiclassical 

formulas. The other two quantities are calculated in the UTA 

method as the following.  
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 By the UTA method, the average energy and the standard deviation of  the 

energy distribution of a given electronic configuration are the first and second moments 

of the Hamiltonian, 
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and 
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   where H is the sum of the electrostatic and spin-orbit operator, 
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Under the j-j coupling scheme and using the Hermitian properties of the Hamiltonian, 

the width of the energy distribution can be expressed in the form 
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where the formula for are given in Reference [BOG95 ].  4,3,2,1D

 The standard deviation of the weighted line wavenumber distribution is the 

square root of the variance, 
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The final numerical formulas for the UTA moments can be written in a concise form: 

The UTA average energy 
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The UTA variance 
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where the terms  are related to the radial Slater integral 

which are given in Reference [BOG95]. 

���� sssssss FFEDCBA ,,,,,,

 To calculate opacities, there are a number of configurations for each ion stage. 

For each configuration, we need to do the self-consistent field calculation, and then all 

the wave function calculations for both bound and free electrons, and finally we can use 

these wave functions to calculate the photoexcitation and photoionization cross section 

and the UTA width for all possible transitions. The process is very time-consuming 

especially for high-Z elements. To give a sense of how many calculations are involved, 

we use the medium-Z (Z=50) as an example. Each ion stage has an average of 20 
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configurations (at least), and each configuration has an average of 4 orbitals, and for 

each orbital, there are an average 15 transitions (5 for the bound-bound transition (at 

least) and 10 for the bound-free transition). Therefore, there are a total of 60,000 

transitions to be calculated, plus the iterations needed for solving the Dirac equation. 

Significant computer time is needed for these calculations. 

 Nevertheless, this model has a nice feature under the average configuration 

approximation, that is, the calculation for each configuration is independent. Therefore, 

the parallel computing technique can come into play. In this thesis, we implement the 

RSSOPA model using MPI. The flow diagram of RSSOPA model is shown in Fig. 

3.2.1.  Time measurements for parallel computations are given in Section 4.2. 
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Read in all configurations 
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of available processors 

 

 

 

 

               Processor #1                             … …                             Processor # N 

                                      For each configuration,
solve Dirac equation, obtain
the wave functions, and
calculate all kinds of Slater
integrals.  
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transition energy. 

For each orbital in each
configuration, calculate the
bound-free cross section
at 10 photon energy points 

Collect all data and write 
them into atomic database

For each orbital in each
configuration, calculate the
bound-free cross section
at 10 photon energy points

For each orbital in each
configuration, calculate all
possible transitions ( n up
to 10 and l up to g), and
the UTA width and the
transition energy. 

For each configuration,
solve Dirac equation, obtain
the wave functions, and
calculate all kinds of Slater
integrals.  

Distribute the task 
onto each processor

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Fig. 3.2.1 Flow diagram of RSSOPA parallel coding 
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Chapter 4 

Implementation of Distributed Atomic 

Data Computing System 

 
 
 

Advances in architectures, software and networks have shifted the traditional computing 

environment to the distributed environment. The advent of high-speed networks and the 

needs of harnessing more computer resources in high performance scientific and 

engineering applications has led to the possibility of federating resources such as 

compute power, data storage and networks into computational grids [GRD99]. 

Computational grid software infrastructures such as Globus [FK97], Legion [LG96], and 

Condor [LLM88] provide abstractions to give users the ability to run applications on a 

heterogeneous set of machines as they once did on a single high performance platform. 

These infrastructures also provide services such as security, communication, managing 

distributed applications and remote data transfer. 

While metacomputing systems such as Globus, Legion and Condor provide low 

level grid APIs that can be used to implement low tier services, the computational grid 
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can also build on commodity network technologies, such as CORBA, COM and Java 

Beans. These technologies are being used to construct multi-tiered architectures. The top 

tier of this model always consists of components such as graphic user interfaces. The 

middle tier consists of program logic and other high-level services such as load 

balancing and integration of legacy systems.  The middle tier mediates between 

sophisticated back-end data services and simple front ends. The bottom tier provides 

data services from relational and object databases. The decomposition of application 

functionality into separate presentation, application and data service results in a 

distributed computing architecture for computational grids.  

In this chapter, we describe implementation of the distributed atomic data 

computing system based on the commodity architecture (as shown in Fig. 2.4.2). The 

layout of this chapter is as follows: 

 In Section 4.1, we first give some results on the atomic data computing. After 

verifying the accuracy of the ATBASE codes by comparing with other theoretical results 

and experiments, the importance of JJ coupling for medium- and high-Z elements are 

shown in the atomic data calculation and the spectrum analysis. In Section 4.2, we give a 

description of the parallel computing of the atomic data under the RSSUTA model. 

Through several experimental calculations, we find that the speed-up factor increases 

almost linearly with the number of processors. This characteristic results from the 

minimization of the requirements of communications. In Section 4.3, we discuss the 

atomic database design and prove that the object data model is more suitable than the 
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relational data model to simulate the atomic data set. A sample of SQL script to create 

the object table schema is presented. The coupling of the three-tier of our data 

computing system is based on the use of CORBA middleware (for the web-based project 

MIXOPA, we use Enterprise Java Beans). We also give a description of the interfaces 

used in the CORBA framework. In the following sections, we discuss the graphic user 

interfaces for the four application components in this project, which are: the atomic data 

calculation, the EOS and opacity calculation, the data visualization tool and the 

spectrum analysis. In Section 4.4, we show the graphic user interfaces for the first three 

components. For the spectrum analysis, we show the graphic user interface in Section 

4.5. Implementation of each component is emphasized. Detailed usage information is 

given in the User’s Manual. Finally, we give a very brief description of web-based 

projects in Section 4.6. 

 

4.1 Results on Atomic Data Computing  

In this section, we first compare the atomic data calculated by ATBASE with other 

theoretical results and experiments to test the accuracy of the ATBASE codes, then we 

show the importance of jj coupling with increasing of the nuclear charge Z in the atomic 

data calculations and the spectrum and opacity calculations.  
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4.1.1 Verification of the atomic data generated by ATBASE 

We list some numerical data of energy levels calculated by ATBASE using the DTA 

model and the Cowan’s code from low-Z element (Carbon Z=6) to high-Z element 

(Gold Z=79) in Table 4.1.1. As we can see, the agreement between ATBASE and 

Cowan’s code are very good. The difference of energy levels calculated by ATBASE 

and the Cowan’s code is within 2% and the difference of oscillator strengths is within 

10%.  

For the spectrum analysis, we care about the accuracy of the detailed transition 

lines. However, for the opacity calculation used by hydrodynamic simulations, such 

detailed line structures are not necessary because they may be washed out after 

integration with the radiation field. The UTA method is a good approximation for this 

purpose. In Table 4.1.2, we calculate the UTA results of transition energy for Ni-, Cu-, 

Zn- like W ions. We can see the ATBASE results agree with the STA results and 

experiments. Because ATBASE does not give the transition width explicitly, we can not 

compare the width with the STA results and experiment.  

In order to test the accuracy of the transition width, we compare the results 

calculated by the fully relativistic RSSUTA model with Bauche’s results [BBK85] in 

Table 4.1.3. We chose the  transition array in the spectrum of  Co-like 

sequence of W (Z=74). From Table 4.1.3, we can see the comparison of both wave 

position and width are satisfactory.  

pdd 433 89
�
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Table 4.1.1  Detailed energy levels comparison between ATBASE code and             

Cowan’s code. 

                                                C 3  1  � 11222 2212 pssss �

Upper    J            Lower   J’     E(Atbase)     E(Cowan)        f(Atbase)     f(Cowan)    
--------------------------------------------------------------------------------------------------- 
2S}2S  0.5   =>  1S}2P 0.5     2136.7278     2124.8903      9.084E-03     9.100E-3  
2S}2S  0.5   =>  1S}2P 1.5     2132.9080     2121.0379      1.894E-02     1.900E-2  
2S}2S  0.5   =>  3S}2P 0.5     1253.2146     1237.2361      3.621E-01     3.677E-1  
2S}2S  0.5   =>  3S}2P 1.5     1252.3782     1236.4062      7.233E-01     7.347E-1  
 
                                     Ar   �9 dpsspss 3221221 522622

�

--------------------------------------------------------------------------------------------------- 
1S}1S  0.0   => 2P}3P  1.0      42.5717        42.5649         4.839E-03       5.100E-3 
1S}1S  0.0   => 2P}3D  1.0     42.0823        42.0864         1.196E-01       1.300E-1  
1S}1S  0.0   => 2P}1P  1.0      41.4601        41.4831        2.318E+00       2.279E+00   
 
             Ge  1   �27 fdpspssdpspss 433322133322 862622962622

�

--------------------------------------------------------------------------------------------------- 
2D}2D  1.5  => 3F}4F  2.5     149.1955     149.3197      1.196E-02       1.640E-02   
2D}2D  1.5  => 3F}2P  0.5     148.0378     148.0497       8.886E-02      8.680E-02   
2D}2D  2.5  => 3F}4G  2.5     147.0757     147.0887       7.172E-03     7.100E-03   
2D}2D  2.5  => 3F}2F  2.5     146.6788     146.7086       2.186E-01      2.079E-01   
2D}2D  1.5  => 1D}2P  1.5     144.1430     144.1137       1.868E-02     1.840E-02  
2D}2D  2.5  => 1D}2D 2.5     143.2658     143.241         1.901E-01     1.873E-01  
2D}2D  2.5  => 3P}2F  3.5     142.1415     142.1176       5.679E-01      5.612E-01   
 
            Xe     1                      �26 fdpspssdpspss 433322133322 9626221062622

�

--------------------------------------------------------------------------------------------------- 
1S}1S  0.0  => 2D}3P  1.0        14.7751     14.7651         9.769E-03         0.0099   
1S}1S  0.0  => 2D}3D  1.0       14.6135     14.6124        4.352E-01          0.5270  
1S}1S  0.0  => 2D}1P  1.0        14.1986      14.2306        6.322E+00         6.2098  
 
          Au 51    1  � fdpspssdpspss 433322133322 9626221062622

�

-------------------------------------------------------------------------------------------------- 
1S}1S  0.0   => 2D}3P  1.0         5.0066      5.0028         6.496E-04     2.000E-04 
1S}1S  0.0   => 2D}3D  1.0        4.9319      4.9324        2.288E+00    2.498E+00 
1S}1S  0.0   => 2D}1P  1.0         4.7572      4.7619        6.019E+00    5.795E+00 
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Table 4.1.2   Comparison of UTA calculated transition energies for W(Z=74)  
 

                                        Ni-like 
Transition           E(ATBASE)         E(STA)         E(Exp) 
-----------------------------------------------------------------------                                   
3d – 5f                  4.3737                 4.046                 4.405 
3d – 6f                  3.8500                 3.8792               3.878 
3d – 7f                  3.5921                 3.6199               3.620 
 
                                        Cu-like 
Transition           E(ATBASE)         E(STA)         E(Exp) 
-----------------------------------------------------------------------                                   
3d – 5f                  4.4226                   4.455                4.456 
3d – 6f                  3.9032                   3.935                3.932 
3d – 7f                  3.6468                   3.677                3.676 
 
                                       Zn-like 
Transition           E(ATBASE)         E(STA)         E(Exp) 
-----------------------------------------------------------------------                                   
3d – 5f                     4.472                     4.508             4.506 
3d – 6f                     3.9573                   3.993             3.990 
3d – 7f                     3.7028                   3.737                -- 
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Table 4.1.3 Comparison of details of the position and widths of the subarray of 

 transition for W(Z=74) between RSSUTA model and Bauche’s results. pdd 433 89
�

(a) represents the Bauche’s results [BBK85]; (b) represents the RSSUTA reults. 

 

Subarray  One-electron 

transition 

Wave number(Å) 

   (a)              (b) 

         FWHM(Å) 

  (a)            (b)           

2/1
6

2/5
2

2/3
6

2/5
3

2/3 pdddd �  2/12/3 43 pd �  6.9666 6.9677 0.075 0.083 

2/3
6

2/5
2

2/3
6

2/5
3

2/3 pdddd �  2/32/3 43 pd �  6.5838 6.5642 0.068 0.064 

2/3
5

2/5
3

2/3
6

2/5
3

2/3 pdddd �  2/32/5 43 pd �  6.8155 6.8211 0.046 0.058 

2/1
5

2/5
3

2/3
5

2/5
4

2/3 pdddd �  2/12/3 43 pd �  6.9665 6.9715 0.058 0.047 

2/3
5

2/5
3

2/3
5

2/5
4

2/3 pdddd �  2/32/3 43 pd �  6.5835 6.5679 0.053 0.038 

2/3
4

2/5
4

2/3
5

2/5
4

2/3 pdddd �  2/32/5 43 pd �  6.8227 6.8249 0.057 0.042 
 
 

4.1.2 Evolution of the transition pattern from low Z to high Z 

Under the condition that the electrostatic interaction between electrons are much 

stronger than the interaction between the spin of an electron and its own orbital motion, 

the appropriate coupling scheme is LS coupling. With increasing nuclear charge Z, the 

spin-orbit interactions become increasingly more important. When these interactions 

become much stronger than the Coulomb terms, the coupling conditions approach JJ 

coupling. In the JJ coupling, basis functions are formed by first coupling the spin of each 

electron to its own orbital angular momentum, and then coupling together the various 

resultant j in an arbitrary order to obtain the total angular momentum J. 
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 We use the simple transition array 3 along the isoelectronic 

sequence for Kr (Z=36), Mo (Z=42) and Pr (Z=59) to demonstrate the importance of JJ 

coupling. We show that the spectrum is split with increasing nuclear charge Z. This 

feature can be derived using the crude assumption that the external 3d, 4s, and 4p 

orbitals  are hydrogenic with the effective nuclear charge . Under this 

assumption, the Slater integrals of the electron pair (3d, 3d), (3d, 4s) and (3d, 4p) are 

proportional to 

pdsd 434 88
�

Z 26*
�� Z

*Z . However, the spin orbit integrals �  for orbitals 3d and 4p are 

proportional to . Therefore, it is clear that the spin-orbit integrals become 

predominant when nuclear charge Z increases and the transition array 3  

splits into two subarrays, that is, the longer wavelength transition  and the 

shorter wavelength transition  .  Two atomic models are used. For the DTA 

model, we use the Cowan’s code for computing the wavelengths and the transition 

strengths with relativistic corrections. For the UTA model, we use the RSSUTA model 

to obtain the UTA transition position and width. Fig. 4.1.1(a)-(c) show the evolution of 

the pattern. The RSSUTA numerical data used to calculate the Gaussian profile is listed 

in Table 4.1.4. 

pd 43 ,�

4* )(Z

pds 434 8
�

2/1p

d 8

2/1 44s �

2/32/1 44 ps �
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Fig. 4.1.1(a)  Spectrum for Kr 3  pdsd 434 88

�

Fig. 4.1.1(b)  Spectrum for Mo 3  pdsd 434 88
�
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Fig. 4.1.1(c)  Spectrum for Pr 3  pdsd 434 88
�

Fig. 4.1.1 Calculated spectra in the series for Kr, Mo, Pr. The 

vertical lines are calculated using the Cowan’s code. The dashed lines are 

calculated using the RSSUTA model. The numerical data used for the Gaussian 

shapes are listed in Table 4.1.4. These figures clearly show evolution of the 

spectrum pattern with increasing nuclear charge Z. The transition array is split 

into two subarrays, that is,  and  4 . 

pdsd 4343 88
�

2/1 2/1 4s �2/1 44 ps � 2/3p
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 Kr (Z=36) 3  pdsd 434 88
�

 Transition Energy (eV) Variance Oscillate Strength 
20.08 *  6.68 3.417411E-04 (a) 

21.26  ** 14.66 4.563104E-04 

19.87 6.68 3.510421E-04 (b) 

21.36 14.81 6.915320E-04 

(c) 19.66 6.68 1.515523E-04 

 21.46 14.79 5.588995E-04 

Mo (Z=42) 3  pdsd 434 88
�

 Transition Energy (eV)  Variance Oscillate Strength 
31.16 5.54 6.933621E-04 (a) 

35.19 13.06 9.395431E-04 

31.05 5.54 6.910049E-04 (b) 

35.36 13.05 1.430757E-03 

31.02 5.54 2.735523E-04 (c) 

35.47 13.06 1.161781E-03 

Pr (Z=59)  3  pdsd 434 88
�

 Transition Energy (eV)  Variance Oscillate Strength 
64.24 3.7 2.308677E-03 (a) 

95.83 11.9 3.088790E-03 

63.72 3.8 2.249766E-03 (b) 

96.08 11.8 4.729155E-03 

63.21 3.7 2.292728E-03 (c) 

96.32 11.8 3.860142E-03 

      
(a) :       (b):      (c): 3  2/1

6
2/5

2
2/3 433 sdd 2/1

5
2/5

3
2/3 433 sdd 2/1

4
2/5

4
2/3 43 sdd

(*):             (**):  2/12/1 44 ps � 2/32/1 44 ps �

Table 4.1.4   Numerical transition data for array for Kr, Mo, Pr pdsd 4343 88
�
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4.1.3  The effect of JJ coupling on spectrum simulations 

In Fig. 4.1.2, we compare the ATBASE DTA transmission calculation with the UTA 

result for an Al plasma. As we expect, there are no split subarrays. The different peaks 

are corresponding to different ion stages (B-like, C-like, N-like ions). Comparing with 

experiment, we know that the DTA results for both transition energy position and the 

strength agree with experiment very well. For UTA simulations, we notice that: 1) under 

the same plasma condition (T=40eV), the UTA spectrum shift toward higher energy 

side. This means the ATBASE UTA predicts more over-stripped ions. On the contrary, 

we can see the ATBASE UTA simulation under the plasma condition T=30eV 

underestimates the ionization degree, and therefore the spectrum is toward the low 

energy side. The line strength of ATBASE UTA simulation under T=35eV is closer to 

experiment. 2) the energy transition positions are different, comparing with the 

ATBASE DTA calculation and experiment. The transition energy calculated by 

ATBASE UTA method is not  accurate enough to form a Gaussian profile to encapsulate 

those detailed transition lines. We can also see this from other comparisons. 

In Fig. 4.1.3, we compare the transmission spectrum calculated by several 

theoretical models and experiment for a Nb plasma (T=47eV, D=0.026 ). We can 

see that the RSSOPA and STA results agree with experiment much better than the 

ATBASE UTA. Actually, the ATBASE UTA has no such detailed structures. The 

reason is that the ATBASE UTA uses the non-relativistic LS coupling UTA method for 

3/ cmg
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the transition array. For example, for transition 3d-2p, there are three lines under JJ 

coupling : 

2/32/32/12/32/32/5 23,23,23 pdpdpd ���  

However, under LS coupling, there is only one transition array 3d-2p. That is why we 

can only see big bundles around 2200eV and 2450eV. More detailed comparison 

between theoretical simulations and experiment is given in Section 4.5 when we discuss 

the implementation of the spectrum analysis module. From this example, we can see 

clearly the effect of JJ coupling on the medium to high Z spectrum.  

In Fig. 4.1.4, we do the similar comparison for Ge plasma (T=76eV 

D=0.054 ). Again, we can see the ATBASE UTA method produces less accurate 

transition energy positions and has no such detailed spectral resolution. This 

experimental data is also used to test the implementation of our spectrum analysis 

module in Section 4.5. 

3/ cmg

 We show a comparison of an opacity calculation for a Au plasma in Fig. 4.1.5. 

Using this example we argue that enough configurations are needed to the opacity 

calculations. Three theoretical models are used: STA by A Bar-Shalom, EOSOPA by 

P.Wang and the Average Atom (AA) model of this work. The numerical solution of the 

AA model is similar to the RSSOPA model except that the potential is given by an 

empirical form using Density Function Theory (DFT). In the AA model, only one virtual 

average atom exists in the plasma. We can see some interesting differences. The 

ATBASE UTA opacities are below the STA results, which is instead lower than AA 
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results. The reason is that the current ATBASE UTA does not include enough 

configurations for low ionized ions, which contribute mainly to the low energy part of 

the opacity. On the other hand , the AA model overestimates the opacity because the AA 

model assumes all the ions have equal ionization energy, and what is more, the AA 

model has no detailed structure. However, they all have similar continuum opacity 

above 1000eV. 

 In a summary of the section, we can make a conclusion that the ATBASE code 

does very good calculations from low-Z to medium-Z elements under the Detailed Term 

Accounting (DTA) model, and for the opacity table generation, the ATBASE UTA 

model can also provide very reasonable results. However, for the spectrum analysis 

characterized by unresolved overlap transition structures, the ATBASE UTA model is 

less accurate  than the RSSUTA model. The RSSUTA model is more appropriate for 

high Z elements because of its fully relativistic treatment. The summary of numeric 

codes for atomic data calculations and their capabilities are given in Appendix C.  
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Fig. 4.1.2  Transmission comparison between the ATBASE DTA calculation and UTA 

calculation for Al plasma (T=40eV, D=0.013 ). 3/ cmg
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Fig. 4.1.3  Comparison of the absorption data calculated by several theoretical models 

and experiment for the Nb spectrum. The plasma condition is T=47eV, D=0.026 .3/ cmg
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Fig. 4.1.4  Comparison of transmission calculations by ATBASE UTA and 

RSSOPA with experiment for Ge (T=76eV, D=0.054 ). 3/ cmg
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Fig. 4.1.5 Opacity comparison for Au plasma (T=100eV, D=0.1 ). STA data are 

read by hand

3/ cmg
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4.2 Parallel Computing 

As shown in Section 3.1, Schrödinger’s equation for atoms is a kinetic equation for a 

many-body system. As the many-body problem is solved to a high level of accuracy, the 

prediction of atomic properties is a challenging interaction between computational 

techniques and theoretical physics. Large demands on computer resources are required 

to obtain accurate atomic data. Using nonrelativistic with low-order relativistic 

corrections (MCHF) or a fully relativistic Driac-Fock theory (MCDF), a sparse 

interaction matrix as large as 100,000�100,000 is needed to solve for eignvalues and 

eignfunctions. It is an astonishing job for a single processor. Since the computation of 

each block of the sparse matrix is independent from any other, it is possible to distribute 

the computation of each block across processors. C. Froese Fischer has performed a lot 

of experiments on the accurate atomic data calculation from implementation on parallel-

vector computer (Cray) to a cluster of IBM/RS6000 using PVM  and finally to MPI on 

IBM SP2 [FTB94].  

While C. Froese Fischer emphasizes high performance computing for accurate 

atomic data for diagnosis, we emphasize the atomic data for the opacity calculation and 

high Z elements. To calculate opacities, there are a lot of electron configurations needed 

to be considered. If we ignore the interactions between configurations, the calculation 

for each configuration is independent under the RSSOPA model, as discussed in Section 
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3.2.2. Therefore, the communication cost can be minimized and hence the throughput 

can be maximized. The code structure is listed in Table 4.2.1. 

Table 4.2.1  The pseudo-code structure for atomic data parallel computing 

  Do i = 0, ionz-1    // loop over the ion stages 

      Primary node reads all relativistic configurations and  

      partition configurations according to available processors  

      each processor has a pair of configuration index 

      ip0: // low boundary         ip1: // high boundary 

      do j = ip0, ip1  // loop over the configurations 

 subtask for UTA calculation for each configuration 

      end do 

      collect the output from each processor 

  end do  

 
 We performed several runs to measure performance of the RSSUTA parallel 

code implemented in MPI. We use Ti-like (22 electrons) W (Z = 74) as a sample. For 

this ion stage, there are 262 relativistic electron configurations. The same calculations 

have been repeated on1, 4, 8, 16, 32, 64, 128, 256 processors using the NPACI IBM SP 

machine. Wall clock time has been recorded for each processor. The calculation time is 

the average of all wall clock time for each run, which is listed in Table 4.2.2. Fig. 4.2.1 

shows the speed-up versus the number of processors. From the figure, we can see that 

the speed-up is almost linearly increasing with the number of processors. 
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Table 4.2.2  Calculation time and speed-up versus the number of processors 

Number of 

processors 

Calculation time in 

seconds 

Speed -up 

1 17695.82 1 

4 4414.94 4.008 

8 2245.24 7.881 

16 1098.95 16.102 

32 551.79 32.07 

64 277.75 63.711 

128 143.14 123.626 

256 74.29 238.2 
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Fig. 4.2.1 The speed-up versus the number of processors. 
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4.3 Database Design and Distributed Computing 

In a traditional computing environment, the computing resource is tightly coupled with 

local file systems, i.e. using local disks as data storage, such as in the spectrum and 

opacity calculations. In these calculations [PW96][MCW98], the conventional 

approach is to generate the atomic data in a flat file first, and then read the whole file 

into the opacity or spectrum applications. This approach requires large memory to load 

the whole data set at once but the execution is fast. The major drawback of this 

approach is that it is difficult to track down the detailed information that is involved in 

the calculation. It has to record the detailed information when the program is running 

and to use a post-processor to reveal them. It is difficult to answer questions such as 

how many configurations have been involved in the calculation and what are the 

transition lines appearing in the spectrum. Another potential difficulty in the atomic 

data calculation by using flat files on local file systems is the atomic data size may 

exceed the disk capacity or  run out of the memory capacity. Depending on the atomic 

model, the application can generate huge amounts of data containing information about 

the atomic structure and the rate coefficients, especially for high Z elements. This 

could be a problem when the spectrum and opacity application try to load these huge 

amounts of data. They can exhaust the memory resource easily even though only a 

small part of the data is actually used. To handle this problem, ATBASE has to 

propose an approximation method by averaging the detailed spectrum structures to 

reduce the data size in order that the atomic data can fit into the available memory 
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capacity [PW96]. To overcome these problems, we use a data management system for 

storing our atomic data. 

There are three types of DBMS that are widely used: relational database 

management system, object-oriented database management system and relational-object 

database management system. Object-oriented databases (OODBs) have a great 

advantage for scientific data management. Usually, a scientific database can contain 

large volumes of scientific data involving disparate types such as numeric data, image 

data, spatial data and temporal data. The conventional record-oriented database systems 

lack the support for the data models and data manipulations that match scientific data 

structures and operations. OODBs can directly support complex objects for capturing 

hierarchical structures and OODBs generally have collection types, such as lists and 

arrays, that are a better basis for the dimensional data common in scientific applications. 

With the OODBs’s inherent extensibility, object-oriented databases (OODBs) are in 

many ways a better match for scientific data management than conventional record-

oriented database systems. 

In this project, we use Oracle object-relational database management system 

(DBMS) for quick development. The advantage of using the commercial database 

management systems is that they are well established and support most of network 

computing technologies, such as CORBA and Java Beans. The Oracle inherent network 

computing architecture makes our implementation much easier.  
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4.3.1  Database Design 

We focus on the atomic data required by ICF applications, that is, the opacity data and 

spectrum data. We have built 23 tables in the database thus far. For the mixed opacity 

calculation, we store the opacity data for elements from Hydrogen (Z=1) to Calcium 

(Z=20). The opacity data contains information such as the average ionization stage, 

electron and ion pressures, Rossland opacity, Planck emission and absorption opacities 

and so on. The mixed opacities can be calculated from these basis tables using the linear 

interpolation method, as described in Section 4.6. This part of the database supports 

web-based projects MIXOPA and OPAVIEWER. For opacity and spectrum 

calculations, we store the transition energy, transition oscillate strength, UTA width, 

configuration average energy and other information in the relation-object tables 

supported by the Oracle DBMS. These atomic data stored in the database enable us 

fairly easily to track down all detailed information in the spectrum analysis using 

appropriate queries, as shown in examples of Section 4.4.  

The Structured Query Language (SQL) script used to generate some essential 

tables are listed as the following: 
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Table 4.3.1 The SQL script file used to generate the database schema 

Create or replace type RELORB_OBJTYP as object 

(n number(2),  k number(2)) / 

create or replace type PHTNCS_OBJTYP as object 

( phtne    number,  phtnos   number) / 

create table RELCFGAVGENG 

(OID number(5) CONSTRAINT relcfgavgeng_oid_fk REFERENCES 

OPERATION(OID), 

RelConfig   varchar2(160) CONSTRAINT relcfgavgeng_relconfig_nn NOT NULL, 

Ionstage    number(3) CONSTRAINT relcfgavgeng_ionstage_nn NOT NULL, 

Cfgweight   number    CONSTRAINT relcfgavgeng_cfgweight_nn NOT NULL, 

Avgenergy   number    CONSTRAINT relcfgavgeng_avgenergy_nn  NOT NULL, 

PRIMARY KEY(OID, RelConfig) ) / 

Create or replace type PHTNCS_NTABTYP as TABLE of PHTNCS_OBJTYP / 

Create or replace type RELORBPHTN_OBJTYP as object 

(relorb  RELORB_OBJTYP, 

occup   number, orbeng  number, qfect   number, radi    number, 

phtncs_ntab  PHTNCS_NTABTYP) / 

create or replace type RELORBPHTN_REF_NTABTYP as table of REF 

RELORBPHTN_OBJTYP / 

create or replace type RELCFGPHTNION_OBJTYP as object 

(OID number(5),  RelConfig   varchar2(160), 

relorbphtncs_ntab  RELORBPHTN_REF_NTABTYP) / 

create table RELCFGPHTNION of RELCFGPHTNION_OBJTYP  
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(OID CONSTRAINT relcfgphtnion_oid_fk REFERENCES OPERATION(OID), 

PRIMARY KEY (OID,RelConfig) ) 

Nested table relorbphtncs_ntab store as relorbphtncs_store_ntab / 

Create or replace type RELTRAN_OBJTYP as object 

( relorbi  RELORB_OBJTYP,  relorbj  RELORB_OBJTYP, 

traneng  number,  tranos   number,  utawid   number) / 

create or replace type RELTRAN_NTABTYP as table of RELTRAN_OBJTYP / 

create table RELCFGPHTNEXCT  

(OID number(5) CONSTRAINT relcfgphtnexct_oid_fk REFERENCES 

OPERATION(OID), 

RelConfig   varchar2(160) CONSTRAINT relcfgphtnexct_relconfig_nn NOT NULL, 

Reltran_ntab   RELTRAN_NTABTYP) 

Nested table reltran_ntab  store as reltran_store_ntab / 

 
As shown in the above table, the most important three data tables are 

RELCFGAVGENG, RELCFGPHTNION and RELCFGPHTNEXCT. The 

RELCFGAVGENG table stores the relativistic configuration average energies for all 

ion stages. Under the local thermal equilibrium (LTE) approximation, only this table is 

needed to compute the state populations. These configuration energy data are 

transferred into the spectrum analysis module to solve the Saha equation to determine 

the configuration populations, and then the corresponding photoexcitation data from the 

RELCFGPHTNEXCT table and the corresponding photoionization data from the 

RELCFGPHTNION table are extracted from the database. Because the size of 

RELCFGAVGENG table is small and the program only loads those important 
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photoexcitation and photoionization data, this approach speeds up the data transfer and 

saves the memory usage. The database access diagram for the opacity and spectrum 

analysis is shown in Fig. 4.3.1. 

 

Fig. 4.3.1 The database access diagram for the opacity and spectrum calculation 

The application module first establishes connection to the atomic database. After 

the user specifies the plasma condition, the module retrieves the 10 lowest 

configuration average energies for each ion stage to guess the important ion stages that 

may exist in this plasma condition (Step 1), we then solve the Saha equation using the 

minimum set of configuration energy to obtain the significant ion stages which have 

populations greater than some criteria (for example, crit = 0.001) (Step 2). The module 
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retrieves all configurations for these significant ion stages (Step 3) and repeats the 

process of solving the Saha equation to obtain more detailed populations. The important 

configurations are then determined by some criteria (Step 4). For these selected 

important configurations, the module contacts the data proxy object to get the 

photoexcitation and photoionization cross sections (Step 5). Using the population and 

the cross section, the module finally constructs the spectrum and opacity (Step 6).  

Because we can use the SQL query language against the database, we can easily 

identify the spectrum structure and other detailed information. In Section 4.5, we give 

several examples. More details can be found in the User’s Manual.  

4.3.2  Distributed object computing 

The database serves as a data provider in our three-tier architecture. No 

significant application logic is done in the database server. An agent object that is 

responsible for all kinds of data requests is deployed in the Oracle DBMS under the 

CORBA framework. The application server obtains the required atomic data through the 

data agent object and does most of the application logic, such as solving the LTE Saha 

equation and computing the opacity. CORBA introduces an Interface Definition 

Language (IDL) for describing the interface of distributed objects. After the interfaces 

have been determined, we can use the IDL compiler to generate the client-side stub and 

the server-side skeleton, which are responsible for the network communication and data 

serialization. Detailed information about CORBA architecture has been discussed in 
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Section 2.2.1. The interfaces used for client and server communication in Project 

JEOSOPA are listed in the following table: 

Table 4.3.2 The CORBA interfaces used for the atomic data transfer 

 public interface SPACORBAInterface extends org.omg.CORBA.Object { 

     String getAllElements(); 

     Vector getAvgEng(String tableName, int ionstage); 

     Vector getPreAvgEng(String tableName, int ionstage); 

     Vector getIoniEng(String element); 

     Vector getExctEng(String tableName, String config); 

     Vector getRangeExctEng(String tableName, String config,double emin,double emax); 

     Vector getRangeBndfree(String tableName, String config,double emin,double emax); 

      …. 

  } 

 
The function getAllElements  returns information about how many data elements are 

available in the current database. This information appears in a combo-box in the 

graphic user interface. The function getPreAvgEng obtains the lowest 10 configuration 

average energies for each ion stage, as we discussed before. The functions 

getRangeExctEng and getRangeBndfree obtain the photoexcitation and photoionization 

data given an energy range. It is efficient when users only want to calculate the spectrum 

for a specified energy range.   
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 For the web-based project MIXOPA, we use the Enterprise Java Bean (EJB) 

framework, which has similar functionality to CORBA, that is, they both provide a 

middle-ware that allows distributed objects to communicate with each other across 

different machines. Implementation of the EJB has some differences from 

implementation of CORBA. To implement an enterprise Java bean, two interfaces and 

one or two classes should be defined, that is, the remote interface, the home interface, 

the bean implementation class and the deployment descriptor. The definitions of these 

interfaces and bean classes are shown in Section 2.2.2. Here we give the remote 

interfaces used in project MIXOPA. The purposes of the functions defined in the 

interface are easily seen from the function name.     

Table 4.3.3 The EJB interface used for project MIXOPA 

public interface MixopaEJB extends EJBObject { 

        public Vector getPhotonGrid()  throws java.sql.SQLException, RemoteException; 

        public Vector getEOS(String element, String eos) 

                                 throws java.sql.SQLException, RemoteException; 

        public Vector getMixedEOS(String[] elements, double[] fractions) 

                                throws java.sql.SQLException, RemoteException; 

        public OpacityDataSet getMixedOpacity(String[] elements, double[] fractions) 

                                throws java.sql.SQLException, RemoteException; 

        … 

     } 
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4.4 Graphic User Interface Design 

As we discussed in Section 1.1, the calculation of atomic data and opacities involves 

many control parameters input by users and needs a long batch job script that must be 

edited correctly before the calculation. This process is tedious and error-prone. To help 

users generate the atomic data for ICF applications, we built graphic user interfaces 

(GUIs) to provide a computing environment that integrates the specification of 

computing model, the atomic data calculation, the spectrum and opacity calculations and 

the graphic data presentation into a single platform. Using this tool, users can easily 

obtain almost all needed atomic data for ICF applications.  

The interfaces are designed to be as simple as possible. Default values are 

predefined when these values are best parameters for the physical model. Users are also 

guided through the calculation process. For example, in the atomic data calculation 

module, after all data have been calculated for all ion stages, a form automatically 

appears to allow users to specify the atomic model that will be used to generate the 

atomic data table. The primary layout of the GUI written in Java is shown in Fig. 4.4.1. 
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Fig. 4.4.1 The graphic user interface for atomic data computing 
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As we can see, there are four components in the project: the atomic data calculation, the 

opacity computation, the spectrum analysis and the EOS and Opacity visual tool. The 

atomic data calculation module can be used to calculate the atomic data under the DTA 

model for elements from Z = 1-18 and the UTA model for elements from Z = 1-79. For 

the DTA model, we can also calculate the atomic data for both LTE and non-LTE 

plasma conditions. The non-LTE atomic data include various rate coefficients such as 

dielectronic recombination, 3-body recombination. We use ATBASE as the underlying 

computing program. However, modifications are made so that these native Fortran 

programs can connect with the Java program. A sample screen shot for the atomic data 

calculation is shown in Fig. 4.4.1.  

The opacity computation module calculates the EOS and opacity data or mixed 

opacity using the DTA or UTA atomic data models under the LTE approximation. Non-

LTE opacities can also be obtained under the DTA model for elements ranging from Z = 

1 to Z = 18. In the DTA opacity calculations, the program can automatically switch to 

non-LTE opacity calculation option if the plasma condition is not suitable for the LTE 

model. The criterion of plasma condition that the LTE assumption can be applied may 

be written as, 

),(106.1 332/112 �

�� cmITn mnee  

where  is the excitation potential for the transition from n state to m state. mnI

Users can easily generate an EOS and opacity table for hydrodynamic 

calculations. The output table can be directly used by the BUCKY radiation 
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hydrodynamics code. The program also provides flexible controls in the EOS and 

opacity table generation, such as the temperature and density grid, and the photon 

energy boundaries.  A sample screen shot for the EOS and opacity calculation is shown 

in Fig. 4.4.2. 

Implementations for these two modules are similar. A common abstract panel is 

defined as containing three main parts: the first one is the panel used to construct the 

computing task. Users give the calculation parameters and specify the computing model 

in this panel. The second is the output window which gives the calculation results and 

the computing process information. The third is the program status bar. The panel of the 

atomic data calculation module and the panel of the EOS and opacity calculation module 

inherent from the abstract panel but implement their own functions. In order to avoid the 

freezing of the interface when executing the calculations, a separate thread is spawned to 

handle the calculation.  The thread interruption mechanism is also applied to allow the 

underlying processing program to terminate gracefully.  

After the EOS and opacity calculation, a menu of visual tools shows up. For a 

single temperature and density pair, users can view the results of ion stage populations, 

frequency dependent opacities and absorption spectrum. Users can study the opacity 

components that contribute to the total opacity. In Fig 4.4.3, we show the total opacity 

and its three components for Au plasma (T=100eV, D=10 ), that is, the bound-

bound, bound-free and free-free transitions.  

321 �cm
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Fig. 4.4.2 The graphic user interface for EOS and opacity computing 
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Fig 4.4.3 Sample screen shot of the total opacity and its three components 

for Au plasma (T=100eV, D=10 ). 321 �cm

 

This module can also be used with the hydrodynamic application to analyze the 

plasma condition. For example, in Fig. 4.4.4 (a)-(d) we show a series of spectrum 

evolution under the change of plasma temperatures for Ar plasma. The density of Ar 

plasma is fixed at 10  and the plasma length is fixed at 10 . The temperature 

changes from 25eV, 50eV, 75eV to 100eV. We can see the distinct spectrum changes 

with temperature, which therefore reflect the plasma condition.  For multiple 

320 �cm cm3�
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Fig.4.4.4 (a)  Ar Spectrum (D =10  T=25eV) 320 �cm

 

Fig. 4.4.4 (b)  Ar Spectrum (D =10  T=50eV) 320 �cm
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Fig. 4.4.4 (c)  Ar Spectrum (D =10  T=75eV) 320 �cm

 

Fig. 4.4.4 (d)  Ar Spectrum (D =10  T=100eV) 320 �cm

. 
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temperature and density grids, the program automatically switches to the EOS and 

opacity viewer module. 

The EOS and opacity viewer module is used to visualize the EOS and opacity 

results. It can run either as a standalone Java application or as a Java applet in a web 

browser. The data source can be from the local file system for Java application or from a 

remote data source for both Java application and Java applet. There are options for users 

to choose the part of the EOS and opacities to display. A sample screen shot of this 

module is shown in Fig. 4.4.5. 

  Implementation for this visual tool needs much more programming efforts than 

the previous two modules. The program dynamically determines the number of tabs and 

the drawing canvases according to the drawing options. In order to support multiple 

panels and reduce the user response time, each drawing canvas has an internal thread 

running for the data retrieve and data presentation. A drawing canvas has a maximize, a 

minimize and a close button just like a usual window. By right-clicking the drawing 

board, the pop up menu appears so that users can manipulate the graph or print the 

graph. To support the visual tool, we developed a Java 2D package (AtGraph2D). This 

package is built on the top of Sun’s Java 2D package and it can be used as a generic Java 

2D graph API. It provides almost all common graphic functionalities, such as the label 

definition, the title positioning, data line coloring, and so on. We describe the spectrum 

analysis module in the next section. 
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Fig. 4.4.5 The graphic user interface for the EOS and opacity visualization 
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4.5 Spectrum Analysis 

The spectrum analysis module can be used to simulate the plasma spectra for low Z 

elements under the DTA model and for medium to high Z elements under the RSSUTA 

model. Its computing model employs the three-tier architecture, which involves three 

components: client, application server and database server. We use Oracle object-

relational database management system as our database server, which has been 

discussed in Section 4.2. The application logic such as opacity, equation-of-state and 

spectrum calculation reside in the application server. JDBC is used as a protocol to 

connect with the database. The Object Request Broker (ORB) provides a transparent 

mechanism to invoke a method on server objects and establish the remote 

communication with distributed objects. The client uses the internet inter-ORB protocol 

(IIOP) to connect with the application logic and presents the results using our 

AtGraph2D graphic package. We have shown the three-tire architecture in Section 2.4 

The graphic user interface includes three panels: the left panel is used to specify 

the plasma condition, the right panel is used as the main plotting area and the bottom 

panel is used to view the program status and to control the spectrum drawing process. 

The plasma condition specification includes the plasma model, the atomic model, the 

element which is from the list of all available elements determined by the database, the 

plasma temperature and density. Currently, only RSSUTA atomic model is 

implemented. The user can also specify the interested spectrum range in either 
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Angstrom or eV units and choose the electron configurations that will be included in the 

simulation. The right window is implemented as a container, which can contain as many 

results as necessary for different plasma conditions. The spectrum for each plasma 

condition is shown on its own panel. The panel inherits the generic AtGraph2D class (as 

discussed before) which provides some basic functions. Besides these basic functions, 

the panel can read external data, for example, experimental data into the graph for 

comparison (as shown in Fig. 4.5.4 and Fig. 4.5.5). A sample screen shot of this module 

is shown in Fig. 4.5.1. This figure shows two simulations: one is for Ge plasma (Z=32), 

the temperature is 76eV and the ion density is , the other is for Nb plasma 

(Z=41), the temperature is 47eV and the ion density is 10 . We give more detailed 

comparison with experiments later. 

320 /102 cm�

20 / 3cm
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Fig. 4.5.1 The graphic user interface for spectrum analysis 
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The spectrum analysis calculation process begins after the user clicks the 

“Show” button. The program first loads the relativistic configuration average energies 

from the database if needed data are not in the data cache, and solves the Saha equation 

to obtain the configuration populations, then determines the important configurations 

that have populations above a certain criterion. For these important configurations, the 

program loads the photoexcition and photoionization data from the database and caches 

those data for the next run if the user is not satisfied by the current results. Finally, the 

program constructs the spectrum and the results appear on the right panel. A detailed 

description about the program and database interaction has been given in Section 4.3. 

A powerful feature of the program is that users can access progressively more 

detailed data information, such as the ion stages, configurations which are important in 

the calculation and configuration populations, the transition arrays involved in the 

spectrum, the photoionization edges and so on. This is very convenient for users to 

understand the spectrum structure. Figure 4.5.2 shows a sample screen shot of the 

detailed transition lines from a Ge absorption spectrum simulation. Using the spectrum 

control, users can also plot the individual contribution from each ion stage.  Sample 

screen shots for showing the individual contribution from each ion stage can be found in 

the User’s Manual. 

To test the accuracy of this program, we compare our simulation results with 

some available experiments. 
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Fig. 4.5.2  The graphic user interface for detailed data information 
 

 
Comparison with experiments 

Experiments that can be used as benchmarks for validating our opacity model are 

difficult to conduct. Because opacity models depend critically upon plasma conditions, 
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benchmark experiments require complete and precise characterization as well as precise 

transition data. The point projection spectroscope technique (PPS) has been extensively 

applied for this kind of experiment. The plasma to be studied is created either by direct 

or indirect irradiation. An auxiliary point source plasma, whose dimensions are small 

compared to the main plasma expansion, simultaneously generates an x-ray source 

which probes the main plasma along the target surface. The attenuation of the x-ray 

probe through the expanding plasma is measured with a space resolution on the order of 

the point source diameter and with a time resolution given by the duration of the point 

source plasma. Absorption data can be obtained for different time delay between the 

main laser and the diagnostic beam. The typical experiment setup used to measure the 

absorption spectrum of a radiatively heated plasma is shown in Fig. 4.5.3 [MCK95]. 
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Fig. 4.5.3 Schematic of the typical experimental arrangement used to measure 

the absorption spectrum of a radiatively heated plasma 

Ge absorption spectrum 

 Reference [FHSR91] presented the transmission spectra of a Ge plasma at T=76eV and 

an ion density of 0.05 . Thin foil samples are indirectly heated using thermal x 

radiation from separate laser-produced plasmas created by focusing the two main beams 

of the HELEN Nd-glass laser onto a gold target. Each beam delivering up to 220J of 

energy at 0.53�m wavelength in a 200ps duration pulse. The sample foil contains 3000Å   

thickness of germanium which is tamped by 1�m thickness of Parylene-N on both sides.  

The experimental data has been analyzed in previous publications  [FHSR91][GBD95] . 

We also take this example to test the accuracy of our model. For the experimental Ge 

3/ cmg
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plasma condition, our predicted mean charge state Z  from the Boltzmann-Saha equation 

is 14.15. There are 274 significant relativistic configurations and 7677 transitions 

involved in the calculation. Figure 4.5.4 shows the Ge transmission spectra between 

1100eV and 1700eV from experimental measurement and the numerical simulation of 

the RSSUTA model. Experimental data is read from an external data file. The detailed 

spectrum information can be fairly easily obtained by querying the database. We can 

easily identify the prominent features, that is, the spectra at h� = 1300eV, h� = 1350eV  

and h� = 1500eV belong to the 2p-3d, 2s-3p and 2p-4d transition arrays, respectively. 

We can also view the separate contribution from an individual ion stage or from 

photoexcitation and photoionization by using the “Spectrum Control” button. The 

agreement between the RSSUTA calculation and experiment is very satisfactory.  

Nb absorption spectrum 

Perry et al. [PDS91] have reported their absorption measurements on x-ray heated 

niobium targets doped with aluminum as a temperature diagnostic. This experiment also 

used the point projection spectroscopy (PPS) technique. The simulated target consists of 

two 1500Å thickness layers of CH placed on either side of  a 3400Å thick Nb element 

layer. The experiments provide benchmark data for LTE opacity codes for the moderate-

Z element (Nb). Three different codes HOPE [RL90], ENRICO [WAL91] and STA 

[BOG89] were compared with experiment data. All three codes have the broadly correct 

spectral character. In this thesis, we also present our results for this case. The plasma 

condition in our computation is the same as in the experiments at a temperature of 47eV 
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and a density of 0.026 . The ionization balance was calculated as 11.86 using the 

Boltzmann-Saha equation. The results for 

3/ cmg

Z  from HOPE, STA and ENRICO 

calculations are 11.37, 11.75 and 12.15 respectively. We show the transmission 

spectrum for the measured spectral range in Figure 4.5.5, comparing with experiment 

data, which is read from Ref. [PDS91]. An instrumental profile width of 1eV is also 

convolved in our calculation. We can see that the shapes of the two spectra are very 

similar. The simulations are in good agreement with the measurements for 2  

and  absorption peaks. For high photon energies such as absorption peaks 

and , we are required to shift the 

calculated peak by about -30eV in order to have a good agreement. The shift is also 

needed by the STA method to achieve better agreement [PDS91]. We find the main 

contribution to the 2p-3d transition is from the Ni-like(Nb XIV) and Cu-like(Nb XIII) 

ions, and again we can easily identify the important configurations using the data 

information tool. 

2/52/3 3dp �

2/32/1 32 dp �
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Fig. 4.5.4  Ge transmission spectra between 1100eV and 1700eV from experimental 

measurement [FHSR91](black line) and the numerical simulation of the RSSUTA 

model (red line). The plasma condition is shown as T = 76eV and D = . 

The plasma path length used in the simulation is 0.008cm. 
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Fig. 4.5.5  Nb transmission spectra between 2000eV and 2800eV from experimental 

measurement [PDS91] (black line) and the numerical simulation of the RSSUTA 

model (red line). The plasma condition is shown as T = 47eV and D = 10 . The 

plasma path length used in the simulation is 0.013cm. The energy positions for high 

energy transitions (2p-4d, 2p-5d) are needed to shift about 30eV in order to have a 

better agreement.  

320 �cm
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Au emission spectrum 

The final example is the Au emission spectrum. In laser-produced plasmas, the x-ray 

spectrum of highly ionized high Z ions always shows the prominence of M-shell 

transitions of nickel-, copper-, zinc- and gallium- like ions. For example, in a gold 

plasma, x-ray line spectra of M-shell transitions in the wavelength range from 4.2 to 5.4 

Å are important. This type of experiment is usually under non-LTE plasma conditions. 

The assumption of the detailed balance of collision and three-body recombination 

process is invalid. The dielectronic recombination may be the main process responsible 

for the population of the upper energy levels. Therefore, a full rate equation solution that 

includes various rate coefficients should be used.  However, when the plasma condition 

is not very far from the non-LTE, we can still use a LTE plasma model to simulate the 

spectrum. The concept of an ionization temperature T  is introduced to simulate the 

non-LTE population distribution that is not too far from LTE, which is defined by 

Z

)()( eLTEnonZLTE TZTZ �� [BA86]. 

We computed the atomic data in the RSSUTA approximation for all 79 ion 

stages on the NPACI “Blue Horizon” IBM SP. The generated data size is about 215M 

bytes. All data are moved (ftp) from Blue Horizon (San Diego Supercomputing Center) 

to our local machine and stored in the Oracle database. Taking into account the disk 

space used by the DBMS internal management, the total disk space needed for storing 

the Au RSSUTA model data is about 300M bytes. The emission spectrum is calculated 

under the LTE condition. As illustrated in Ref. [BA86], the Au x-ray line spectra have 
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shown the prominence of M-shell transitions of nickel, copper, zinc, and gallium-like 

ions. The spectator electrons contribute the broad red wing. We show the comparison 

between our simulation in the graphic user interface and experiment in Fig. 4.5.6(a) and 

Fig. 4.5.6(b). Comparing with experiment, we found that when the ionization 

temperature  is equal to 700eV and the density is 3 (experiment density) 

the agreement of the spectral profiles between experiment and simulation is good.  

ZT 32210 �

� cm
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Fig. 4.5.6(a)  Au emission spectrum for laser-produced plasma [BA86] 

 

 
Fig. 4.5.6(b) Simulated Au emission spectrum under the RSSUTA 

model. The ionization temperature T  is equal to 700eV. Z
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4.6 Web Target Projects 

The above GUIs are implemented as standalone Java applications. However, for the 

applet to run within a web browser, the sandbox restriction prevents the connections to 

hosts other than the original one from where the applet is downloaded. Considering this 

restriction, the tasks that the Java standalone application and the Java applet can perform 

are different. The Java application can do the atomic data distributed computing in 

addition to the database query and opacity calculations. It can calculate all the basic 

atomic data using a computer cluster and put the data into the database. However, users 

who access through the Java applet can not perform the fundamental atomic data 

computing. One reason is performance concern. Because the calculation of atomic data 

may need several hours, it is not reasonable to let an applet run in a browser for hours. 

The other and the most important reason is the security issue. Therefore, we only 

provide three programs that are web-based. The EOS and opacity visualization module 

is adapted to run as a Java applet without much programming effort. This tool is for web 

users to visualize the EOS and opacities stored in our database. Another tool, which is 

used to generate the electron configurations, is also designed as both a Java application 

and a Java applet. The MIXOPA program uses Java servlet technology to calculate the 

mixed opacity based on the linear interpolation method. The underlying network 

architecture is shown in Fig. 2.4.2, in which the Oracle Application Server provides a 

middle-ware between the user and the database.  
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Project MIXOPA employs the Java servlet web programming technology. Several Java 

servlets, which implement the mixed opacity calculation procedure, are deployed in the 

application server. The linearly mixed EOS and opacities mean that all mixed data  are 

calculated by the weight of the element fraction. For example, the mixed data for C  

are equal to the summation of 1/5 C and 4/5 H.  The web page used to do the mixed 

opacity calculation is shown in Fig. 4.6.1. 

82 H

 

Fig. 4.6.1 The web page used to the mixed opacity calculation 
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Project ECGEN generates all possible electron configurations for a given number 

of electrons. The following screen shot shows the graphic interface for this program. 

After users give the total electron number and specify how these electrons occupy the 

principal and the angular quantum states, all possible electron configurations are 

generated and presented on the right panel. The usage of this program can be found in 

the User’ manual. 

 

Fig. 4.6.2  Graphic user interface for generating electron configurations 
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Chapter 5 

Conclusion 

 

As the result of cross-disciplinary research, this thesis involves three areas: atomic 

physics, computational science and information technology. Conclusions will be made 

according to these three areas as following: 

I. Atomic Physics Aspect: 

A primary goal of the thesis is to provide a practical user-friendly environment that 

allows users to generate large scale and high quality atomic data for ICF research 

applications as well as do spectrum analysis for medium to high Z elements. To 

achieve this goal, the computing system integrates the modification of an existing 

atomic data calculation suite ATBASE [PW96] and the RSSOPA parallel program 

together. The major features of this atomic data computing program are: 

�� Atomic data under DTA and UTA models: Atomic data can be calculated under 

either the DTA model (Z = 1-18) or the UTA model (Z = 1-79). For the DTA model, 

atomic energy levels, oscillator strengths and photoionization cross sections are 

calculated using the non-relativistic Hartree-Fock method with options of multi-

configuration interactions and relativistic correction. Comparing with experiments, 

the accuracy of the data is quite good. For the UTA model, the average configuration 
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approximation is used under either the non-relativistic formalism (ATBASE) or the 

relativistic formalism (RSSUTA). Because of its relativistic treatment, the RSSUTA 

model is more accurate than the ATBASE UTA model. Various rate coefficients can 

also be calculated for non-LTE plasmas (Z = 1-18) under the DTA model. 

�� EOS and opacity data for ICF applications: The atomic data generated by the 

atomic data calculation module are applied automatically to compute the EOS and 

opacity under either the LTE plasma condition or the non-LTE plasma condition. For 

the LTE condition, current supported models are the UTA atomic model for Z = 1-79 

and the DTA atomic model for Z = 1-18. For the non-LTE condition, the supported 

model is the DTA atomic model for Z = 1-18. For group opacity, the photon group 

structure can be automatically setup or be defined manually by advanced users.     

�� Spectrum analysis considering the JJ coupling: Our RSSUTA model uses the 

fully relativistic JJ coupling schema. We show the importance of the JJ coupling in 

the UTA calculations by illustrating the spectra patterns for transition lines from low 

Z to high Z elements. The effect of JJ coupling on opacity and spectrum analysis can 

be significant when comparing with experiments. Transition arrays can be split into 

subarrays in the JJ coupling, which give more detailed spectrum structure than in the 

LS coupling. Compared with the STA theoretical model and experiments, the 

accuracy deviation of the RSSUTA model is within a very low percentage (under 

5%).  
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II. Computational Science Aspect  

�� Implementation of the RSSUTA model in parallel computing environment 

using MPI: Large scale atomic data generation needs high performance 

computing technology. To calculate enormous numbers of transition lines and 

other radiative properties for high Z elements, we implement our RSSUTA 

model in distributed memory parallel fashion. In order to minimize the 

communications cost, the relativistic single-configuration single-electron 

transition model is applied to ensure the electron configuration independence. 

Experimental runs on the NPACI Blue Horizon IBM SP shows that the 

speedup reaches the ideal situation, that is, the speedup is linearly dependent 

on the number of processors.  

�� Distributed computing using CORBA: In order to connect the database and 

the front-end applications, the CORBA middle-ware technology is used to 

provide an object oriented distributed computing framework. The language 

neutral property of CORBA allows the integration of legacy systems 

implemented in other programming languages. The decomposition of 

application functionality into separate presentation, application and data 

services results in a distributed computing architecture for computational grids. 

Another similar technology Enterprise Java Bean (EJB) is also applied for 

projects in which only the Java programming language is used. 
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III. Information Technology Aspect 

�� Atomic database development: We use the Oracle database management system to 

store the atomic data and we focus on the atomic data required by Inertial 

Confinement Fusion (ICF) applications, which is the opacity data and spectrum data. 

For opacities, we currently store the results of EOS and opacity data for elements Z = 

1-20 into the database. These data are used as basic data in the mixed opacity 

calculations. For spectra, we store radiative properties such as transition energy, 

oscillator strength, UTA width into the relation-object tables in the Oracle database. 

A Saha equation solver has been developed to use the atomic data retrieved from the 

database to calculate energy level populations. These data provide detailed 

information in the spectrum analysis.   

�� Graphic user interfaces:  For general users in large scale atomic calculations, one 

of the difficulties is the preparation of input parameters. We have developed four 

major packages to solve the problem: atomic data calculation module, EOS and 

opacity calculation module, high-Z spectrum analysis module, and EOS and opacity 

visualization module. These modules provide graphic user interfaces from the data 

generation to the data visualization. Using these programs, users can easily obtain 

almost all atomic data for ICF applications. Other tools such as the Java graphic 2D 

package (ATGraph2D) and electron configuration generation tool have also been 

developed in the program.  
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IV. Further considerations 

�� Non-LTE high-Z opacities 

LTE opacities are valid in cases that collision processes are dominant. In ICF 

research, plasmas are often in non-LTE conditions and opacities for non-LTE 

conditions are very important. Although our current program can calculate non-LTE 

opacities for elements Z = 1-18, it can’t calculate non-LTE opacities for high Z 

elements. There are two kinds of difficulties in this situation. One is the lack of 

systematic theory for calculations of various rate coefficients. Although there are 

existing empirical formulas for three-body collision/recombination, electron 

collision excitation/deexcitation, it is difficult to calculate the dielectronic 

recombination because of a number of intermediate states involved in the process. 

Approximations are usually used in the dielectronic recombination coefficient 

calculations. For high Z elements, the other difficulty is the need of enormous 

computing efforts.  

   The thesis shows the successful use of the three-tier computing architecture in 

the atomic data and spectrum analysis. We have shown under the RSSUTA model 

the computing speedup is linearly dependent on the number of processors. It is 

possible we can use this approach in the high-Z dielectronic recombination rate 

coefficient calculations. The database can be used in the high-Z opacity calculations 

to serve as a better data provider. The capability of extending the current computing 

system to high-Z non-LTE opacity is worth further study.    
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�� Improvement on the current system 

Several improvements can be made to the current atomic data computing system. 

First, the SDSC grid portal toolkit (GridPort) [TMB00] can be used to connect with 

our applications so that users could invoke the computing program on IBM SP 

machines. Currently, users have to physically login to IBM SP machines in order to 

run the RSSUTA data calculation and transfer the calculated data to local machines 

by ftp. Second, the current system is based on CORBA distributed computing 

architecture. It may be possible to migrate the program to computational grid 

architecture in order to improve the performance.  
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I.  Electron Configuration Generation Tool 

1. Program outline 

This program can be used to generate electron configurations for opacity and 

spectrum calculations. It is designed to run as a Java applet in a web browser. It is 

written in JDK1.1.8 so that it can run in either Netscape or Internet Explorer without 

installing JDK1.2 plug in. 

This program basically solves a linear equation with constraints. The total 

electron number is the right side of equation. The constraints of each variable are the 

possible occupation for each orbitor. The program can generate both non-relativistic 

configurations and relativistic configurations. Given the maximum allowed outer shells, 

the program can filter those configurations that users do not want.  

Users first give the total number of electrons, then decide how many principle 

quantum levels those electrons can occupy. By right-clicking on the bar, users can set 

the minimum value and the maximum value for that N level. This gives a coarse 

refinement. To obtain a reasonable number of configurations, users usually need to 

specify the occupation information for the NL levels. By clicking the N level bar, the 

corresponding  NL level bars will appear on the right side panel. User can also specify 

the minimum value and the maximum value for the NL levels by right-clicking on the 

bar. Then, by clicking the Compute button, the program first lists all combination 

possibilities for the N levels and the Compute button becomes the Continue button. By 
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clicking the Continue button, the program continues the calculation, spawns threads for 

concurrent processing for each possible combination. The final results will be shown on 

the right text area panel.  

Sometimes, users may get configurations having too many outer unfilled shells. 

In this case, users can use the Filter button to filter out those configurations that have 

outer unfilled shells more than the maximum partially filled shells which is determined 

by the user.  The corresponding relativistic configurations can also be generated by 

clicking the Relativistic button. All these configuration results are listed on the right 

text area panel. Users can obtain those configurations by copying and pasting to their 

text editors.   

 

2. User Interface 

In the following, some screen shots for generating configurations for 20-electron 

system are given. 
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Fig. A.1.1  Non-relativistic configuration generation for the 20 electron system 
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Fig. A.1.2  Relativistic configuration generation for the 20 electron system 
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II.  Atomic Data Calculation 

1.   Program Description 

 This program is used to calculate atomic data under the Detailed Term 

Accounting (DTA) model and the Unresolved Transition Array (UTA) model. It is 

designed to make the calculation easier for general users. The underlying computing 

engine is based on ATBASE (see ATBASE User’s Guide (version 2), Ping Wang, 

1996). The user interface is programmed using Java. JNI (Java native interface) and 

other techniques are used to communicate with the native program ATBASE. 

2.   Executing Environment 

 Sun JDK1.2 or above are required. Microsoft Visual Studio 5.0 is used to 

compile and execute the FORTRAN code. The ATBASE programs include  

1.  xdtacfggen.exe: Generate the configurations for DTA model. 

2.  xutacfggen.exe: Generate the configurations for UTA model. 

3.  xatdata.exe: Calculate all atomic data such as energy levels and 

oscillator strength under both DTA and UTA models. 

4.  xatmodel.exe: Used by DTA model to apply different approximation to 

select atomic data. 

5. xattable.exe: Construct final atomic data table used by DTA model. 

6. xutatab.exe: Construct final atomic data table used by UTA model. 
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These programs have been tested successfully on Windows NT. 

3. Program Outline 
       The atomic data calculation module provides a friendly user interface to invoke 

the native ATBASE program. Users specify the Atbase home directory so that the 

program can locate the executable programs and other parameters required. The output 

data will be written in the output directory. Then users input the element name and the 

nuclear charge they want to calculate. User can choose to automatically calculate all ion 

stages or some ion stages. This is useful because sometimes exceptions occur for some 

ion stages and these unsuccessful calculations must be repeated using alternative 

options. User also chooses the atomic model UTA or DTA. If user inputs the element 

nuclear charge above Ar for DTA model, the program gives a warning and does not 

execute. Parameters that control the wave equation algorithm solution and convergence 

are given as default.  

    The program automatically generates an input file based on user’s specification 

and spawns a thread to handle the execution. The executing states and some debug 

output are shown on the right panel.  

  After all ion stages have been done, the button that constructs the atomic data 

table is enabled. By clicking the button, the program will automatically generate an 
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atomic data table if the UTA model is chosen. The UTA atomic data table files are 

uta.atomicdata and uta.photonizxx. 

 Under the DTA model, before generating the atomic table, users need to specify 

the atomic levels they want to include. A default-input form is popped up. After the 

user clicks the OK button, the program invokes the xatmodel.exe code to rearrange the 

raw atomic data. The construct table button will be enabled after the rearrangement. 

Then the program invokes xattable.exe to generate a DTA atomic data. A brief 

description about the number of energy levels included is shown on the right panel. The 

DTA atomic data table files are atomic.dat and pixfit.dat. 

 4. User Interface 

 In the following, some screen shots for the DTA and UTA calculations are 

given. 
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  Fig. A.2.1  The environment tab for atomic data calculation 

 The environment tab contains information about the home directory and the 

work directory, the element specification and calculation options. The right panel gives 

debug output from the native code and Java code. Users can see the whole calculation 

process. 
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Fig. A.2.2  The general input parameter tab for atomic data calculation 

 In this tab, the user defines calculation control parameters. If the bound-bound 

checkbox is not checked, the bound-bound transitions will not be calculated. For high Z 

elements, the user can choose the fast way to calculate the photoionization cross section 

which uses the single electron single orbit wave function. The most important 

parameter is the atomic model. 

 The SCF parameters determine which potential form or algorithm is used in 

solving the Schrodinger equation. Other parameters can be left as default (shown in 

Fig. A.2.3). 
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Fig. A.2.3  The advanced parameter input tab for atomic data calculation 

 For DTA calculations, after all raw atomic data are done, users need to specify 

the atomic state that will be included in the atomic table. The following panel is popped 

up automatically when the user chooses the DTA atomic model. N represents the 

principle quantum number and L represents the angular momentum of the outer orbitor. 

The default is the atomic table does not include the LSJ structure, includes LS structure 

if the outer orbitor is below 4d and includes the configuration average structure when n 

= 5, and above n = 5 the atomic table uses the hydrogen-like approximation. 
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Fig. A.2.4. DTA atomic model specification 

 After user gives the DTA atomic model specification, the program invokes 

xatmodel.exe code to rearrange the raw atomic data for each ion stage. The user can see 

the progress from the right panel. After finishing the rearrangement, the user can 

construct final atomic data table by clicking the button. The following figure shows the 

sample results. 
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Fig. A.2.5. Atomic table generation 

 

5. Implementation  

 The program is a standalone Java program. The java swing package is used 

extensively in the graphic user interface. To execute the native code, the program 

spawns another thread as shown in the following code segment: 

class Runner extends java.lang.Thread { 

private String [] PrgArgs; 

public Runner (String [] args, Vector ions, String calcType, String outputDir) { 

     PrgArgs = args; 
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 } 

Process runningProcess = Runtime.getRuntime().exec (PrgArgs); 

          InputStream is = runningProcess.getInputStream(); 

          InputStream es = runningProcess.getErrorStream(); 

         RunningAppWatcher appWatcher = new RunningAppWatcher(is); 

          RunningAppWatcher appErrWatcher = new RunningAppWatcher(es); 

          appWatcher.start(); 

          appErrWatcher.start(); 

       try { 

              runningProcess.waitFor(); 

          } catch ( InterruptedException ie ) {  } 

          int exitVal = runningProcess.exitValue(); 

 … 

} 

 

6. Troubleshooting 

A. Error message shows up on the right panel when executing the program. 

This results from the failure of ATBASE execution. In this case, you need to redo the 

calculation for those ion stages that have exceptions. 
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III.  Equation of State (EOS) and Opacity Calculation 

1. Program Description 

 Most of the time, users doing radiation hydrodynamic calculations want a 

complete EOS and opacity table without knowing the details of the atomic data 

generation process. This program can be used in this purpose. It can calculate EOS and 

opacity data or mixed opacities using atomic data models DTA and UTA under the 

LTE approximation. Users can easily generate an EOS and opacity table or do spectrum 

analysis, assuming the atomic data exists. Java is used for the graphic user interface. 

JNI (Java native interface) and other techniques are used to communicate with the 

native code. The underlying native code is based on EOSOPA (see UWFDM-933, Ping 

Wang, 1993). 

2. Executing Environment 

 Sun JDK1.2 or later versions are required. Microsoft Visual Studio 5.0 is used 

to compile and execute the FORTRAN code. The native programs include  

1.  xdtaopa.exe: Calculate LTE and non-LTE EOS and opacity  under the DTA 

atomic model. 

2.  xutaopa.exe: Calculate LTE EOS and opacity  under the UTA atomic model. 

The file structure is shown in Appendix B. This program has been tested successfully 

on Windows NT. 
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3. Program Outline 

       The EOS and opacity calculation module provides a friendly user interface to 

generate an EOS and opacity table for hydrodynamic calculations and for the spectrum 

analysis under the LTE approximation. Users specify the Atbase home directory so that 

the program can locate the executable programs and other parameters required. The 

home directory must be correct since the program detects all available atomic data 

automatically according to the home directory. The output directory assigns which 

directory the output table will go. Only the LTE plasma model is supported currently. 

For the atomic data model, users can choose the DTA model or UTA model. In the 

element list box, all available atomic data under the user’s chosen atomic model will be 

listed. The fraction list box gives the fraction of this element in the compound. After 

clicking the Add button, the element name and the fraction will appear in the plasma 

constitution list box.  

 Users can also change the temperature grid, the density grid and the photon 

energy grid using the T Mesh, D Mesh and P Mesh tabs, respectively. It allows user to 

specify the minimum value and the maximum value and the mesh number. Users can 

see the grid in the table in either linear scale or log scale. There is an option that lets the 

user decide whether to include Stark broadening. For UTA calculations, usually the 

Stark broadening should be included. However, for the spectrum analysis in the DTA 

model, users are more interested in the individual line and the UTA width should not be 
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included. The program automatically checks this option according to the atomic data 

model. 

The program executes the native code after users click the Execute button. First, 

the validity of input is checked. Then, the corresponding atomic data are copied from 

the Atbase home directory to the work directory. The native code is then executed and 

the debug output information will show in the right panel. The View Results button will 

be enabled after the calculation is finished. By clicking this button, it brings up a menu 

which gives the options that display the results. If viewing the table as a graph is 

chosen, the program will invoke the OpViewer module (see EOS and Opacity Viewer). 

If users want to see the orbital occupation probability or frequency dependent opacity 

or absorption spectrum, they must choose one temperature point and one density point, 

otherwise, these options will be disabled. 

The Orbital Occupation Probability shows the occupation probability for each 

orbitor graphically. The Frequency Dependent Opacity displays total opacity and three 

components (bound-bound, bound-free and free-free). The user can manipulate the 

graph by right-click to pop up a menu (see EOS and Opacity Viewer). The Absorption 

Spectrum gives the absorption spectrum based on the optical thin model. Users can 

adjust the optical depth. The file names of the output EOS and Opacity tables are 

utaopa.TAB for the UTA model and dtaopa.TAB for the DTA model. 
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4. User Interface 

 In the following, some screen shots for the EOS and opacity calculations under 

both DTA and UTA model are given. Because they are sample screen shots, no detailed 

physics implication has been discussed. 

 

Fig. A.3.1. The plasma condition tab in EOS and opacity calculation 

 In this tab, users give the Atbase home and output directory by clicking the 

directory browsing buttons. Currently, only the LTE plasma model can be used. For the 

atomic model, the user can choose to use the UTA model or the DTA model. The 
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available atomic data that will be used in the EOS and opacity calculations will be 

automatically searched under the Atbase home directory/native/data/DTAdata or 

UTAdata. The DTA atomic data files for each element are atomic.dat and pixfit.dat in 

its own directory, while the UTA atomic data files are uta.atomicdata and 

uta.photonizxx in its directory. The corresponding data will be copied into the work 

directory when issuing the Execute command according to the atomic model used. The 

specification of a compound is given by using the Add and Remove button.  

 

 

Fig. A.3.2. The temperature mesh tab in EOS and opacity calculation 
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In the temperature mesh tab, the user specifies the temperature mesh for the 

EOS and opacity table. There are two mesh types: linear and log. The user can see the 

mesh by clicking the View button. If the Sesame mesh is used, the first mesh point will 

be the first one that is greater than the minimum value and the last one will be the one 

that is smaller than the maximum value. If using only one temperature point, the 

temperature is the minimum value. 
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Fig. A.3.3. The density mesh tab in EOS and opacity calculation 

In the density mesh tab, the user specifies the density mesh for the EOS and 

opacity table. There are two mesh types: linear and log. User can see the mesh by 

clicking the View button. If using only one density point, the density is the minimum 

value. 
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Fig. A.3.4. The photon energy mesh tab in EOS and opacity calculation 

In the photon energy mesh tab, the user specifies the group photon energy 

boundary mesh for the opacity table. There are two mesh types: linear and log. To 

calculate the total opacity quantities, the user can let min=0.01eV, max=1000000eV 

and use 1 photon group. Otherwise, given the photon group number and the minimum 

and maximum photon energy values, the program can generate an opacity table. Users 

can choose to use their own photon boundaries. After clicking the No radio button, a 

form appears to allow users to either input the photon boundaries in the text boxes or 
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import a file that specifies the photon boundaries. To analyze the spectrum, the user 

should give more mesh points in the spectrum range in order to have a better resolution. 

For the UTA calculations, the Stark broadening mechanism is included. For the DTA 

calculations, the default is to use the individual lines. 

 After the calculation, a menu to display the results is shown. If the user 

calculates an EOS and opacity table (T >1 and D>1), the detailed information button 

will be disabled as shown in Fig. A.3.5.  The user can only use As Graph button to 

visualize the results. However, if the user calculates opacity or spectrum for one 

temperature and one density, those buttons will be enabled as shown in Fig. A.3.6. 

 

 

Fig. A.3.5. The menu for displaying results after generating an EOS and Opacity table 
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Fig. A.3.6. The menu for displaying results for a single temperature/density pair. 

 

 

 The following sample figures show the orbital occupation probabilities for Al 

plasma and a mixture of Al, C, H and B. 

 

Fig. A.3.7. The orbital occupation probability for Al plasma. 
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Fig. A.3.8. The orbital occupation probability for the mixture of Al, C, B and H 
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Fig. A.3.9. The three components (bound-free, free-free and scattering) that 

contribute to the opacity. 

 The above figure shows the three components of the opacity and the total 

opacity in the log scale (bound-bound transition can not be shown in the log scale) 

using the DTA model. 

 The user can see the bound-bound contribution to the total opacity in the linear 

scale, as shown in Fig. A.3.10. How to manipulate the graph is discussed in Appendix 

A. IV. 
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Fig. A.3.10. The four components of opacity in the linear scale. 

 The user can also obtain an LTE optical thin absorption spectrum. By adjusting 

the plasma length, user can easily see the effect. 
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Fig. A.3.11. The LTE absorption spectrum using the optical thin model. 

 

5. Implementation  

 The program is basically a standalone Java program. The java swing package 

and java thread technology are used extensively. The program spawns a new thread 

whenever it needs to do an execution in order not to freeze the interface (see the 

example in Atomic Data Calculation). Native copy functions are used whenever the 

program needs to copy files from one directory to another directory for better 

performance. To display the EOS and opacity results, the package JAtbase.AtGraph2d 

is used. 
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6. Troubleshooting 

A. Error messages like “ error when calculating the heat capacity “ occur. 

This results from the failure execution of the UTAOPA or DTAOPA code. These codes 

may have problems (underflow or other exceptions) when calculating certain 

temperature and density points. In this case, you can adjust the temperature or density 

grid a little, hoping it can skip those bad points. 
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IV.   EOS and Opacity Viewer 

1. Program Description 

 This module is used to visualize the EOS and opacity results. It can run both as 

a standalone Java application and as a Java applet in a web browser. The data source 

can be from the local file system for Java application or from a remote data source for 

both Java application and Java applet. The user has options to view each part of the 

EOS and opacity. Each panel on the right side concurrently displays the results and a 

pop up menu can help manipulate the graph. The user interface and the graph package 

are programmed using JDK1.2 API. For the remote data source, several JavaServlets 

residing in the application server serve as the remote data provider. 

2. Executing Environment 

 Sun JDK1.2 or above are required to run this Java application. To run the 

program in a web browser (Netscape or Internet Explorer), the Java 1.2 plug-in is 

needed.  

3. Program Outline 

       The EOS and opacity viewer module provides a flexible tool for users to 

visualize the EOS and opacity results. The data format that is known by this program is 

the BUCKY EOS and opacity data format. Users can load the data from the local 

machine by browsing the directory and specifying the data file (usually utaopa.TAB or 

dtaopa.TAB). It takes a while for the program to load the data (usually about 3M bytes) 

and split it up into smaller parts for the graph display. If user chooses to load data from 
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the remote data source (that is, capsule.neep.wisc.edu), the program first contacts a 

JavaServlet residing in the application server and obtains all available elements in the 

database. The data source panel will show a list box and all available elements will 

appear in that list box.  

 The program has options that let the user see each part of the EOS and opacity 

table. If View All Data check box is checked, all EOS and opacity data will be 

automatically drawn on the right tabbed panels. The user can select some parts to draw 

by disselecting the View All Data check box and choose from the check list box on the 

Opacity and EOS tabs.  

 After the View button is clicked, the program decides the number of tabbed 

panels that need to display the data, then each panel spawns a separate thread to load 

the data from the data source and render the data. The temperature, density and photon 

energy grids are also shown on the panels for reference. The graphs of EOS data will be 

automatically drawn on each panel. For opacity data, the user needs to click the upper 

bar on the panel to bring up a temperature and density grid panel, which is used to 

determine the opacity data set that will be drawn. 

 The graphs that users display may be not good because of the large scale of the 

data range. Users may manipulate the graph through a graph controller by right-

clicking within the graph frame. In the graph controller, the number of data sets is listed 

and other graph controls such as the line size, color, data range, axis labels are shown. 
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Users can use it to obtain a much better graph. The info button tells the size of the data 

set and the kind of  data. Users can also print the graph from the popup menu. 

 

4. User Interface 

 In the following, some screen shots are given. Because they are sample screen 

shots, no detailed physics implication has been discussed. 

 

       Fig. A.4.1. Load data from remote source and display all results automatically  
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 The program determines the number of tabbed panels required and draws the 

data concurrently in each panel. 

 

 

Fig. A.4.2. Display selected EOS results. 

 Users can select the components of the EOS and opacity. The program 

determines the number of tabbed panels required and draws the data in each panel. 
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Fig. A.4.3. Temperature and density grid 

 Users can draw opacities in T-P (temperature-photon energy) grid or D-P 

(density-photon energy) grid easily by selecting the points shown on the above panel. 

Only one temperature point or one density point is allowed, otherwise, there are 

warning messages. 
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Fig. A.4.4.  Opacity data display 

 Figure A.4.4 shows a sample of Rossland 100 group opacities. It is maximized 

by clicking the small icon on the upper bar. To restore this graph to its original position, 

the restore icon should be clicked. This graph has been manipulated by the graph 

controller.  

 The graph controller shows information in two categories: data set and axis. In 

the data set section, it shows the data information. To disable or enable some data sets, 

the user can select the data sets from the left list panel and click the Enable button or 

the Disable button. To change color or the line pattern or the line size for a curve, the 
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user need to first select the data set from the left list panel. Otherwise, there is a 

warning.  

 Because the same GUIs are used for X and Y axis, some fixed orders of 

operation are required. In the following, it shows how to change the data range, set axis 

labels, draw major and minor grid and set the graph title. 

 

                                                    

                         Fig. A.4.5  Set up the data range and the axis label 

 To set the data range to be drawn (see Fig. A.4.5), the user should click the 

button in the order of x1 or y1, Auto or Manual, Min or Max Value, Linear or Log, and 

then Redraw. Make sure the x1 button is chosen when manipulating with the x axis and 

the y1 button is chosen when manipulating with the y axis. 
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 To set the axis label (see Fig. A.4.5), first make sure the axis name button is 

chosen, then type the axis title in the text field box and choose the color or the font size 

for the axis title, click the Set Title radio button next, and finally click Redraw button. 

                                         

          Fig. A.4.6  Draw the major and minor grid and set the graph title. 

 To add the major grid or the minor grid to the graph, check the Show box and 

choose the line pattern and then click the Redraw button (see Fig. A.4.6). 

 To set the graph title, first type the graph title in the text filed box and choose 

the color and the font size for the graph title, and then choose the graph title position by 

clicking the Top or Bottom radio button, finally click the Redraw button (see Fig. 

A.4.6). 
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5. Implementation  

 The program is designed to run both as a standalone Java program and as a Java 

applet. The Java swing package is used for the graphic user interface. Java threads are 

used extensively for better drawing performance. A package named 

JAtbase.AtGraph2D  is designed using Java2D, which can be used as a graphic tool for 

general purpose. This package provides the external interface that lets the user plug in 

his own graph control object. The implementation of the mouse listener can handle the 

mouse operation. 

 For the remote data source, several JavaServlets reside on the application server 

(capsule.neep.wisc.edu), acting as the data provider. These Java Servlets then contact 

with the data server (lapop.ep.wisc.edu) to retrieve the data from the database.  

 For the local data source, the Java program directly retrieves the data by reading 

the data file. A common data loading interface is designed to unify the data loading 

operation from the local data source and remote data source.  

 

6. Troubleshooting 

     None. 
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IV. Spectrum Analysis For High Z Plasmas 

1. Program Description 

This module can be used to perform spectrum analysis for laser-produced high Z 

plasmas. The atomic data are calculated using the RSSUTA model on NPACI IBM SP 

machines. The data are then imported into the Oracle database. CORBA framework 

paves a way to connect the database and the graphic user interface. Currently, only the 

LTE plasma model is supported. 

2. Executing Environment 

This module is based on the commodity three-tier architecture. Oracle 8I database 

management system and Oracle Application Server 4.8 are used. Sun JDK1.2 or above 

are required to run Java application.  

3. Program Outline 

After the atomic data have been calculated using the parallel code RSSUTA, they 

are transferred to the local machine and then imported into the Oracle database by 

running a script. The program first tests the connection between the database and the 

graphic user interface. If it succeeds, it will list all available data in the database in the 

list box. After specifying the temperature and density points and the photon energy 

range, users can invoke the calculation by simply clicking the Show button. 

The program loads the first lowest ten relativistic configurations and solves the 

Saha equation to guess the most important ion stages, then it retrieves all average 
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configuration energies for each of the important ion stages and caches these data for 

later use. The Saha equation is solved to obtain the population of these configurations. 

There are generally thousands of configurations involved. Minimum of 1.0E-3 is used 

to determine the configurations that will be used in the spectrum generation and to filter 

those configurations with too small populations. The program then retrieves the 

photoexcitaion and photoionzation cross sections for each of these configurations. The 

data required by the UTA spectrum analysis such as energy positions, transition 

oscillator strength and width are obtained from the database. With configuration 

populations and the spectrum data, the program finally constructs the spectrum and 

shows the result on the right panel. 

Users can get detailed information by clicking the Data Information button. The 

ion stage distribution and the calculated ionization energies are displayed. Users can 

see the relativistic electron configurations involved in the calculation for each ion stage 

and the transition data and ionization data for each configuration. 

  

4. User Interface 

The following will show some screen shots as an example in the spectrum analysis 

for Ge plasma (T =76eV and D = ). We will only focus on the graphic user 

interface instead of physics.   

320102 �

� cm
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Fig. A.5.1 provides general information of this run such as plasma condition, 

average ionization and ion stage distribution. The calculated ionization energies for this 

element can be obtained by clicking the Ioniz Energy button, as shown in Fig. A.5.2. 

Users can see how many configurations are involved for an ion by choosing from the 

ion distribution table and clicking the Configurations button. 

 

 

Fig. A.5.1 General information of plasma condition and ion distribution 
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Fig. A.5.2  The calculated ionization energies 

In Fig. A.5.3, we show the relativistic electron configurations for P-like Ge that have 

been included in the calculation. The population for each configuration is also shown in 

this figure. For each configuration in this table, users can obtain more detailed 

information  about transition arrays and ionization edges by click the Transition Lines 

button and the Photonization Edges button. Samples are shown in Fig. A.5.4 and Fig. 

A.5.5. 
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Fig. A.5.3 Display of relativistic electron configurations that are involved in the 

calculation for P-like Ge ion. The configuration populations are also shown. 
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Fig. A.5.4 Detailed transition data for three configurations. The configuration is shown 

as a label above the subtable. The initial and final orbitals, transition energy, oscillator 

strength and UTA width are also given. 
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Fig. A.5.5. Ionization edges for three configurations. A pair of N and K represents the 

electron orbital. Label Orb. Eng.  represents the orbital binding energy and therefore 

the ionization edge. Label Quan. Defect represents the quantum defect of this orbital. 

Label Avg. Rad.  represents the average radius <r> of this orbital. Labels 1st  Eng., 

1st.OS, 2nd Eng., 2nd OS. represent the first two points of the photoionzation oscillator 

strength.  
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Users can also visualize the contributions from the bound-bound transitions or the 

bound-free transitions or from individual ion stages. The plasma path length is also 

shown. Note these contributions are calculated using this path length.  Emission 

spectrum can also be constructed using the same data retrieved from the database. 

. 

 

Fig. A.5.6 Spectrum control panel for viewing different components of the spectrum. 

 

5.   Implementation 
 The implementation of this module needs knowledge about the client/server 

techniques. First, we specify the interfaces that may be used in the program (see 

Section 4.3 in the thesis). The interfaces are implemented using CORBA. Then, the 

CORBA servers are deployed into the database. The CORBA clients are used as stubs 

in the application. For graphic user interfaces, we use inner frame to contain more than 
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one graphs in the window. Detailed information about the GUI design is as following: 

SpectraFrame installs three panels: SpectPlasma, ManipulatePanel, and 

DrawSpectraPanel. These three panels are accessible from the static copy of itself. In 

its constructor,  the DrawSpectraPanel is also registered by the DrawManager, which 

is in charge of adding the DrawInnerFrame object if no identical copy exists, or 

removing the DrawInnerFrame object if it is closed. The DrawSpectraPanel  is the 

main plotting area that contains the inner frames. DrawManager has a static reference 

to the only one copy of DrawSpectraFrame object, which does the actual job to add the 

internal frame onto the DrawSpectraFrame. DrawManager also keeps track the plots 

that are added on the DrawSpectraFrame. DrawInnerFrame is the actual drawing 

object that does the job of contacting the CORBA client objects and drawing the graph 

on its own panel. Each DrawInnerFrame has a PlasmaCondition object which contains 

the plasma condition and the spectrum range that is constructed after the Show button is 

clicked. 

5. Troubleshooting 

None. 
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Appendix B 

File structure of JAtbase native code 
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Appendix C 

Summary of codes for atomic data calculations in FTI  

Code Model Capability 

DTA �� Detailed LSJ, LS coupling radiative atomic data (E, gf)  

�� Configuration interaction method with Hartree-Fock 

wavefunctions 

�� Bound-bound and bound free transitions 

�� Z = 1-18  (can be extended to medium Z) 

ATBASE 

(serial) 

UTA �� Single-electron transition approximation 

�� Non-relativistic unresolved transition array method 

�� Bound-bound and bound-free transitions 

�� LS coupling 

�� Z = 1-79 

LTE �� Saha-Boltzmann distribution 

�� Voigt line shapes 

�� Pressure ionization effect 

�� Z = 1-79 

EOSOPA 

(serial) 

Non-LTE �� Collisional radiative equilibrium (CRE) equation 

�� Including electron collision and radiative atomic processes 

�� Z = 1-18 

RSSOPA 

(parallel) 

LTE 

UTA 

�� Single-electron transition approximation 

�� Relativistic unresolved transition array method 

�� Bound-bound and bound-free transitions 

�� JJ coupling 

�� Z = 1-79 

  




