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Introduction 
As with most radiation hydrodynamic simulation codes, the time taken in Draco to compute the 
physics of radiation transport dominates the computational time for a complete simulation. As a 
result, a thorough analysis and re-engineering of the radiation transport physics package is to be 
undertaken. This report summarizes a survey of available methods for radiation transport and 
computational techniques to accelerate this phase of the simulation. 

Radiation transport is an important physical process in many laser fusion problems.  In particular, the 
experiments being conducted and simulated at LLE are strongly influenced by the transport of 
radiation through the target.  Radiation transport describes a pathway for energy to be transferred 
between different regions of a target plasma, drastically altering the way that the target as a whole 
behaves. Furthermore, various diagnostic techniques are based on the emission or absorption of 
radiation within the target as a function of time. 

Review of Radiative Transfer 
The radiative transfer equation has the following form 

 

 ),ˆ,(),ˆ,(),ˆ,(ˆ),ˆ,(1
trJtrItrI

t

trI

c
Ω+Ωκ−=Ω∇⋅Ω+

∂
Ω∂

ννν
ν ���
�

, (1) 

where ),ˆ,( trI Ων
�

is the specific intensity and is a function of seven independent variables 

),,,,,,( thzyx νφθ , as shown in Figure 1. 

Since analytic solutions to this equation are only possible in a small number of special circumstances, 

a number of approximations are available to solve for ),ˆ,( trI Ων
�

, including: 

��Pn spherical harmonics 

��multigroup flux limited diffusion 

��Sn discrete ordinates 

��Monte Carlo 

��variable Eddington 

��multigroup-gray. 

Pn Approximation 

The basis for the Pn approximation is an expansion of the solution ),ˆ,( trI Ων
�

 as a sum of orthogonal 

functions, in this case spherical harmonics.  For simplicity, if we consider only one dimension, the 
spherical harmonics reduce to the Legendre polynomials, )(µnP , which is complete for 

]1,1[)cos( −=µ=θ . In 2 and 3-dimensions, the full spherical harmonics, ),( φθl
mY , would be 

necessary. 
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Figure 1. Description of spatial and angular variables. 

 

The infinite expansion on this set of basis functions has the form 
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Substituting this into (1) and invoking the orthogonality of the Legendre polynomials 
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gives an infinite set of equations 
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The set of equations is made manageable by truncating to some maximum value of n.  For example, 
the P1 approximation derives from setting all values of 2,0 ≥∀= nI n , giving 
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The Pn approximation can, in principle, handle any degree of anisotropy, both in the specific radiation 
intensity and in the radiation transfer coefficient (opacities, cross-sections).  However, in practice, 
highly anisotropic problems require many equations, that is many Legendre terms, in order to 
accurately predict the solution. The P1 approximation, for example, estimates the specific intensity as 
linearly anisotropic.  

Multigroup Flux Limited Diffusion 
The P1 approximation can be further simplified by assuming that the time derivative of the I1 
component is zero.  Thus, the second equation of (5) becomes 

 1
0 3 I
z

I
κ−=

∂
∂

 or 
z

I
I

∂
∂

κ
−= 0

1 3

1
, 

allowing the substitution into the first equation of (5), giving 
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, (6) 

or, for an arbitrary coordinate system, 

 oo JII
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0
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3

11
. (7) 

This is the radiation diffusion equation, with diffusion coefficient κ
−= 3

1D , and is the basis for the 

current radiation transport model in Draco. More specifically, the continuous energy spectrum is 
divided into a finite number of discrete energy groups, and the diffusion equation is applied to each 
energy group. 

The simplifications made to derive the diffusion equation disrupt causality, permitting solutions with 
infinite propagation speeds. In order to mitigate this a correction is introduced to limit the flux to be 
no higher than the free streaming limit.  This so-called flux limiter is typically implemented by 
replacing the diffusion coefficient D with an expression that varies between the physical diffusion 
coefficient in optically thick media and the asymptotic free streaming limit in optically thin media. 

This method is well characterized, with a large base of experience using it for this kind of problem.  
While the issue of causality is addressed by implementing flux limiters, the mathematical 
assumptions made to derive this method translate to physical assumptions of optically thick media 
and isotropic intensities. 

Variable Eddington 
This method, also based on the Pn approximation, has seen some success in astrophysical 
applications.  By including the P1 term, it is slightly more flexible than the diffusion approximation, 
but there is little experience implementing this method for time-dependent radiation hydrodynamics 
problems and little numerical improvement over multigroup diffusion. 

Multigroup-Gray Diffusion Approximation 
As the methods used to solve the implicitly differenced diffusion equations for each energy group can 
be costly, there are benefits to solving as few different energy groups as possible.  Since the 
derivation of group constants requires an energy dependent spectrum, many energy groups are 
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typically used in order to minimize the effects of differences between the real spectrum and the 
characteristic spectrum used for calculating group constants. 

One solution to this dichotomy is to employ a computationally efficient method to determine the 
normalized energy dependent spectrum.  This detailed spectral information can be used to derive a 
small number of group constants for use in the solution to the implicitly differenced diffusion 
equation.  The method used in the first phase of this approach need not be subject to the same 
restrictions as required of a general radiation transport method.  For example, it need not conserve the 
total energy of the system, as long as it accurately generates the spectral information.   The method of 
the second phase will ensure conservation using the normalized information of the first phase. 

Depending on the method used in the first phase, this has the potential to be extremely parallelizable.  
For example, a fully explicit differencing of the diffusion equations would allow for an efficient 
domain decomposition in problems with large spatial domains.  Of course, it is subject to all the same 
limitations as the diffusion approximation, namely, questionable validity in optically thin regions. 

Discrete Ordinates (Sn) Approximation 
The basis of the discrete ordinates, or Sn, approximation is the discretization of the angular variables 
in the transport equation (1).  A number of different directions are chosen in the interval 

]1,1[cos −=µ=θ , and the spatial mesh is swept from the left boundary condition tracking the 
forward streaming directions and then swept back tracking the backward streaming directions.  This is 
repeated until the solution converges. 

This method is particularly well suited for strongly anisotropic intensities and anisotropic cross-
sections.  The cross-sections are expanded on the Legendre polynomial basis set, which means the 
roots of those polynomials are prudent values for the discrete directions chosen in this approximation. 

While these methods have seen a great deal of success for time independent neutron-gamma transport 
problems in 1- and 2-dimensions [1], they are less suited to radiative transfer problems of radiation 
hydrodynamics.  In optically thin media, the well known ray effects lead to artificially preferential 
transport along the chosen discrete directions, and thus artificially low intensities between those 
directions.  Conversely, in optically thick regions, this method can be very slow to converge unless 
some acceleration is used, such as diffusion synthetic acceleration (DSA).  Finally, this 
approximation can be very complex when applied to distorted meshes.  All of these mean that the Sn 
approximation is much more costly than diffusion with questionable benefit for the type of problems 
found in radiation hydrodynamics. 

Monte Carlo 
The Monte Carlo method consists of tracking the path and interactions undergone by a statistical 
sample of individual photons.  This method can be extremely accurate, as it is essentially a pure 
physical simulation of the individual microscopic processes.  To achieve this accuracy, however, a 
statistically large sample must be used, resulting in significant computational time. 

Furthermore, Monte Carlo methods are best suited to solutions with a few individual solutions in 
space.  To calculate an entire field of solutions on a fine spatial resolution, the statistical sample 
would have to be even larger, resulting in even more computational time.  Finally, there are 
significant complexities involved with implementing Monte Carlo methods in multi-dimensional 
problems with distorted and mobile zone boundaries separating fine grained heterogeneities. 

While Monte Carlo methods are intrinsically favorable to parallelization, the accuracy and spatial 
resolution required for radiation hydrodynamics problems would still require enough computational 
time to preclude their use. 
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Summary and Selection 
The first choice for near-term implementation within Draco is multigroup flux limited diffusion.  A 
long history of this method in radiation hydrodynamics has not only shown its value and applicability, 
but provides an extensive body of literature in which to find recommendations and suggestions for its 
implementation.  There are some other methods which are slightly better that diffusion for anisotropic 
problems, but the benefit of these methods does not match the short-term development risk in 
implementing them.  There is some concern for the efficiency of this method, particularly since a 
substantial and costly matrix inversion must be performed for each group in the multigroup 
expansion. This can be somewhat mitigated by exploring various parallelization paradigms for this 
part of the total radiation hydrodynamics problem. 

For medium term consideration, particularly in 3-dimensions, the multigroup-gray diffusion approach 
deserves some attention. Since it builds upon the underlying infrastructure of the diffusion 
approximation for its second phase, research can be performed into various alternatives for the first 
phase without impacting the development of radiation transport in general. 

With extensive experience outside the radiation hydrodynamics field, both Sn and Monte Carlo 
methods may also have some role to play in the long term.  Neither of these methods builds directly 
upon the infrastructure of the multigroup diffusion approximation, and thus represent a larger 
development risk and longer development time. 

Implementation of Multigroup Diffusion 
This section will discuss the implementation of a multigroup flux-limited diffusion method in 
Cartesian coordinate systems.  

The 1-D 3-point Stencil 
Starting with the diffusion equation in one-dimension (equation 6), 
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where accented variables (e.g. D̂ ) denote vertex-centered values and unaccented variables are cell-
centered.  Until now, no assumptions or approximations have been made about the function form of 
the radiation intensity, I.  In order to change the derivative operator into a difference operator, it is 
necessary to know the value of the radiation intensity at the center of the cell.  Therefore, we will 
define (assume) that the cell-centered radiation intensity, Ii, is identical to the mean value in that cell, 

i
I . 
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Central differencing of the spatial derivative and forward differencing the time derivative give: 
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where the superscript, n, denotes the time step index. 

Written as a 3-point stencil: 
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where 
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D , iii zzz ˆˆ 12
1 −=∆ ++ , and iii zzz −=δ ++ 12

1 . 

As a summarizing note, the only assumption made in this derivation is that the mean value of the 
radiation intensity in the cell is identical to the value at the cell center. 

The 2-D 9-point Stencil 
Note: the derivation presented in this section is based entirely on the work of Richard Bruce 
Hickman, presented in his Ph.D. thesis of May, 1978[2]. 

 

Starting with the diffusion equation in 2 (or more) dimensions (equation 7), 

 JIID
t
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, (7) 

and integrating over the area of cell ij, gives 

 

i
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j+1 i,j
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Figure 2. Sample Lagrangian mesh 
providing reference for 
mathematical derivation. 
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As in the 1-dimensional case, the most basic assumption is that the cell-centered radiation intensity, 

Iij, is identical to the mean value in that cell, 
ij

I . 

Since this line integral is around the perimeter of an arbitrary quadrilateral, it can be replaced by a 
summation: 
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It is now necessary to consider the determination of the mean value, ID∇
�

.  The two dimensional 

version of Stoke’s theorem states 
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where DdydDdxd yx // =τ=τ    and   .  The mean value theorem gives 
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and similarly for the y-derivative term. 

Given this, we can then define a region, B, upon which to apply Stoke’s theorem on the side, 
i+1,j+1/2, using the centers of the two cells separated by this side and the vertices of the side itself. 

In the case where the radiation intensity varies linearly between adjacent vertices of the region B, 

i

i+1
i+2

j

j+1

B

i,j

i+1,j

1

2

3

4

B- B+

 

Figure 3. Sub-region defined for determination of mean value gradient on side 
i+1,j+1/2 using Stoke’s theorem. 
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Furthermore, if region B is divided into two sub-regions, one on each side of the side i+1,j+1/2, 
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using the mean value theorem. 

For the purpose of implementation, we can define an effective diffusion coefficient: 
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and assume that the vertex-centered values of the radiation intensity are a linear combination of the 
cell-centered values from the four adjacent cells: 
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If this is continued for all 4 sides (see Appendix) the result is the 9-pt stencil: 
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and similarly for x, so that: 
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. 

There are two issues yet to be resolved: 

��the determination of sub-region mean values of the diffusion coefficients, and 

��the determination of the weights for the vertex-centered values of the radiation intensity based on 
the adjacent cell-centered values. 

The simplest solutions to these issues are to assume that the diffusion coefficient for each sub-region 
is equal to the diffusion coefficient for the whole grid region in question, and that the vertex-centered 
radiation intensities are found by simply averaging the 4 adjacent cell-centered values. 

Future Development 
Future development will focus on the following areas: 

1. The investigation of alternative formulations for the diffusion coefficients, including the 
introduction of various flux limiters; 

2. the investigation of alternative formulations for the linear weights used to calculate the vertex-
centered radiation intensity; 

3. the development of the difference equations for cylindrical (r-z) coordinate systems; and 

4. the development of difference equations for various boundary conditions. 

Options for Parallel Implementation 

Introduction 
In most traditional implementations of multigroup diffusion, each of the energy groups is solved in 
sequence: a matrix for that group is constructed based on the difference equations and then inverted. 
There are typically between 2 and 100 energy groups and the solution of each group is independent of 
the other groups. 

For large problems with many groups, this can often dominate the computing time required for a 
solution.  As a result, there is motivation for exploring different options for the parallelization of this 
process.  There are two obvious approaches for parallelization: 

��solving each group in sequence, inverting the matrix by use of parallel sparse matrix algebra 
libraries, or 

��solving the groups in parallel, with each group’s matrix being solved on a different processor. 

This section will describe the issues related to each of these approaches, including some early testing 
of parallel sparse matrix libraries. 

With all parallelization approaches, an important issue is that of communication of data among the 
processors, and specifically, the ratio between the time spent in communication and the time spent 
performing useful computation. 
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Parallel Sparse Matrix Algebra Libraries 
With this approach, the matrix inversions occur sequentially, but the processing for each matrix 
inversion is spread across the available processors by invoking parallel libraries for sparse matrix 
algebra.  While the libraries themselves typically handle all the communication internally, the process 
of setting up each matrix across the processors would represent the biggest communication penalty.  
Early testing has been performed with two candidate libraries, Aztec 2.1 and PETSc 2.0.24, using a 
matrix typical of a radiation diffusion problem created on a 100x100 spatial mesh.  The Aztec parallel 
library is being developed at Sandia National Laboratory.  PETSc is being developed at Argonne 
National Laboratory.  Both offer a variety of methods and preconditioners for the solution of sparse 
linear systems.  For all testing, the platform was an SGI Origen2000 machine located at LLE. 

Testing with Aztec was performed on a range of processors, from 1 to 16d, using the default 
conjugate gradient method with no preconditioner.  The results were generated by Aztec’s built-in 
timing routines and averaged over 10 independent runs for each number of processors.   The time 
taken to solve the system for a single processor was 2.1 ± 0.1 s in 570 iterations.  The minimum 
reliable (small standard deviation) run time was 0.32 ± 0.06 s in 333 iterations with 6 processors.  
While it is unexpected for the number of iterations to be a function of the number of processors, this 
represents significant speed-up.  For more than 6 processors, the speed-up is not substantial and the 
standard deviation in the results was significant.  The library’s authors are currently being contacted 
for their comments on the correlation between the number of processors and the number of iterations. 

Testing with PETSc was somewhat less successful as it experienced convergence problems when 
running on more than one processor.  However, single processor results were available with a run 
time of 1.3 s in 70 iterations using the default methods: GMRES with block Jacobi preconditioning. 

It is important to restate that the run times reported in this testing did not include the time spent 
distributing the matrix elements to the various processors.  A true analysis of this is being partially 
facilitated by integrating Aztec into the ORCHID radiation hydrodynamics code as an alternative to 
the existing solver. 

Master/Slave Groupwise Processing 
With this approach each group is solved using traditional sequential methods, but simultaneous to 
other groups on different processors.  The maximum theoretical benefit of this method comes from 
having as many processors as there are energy groups, therefore solving all the groups 
simultaneously.  Since the individual group calculations are independent of each other, the only 
communication is the sharing of the current state and geometry to all processors once before any 
group calculation and the collecting of the energy emission and deposition terms from all processors 
once after all the group calculations. 

Single Processor Matrix Methods 
When implementing the master/slave approach for parallelization, the single processor matrix 
inversion performance will be of utmost importance.  One result of the testing with parallel matrix 
libraries was that the single processor performance of these libraries was better than the experience 
base with the existing methods.  This indicated a need to better understand what single processor 
methods were being used and whether they were ideally tuned to the problems and computing 
platforms in question. 

Most importantly, new classes of solution methodologies exist that may be well suited to these 
problems.  Multi-grid methods, for example, have a physical analogue which suggests that they will 
result in rapid convergence to the final solution.  
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Future Development 
More work will be done to characterize the different parallelization approaches and improve the 
implementation of matrix inversion, whether in parallel or on a single processor.  This will include: 

��testing of parallel libraries under application relevant conditions to achieve a measure of their 
total time, including communication of the initial matrices; 

��investigation of the master/slave approach to better determine the balance between 
communication and computation; and 

��investigation into and testing of alternative single processor matrix inversion methods and 
libraries. 

While further characterization of these methods may indicate a preference of one method over the 
other, it is also possible to implement a combination of the two methods for increased flexibility. 

Summary 
A variety of approaches for the modeling of radiative transfer have been outlined.  The numerical 
stencil for multigroup diffusion, as the preferred of these models, has been derived in detail for 1- and 
2-dimensions in Cartesian coordinates.  Three remaining issues have been identified for the 
implementation of the Cartesian diffusion model.  A similar derivation will be necessary for 
cylindrical coordinate systems.   

These numerical stencils result in large sparse matrices that are typically expensive to invert.  Two 
approaches for parallelization have been described.  Further characterization of these approaches will 
provide input on how to proceed.  In particular, it is not yet clear whether one approach is preferred 
over the other or if they are complementary.  The impact of highly efficient single processor matrix 
inversion will also be important. 
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APPENDIX: Detailed Derivation of Diffusion Operator on Lagrangian Mesh 
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Looking at an alternative variation on 
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Until now, we have assumed that all these integrals are being evaluated for the solution of the diffusion equation at cell i,j. For integral 
2

1, +jiF , consider the 

relationship between this integral for cell i,j and for cell i-1,j.  
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The same is true for ij
jiF 1,2

1 ++ : 
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Putting it all together with the following definitions: 
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If we now introduce the general assumption that the vertex-centered values are linear combinations of the 4 surrounding cell-centered values: 
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Note that for an orthogonal mesh, either y∆ or yδ vanishes for all sides (and similarly for x∆ or xδ ), and therefore Λ vanishes for all sides, leaving the 5-pt 
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