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I ntroduction

As with most radiation hydrodynamic simulation codes, the time taken in Draco to compute the
physics of radiation transport dominates the computational time for a complete simulation. Asa
result, athorough analysis and re-engineering of the radiation transport physics package isto be
undertaken. This report summarizes a survey of available methods for radiation transport and
computational techniques to accelerate this phase of the simulation.

Radiation transport is an important physical process in many laser fusion problems. In particular, the
experiments being conducted and simulated at LLE are strongly influenced by the transport of
radiation through the target. Radiation transport describes a pathway for energy to be transferred
between different regions of atarget plasma, drastically altering the way that the target as a whole
behaves. Furthermore, various diagnostic techniques are based on the emission or absorption of
radiation within the target as a function of time.

Review of Radiative Transfer
The radiative transfer equation has the following form

}alv(r,Q,t) +£"2

- VIL(FQ) =—xl, (F,Q)+J,(F,Q1), (1)

where |, (F,Q,t) isthe specific intensity and is afunction of seven independent variables

(X, ¥,2,0,0,hv,t), asshown in Figure 1.

Since analytic solutions to this equation are only possible in a small number of special circumstances,
anumber of approximations are available to solvefor | (T, €2,t), including:

P, spherical harmonics

multigroup flux limited diffusion

S, discrete ordinates

Monte Carlo

variable Eddington
multigroup-gray.
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P, Approximation

The basis for the P, approximation is an expansion of the solution 1 (T, f), t) asasum of orthogonal
functions, in this case spherical harmonics. For simplicity, if we consider only one dimension, the
spherical harmonics reduce to the Legendre polynomials, P, () , which is complete for

cos(6) = u =[-11]. In 2 and 3-dimensions, the full spherical harmonics, Y, (6, ) , would be
necessary.
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Figure 1. Description of spatial and angular variables.
The infinite expansion on this set of basis functions has the form
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Substituting thisinto (1) and invoking the orthogonality of the Legendre polynomials
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gives an infinite set of equations
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The set of equations is made manageable by truncating to some maximum value of n. For example,
the P, approximation derives from setting all valuesof | , =0, Vn2 2, giving
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The P, approximation can, in principle, handle any degree of anisotropy, both in the specific radiation
intensity and in the radiation transfer coefficient (opacities, cross-sections). However, in practice,
highly anisotropic problems require many eguations, that is many Legendre terms, in order to
accurately predict the solution. The P; approximation, for example, estimates the specific intensity as
linearly anisotropic.

Multigroup Flux Limited Diffusion

The P, approximation can be further simplified by assuming that the time derivative of the I,
component is zero. Thus, the second equation of (5) becomes

al—0:—31<I10r |, = — 191,
0z 3x dz
allowing the substitution into the first equation of (5), giving
Eal_o_iial_O:_Klo+Jo’ (6)
C dt 0z 3k 0z
or, for an arbitrary coordinate system,
I
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Thisisthe radiation diffusion equation, with diffusion coefficient D =~ and isthe basis for the

3k’
current radiation transport model in Draco. More specifically, the continuous energy spectrum is
divided into afinite number of discrete energy groups, and the diffusion equation is applied to each
energy group.

The simplifications made to derive the diffusion equation disrupt causality, permitting solutions with
infinite propagation speeds. In order to mitigate this a correction isintroduced to limit the flux to be
no higher than the free streaming limit. This so-called flux limiter istypically implemented by
replacing the diffusion coefficient D with an expression that varies between the physical diffusion
coefficient in optically thick media and the asymptotic free streaming limit in optically thin media.

This method iswell characterized, with alarge base of experience using it for this kind of problem.
While the issue of causality is addressed by implementing flux limiters, the mathematical
assumptions made to derive this method trang ate to physical assumptions of optically thick media
and isotropic intensities.

Variable Eddington

This method, also based on the P, approximation, has seen some success in astrophysical
applications. By including the Py term, it is slightly more flexible than the diffusion approximation,
but there is little experience implementing this method for time-dependent radiation hydrodynamics
problems and little numerical improvement over multigroup diffusion.

Multigroup-Gray Diffusion Approximation

As the methods used to solve the implicitly differenced diffusion equations for each energy group can
be costly, there are benefits to solving as few different energy groups as possible. Since the
derivation of group constants requires an energy dependent spectrum, many energy groups are



typically used in order to minimize the effects of differences between the real spectrum and the
characteristic spectrum used for calculating group constants.

One solution to this dichotomy is to employ a computationally efficient method to determine the
normalized energy dependent spectrum. This detailed spectral information can be used to derive a
small number of group constants for use in the solution to the implicitly differenced diffusion
equation. The method used in the first phase of this approach need not be subject to the same
restrictions as required of a general radiation transport method. For example, it need not conserve the
total energy of the system, aslong asit accurately generates the spectral information.  The method of
the second phase will ensure conservation using the normalized information of the first phase.

Depending on the method used in the first phase, this has the potential to be extremely parallelizable.
For example, afully explicit differencing of the diffusion equations would allow for an efficient
domain decomposition in problems with large spatial domains. Of course, it is subject to all the same
limitations as the diffusion approximation, namely, questionable validity in optically thin regions.

Discrete Ordinates (S,) Approximation

The basis of the discrete ordinates, or S, approximation is the discretization of the angular variables
in the transport equation (1). A number of different directions are chosen in the interval
cosO = =[-11], and the spatial mesh is swept from the left boundary condition tracking the

forward streaming directions and then swept back tracking the backward streaming directions. Thisis
repeated until the solution converges.

This method is particularly well suited for strongly anisotropic intensities and anisotropic cross-
sections. The cross-sections are expanded on the Legendre polynomial basis set, which means the
roots of those polynomials are prudent values for the discrete directions chosen in this approximation.

While these methods have seen a great deal of success for time independent neutron-gamma transport
problemsin 1- and 2-dimensions [1], they are less suited to radiative transfer problems of radiation
hydrodynamics. In optically thin media, the well known ray effects lead to artificially preferential
transport along the chosen discrete directions, and thus artificially low intensities between those
directions. Conversely, in optically thick regions, this method can be very slow to converge unless
some acceleration is used, such as diffusion synthetic acceleration (DSA). Finally, this
approximation can be very complex when applied to distorted meshes. All of these mean that the S,
approximation is much more costly than diffusion with questionable benefit for the type of problems
found in radiation hydrodynamics.

Monte Carlo

The Monte Carlo method consists of tracking the path and interactions undergone by a statistical
sample of individual photons. This method can be extremely accurate, asit is essentially a pure
physical simulation of the individual microscopic processes. To achieve this accuracy, however, a
statistically large sample must be used, resulting in significant computational time.

Furthermore, Monte Carlo methods are best suited to solutions with afew individual solutionsin
space. To calculate an entire field of solutions on afine spatial resolution, the statistical sample
would have to be even larger, resulting in even more computational time. Finally, there are
significant complexities involved with implementing Monte Carlo methods in multi-dimensional
problems with distorted and mobile zone boundaries separating fine grained heterogeneities.

While Monte Carlo methods are intrinsically favorable to parallelization, the accuracy and spatial
resolution required for radiation hydrodynamics problems would still require enough computational
time to preclude their use.



Summary and Selection

Thefirst choice for near-term implementation within Draco is multigroup flux limited diffusion. A
long history of this method in radiation hydrodynamics has not only shown its value and applicability,
but provides an extensive body of literature in which to find recommendations and suggestions for its
implementation. There are some other methods which are slightly better that diffusion for anisotropic
problems, but the benefit of these methods does not match the short-term development risk in
implementing them. There is some concern for the efficiency of this method, particularly since a
substantial and costly matrix inversion must be performed for each group in the multigroup
expansion. This can be somewhat mitigated by exploring various parallelization paradigms for this
part of the total radiation hydrodynamics problem.

For medium term consideration, particularly in 3-dimensions, the multigroup-gray diffusion approach
deserves some attention. Since it builds upon the underlying infrastructure of the diffusion
approximation for its second phase, research can be performed into various aternatives for the first
phase without impacting the development of radiation transport in general.

With extensive experience outside the radiation hydrodynamics field, both S, and Monte Carlo
methods may also have some role to play in the long term. Neither of these methods builds directly
upon the infrastructure of the multigroup diffusion approximation, and thus represent alarger
development risk and longer development time.

I mplementation of Multigroup Diffusion

This section will discuss the implementation of a multigroup flux-limited diffusion method in
Cartesian coordinate systems.

The 1-D 3-point Stencil
Starting with the diffusion equation in one-dimension (equation 6),

1o dpd_ i3 (6)
cot 9z 0z

and integrating over the dimension of cell i, gives
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where accented variables (e.g. D) denote vertex-centered values and unaccented variables are cell-
centered. Until now, no assumptions or approximations have been made about the function form of
theradiation intensity, I. In order to change the derivative operator into a difference operator, it is
necessary to know the value of the radiation intensity at the center of the cell. Therefore, we will
define (assume) that the cell-centered radiation intensity, I;, isidentical to the mean value in that cell,
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Central differencing of the spatial derivative and forward differencing the time derivative give:

n+1 n n+1 n+1 n+1 n+1
lli _Ii 1 |:“ |i+1_|i —Ij li _li—l
i+1 i

Z,—4 4 -4,

where the superscript, n, denotes the time step index.
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Written as a 3-point stencil:
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where }\’i+% =" SZH_}/ ' AZ|+}/2 =4, 4, and 6Z|+}/2 =Z,-4.
As a summarizing note, the only assumption made in this derivation is that the mean value of the
radiation intensity in the cell isidentical to the value at the cell center.

The 2-D 9-point Stencil

Note: the derivation presented in this section is based entirely on the work of Richard Bruce
Hickman, presented in his Ph.D. thesis of May, 1978[2].

Figure 2. Sample Lagrangian mesh
providing reference for
mathematical derivation.

i+2

Starting with the diffusion equation in 2 (or more) dimensions (equation 7),
Z—-V.-DVI =—xl +J, 7)

and integrating over the area of cell ij, gives
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‘A‘c at jdAV V) ‘Aj‘(—zc<l>+<J>) (mean value theorem).
CE—W@S DVI) - +J; (Gauss' Theorem)

Asin the 1-dimensional case, the most basic assumption is that the cell-centered radiation intensity,
l;, isidentical to the mean value in that cell, (| >ij :

Sincethislineintegral isaround the perimeter of an arbitrary quadrilateral, it can be replaced by a
summation:
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It is now necessary to consider the determination of the mean value, <D?I > . Thetwo dimensional
version of Stoke’s theorem states

of 99 Vv —
ﬂax ay}fxdy i(fdywdx),

which implies
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which for this problem can be invoked as:
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where dt, =dx/D and dt, =dy/D. The mean value theorem gives
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and similarly for the y-derivative term.

Given this, we can then define aregion, B, upon which to apply Stoke'stheorem on the side,
i+1,j+1/2, using the centers of the two cells separated by this side and the vertices of the side itself.

In the case where the radiation intensity varies linearly between adjacent vertices of the region B,

it1

i+2

Figure 3. Sub-region defined for determination of mean value gradient on side
i+1,j+1/2 using Stoke' s theorem.
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Furthermore, if region B is divided into two sub-regions, one on each side of the side i+1,j+1/2,

dxdy J dxdy s J dxdy ‘Bi:rl, AN ‘Biil, Y
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using the mean value theorem.
For the purpose of implementation, we can define an effective diffusion coefficient:
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and assume that the vertex-centered values of the radiation intensity are alinear combination of the
cell-centered values from the four adjacent cells:
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Substituting these into equation 10, we get:
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If thisis continued for all 4 sides (see Appendix) the result is the 9-pt stencil :
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and similarly for x, so that:

L2 =Ay? +Ax2 A% =A8y, +Adx_ D

LY, = Ay, +AX%, AL, =Ady, +Adx, D
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There are two issues yet to be resolved:
» the determination of sub-region mean values of the diffusion coefficients, and

» the determination of the weights for the vertex-centered values of the radiation intensity based on
the adjacent cell-centered values.

The simplest solutions to these issues are to assume that the diffusion coefficient for each sub-region
isequal to the diffusion coefficient for the whole grid region in question, and that the vertex-centered
radiation intensities are found by simply averaging the 4 adjacent cell-centered values.

Future Development
Future development will focus on the following areas:

1. Theinvestigation of alternative formulations for the diffusion coefficients, including the
introduction of various flux limiters;

2. theinvestigation of aternative formulations for the linear weights used to calcul ate the vertex-
centered radiation intensity;

the development of the difference equations for cylindrical (r-z) coordinate systems; and
the development of difference equations for various boundary conditions.

Optionsfor Parallel Implementation

Introduction

In most traditional implementations of multigroup diffusion, each of the energy groupsis solved in
sequence: amatrix for that group is constructed based on the difference equations and then inverted.
There are typically between 2 and 100 energy groups and the solution of each group is independent of
the other groups.

For large problems with many groups, this can often dominate the computing time required for a
solution. Asaresult, thereis motivation for exploring different options for the parallelization of this
process. There are two obvious approaches for parallelization:

» solving each group in sequence, inverting the matrix by use of parallel sparse matrix algebra
libraries, or

» solving the groupsin parallel, with each group’ s matrix being solved on a different processor.

This section will describe the issues related to each of these approaches, including some early testing
of parallel sparse matrix libraries.

With all parallelization approaches, an important issue is that of communication of data among the
processors, and specifically, the ratio between the time spent in communication and the time spent
performing useful computation.

11



Parallel Sparse Matrix Algebra Libraries

With this approach, the matrix inversions occur sequentially, but the processing for each matrix
inversion is spread across the available processors by invoking paralel libraries for sparse matrix
algebra. While the libraries themselves typically handle al the communication internally, the process
of setting up each matrix across the processors would represent the biggest communication penalty.
Early testing has been performed with two candidate libraries, Aztec 2.1 and PETSc 2.0.24, using a
matrix typical of aradiation diffusion problem created on a 100x100 spatial mesh. The Aztec parallel
library is being developed at Sandia National Laboratory. PETSc is being developed at Argonne
National Laboratory. Both offer avariety of methods and preconditioners for the solution of sparse
linear systems. For al testing, the platform was an SGI Origen2000 machine located at LLE.

Testing with Aztec was performed on arange of processors, from 1 to 16d, using the default
conjugate gradient method with no preconditioner. The results were generated by Aztec’s built-in
timing routines and averaged over 10 independent runs for each number of processors. Thetime
taken to solve the system for asingle processor was 2.1 + 0.1 sin 570 iterations. The minimum
reliable (small standard deviation) run time was 0.32 + 0.06 sin 333 iterations with 6 processors.
Whileit is unexpected for the number of iterations to be afunction of the number of processors, this
represents significant speed-up. For more than 6 processors, the speed-up is not substantial and the
standard deviation in the results was significant. The library’s authors are currently being contacted
for their comments on the correlation between the number of processors and the number of iterations.

Testing with PET Sc was somewhat less successful as it experienced convergence problems when
running on more than one processor. However, single processor results were available with arun
time of 1.3 sin 70 iterations using the default methods: GMRES with block Jacobi preconditioning.

It isimportant to restate that the run times reported in this testing did not include the time spent
distributing the matrix elements to the various processors. A true analysis of thisis being partially
facilitated by integrating Aztec into the ORCHID radiation hydrodynamics code as an alternative to
the existing solver.

Master/Slave Groupwise Processing

With this approach each group is solved using traditional sequential methods, but simultaneous to
other groups on different processors. The maximum theoretical benefit of this method comes from
having as many processors as there are energy groups, therefore solving al the groups
simultaneously. Since theindividual group calculations are independent of each other, the only
communication is the sharing of the current state and geometry to all processors once before any
group calculation and the collecting of the energy emission and deposition terms from all processors
once after all the group calculations.

Single Processor Matrix Methods

When implementing the master/dlave approach for parallelization, the single processor matrix
inversion performance will be of utmost importance. One result of the testing with parallel matrix
libraries was that the single processor performance of these libraries was better than the experience
base with the existing methods. Thisindicated a need to better understand what single processor
methods were being used and whether they were ideally tuned to the problems and computing
platformsin question.

Most importantly, new classes of solution methodologies exist that may be well suited to these
problems. Multi-grid methods, for example, have a physical analogue which suggests that they will
result in rapid convergence to the final solution.

12



Future Development

More work will be done to characterize the different parallelization approaches and improve the
implementation of matrix inversion, whether in parallel or on asingle processor. Thiswill include:

» testing of parallel libraries under application relevant conditions to achieve a measure of their
total time, including communication of the initial matrices,

» investigation of the master/slave approach to better determine the bal ance between
communication and computation; and

» investigation into and testing of alternative single processor matrix inversion methods and
libraries.

While further characterization of these methods may indicate a preference of one method over the
other, it is aso possible to implement a combination of the two methods for increased flexibility.

Summary

A variety of approaches for the modeling of radiative transfer have been outlined. The numerical
stencil for multigroup diffusion, as the preferred of these models, has been derived in detail for 1- and
2-dimensionsin Cartesian coordinates. Three remaining issues have been identified for the
implementation of the Cartesian diffusion model. A similar derivation will be necessary for
cylindrical coordinate systems.

These numerical stencils result in large sparse matrices that are typically expensiveto invert. Two
approaches for parallelization have been described. Further characterization of these approaches will
provide input on how to proceed. In particular, it isnot yet clear whether one approach is preferred
over the other or if they are complementary. The impact of highly efficient single processor matrix
inversion will also be important.
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APPENDI X: Detailed Derivation of Diffusion Operator on Lagrangian Mesh
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§Idy: %(Iiﬂ,j + IAi+],j Xyi+],j - §/i+lj)+5(|i+1j+1+ |i+],jxyi+lj+1_ yi+],j)+%(lij + IAi+:l,j+1xyij - S\/i+lj+1)+%(l’\i+lj + Iij Xyiﬂ.j - yl])
oB

A

1/. - 1 1 1. -
= E(yi+l,j+1_ yi+l,j)|i+l,j +_(yi+lj yl]) i+1, _(ylj - yi+1,j)|i+],j+l+§(yi+l,j - yi+l,j+1)|ij

:;[( i+1] lIJ)(yI+lJ+l y|+lJ) (I+1.J+1 |+lJXyI+lJ yl])]

and similarly
§|dX=%[( P41 I.,)(X|+],J+1 )g+l,j) (I+1,j+l I+l.JX)g+l,J X”)]
oB
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Definitions;

Ayi+1,j+}/2 = 9i+1,j+1 - S\/i+1.j
6yi+l,j+}/2 = yi+1j - yij

1 =‘ |+1J+}/ I+1J+}/z
Di+1,j+}§ DI+1VJ+}/2 D'+1'j+%

e _ J-dxdy I dxdy _ [Bisies Bl

B D Bu' D|111+y DI:l,J+}/
‘ |+],J+}/ XI+1,J+1 Xij)*(yiﬂ,j _yij)_()’ziﬂ,j _Xij)*(yi+l,j+l_yin

N 1 - - . -

B|+],j+}/ =5 (Xi+],j+1 - Xi+l,j )* (yi+Lj - yi+1,j )_ (Xi+LJ - Xi+],j )* (yi+Lj+1 - yi+],j]
Genera Assumptlon
II+1]+1 Y|+1 J+1I +’Y::i}+1ll+lj +’Y:+11+11+1I| j+l+Y::iiiill+lj+l

ol . ol

F|+1 i+ (y|+1 j+1 y|+1 j )< aX>,+1|j+}/2 - (Xi+1,j+1 X|+1] )< ay>|+1’j+}/2

(9i+1,j+1 - 9i+1,j )

;[ I+lj I] )(y|+l j+1 yl+1] ) ( i+1, j+1 I+1j Xyl+l] yI] )]

o - +
‘Bi+1,j+y2 ‘ i+1j+%
Dij Di+1,j
(Xi+1j+1_xi+1j) 1[(| | )(A 5 ) (f ) X )]
E i+L,j ~ 'ij Xi+1,j+1_Xi+1,j T\ T i I+1] XI]
‘BI+1J+% ‘B|+1J+}/2
Dij D|+1,j
. (I g — 1 )AYi+1j+y2
D Ay
_ i+ i+1, j+1| i+, ]+1| + i+, ]+1| + i+1, ]+1|
- 2 ’Y ’YI+1J i+1,] Y| g+ T jH YI+l]+1 i+1.j+1
i+1, i+1, i+1, i+1, i+1j+%
Y| ]—lII -1 ’Y|+1 j—l i+1,j-1 Y| I Y|+1 j I i+1.]
N (I i+, ] =1 )AX|+1 i+%
D. .. Axi .
i+ j+2 =N+ 4+ i+1,j+1 i+1,j+1 i+1,j+1 i+1,j+1
+ 2 Y| I +YI+lj I|+1,j +Y| L II j+1 +Y|+1 ]+1I i+1. j+1
i+1,] i+1, ] i+1, ] i+1,] i+1j+%
’YI j—lII -1 ’Y|+1 ]—1 i+1,j-1 ’Y I ’Y|+1] Il+lj

16




I:i+:|.j+% =

1
2

+

+

Nl N

1 *
EDi+Lj+}/ (’YI+1,J _’Y|+l,] )Ayi+lj+}/26yi+lj+%

1 i+1,j+
2 D|+1J+}/Y| ]]:;'gl. 1(Ayi+lj+%8yi+lj+% + AXi+],j+%8)(i+],j+}§ )I ij+1

i+1,j+1

DI+1,j+}/YI+lJ+1(Ayi+l,j+%6yi+l,j+% + AXi+],j+}§8)(i+1,j+% )I i+1j+1

Ayi+lj+yAyi+Lj+}/ +Axi+lj+}£AXi+lj+%

i+1,j+1

Di*+lj+7 (Yu Y:fl’ )Ayi+1,j+%8y‘+li+% !

i+1,j+1 i+1,]

Ty g

) |+1j+%8xi+1j+%
Ayi+],j+}/Ayi+]_,j+}/ + AXi+].,j+}/2AXi+l,j+}/2

i+1,j+1 i+1j

i+1j
i+1,j+1 i+1]

(Y|+lj - YI+1,J )Axi+1,j+}é8xi+lj+}/z

D|+1,J+}/’Y:+Jljl(Ayi+1,j+}§6yi+lj+}§ + AXi+].,j+}~§8xi+l,j+% )I ij-1

D|+].J+}/’Y::j:i 1(Ayi+],j+}§6yi+lj+% + AXi+:|.j+}/28Xi+].j+}/2 )I i+1j-1

Simplest assumptions

v =¥ K=l =L+, (-1, +1)

F

i+1,j+% = %

1 *
38 Di+1,j+}/2 (Ayi+1,j+}/26yi+1,j+}/2 + AXi+1,j+}/26Xi+l,j+}/2 )l i,j+1
1
i+1j+% i+1j+% )i+, j+ Y i+1,j+% N4+ ) i+ L
3 =D/ (Ay oy, + AX; OX; )
1
|+1J+}/ i+1,j+% i+1,j+% i+1,j+% i+Lj+% )7 j
~3 ( Ay. Ay + AX AX )I

OO|H OOIH I\)ll—\

|+1 i+% (Ay|+1 J+}§Ay|+l i+% + AX|+1 J+}/A i+1,j+% )I i+1,]
|+1 i+% (Ay|+1 J+}é8y|+1 i+% + AX|+1 J+}/26 i+1,j+% )I i,j-1

|+1 J+}£( y|+1,j+}~§6yi+l,j+y2 + AXi+1,j+}/26Xi+l,j+}§ )I i+1,j-1

17



Looking at an alternative variation on F

Di+1,j+%

Fi+l,j+}§ = 2

Now looking at ancther side of the cell:
i+1,]

Fii = st[ﬁi+%,j '(Dvl)iﬁg,j]
]

= Li%‘jﬁi%,j '<Dv|>i+%.J

+ (Ayi+l,j+}§ 8yi+l,j+}§ + AXi+1,j+}~§8)(i+l,j+}/2 )I i+1,]

| (Ayi+1,j+}§6yi+l,j+}§ + AXi+l,j+}§6Xi+l,j+}§ )I i+1,j+1 |

i+1,j+}§:
(Ayi+l,j+%Ayi+l,j+% +Axi+1,j+%AXi+l,j+y2 )I i+1,]
- (Ayi+l,j+}§Ayi+l,j+}§ + Axi+1,j+y2AXi+1,j+}/2 )I ij

~

Lsgs = Gray = %)+ iy = 9,)?

~ ~

Yiaj — Y 3 X =%

n.. =
i+%,] '
Li+}§,j Li+}§,j
_ AYi\y, _Axi+}/2,j
I‘i+%,j I‘i+%,j

|

= ol ol
<DV|>i+y2,j - <D&> .'<Da_>, ,
i+%,] y i+34,]

o]

oB

i+, = Ayi+}/2,j Di+}/2,j |:ff |dy]
i+,

ol ol
i+34,] i+3,]

—AX,,, D, [— §Idx}
i+,

oB
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oB

1 1/~ A 1 1/~ "
|:§Idy] = 2( i] l+IIJ Xylj -1 yu) ( I+1j Ii,j—leHl,j _yi,j—l) 2( ij |+11Xy|] y|+lj) E(Iij +Iij Xyij _yij)
i+%,]
" A 1. .
(yl+1j Yi )Ii,j—l (y| i~ Y )I += (y” yi,j—1)|i+1,j +§(yij = Yii )I i
( =i )(9i+1,j - yij )_ (I i+1] T Iij Xyi,j—l = Yij )]

(l iji-1 i )Ay|+}/1 ( i+1,j IJ )6y|+}£ ]

|\>I|—\ I\)lH I\)lH |\> |—\

(I i,j-1 -1 )AX|+yJ ( i+1L,j IJ )6X|+y J]

[imxl%j

I:i+}/2,j = Ayi+}/2,j Di*+}/2,j |:§ Idy:| - AXi+}/2,j Di*+}é,j |:_ § |dX:|
i+}/j i+}/j

oB oB

= Ayi+%,j Di*+}/2,j %[(I ij-1— )Ay|+}/ j ( i+1,j |] )6y|+}/2 ]

+AX|+}/2 i D|+}/J ;[(I ij-1 =1 )AX|+}/J ( i+L,j IJ )6X|+}/ J]

(Ayi%jAyi%j +AX,y, AX,,, | )| -
43, _(Ayi+}é,jAyi+%’j +Axi+y2‘iji+%‘j)| ij
T2 (A By, A%, 8%

|~ (Ayi%jéiyi%j + A%y 8% )fij
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Until now, we have assumed that all these integrals are being evaluated for the solution of the diffusion equation at cell i,j. For integral F iy consider the

relationship between this integral for cell i,j and for cell i-1,j.
i

Fiijj+}/z - JdSi,nHi,j[ni”;n% ‘(Dvl)i,ﬁ%]
i,j+1
i,j+1

- J(— dsi,jai,j+l)[niij;1'+% ' (DVI )"“yz]

i,j+1

',[dsi, j %i,j+1[(_ n.|_11+1;/2) (DVI )i,j+}/2]
]
i,j+1

- 'JA'dSi,j—>i,j+l[nii,_jij}é . (DV| )i,j+%]
]

_ i-1j
__Fi,J+%

Sincewe know F/'} by induction from the first integral that was evaluated, we can re-use thisfor F', ., .

_(Ayi,j+%Ayi,j+% +AX 1 AX Ly )I ij

i _ Di*,j+}/2 _(Ayi,j+}/2Ayi,j+}/2 +AXi,j+y2AXi,j+}/2)|i—1,j
T +(Ayi'j+yzé‘>yi’j+y2 +Axi‘j+%8xi’j+%)fi‘j

|~ (Ayi,j+;/28yi,j+}/2 +AXi,j+%6Xi,j+% )ri.j+l ]

18,5 A o+ 8 o ]
(Y, o AV, oy + 8% A%

R +(AYi.J+y25yi,j+y2 +AXi,j+%8Xi,j+}§)ri.j

|~ (Ayi,j+}§8yi,j+}/2 +Axi,j+%8Xi,j+}/2 )lAi,j+1 |

20



The sameistruefor F.”

i,j+1

|+}/2,j+1:

Fiiiyz,jﬂ = J.dS+1,j+1—>i,j+1[ﬁii£-}/2,j+l ) (Dvl )i+%,j+1]

i+1,j+1
i+1,j+1

= J.ds,j+1ai+1,j+l[(_ ﬁiiijy:,ljﬂ)' (Dvl )|+%,J+1]

i,j+1

_ _Fi,j+1

i+%,j+1

*

D

i+%,j+1

2

F(Ayi+}/2,j+1Ayi+%,j+l + Axi+}é,j+1A)§+}/2,j+l)l ij
- (Ayi+y2,j+1Ayi+}§,j+l + A)Q+%,j+1AXi+}§,j+l)l ij+1
+ (Ayi+}/2,j+18yi+}§,j+l + A)§+}/2,j+16)§+%,j+1)| i+1j+1

__ (Ayi+}§,j+18yi+}/2,j+l + A)ﬁ+}§,j+16Xi+y2,j+l)| i+l |
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Putting it all together with the following definitions:

Ay,z, = Ayi,j+}/2Ayi,j+%
Ayi2+ =AY, j+ yszi +1j+%

Ady,_ = Ayi,j

A8yi+ = Ayi+1,j+%8yi+l,j+%

AV} =AY,y i By,
Ay?, = Ay 1B 0
ABY;_ =AY,y 8,y ;
Ay, =AY,y 111y

+}§6yi,j+}é

and similarly for x, so that:

L? =Ay® +Ax*
L7, =AY/, +AX
A°_ = A8y, + Adx._
A%, = Ady,, +AdX,,

1, 1
c ot ‘AJ‘
1
coat 2A]
1
coat 2A

L3 =Ay? +AX.

L, = Ay, +AX,
A% = Ay, +AdX;_ ’
A%, = Ady;, +Adx,,

(Fi+l,j+}é - Fi+}§,j+1 - Fi,j+}é + Fi+y2,j ): —xl i + ‘Jij

2 0 2 0
+ ALl _Ai+|i+1,j+1]

i+ i+,

D, . |21

i+1j+% L+ T,
* 2
- Di+y2,j+1[_ Lj+|i,j+1
o N I L )
* 2
+ Di+}/2,j [Lj—li,j—l

(D" 12]

i+ i+ i+

-2

i+ ij

+ A% T ]

j+ i+,

FL2 0. A2

j+ij j+ i+

+AZT ]

i,j+1
2 2 0
L3 0 + A%

i+1,j

+D L2

g+

+(D; A2, + D A2

i+1,

+ Di*—Liz—I i1,
* A2 * a2\
+(D, A%, + D A2 )i

i,j+1
- (Di*+A?+ + D:+A21+ )I i+1,j+1 (D:—Ai + DI—AZJ— )I ij
—(D;, L5, + D7 +D;, L7 +D_LI)I,

j+ i+ i- i i+ i

*

22



If we now introduce the general assumption that the vertex-centered values are linear combinations of the 4 surrounding cell-centered values:

L = Y:jﬂ’jﬂl i T Y::irll ivj T Y:,Jrjlijlﬂl ijat Y:ﬁiﬁl i+1.j417
then,
(0.2 +y3i[Dr A2, + D A2 |-y D) A2, + D), A2 iy
+ (D:+ LT+ + Y:J:i[D;AzH + Di*—Azi—]_ FY:+11+J1+1[D:+A?+ + D;+A2j+])|i,j+1
+(D] L2 +y24{D; A%, + D) A |-y, D7 A2 D) A2 i
+ (D;—sz— + Y:,Jrjlijl[Di*JrAzn + D;—Azj—]_ Y:j,j—l[Di*—A?— + D;—Azj—])l -1
D|,L%, +D L7 + DL, +D; L%
1a|ij 1 i+1,j[ £ 42 ) ] i,j+1[ ) * 2]
Eﬁ—m — =7 IDLAL + DA =y DA+ DAL =—«ly + J;
T+t pag, + 07,A% 4 v [D A2 4 D) A2 ]
+y DA DA% D
+ ’Y:_Jl+j|.[D:+A21+ + D:—A?— ]I i-1,j+1
- Y::i}:i[D;AZH + DI+A21+:|I i+1,j+1
= Y:j,j—l[Di*—Azi— + D;—Azj—]li—l,j—l
111"
EW iajalionga Bl B alivn o HBia L By F B jlive; T B jealiin o B0 uali ja +Biva ja! i+1,j+1) =-xl; + J;
|t
Binjalin;atBijali ot Bisjalivnja tBia ey H ol B Vi ¥ B jualion jon H B el jia P B jalivnjon = CA:n% J;
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where

o; =B +;+K
T cat™

1 e
Bisja= in]le(DiAi + DJ*AJ*)
Bi.j—l = ﬁ(D;—Lﬁ— + Y:,Jrjlijl[DilA?Jr + D;—Azj—]_ Y:j,j—l[Di*—Azi— + D;—Azj—])
]
B = ﬁv:flf}_l(D:+A:+ +D].A,)
j

A2 DA -y D A2 + D72 )

Tt

Bi—l.j :__1(D‘* L +Y:'—j1J,rjl[D

Al

Bij = ﬁ(D:+LT+ + DI*— I‘|2— + Di*+ I‘|2+ + D:—LT— - ’Y:jﬂ’j [D:+A?+ + D;—Azj—]_ Y:j’j+1[D;+A2j+ + D:—A?—]-i_ Y:j+1’j+1[Di*+A2i+ + D;+A2j+]+ Y:: [Di*—Az‘— + DI—Azj—])
i

Bi+1.j = 2‘_—'6::-‘(Di*+ I‘|2+ + ’Y::H [Di*+A?+ + D;—Azj—]_ ’Y:ﬁrl[D;Ai + D:+A21+])

i

1 g (e e e

Bi—l.j+1 = in—ﬂJrl(Di—Ai— + Dj+Aj+)
By = _,Z“—A1‘<D;+Lﬁ+ w4y 2, + D) A (D2, + DA )

]
Bi+1.j+1 = Z‘LAY:ﬁiﬁ(D;AL + D;+A*j+)

|

Note that for an orthogonal mesh, either Ay or dy vanishesfor all sides (and similarly for Ax or dX ), and therefore A vanishes for al sides, leaving the 5-pt
stencil:
D, L% D L2 D, _L5_+D L’ +D L7, +D, L, 1 DL} D, L5, L Y3
LT AR i

REDED i ¥ 27| toarE T EN

2A|

i+,
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