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Introduction: The time-stratigraphic formulation of
major events in lunar history has a long and continu-
ing usefulness [1].  On the other hand, a descriptive
formulation, based on the geological character of major
lunar features [2] but consistent with the time-
stratigraphic system, may enable broader multidisci-
plinary discussions of lunar and planetary evolution.
The following is an updated general outline of such a
perspective [3], the “Apollo Model 2000:”

Stage 1  : Beginning (Pre-Nectarian)  – 4.57
b.y. before present
Stage 2  : Magma Ocean (Pre-Nectarian)  –
4.57 - 4.2(?) b.y.
Stage 3  : Cratered Highlands (Pre-Nectarian)  –
4.4(?) - 4.2(?) b.y.
Stage 4  : Large Basins –(Pre-Nectarian - Lower
Imbrium) – 4.3(?) - 3.8 b.y.

Stage 4A   : Old Large Basins and
Crustal Strengthening (Pre- Nectarian)
– 4.3(?)  - 3.92 b.y.
Stage 4B   : Young Large Basins (Nec-
tarian - Lower Imbrium) – 3.92 - 3.80
b.y.

Stage 5  : Basaltic Maria (Upper Imbrium,
primarily) – 4.3(?) - 1.0(?)
Stage 6  : Mature Surface (Upper Imbrium,

Copernican and Eratosthenian) – 3.80
b.y. - Present.

This descriptive approach and details supporting it
bring to light significant discrepancies within currently
popular hypotheses relative to the origin of the Moon
and its thermal evolution.  These hypotheses are: (1)
the giant Earth impact hypothesis for the origin of the
Moon based largely on the Earth-Moon system's high
angular momentum, and (2) a thermal evolution hy-
pothesis based on an assumption that the present het-
erogeneous crustal distribution of radioactivity and
related components reflects a primordial distribution.
More likely explanations for lunar origin and thermal
evolution, respectively, appear to be (1) post-accretion
capture and (2) large impact initiated concentration of
radioactivity and related components initially con-
tained in a globally homogeneous zone at the base of
the crust.

Lunar Origin: Evidence of a significantly
undifferentiated lower lunar mantle [10,11,12,13] and
constrained initial conditions for models of an Earth-
impact origin for the Moon [4,5,6,7] suggest a lunar
origin by capture [3,8] of an independently evolved
small planet.  Capture appears to better explain the
geochemical and geophysical details related to the
lower mantle of the Moon and to the present distribu-
tion of elements and their isotopes [3,9,10,11].

Geochemically, the source of the volatile
components of the Apollo 17 orange glass and the
Apollo 15 green glass apparently would require source
regions below the degassed and differentiated magma
ocean [3] in a relatively undifferentiated primordial

lower mantle.  In contrast to the differentiated upper
mantle and crust of the Moon, the orange glass con-
tains primitive (non-radiogenic) lead [10], chondritic
tungsten [11], higher alumina [12], and distinctive
ratios of Au/Ir and Zr/Y [13].  Constraints on the total
lunar FeO additionally suggest that the Moon could
contain only a small component of the Earth's mantle
[14].

Geophysically, seismic data interpretations for
the lower lunar mantle [12,15] define an upper mantle-
lower mantle boundary at about 500 km and suggest
increased aluminum below this depth as would be ex-
pected for largely undifferentiated chondritic material.
Recent indications that an intrinsic lunar magnetic
field [16,17,18] was not active before 3.92 b.y., the
probable age of the Nectarius event [1], suggests de-
layed migration of core-forming materials which in
turn suggests an initially cool lower mantle.

Finally, the mean model age for the now ex-
tinct lunar 182Hf (half-life = 9 m.y.) and its daughter
182W is 53 ± 4 m.y., essentially the same as the iso-
chron age for the orange soil [11]. This allows only a
very narrow window for a Mars-sized asteroid and the
very early Earth to impact to form the Moon [3,19].

The above constraints increasingly support
previous hypotheses [20,2] of lunar origin through
capture of a previously accreted small planet, roughly
co-orbital with the early Earth.  The Moon's evolution
after accretion would have occurred largely independ-
ently of the Earth's.  Its capture probably took place
relatively soon after accretion due to the many oppor-
tunities presented by the co-orbiting environment [20];
however, modern modeling techniques should be ap-
plied to further constrain the probability and time of
capture and the resulting range of possible angular
momentum.

Lunar Thermal Evolution: A significant
number of workers are proposing a heterogeneous ini-
tial distribution of Th and other heat-producing iso-
topes in the Moon, along with associated components,
with a major concentration in the vicinity of the 3200
km diameter Procellarum Basin [21,22,23,24,25,26].
It remains difficult to imagine how the differentiation
of the lunar magma ocean could produce the postulated
heterogeneity.  On the other hand, such an initial dis-
tribution may not be necessary to explain the existing
radioisotope distribution [27] if we consider the poten-
tial effects of an extremely large Procellarum impact
event.

To evaluate the effects of a Procellarum event,
the change from non-mascon basin formation to mas-
con basin formation during the Large Basin Stage of
lunar evolution must be understood.  This change in
isostatic response indicates that the residual magma
ocean liquid had not solidified at the beginning of this
stage.  Solidification and the resulting strengthening of
the crust, however, took place during the Stage in re-
sponse to deep crustal and upper mantle disruptions
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resulting from early large impacts.  Once the residual
liquid had moved into the crust and solidified, later
basins would not have fully adjusted isostaticly and
could become the loci of mascons  [28].  Workers gen-
erally have concluded that this global residual magma
ocean, enriched in radioisotopes, is equivalent to urK-
REEP [29], the precursor of the upper crustal KREEP
component detected in Apollo samples [30] and by
remote sensing [31] in the vicinity of the Imbrium
Basin and its surrounding ejecta.

A Procellarum event specifically is suggested
by lunar mapping [1], by unusually thin crust beneath
the basin [32,33], by unusually thick crust west of the
basin [32], and by an annulus of increased Fe+Ti along
portions of the basin's postulated rim [27].  The above
consideration of crustal strengthening during the Large
Basin Stage and the later impact degradation of basin
features indicate that the event would have taken place
at about 4.3 b.y. during the Cratered Highland Stage
and before solidification of the magma ocean's residual
liquid (urKREEP).  The response of the global shell of
residual magma ocean liquid at the top of the mantle
to the instantaneous release of lithostatic pressure
would be to migrate toward the Procellarum region.
Regional surface eruptions of residual liquid, contami-
nated with crustal debris, may well have occurred.
Cryptomaria [34,35] exposures should be evaluated
with this possibility of ~ 4.3 b.y. old KREEP erup-
tions in mind.  The coincidental Imbrium event in the
thin crust near the center of the Procellarum Basin ex-
cavated and possibly re-melted concentrations of
KREEP, producing the major distribution patterns
seen today.

Upper mantle regions surrounding Procel-
larum would be depleted in residual liquid in response
to this event.  This depletion, along with the absence
of an Imbrium-scale coincidental event, probably ex-
plains the lack of a strong KREEP signal in the vicin-
ity of the far side South Pole-Aitken Basin. The pres-
ence of a small, positive KREEP signature in South
Pole-Aitken, however, supports a globally concentric
distribution of urKREEP liquid at the end of magma
ocean differentiation.  Additionally, the absence of
significant mare basalt in the South Pole-Aitken region
[27] may be partially related to the depletion of upper
mantle KREEP along with the removal of upper
crustal, cratered highland's debris [3].  Without signifi-
cant insulating crust and KREEP-related heat sources,
a reverse wave of mantle melting to produce mare ba-
salts would not occur.
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INTRUSION
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APOLLO MODEL OF LUNAR EVOLUTION

         INSULATING
CRATERED
HIGHLANDS
AND EJECTA

(TRANSITION
        ZONE)

©Harrison H. Schmitt
University of Wisconsin-
Madison

=   200km

      KREEP BASALTS

     OLIVINE AND 
 LOW CA-
 PYROXENE
 CUMULATE

  OLIVINE
CUMULATE

      OLIVINE AND
HIGH CA-PYROXENE
CUMULATE

  CONSOLIDATED
PLAGIOCLASE
CUMULATE

     OLIVINE, HIGH
CA-PYROXENE,
AND ILMENITE
CUMULATE

BASALTIC MARIA STAGE
        3.7-3.5 B.Y.

PROCELLARUM BASIN

      ILMENITE
CUMULATE 
MASSES

       BASALT INTRUSIONS
OF PRESSURE-RELEASE
MAGMAS 

SOUTH POLE-
AITKEN BASIN

         SOLIDIFIED 
IMPACT MELT 
SHEET

                 YOUNG  LARGE
MASCON BASINS

MG-SUITE
INTRUSIVES

MG-SUITE DEBRIS

KREEPY BASALT
EXTRUSIVES

  BURIED CRYPTOMARIA

FExNIySz LIQUID CORE

IMBRIUM

TRANQUIL.
ORIENTALE

PROGRADE THERMAL
EXTENSION FRACTURE

KREEPY IMBRIUM
EJECTA

TI-RICH BASALT
PARTIAL MELTS

REMANENT
MAGNETIC
ANOMALY

TI-BASALT
EXTRUSION/
INTRUSION

H2 MIGRATION

         PARTIALLY DEPLETED
 CHONDRITIC LOWER MANTLE

(ZONE OF DEEP 
MOON-QUAKES)

ZONE OF ISOLATED FExNIySz

 LIQUID MASSES

BASALT PARTIAL
MELTS

BASALT EXTRUSION/
INTRUSION

PYROCLASTIC
ERUPTIONS

15



APOLLO MODEL OF LUNAR EVOLUTION

         INSULATING
CRATERED
HIGHLANDS
AND EJECTA

(TRANSITION
        ZONE)

©Harrison H. Schmitt
University of Wisconsin-
Madison

=   200km

      KREEP BASALTS

     OLIVINE AND 
 LOW CA-
 PYROXENE
 CUMULATE

  OLIVINE
CUMULATE

      OLIVINE AND
HIGH CA-PYROXENE
CUMULATE

  CONSOLIDATED
PLAGIOCLASE
CUMULATE

     OLIVINE, HIGH
CA-PYROXENE,
AND ILMENITE
CUMULATE

BASALTIC MARIA STAGE
3.5-3.0 B.Y.

PROCELLARUM BASIN

     ILMENITE
CUMULATE
MASSES

       BASALT INTRUSIONS
OF PRESSURE-RELEASE
MAGMAS 

SOUTH POLE-
AITKEN BASIN

         SOLIDIFIED 
IMPACT MELT 
SHEET

               YOUNG  LARGE
MASCON BASINS

MG-SUITE
INTRUSIVES

MG-SUITE DEBRIS

KREEPY BASALT
EXTRUSIVES

BURIED CRYPTOMARIA

FExNIySz LIQUID CORE

IMBRIUM

TRANQUIL.

ORIENTALE

  PROGRADE THERMAL
EXTENSION FRACTURE

KREEPY IMBRIUM
EJECTA

TI-RICH BASALT
PARTIAL MELTS

REMANENT
MAGNETIC
ANOMALY

TI-BASALT
EXTRUSION/
INTRUSION

H2 MIGRATION

         PARTIALLY DEPLETED
 CHONDRITIC LOWER MANTLE

(ZONE OF DEEP 
MOON-QUAKES)

ZONE OF ISOLATED FExNIySz

 LIQUID MASSES

 BASALT PARTIAL
  MELTS

BASALT
EXTRUSION/
INTRUSION

MIXED PYROCLASTIC
AND LAVA 
ERUPTIONS

PYROCLASTIC
ERUPTIONS
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APOLLO MODEL OF LUNAR EVOLUTION

         INSULATING
CRATERED
HIGHLANDS
AND EJECTA

(TRANSITION
        ZONE)

©Harrison H. Schmitt
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=   200km

      KREEP BASALTS

     OLIVINE AND 
 LOW CA-
 PYROXENE
 CUMULATE

  OLIVINE
CUMULATE

      OLIVINE AND
HIGH CA-PYROXENE
CUMULATE

  CONSOLIDATED
PLAGIOCLASE
CUMULATE

     OLIVINE, HIGH
CA-PYROXENE,
AND ILMENITE
CUMULATE

BASALTIC MARIA STAGE
3.0-2.0 B.Y.

PROCELLARUM BASIN

    ILMENITE
CUMULATE 
MASSES

       BASALT INTRUSIONS
OF PRESSURE-RELEASE
MAGMAS 

SOUTH POLE-
AITKEN BASIN

         SOLIDIFIED 
IMPACT MELT 
SHEET

                    YOUNG  LARGE
MASCON BASINS

MG-SUITE
INTRUSIVES

MG-SUITE DEBRIS

KREEPY BASALT
EXTRUSIVES

BURIED CRYPTOMARIA

FExNIySz LIQUID CORE

IMBRIUM

TRANQUIL.
ORIENTALE

 CLOSED EXTENSION 
FRACTURE

KREEPY IMBRIUM
EJECTA

TI-RICH BASALT
PARTIAL MELTS

REMANENT
MAGNETIC
ANOMALY

TI-BASALT
EXTRUSION/
INTRUSION

         PARTIALLY DEPLETED
 CHONDRITIC LOWER MANTLE

(ZONE OF DEEP 
MOON-QUAKES)

ZONE OF ISOLATED FExNIySz

 LIQUID MASSES

BASALT PARTIAL
MELTS

BASALT EXTRUSION/
INTRUSION

MIXED PYROCLASTIC
AND LAVA 
ERUPTIONS
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