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Abstract

Time-dependent radiative transport is important in inertial confinement of fusion

targets. The target must be illuminated with as symmetric a source as possible to

ensure an isentropic compression. Once the fusion event begins, energy is taken away

from the burn via radiation transport. This process represents a large percentage of the

total energy loss. Similarly, neutron transport is important to calculate accurately as it

influences neutronic heating and the time-dependent neutron spectrum. Both radiative

and neutronic transport are valuable as a diagnostic tools.

Four time-dependent finite media benchmarks were calculated using the time-dependent

integral method. The four benchmarks that were produced are: homogeneous Cartesian

with uniform source, homogeneous Cartesian with localized source, homogeneous spheri-

cal with localized source, and heterogeneous Cartesian with localized source. The bench-

marks were calculated using the subtraction of singularity method, solving for the un-

collided flux analytically and numerically solving for the collided flux. Time-dependent,

heterogeneous, integral kernels were derived for point, line, and planar geometries. These

kernels are newly developed to the field of radiative integral transport.

The Time-Dependent Bubble Integral Transport (TBIT) method was introduced.

The technique follows the causality of the particles exactly without the need to save

the complete history of the problem. The method was benchmarked against the four

finite media, time-dependent benchmarks. In Cartesian coordinates, the TBIT method

produced errors of no more than 1.6in three-dimensional spherical coordinates of 6.5

The TBIT method was applied to two problems typical to Inertial Confinement of

Fusion devices. A three-dimensional spherical capsule illumination was simulated for a

two, four, and six laser entrance hole spherical hohlraum. As the surface area of the

laser entrance hole gets larger, the capsule illumination becomes more non-uniform. The
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TBIT method predicted that the greater the number of laser entrance holes, for equal

surface areas, the more uniform the capsule illumination. The second application was for

a neutron time of flight diagnostic found on experimental ICF devices. The simulation

showed that scattering effects from the walls would shift the detected spectrum only a

small amount.
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Chapter 1

Introduction

Fusion has several distinct advantages over traditional forms of energy production. First,

the elements used in fusion are plentiful and easily obtained. Second, fusion waste prod-

ucts are typically light stable rather than heavy radioactive nuclei. Finally, the fusion

reaction produces copious amounts of energy. One of the most promising fusion reactions

for energy production is the DT reaction, as shown in Eqn. 1.1.

D + T → α (3.5MeV ) + n (14.1MeV ) . (1.1)

Although fusion has several distinct advantages for energy production, there is a

considerable price to pay. The ions that fuse together are positively charged. As a result,

their initial kinetic energy must be high enough to overcome their mutual Coulombic

repulsion. Typically the reactants must be heated to some 100 million degrees, or 10 keV,

before thermonuclear fusion can occur. Several methods have been used to initiate fusion.

One such approach controls the fusion process through the use of inertial confinement

To begin the inertial confinement fusion (ICF) process, sufficient energy must be

transported to compress the target to 1,000 times the density of water [2]. This transport

can occur in one of two ways. The target can either be directly illuminated with laser

or ion beams, whereby the lasers or ions travel straight from their source and strike the

target, or the target can be indirectly illuminated. For this second method, the lasers or

ions strike a cylindrically shaped high-Z material, called a hohlraum. The areas on the

hohlraum where the beams strike heat up and produce X-rays, which then proceed to

illuminate the target. Figure 1.1 shows an ICF hohlraum and DT containing fuel capsule
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Figure 1.1: ICF Hohlraum and Capsule (Courtesy of LLNL)

next to a dime for size comparison. In either case, direct or indirect drive, the goal is to

illuminate the capsule with as uniform a source as possible.

The implosion of the target begins when the energy beams strike and ablate off

the outer portions of the capsule driving a shock wave inward. Once the shock wave

converges at the center of the pellet, a small central region achieves the pressures and

densities necessary for thermonuclear fusion. This region then ignites, thereby creating

a thermonuclear spark which heats up adjacent cooler layers causing the fusion reaction

to propagate outward.

The key to an efficient burn is the propagation of the reaction from the central region

of the target. The outer layers must remain cool while they are being compressed so that

the compression is as isentropic as possible. In this way only a small central volume is

given the thermal energy needed to initiate thermonuclear fusion. The outer regions are

then compressed and heated by a self sustained reaction that was initiated by the central
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spark, lowering the initial energy requirement by a factor of ten [3].

An ideal isentropic compression of the outer layers of the target is difficult to obtain.

Alpha particles produced in the burn have relatively short mean free paths. As a result,

they deposit their energy in areas adjacent to the thermonuclear burn, lowering the energy

requirement by allowing the outer layers to be compressed while still being relatively cold.

However, the 14.1 MeV neutrons that are produced in the fusion process have much

longer mean free paths. In DT targets, the fuel pellet is compressed to an areal density,

ρR, between 3 to 6 g/cm2 [4]. The mean free path of DT neutrons multiplied by the

density of the DT target is roughly 5 g/cm2 [5]. Thus, neutrons can interact with the

background plasma and deposit a fraction of their substantial 14.1 MeV kinetic energy.

In general, the performance potential of ICF targets is limited by: entropy changes,

fluid instabilities, asymmetries, poor absorption, and poor implosion efficiencies. An

optimum target design incorporates methods by which each of these are controlled [6].

1.1 Time-Dependent Radiative Transport

Radiation transport plays a critical role throughout the entire ICF process. To begin

the implosion, the target must be illuminated with a symmetric source of radiation. The

energy is transported into the target which ablates off the outer surface and drives a

shock wave in towards the center. If any part of this calculation is modeled incorrectly,

a non-uniform implosion could occur, which would degrade the target’s performance.

Once the shock wave converges into the center of the target, a small spark region is

formed and thermonuclear fusion can occur. The plasma created in the implosion process

emits and reabsorbs X-rays. During the thermonuclear burn, the energy contained within

the radiation field is roughly the same order of magnitude as the thermal energy contained

within the plasma [7]. When the energy in the radiation field is comparable to the energy



4

found within the plasma, the radiation and material time-dependency must be advanced

simultaneously [8].

The hot plasma in the center of the target will lose energy via radiation transport

to the outer regions of the target. In many target designs a high-Z material surrounds

the capsule to prevent radiation loss. Nevertheless, this radiation loss represents a large

portion of the total energy of the system and must be calculated correctly in order to

model the thermonuclear burn of the system [9].

Radiation transport from the target capsule provides valuable diagnostic informa-

tion. Spatial and temporal measurements of the radiation field are the primary source of

information for the implosion and subsequent burn.

1.2 Time-Dependent Neutron Transport

Neutronic heating is detrimental to the ideal isentropic compression. Unlike the charged

alpha particles, neutrons deposit their energy throughout the interior of the pellet, which

heats up the outer layers before they are compressed. Calculations considering the trans-

port of neutrons show that neutronic heating is an important process in the burn phase

of reactor grade ICF pellets. Simulations show that if neutron heating is neglected, the

fuel gain of DT pellets is overestimated [10, 11]. The simulated target was a DT pellet

compressed to an areal density of ρR = 4.3 g/cm2 [4, 12]. The rate of neutron energy

deposition is calculated using the following KERMA-factor method:

Pn,i(�r, t) =
∑
j �=e

∫
nj(�r, t)Kj(E)φn(�r, E, t)dE (1.2)

Pn,e(�r, t) = 0, (1.3)

where: Pn,(i,e) is the volumetric heating rate for ions or electrons, Kj(E) is the total

neutron KERMA factor of species j, nj at the current number density [12], and φn(�r, E, t)

is the scalar flux. These calculations showed that without the inclusion of neutronic
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heating the gain of reactor grade pellets, at ρR = 6 g/cm2, is overestimated by roughly

15%. This overestimation becomes even greater with increasing values of ρR.

Neutrons deposit some of their kinetic energy into the plasma causing the pellet to

disassemble and terminate the thermonuclear burn sooner than if neutronic heating is

neglected. The expansion of the pellet then broadens the energy spectrum of neutrons

leaving the target.

Time-dependent and steady-state calculations for the neutron spectrum emanating

from a target have been compared [4]. In both cases the energy distribution peaks around

14.1 MeV, which is the uncollided kinetic energy of neutrons freely escaping the capsule.

However, in the time-dependent analysis neutrons can have energies greater than 14.1

MeV if they are emitted in the same direction as the expanding medium. The average

energy of neutrons leaving an expanding target is approximately 10 MeV; whereas, the

average energy of neutrons leaving a steady state capsule is only 9 MeV. When the target

is compressed to an areal density of 6 g/cm2, roughly 60% of the kinetic energy is carried

away by escaping neutrons [4].

A reliable neutron spectrum is essential for the calculation of the tritium breeding ratio

and the design of ICF reactor blankets. Therefore in order to obtain the most reliable

results, a time-dependent calculation must be performed. Many different attempts have

been made to couple neutron transport to the hydrodynamics of the ICF target. They

range from simple analytical steady-state collisional methods, to moderately complex

diffusion based calculations, and finally to large scale time-dependent discrete ordinate

and Pl codes [10, 13, 14, 15].
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1.3 Introduction to Research

The question then becomes, how much time-dependent transport is enough? A possible

solution would be to combine the target hydrodynamics with a time-dependent discrete

ordinates code such as TIMEX [16]. However, this coupling would increase the already

substantial run-time for target simulations. On the other hand in order to optimize

computer run-time, a simple representation for radiative transport may be included.

However, incorrect modeling of the radiation transport can predict vastly differing results

than those obtained experimentally.

The following research was to develop time-dependent integral transport methods

such that they can be used in Inertial Confinement of Fusion systems. Chapter 2 will

review some of the other methods by which radiative transport can be implemented in

ICF systems.

As there are no finite-media benchmark calculations for time-dependent neutral par-

ticle transport, a sizable amount of work was devoted to producing benchmark quality

time-dependent results. Chapter 3 will describe how these results were obtained and

present four one-dimensional, time-dependent, finite media benchmarking cases.

Chapter 4 will introduce the Time-Dependent Bubble Integral Transport (TBIT)

method and describe in depth the intricacies of the numerical method. The TBIT method

is compared against the time-dependent benchmarks in Chapter 5.

Chapter 6 will detail two relevant ICF applications using the TBIT method. The

first application is a presentation of a three-dimensional radiative transport simulation

of the illumination of a DT capsule within a spherical hohlraum. The second application

will be devoted to the calculation of the time-dependent energy spectrum for a neutron

time-of-flight diagnostic. Chapter 7 will give conclusions from the current work and point

to areas that need to researched further.
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Chapter 2

Literature Review

The neutral particle transport equation is a version of the Boltzmann equation used

in the kinetic theory of gases. This equation describes the transport of particles as a

function of space, �r, directional travel, Ω̂, energy, E, and time, t. The neutral particle

transport equation is:

[
1

v

∂

∂t
+ Ω̂ · �∇+Σ(�r, E, t)

]
ψ
(
�r, Ω̂, E, t

)
=

+
∫

dE
′
∫

dΩ
′
Σs

(
�r, E

′ → E, Ω̂
′ → Ω, t

)
ψ
(
�r, Ω̂

′
, E

′
, t
)
+ qex

(
�r, E, Ω̂, t

)
, (2.1)

where: ψ
(
�r, Ω̂, E, t

)
is the time-dependent angular flux, Σ (�r, E, t) is the total macro-

scopic cross section for particles with energy of E, Σs

(
�r, E

′ → E, Ω̂
′ → Ω̂, t

)
is the double

differential macroscopic scattering cross section, and qex (�r,Ω, E, t) is the source term

which can include the addition of particles resulting from fission or fusion.

Solving Eqn. 2.1 directly is an almost impossible feat to perform analytically and

difficult to achieve numerically. In general, Eqn. 2.1 has been simplified by some of the

following assumptions: time-independence, isotropic scattering, homogeneous materials,

or monoenergetic particles. Numerical calculations can then proceed without being bur-

dened by the full fledged transport equation, and analytical solutions can be found for

simple one-dimensional infinite or semi-infinite problems [17, 18].

There is a substantial amount of work in the field of neutral particle transport. There-

fore, this literature search will be limited to those methods which can, and have, been

used in time-dependent radiative transport in ICF targets.
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2.1 Multiple Collision Method

The multiple collisional method has been applied to time-dependent neutron transport

problems [19, 20, 21, 22]. Specifically, B.D. Ganapol has used multiple collision techniques

to obtain solutions for infinite and semi-infinite problems in 1-D Cartesian coordinates.

These results were then compared to calculations predicted from P1 and diffusion theory

calculations [23, 24, 25, 26, 27]. The angular and scalar flux using the multiple collisional

method are given by:

ψ (x, ν, t) =
∞∑
n=0

ψn (x, ν, t) (2.2)

φ (x, t) =
∞∑
n=0

φn (x, t). (2.3)

Assuming that the external source only feeds into the uncollided flux, then the un-

collided flux and subsequent collided fluxes are given by:

(
1

v

∂

∂t
+ Ω̂ · �∇+Σ(�r)

)
ψ0

(
�r, Ω̂, t

)
= S

(
�r, Ω̂, t

)
(
1

v

∂

∂t
+ Ω̂ · �∇+Σ(�r)

)
ψ1

(
�r, Ω̂, t

)
=

∫
4π
Σs

(
�r, Ω̂

′ → Ω̂
)
ψ0

(
�r, Ω̂

′
, t
)
dΩ̂

′

...
...(

1

v

∂

∂t
+ Ω̂ · �∇+Σ(�r)

)
ψn

(
�r, Ω̂, t

)
=

∫
4π
Σs

(
�r, Ω̂

′ → Ω̂
)
ψn−1

(
�r, Ω̂

′
, t
)
dΩ̂

′
,(2.4)

where the source term for the nth collided flux is all the neutrons in the n− 1th collided

flux which have suffered a additional collision.

The multiple collisional method was applied to finite slabs [22]. Time-dependent

analytical solutions to the second collided flux for a delta function source in time and

up to the first collided flux for a step function with a pulse width of ∆t were derived.

The calculations involved in obtaining these solutions are incredibly detailed and difficult
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to derive. However, they give valuable insight in the time-dependent properties of the

system in question.

Heterogeneous systems can be calculated using multiple collisional method [28, 29].

For heterogeneous cases, the volume of interest is divided into cells that are small enough

that the material within each cell is homogeneous and at most one mean free path length

in width [30]. The system is divided into small components to ensure that the flat flux

approximation is valid within each unit cell.

2.2 Flux Expansion by Legendre Polynomials

In multiple collision theory, the scalar and angular fluxes were broken into collided com-

ponents. Each collided component was solved using numerical integration and recursion

schemes. However, solutions could be derived from the multiple collisional method by

expanding the the scalar and angular fluxes in terms of Legendre polynomials. This ap-

proach could incorporate anisotropic scattering by expanding the cross sections in terms

of Legendre polynomials providing the means to write a fast, efficient, time-dependent

code to benchmark problems.

The monoenergetic transport equation in one-dimensional Cartesian coordinates with

anisotropic scattering and a delta function source in time and space is:(
1

v

∂

∂t
+ µ

∂

∂x
+Σ(x, t)

)
φ (x, µ, t) =

∫ 1

−1
Σs

(
x, µ

′ → µ, t
)
φ
(
x, µ

′
, t
)
dµ

′
+Q (µ) δ (x) δ (t).

(2.5)

Equation 2.5 has been shown to be expressible in the following convergent series [31]:

φ (x, t) =
e−t

t

∞∑
n=0

ctn

n!
ψn (η)H (1− |η|), (2.6)

where: η=x/vt, H is the Heaviside function, and ψn (η) is the reduced collided scalar flux

given by:

ψn (η) =
∫ 1

−1
Fn (µ, η) dµ. (2.7)
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Fn obeys the following differential recursion relation (called the reduced collision equa-

tions) [25]:

[
(µ− η)

∂

∂t
+ n− 1

]
Fn (µ, η) =

n
L∑
l=0

2l + 1

2
ωlPl (µ)

∫ 1

−1
Pl (µ

′)Fn−1 (µ
′, η) dµ′. (2.8)

ψn can be expanded in terms of η and Legendre polynomials as:

ψn (η) =
∞∑
k=0

2k + 1

2
f0
n,kPk (η), (2.9)

with the expansion coefficients given by:

f0
n,k ≡

∫ 1

−1
Pk (η)ψn (η) dη. (2.10)

Using these expansions, Equation 2.6 simplifies to:

φ (x, t) =
e−t

t

ns−1∑
n=0

(ct)n

n!
ψ (η)

+
∞∑
k=0

2k + 1

2
fk (t)Pk (η), (2.11)

where:

fk (t) =
e−t

t

∞∑
n=ns

(ct)n

n!
f0
n,k. (2.12)

The infinite planar geometry P1 equations have received considerable interest. Fig-

ure 2.1 shows the comparison between the time-dependent results for the neutron density

within an infinite medium of carbon containing a delta function source in time and space

against those predicted from the multiple collisional theory, P1 equations, and diffusion

theory [32]. The multiple collisional theory was carried out until its solution had con-

verged below some predetermined tolerance. This converged multiple collisional solution,

for the purposes of this comparison, was considered to be exact.

These results show that the time-dependent diffusion theory was a better approxima-

tion to the “exact” solution than the P1 equation. This conclusion is somewhat puzzling
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Figure 2.1: Comparison of Time-Dependent calculations in carbon using: (I) Multiple

collisional method, (II) P1 approximation, (III) diffusion approximation
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as diffusion approximations can not model any type of wave behavior. Although, this sys-

tem should possess a wave of neutrons that stream out from the delta function source in

the center of the infinite medium. In addition, the further away particles travel from the

source, the better the approximation diffusion theory becomes. This result is predictable

because as the neutrons travel further away from the source and as time increases, the

number of collisions that neutrons undergo also increases and approaches the infinite

number of collisions assumed by diffusion theory.

Higher order expansions to the time-dependent Pn equations have only been calcu-

lated numerically. Ganapol has reconstructed the time-dependent neutron flux from its

moments in the one velocity approximation. This method can treat anisotropic scatter-

ing, but is only applicable to infinite medium problems. LASNEX, a two-dimensional

hydrodynamics code has a Pn transport model for one-dimensional simulation studies [33].

2.3 Diffusion Based Calculations

There are many different methods to solve radiation transport within ICF targets. Per-

haps none are simpler to implement than a numerical scheme based on diffusion theory.

In general, hydrodynamics codes already require an inordinate amount of run-time and

the addition of extremely accurate transport methods was thought to provide little ben-

efit for the increased amount of work. Thus, diffusion based calculations have become

the method of choice for coupling with hydrodynamic codes. The LASNEX code, in

addition to having a Pn transport model, contains a diffusion based radiation transport

package [34, 35].

There are several problems that arise with the use of diffusion based calculations.

The time-dependent material temperature and photon diffusion equations can either be

coupled in an explicit or implicit fashion. With the explicit coupling, an independent
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diffusion equation is obtained for each energy group. Thus, the radiative transport can

be solved easily and quickly. However, explicit solutions are only stable for sufficiently

small time-steps [36]. Unconditional stability is achieved when using an implicit scheme.

However, the group diffusion equations are no longer independent because there is now

a common source term for each energy group that makes transport within a group de-

pendent on all the other groups [36]. The resulting set of implicit equations are solved

iteratively.

A second disadvantage with the use of diffusion theory is that diffusion approximation

is most accurate in materials where particles undergo many collisions and the mean free

path is small compared to the medium. If the material is optically thin, a calculation

using transport theory is more appropriate. Time-dependent radiation transport calcu-

lations for high-Z materials using diffusion base techniques produce results that compare

favorably to experimental results. However, diffusion calculations for low-Z materials,

such as plastic, predict incorrect behaviors [7]. A high-Z material scatters X-rays to a

much greater extent than a low-Z material. The greater the number of scattering events,

the more applicable diffusion theory becomes and hence better results are obtained.

2.3.1 Radiation Diffusion on an Eulerian Mesh

The time-dependent, frequency-integrated radiation diffusion equation is [37]:

1

c

∂E

∂t
= �∇ ·

(
D�∇E

)
− κpρE + κpρθ, (2.13)

where: E=aT 4
R is the radiation energy density, TR is the radiation temperature, c is

the speed of light, t is the time, D= 1/3κRρ is the radiation diffusion coefficient, κR is

the frequency integrated Planckian opacity, ρ is the mass density, θ=aT 4, and T is the

material temperature. The first term on the right hand side is the divergence of radiation

as it is transported through the material. The last two terms represent the absorption
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and blackbody emission of radiation, respectively.

Under equilibrium conditions, the material temperature is equal to the radiation tem-

perature. This is the one temperature approximation (T). There are many types of rep-

resentations for the two-temperature (2T) non-equilibrium radiation diffusion equation.

One such approximation assumes that the materials are grey (no frequency dependence),

then the simplest formulation is to use two temperatures, Tradiation and T , for the two

Planckian opacities [37]. Likewise, a three-temperature scheme (3T) would include tem-

peratures for ions, electrons, and radiation.

The radiation energy density was assumed to be constant throughout the interior of

each cell. The Eulerian cells are then fixed throughout the simulation. However as will

be discussed later in this section, the cells can be adapted to the hydrodynamic evolution

of the problem.

For this particular example of a diffusion based calculation on an Eulerian mesh,

cylindrical geometry was used, Figure 2.2. The average energy in a cell was defined

as [37]:

Ei,j =

∫
i,j E (r, z)

Vi,j
. (2.14)

The volume averaged absorption term for each cell is [37]:

(κpρ)j,k Ej,k =

∫
j,k κPρEdV

V j,k
. (2.15)

The volume integral of the divergence term becomes a surface integral:

1

Vj,k

∫
j,k

�∇ ·
(
D�∇E

)
dV =

1

Vj,k

∮
j,k

n̂ ·
(
D�∇E

)
dS =

1

Vj,k

4∑
s=1

(
ADn̂ · �∇E

)
s
, (2.16)

where: n̂ is the outward normal on each of the four faces and A is its area. The current

across each boundary is assumed to be continuous. Under these assumptions, the energy

density in each cell, defined as a volume integrated finite-differenced form, becomes:

Vj,k
c

∂Ej,k

∂t
= dj+1/2,k (Ej+1,k − Ej,k)− dj−1/2,k (Ej,k − Ej − 1, k) + dj,k+1/2 (Ej,k+1 − Ej,k)
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Figure 2.2: The rz coordinate system with j, k indexing scheme

−dj,k−1/2 (Ej,k − Ej,k−1)− Vj,k (κρ)j,k + Vj,k (κρ)j,k θj,k, (2.17)

where: dj,k±1/2 are the scaled diffusion coefficients that are defined such that the cur-

rent across each boundary is continuous, and E is the volume averaged energy in their

respective cell [37].

There are several different types of adaptive mesh refinements (AMR) used for Eule-

rian coordinates. One approach is to use patches where the mesh is much finer than in

the surrounding regions. With such a method the patches are coupled to the rest of the

mesh through boundary conditions [38, 39].

An alternative approach, would be to refine the spatial cells by a constant factor

of 1/2 between each level. Then, rather than use boundary conditions to match the

cells, the finite difference equations are modified to explicitly couple the cells that have

different sizes, see Figure 2.3. The current condition still holds, however, in this case the

rightward incoming current into the jth, kth cell must be equal to the combination of the
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Figure 2.3: Mesh cell with a refined cell on only one side

leftward outgoing currents from the two adjacent cells.

2.3.2 Radiation Diffusion on Lagrangian Mesh

The radiative diffusion equation can be modified for use on Lagrangian meshes. These

meshes follow the hydrodynamic evolution of the plasma, and as such are no longer static.

A rewritten form of the diffusion equation that can be used on Lagrangian meshes, as

opposed to Eqn. 2.13, is:

1

v

∂φ

∂t
+ �∇ · �J +Σaφ = S, (2.18)

where: t is the time variable, v is the particle speed, φ is the particle flux, �J is the particle

current, Σa is the macroscopic absorption cross section, and Q is the source function.
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Figure 2.4: Generalized Cell for Lagrangian Coordinates

Assuming Fick’s Law of Diffusion, the particle current is related to the particle flux by:

�J = −D�∇φ, (2.19)

where D is the diffusion coefficient.

In two-dimensional coordinates, the unit cells are quadrilateral. During each time-

step the material within the cell is homogeneous, although the bordering cells can be of

differing material. A generalized example for a unit cell in modified Lagrangian coordi-

nates is given in Figure 2.4.

The particle flux is defined at the center of each cell. A diffusion coefficient and

current is defined at each of the cell’s four boundaries. Equation 2.18, is then differenced

implicitly in time and integrated over the cell volume, as shown in Figure 2.4. The

resulting finite-differenced expression for energy conservation within each cell is [40]:

1

v

φn+1
k,l − φnk,l

∆t
Vk,l + �Jn+1

k+1/2,l · �Ak+1/2,l − �Jn+1
k−1/2,l · �Ak−1/2,l

− �Jn+1
k,l+1/2 · �Ak,l+1/2 − �Jn+1

k,l−1/2 · �Ak,l−1/2 + σa,k,lφ
n+1
k,l Vk,l = Qk,lVk,l, (2.20)

where: n denotes the time index, ∆t is the time step, Ak+1/2,l is the vector outwardly-
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directed from cell (k, l) and normal to the edge at (k + 1/2, l) with a magnitude equal

to the area associated with that cell edge, Ak,l+1/2 denotes a vector outwardly directly

from cell (k, l) and normal to the edge at (k, l + 1/2) with a magnitude equal to the

area associated with that cell edge, and Vk,l denotes the cell volume. As presented in

Section 2.3.1, the current across each of the boundaries is conserved. Once the current

across each of the boundaries and the cell centered flux is calculated, the hydrodynamics

calculations can then proceed. The hydrodymanic calculations will distort the boundaries

of each individual cell; however using this technique, the unit cells must be quadrilaterals.

2.3.3 Flux-Limited Diffusion Theory

Unfortunately, the standard diffusion equation is not a very good approximation for

the transport of particles through optically thin materials. As a result several “fix-up”

methods have been proposed to adjust the diffusion equation such that it produces better

results. One such method is based on the principle of flux limiting.

Standard diffusion theory makes the assumption that Fick’s Law of Diffusion is valid,

Eqn. 2.19. This law simply relates the particle current to the gradient of the particle flux.

However, in certain cases in which |φ/∇φ| < λmfp the solution to the diffusion equation

can produce results in which the current is larger than the product of the particle’s speed

and flux. An ad hoc flux limiter is introduced by rewriting Fick’s law as [41, 42, 43]:

�J = − 1

Σtr

[
3 +

|�∇φ|
Σtrφ

] �∇φ. (2.21)

If the mean free path of the particles is short, then in the limit �∇φ → 0, Eqn. 2.21

converges back into Fick’s Law. If on the other had the mean free path is long, �∇φ → inf,

then the diffusion coefficient converges into the free-streaming limit.

The advantage of the flux-limited diffusion theory is that it uses existing diffusion

based methods and with little modification produce more consistent results [43]. However,
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the choice for the new diffusion coefficient, Eqn. 2.21, is completely arbitrary. This

particular form of the diffusion coefficient was chosen because in the limit of long and

short mean free paths its behavior was consistent.

2.4 TIMEX - Time-Dependent Discrete Ordinates

TIMEX, is a time-dependent one-dimensional discrete ordinates radiation transport code

which uses finite element methods for the spatial discretization and Legendre polynomial

expansions of the scattering function in order to solve the Boltzmann transport equation

with anisotropic scattering, Eqn. 2.22 [44, 45, 46, 47, 48]. Discrete ordinates codes

solve the transport equation along predetermined directions. These directions are then

integrated using highly accurate quadrature sets, preferably Gaussian.

TIMEX has been successfully integrated into several hydrodynamics codes. G. Ve-

larde has modified TIMEX to include the addition of Lagrangian coordinates by modify-

ing the standard Boltzmann equation with a divergence term which will take into account

the hydrodynamic evolution of the spatial mesh [49]. This modified transport equation

is: [
1

v

∂

∂t
+ �∇ ·

(
Ω̂− �u

v

)
+Σ(�r, E, t)

]
ψ
(
�r, Ω̂, E, t

)
= qex

(
�r, Ω̂, E, t

)

+
∫

dE
′
∫

dΩ
′
Σs

(
�r, E

′ → E, Ω̂
′ · Ω

)
ψ
(
�r, Ω̂

′
, E

′
, t
)
+ S

(
�r, E, Ω̂, t

)
. (2.22)

Radiation energy deposition for both neutrons and prompt gamma rays is calculated

using KERMA-factors (Kinetic Energy Release in MAterials) [50]. KERMA-factors

assume that the energy deposition for the particles occurs locally, at the spot where the

original interaction between the high energy photon/neutron occurs. The ions are then

transported through the plasma depositing their energy before slowing down.

The hydrodynamics code MEDUSA-KA-TIMEX has been developed by B. Goel and

W. Hoebel to include time-dependent high energy neutronic effects in ICF targets [10].
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Unlike the previous method, the transport in MEDUSA-KA-TIMEX does not occur in

Lagrangian coordinates but in Eulerian. This is because the divergence term is negligible

for these higher energy neutrons. The resulting calculation for a time-dependent neutron

spectrum emanating from a DT target is similar to those presented by [4].

The use of discrete ordinates is not always the best solution method. Kornreich

compared the accuracy of the ONEDANT discrete ordinates code to results obtained

using the Fn method for the thickness of critical slabs [51]. The Fn method uses the

Placzek lemma to establish a system of singular integral equations and constraints [52].

The Fn method has been shown to yield concise and accurate results for problems with

semi-finite and finite slabs [53]. Although these results are for steady state calculations,

they showed that the Fn method converged to the same accuracy as the discrete ordinates

method using only half the number of spatial mesh cells.

2.5 Integral Transport Methods

Although the use of discrete ordinate or Monte Carlo codes is widespread in solving

problems with neutron transport, there are cases for which direct numerical solutions of

the integral form of the Boltzmann Equation becomes attractive. The resulting integral

equations are weakly singular in nature [54].

2.5.1 Manipulation of the Angular Flux

Munier manipulated the time-dependent radiative transfer equation for one-dimensional

Cartesian coordinates without scattering. He then transformed this equation into an

integral equation in terms of the angular flux. [55]. The one-dimensional Cartesian neutral

particle transport equation without scattering is:

1

c

∂I

∂t
+ µ

∂I

∂x
= K (t, x, ν, µ) [B (t, x, ν, µ)− I ] , (2.23)
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where: I is the photon intensity, K (t, x, ν, µ, ) is the photon opacity, and B (t, x, ν, µ, ) is

the photon emission rate. Equation 2.23 is solved for the following arbitrary boundary

condition:

I (t, xlim, ν, µ) = f (t, ν, µ) , (2.24)

and initial conditions:

I (t = 0, x, ν, µ) = g (t, ν, µ) . (2.25)

For a homogeneous slab with a uniform source, B (t, x) = B = constant andK (t, x) =

constant. The system of characteristics for this system is:

c
dt

1
=

dx

µ
=

dµ

0
=

dν

0
=

dI

K (B − I)
. (2.26)

From which the following is obtained:

γ = ct− x

µ
, (2.27)

where γ is the time-characteristic for the system and a constant of integration for the

homogeneous slab. Munier derived characteristics containing I [55]. This was done by

coalescing the second and the fifth terms of Eqn. 2.23 to find:

(I −B) exp (Kx/µ) = Φ0 = constant, (2.28)

or by combining the first and the fifth:

(I −B) exp (Kct) = Ψ0 = constant. (2.29)

From these equations, two expressions for the general solution of the transport solution

in a homogeneous medium are derived:

I (t, x, µ) = B +Φ0 (γ, µ) exp (−Kx/µ), (2.30)

and

I (t, x, µ) = B +Ψ0 (γ, µ) exp (−Kct), (2.31)
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where:

Φ (γ, µ) = Ψ (γ, µ) exp [−K (ct− x/µ)] = Ψ (γ, µ) exp (−Kγ). (2.32)

Munier then showed that the general time-dependent solution for radiation transport

in a homogeneous slab with an isotropic source is:

I (t, x, µ) = B +H (l − ct) [g (−γµ, µ) −B] exp (−Kct)

+H (ct− l) (f [(γ + xlim/µ) /c, µ]−B) exp [−K (x− xlim) /µ]. (2.33)

Equation 2.33 possesses several distinct components which affect the angular flux.

The first term is simply the isotropic uniform source distributed throughout the interior

of the slab. The second term is the propagation along the characteristics between the

difference in the source terms for the initial conditions and the uniform emission. This

portion of the solution is attenuated exponentially in time. The final component of the

solution is propagated along the directions of the characteristics with a magnitude equal

to the difference between the source and boundary conditions for the slab and attenuated

by the optical depth. The first and the third term of Eqn. 2.33 are just the steady state

solution for the same homogeneous system [55]. The method used to derive Eqn. 2.33

can be used to calculate the angular flux in an purely absorptive heterogeneous medium.

This integral method does have its limitations. The derivation of Eqn. 2.33 used the

assumption that the material was purely absorptive. Therefore, these type of formulations

would be of use for photon transport where the ratio of scattering to absorption is small.

However, for neutron transport, where this ratio can be quite large, this method would

have limited use.

2.5.2 Manipulation of Scalar Flux

Time-dependent integral transport kernels for a homogeneous medium in the three stan-

dard orthogonal coordinate systems were derived by Henderson and Maynard [56]. Ad-
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ditional integral transport kernels in heterogeneous media were later derived by Olson

and Henderson [57]. This method is unlike that presented in Section 2.5.1 in two ways.

First, the integral equations are formulated in terms of the scalar and not the angular

flux. Second, the method is derived for use in either a scattering or non-scattering media.

Analytical solutions for the first collided flux within slab and spherical geometry for

an infinite medium were solved and compared to existing analytical solutions derived by

other means [56]. A formalism for numerical solutions was later provided by Olson and

Henderson [58]. The time-dependent transport equation for monoenergetic particles in a

homogeneous medium with an arbitrary isotropic source is:

(
1

v

∂

∂t
+ Ω̂ · �∇+Σ

)
ψ (�r, Ω̂, t) =

Q(�r, t)

4π
. (2.34)

This differential form of the transport equation can be converted into an integral

equation using either the method of characteristics or Laplace transforms [56]. The

resulting time-dependent integral equation for the scalar flux is:

Φ(�r, t) =
∫ t

0
dt′
∫
V ′

K(�r, �r ′; t, t′)Q(�r ′, t′) d�r ′ , (2.35)

where: K(�r, �r ′; t, t′) is the time-dependent kernel and Q(�r ′, t′) is the time-dependent

source. The integration is carried out over the volume of interest V ′ from time zero

until some later time t. The source term includes contributions from both an isotropic

scattering flux and an arbitrary isotropic source:

Q(�r, t) = Σs Φ(�r, t) + S(�r, t) . (2.36)

The homogeneous kernels in the standard coordinate systems have already been de-

rived [56]. For completeness they are provided in Table 2.1. In addition, the gener-

alized heterogeneous point, planar, and two-dimensional Cartesian kernels have been

derived [57]. They are presented in Table 2.2 and derived in Appendix A.



24

Table 2.1: Time-Dependent Integral Transport Kernels in Homogeneous Materials

Geometry Time-Dependent Integral Kernels

Point Kpt(�r, �r
′
; t, t′) =

exp(−Σ v[t− t′])

4π|�r − �r ′|(t− t′)
δ

(
t− t′ − |�r − �r

′|
v

)

Plane Kpl(x, x′; t, t′) =
exp(−Σ v[t− t′])

2(t− t′)
H

(
t− t′ − |x− x′|

v

)

Spherical Shell Kss(r, r′; t, t′) =
exp(−Σ v[t− t′])

8πrr′(t− t′)
×
[
H

(
t− t′ − |r − r′|

v

)

−H

(
t− t′ − |r + r′|

v

)]

2-D Cartesian K2D,C(x, x′; y, y′; t, t′) =
exp(−Σ v[t− t′])

2π(t− t′)
√
(v[t− t′])2 − |x− x′|2 − |y − y′|2

H


t− t′ −

√
(|x− x′|2 + |y − y′|2)

v



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Table 2.2: Time-Dependent Integral Transport Kernels in Heterogeneous Materials

Geometry Time-Dependent Integral Kernels

Point Kpt(�r, �r
′
; t, t′) =

exp(−τ (�r, �r
′
))

4π |�r − �r ′ |2
δ


t− t

′ −

∣∣∣�r − �r
′
∣∣∣

v




Plane Kpl(x, x
′
; t, t

′
) =

exp
(

−τ (x,x
′
)v(t−t′)

|x−x′|
)

2(t− t′)
H


t− t

′ −

∣∣∣x− x
′
∣∣∣

v




2-D Cartesian K2D,C(x, x′; y, y′; t, t′) =
exp

(
−τ (x,x

′
;y,y

′
)v(t−t′)√

|x−x′|2+|y−y′ |2

)

2π (t− t′)
√
(v[t− t′])2 − |x− x′|2 − |y − y′|2]

H


t− t′ −

√
|x− x′|2 + |y − y′|2

v




where τ is the optical depth between two points
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The Heaviside function, within each of the time-dependent kernels, provides causality

information for a particle’s motion. A finite amount of time must pass before a particle

can affect the flux at a location other than where it was born or scattered.

This method can easily calculate problems in either infinite or finite geometries. In

an infinite medium, the integration in the spatial domain would have limits from zero to

infinity. In finite problems, the vacuum boundaries are placed as the limits of integration.

An advantage of this method is that the angular flux is handled exactly. Notice

that the solution for the scalar flux has no angular dependence. This is because the

formulation for the angular flux has already been integrated out. Therefore extremely

accurate solutions can be calculated, provided that an accurate numerical quadrature set

is used in the numerical formulation for the integrals.

There are several disadvantages with using this type of integral technique. The formu-

lation for the time-dependent scalar flux is in terms of an integration over the temporal

domain from t = 0+ until the time of interest, t. Hence, as the time increases the limits

of the integration also increase as well as the computational time for each successive

generation. Unfortunately, this disadvantage prevents this method from general use in

many time-dependent radiative transport codes. Often it is impossible to save material,

source, and scalar flux data for all the points previous to the calculational point.
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Chapter 3

Generation of Time-Dependent Benchmarks

The importance of time-dependent benchmark solutions can not be understated when

developing a new time-dependent method. Any method that has not been adequately

benchmarked places into question any results that might be calculated. Unfortunately,

very few time-dependent benchmarks exist and those that do are for problems in semi

and infinite media.

Finite media, time-dependent benchmarks were developed to adequately benchmark

the TBIT method. These benchmarks were calculated using the “standard” integral

transport method, as described in Section 2.5.2. All the benchmarks were calculated

for finite one-dimensional Cartesian and spherical geometries with homogeneous and

heterogeneous media. Chapter 3 describes these benchmarks in more detail.

The chapter is divided into three main sections. Section 3.2 discusses the mathemat-

ical theory and numerical evaluation procedure for the solution of the time-dependent

integral transport equation. The implementation and evaluation process are illustrated

and discussed using the one-dimensional, homogeneous media, planar geometry integral

equation as the basis. The integration quadrature sets and the subtraction of singular-

ity method are detailed. Difficulties with the incorporation of the causality constraint

inherent in the time-dependent Green’s functions are brought to light and the solution

for the integration over the domain of interest is presented.

In Section 3.3, time-dependent benchmark solutions are calculated using these stan-

dard integral techniques. The calculational procedure as developed by Olson and Hender-

son consists of the straight forward evaluation of a multi-dimensional integral equation
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consisting of a Volterra integral equation in the time domain and Fredholm integral equa-

tion in the spatial domain [58]. Standard classical integral evaluation techniques such as

the use of Newton-Cotes and Gregory type integration rules, the construction of double

and triple composite sets, the use of Romberg integration procedures, and the subtraction

of singularity method are all employed in the evaluation of the integrals [54,59-64]. The

standard integral method is compared to a benchmark in an infinite Cartesian coordinate

system. This was done to show the accuracy of the standard integral method.

Four time-dependent benchmark solutions in finite media using the standard integral

transport are generated:

• Uniform Source in Homogeneous One-Dimensional Cartesian Coordinates;

• Localized Source in Homogeneous One-Dimensional Cartesian Coordinates;

• Localized Source in Homogeneous One-Dimensional Spherical Coordinates;

• Localized Source in Heterogeneous One-Dimensional Cartesian Coordinates.

The chapter ends with a discussion of the the inadequacies of time-dependent diffusion

theory. Section 3.4 presents concrete examples of time-dependent results calculated using

diffusion theory and those calculated using transport.

3.1 Introduction

The importance of accurate time-dependent benchmark solutions can not be underes-

timated; however, as mentioned earlier a majority of the time-dependent benchmark

solutions are presented in infinite and semi-infinite media. Although these are of some

interest, real world problems take place in finite media and thus time-dependent bench-

mark solutions were developed in order to properly benchmark the TBIT method.
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Time-dependent finite media benchmark calculations was found using the time-dependent

analytical integral techniques first derived by Henderson and Maynard [56] and the

numerical techniques by Olson and Henderson [58]. Central to solving the the time-

dependent integral equation is the use of first flight (single collision) kernels or Green’s

functions. Henderson and Maynard derived the homogeneous media scalar flux Green’s

functions in the three standard orthogonal coordinate systems for the time-dependent

single collision kernels using Laplace transforms [56]. Olson and Henderson then derived

heterogeneous point, planar, and two-dimensional Cartesian scalar flux kernels using

similar methods [58].

The advantage of the integral formulation over the previous methods employed is the

straight forward extension to multi-dimensional finite geometries and the use of realis-

tic as well as singular source distributions. Most recently, the one-dimensional planar

geometry homogeneous medium time-dependent single collision kernel provided the ba-

sis for the development of a one-dimensional planar geometry, time-dependent collision

probability method [65].

3.2 Mathematical Theory and Numerical Evaluation Procedure for Integral

Transport Methods

The time-dependent transport equation for monoenergetic particles in a homogeneous

medium with an arbitrary isotropic source in general coordinates is:(
1

v

∂

∂t
+ Ω̂ · �∇+Σ

)
ψ (�r, Ω̂, t) =

Q(�r, t)

4π
. (3.1)

Equation 3.1 can be converted into an integral equation using either the method of

characteristics or Laplace transform techniques [47, 56]. The resulting time-dependent

integral equation for the scalar flux is:

Φ(�r, t) =
∫ t

0
dt′
∫
V ′

K(�r, �r ′; t, t′)Q(�r ′, t′) d�r ′ , (3.2)
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where K(�r, �r ′; t, t′) is the time-dependent kernel and Q(�r ′, t′) is the time-dependent

source. The source term Q(�r, t) includes contributions from both an isotropic scattering

flux and an arbitrary isotropic source:

Q(�r, t) = Σs Φ(�r, t) + S(�r, t) . (3.3)

The integral equation that is solved in Eqn. 3.2 is of the Volterra type in the temporal

dimension and of the Fredholm type in the spatial dimension. The integrations are carried

out over the volume of interest V ′ from time zero until some later time t. Straightforward

procedures for solving the multi-dimensional integrals are employed in the evaluation of

Eqn. 3.2. Solutions for homogeneous media problems in one-dimensional planar and

spherical media are considered in this chapter. The time-dependent kernels (Green’s

functions) for these geometries are presented in Table 2.1 and were previously derived in

ref. [56].

An interesting feature to note about these time-dependent scalar flux kernels is the

presence of the Heaviside function. This provides causality information for a particle’s

motion. A source particle traveling at a speed v from a point �r at a time t′ cannot

contribute to the scalar flux at a point �r at a time t unless the following condition is met;

v ∆t = ∆�r, where ∆�r = |�r−�r′| and ∆t = (t− t′). In other words, a finite amount of time

must pass before a particle can affect the flux at a location other than where it was born

or scattered. From a computational standpoint, this means that values of the external

and scattered source at the position �r ′, which have not had time to communicate with

the current position �r, are not needed to calculate the flux at the position �r.

Figure 3.1 shows a pictorial representation of how this causality information is prac-

tically used for an infinite medium in one-dimensional Cartesian coordinates. The points

(x′, t′), shown as blackened circles, are within the triangular region of communication

which extends backwards in time from the point of interest (x, t) and are therefore in-
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Figure 3.1: Communication in an Infinite Medium

cluded in the numerical evaluation of the integrals. Points outside the triangle have not

had time to affect the flux and are excluded. As the medium is infinite, the integration

extends over the region defined between the left and right moving wavefronts which are

given by the outward most circles on the triangle’s base at each time step. As time

proceeds during a numerical calculation, the triangle’s height and width of the base both

increase.

The situation for a finite region in one-dimensional Cartesian geometry is depicted

in Figure 3.2. The figure shows a vertical slab topped by a triangular region. The

boundaries of the slab are placed as the limits of integration and make up the sides

of the slab. At early times, the points (x, t) behave as though they are in an infinite

medium (hence the triangular shape) until the wavefront has had time to communicate

with the boundaries of the region. As time proceeds in a numerical simulation, the

height of the slab region increases. For two-dimensional Cartesian coordinates the region
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Figure 3.2: Communication in an Finite Medium

of integration is a vertical rectangular parallelepiped topped by an offset rectangular base

pyramid. For two-dimensional polar coordinates, the integration region would be a right

circular cylinder topped by an offset cone region. Three-dimensional Cartesian regions are

characterized by defective spherical integration regions having one or more flat surfaces.

Three-dimensional curvilinear coordinates contain defective spherical integration regions

with one or more curved surfaces.

The standard approach to solving a Volterra/Fredholm type integral equation is to

set up a system of algebraic equations based on the number of quadrature nodes and the

composite rules for the solution of multiple integrals. The usual procedure is to solve this

system of equations by direct matrix methods. However, as time proceeds the size of the

matrix increases and the matrix can become quite large. To avoid this difficulty another

approach is taken. Both Volterra and Fredholm integral equations can be solved through

the use of successive approximation [62]. Therefore, an iterative scheme is chosen to
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solve the ’mixed’ Volterra/Fredholm time-dependent integral equation instead of a direct

matrix based method. At a given time, t, we iterate the spatial values, x.

In addition to the numerical difficulties posed by the implementation of the causality

constraint, the kernels possess a singularity at the temporal point t = t′. The singular

kernels appearing in the integrals are numerically evaluated by the method of subtraction

of singularity [54, 59, 60, 61]. At a given time, t, we iterate the spatial values, x.

The following example illustrates the salient features of the time-dependent integral

transport equation, the scalar flux kernels, and the use of the subtraction of singularity

method. The time-dependent integral equation, for the scalar flux in general coordinates,

is given by Eqn. 3.2. After the substitution of Eqn. 3.3 into Eqn. 3.2, the application of

the subtraction of singularity method, and the implementation of the iteration procedure,

the following expression with iteration index n is obtained:

Φn+1(�r, t) = Σs

∫ t

0
dt′
∫
V ′

K(�r, �r ′, t, t′){Φn(�r ′, t′)− Φn(�r, t)} d�r ′

+ Σs Φ
n(�r, t)

∫ t

0
dt′
∫
V ′

K(�r, �r ′, t, t′) d�r ′

+
∫ t

0
dt′
∫
V ′

K(�r, �r ′, t, t′)S(�r ′, t′) d�r ′ . (3.4)

The first term now evaluates to zero at the singular point t
′
= t. The first term is the

collided component of the scalar flux. When t
′
= t, the Heaviside function only possesses

a value when r = r
′
; hence Φn(�r ′, t′) = Φn(�r, t) and the integrand evaluates to zero.

The third term convolutes the source term with the kernel and represents the uncol-

lided flux distribution in the medium. For simple source function distributions, this term

can be evaluated analytically. The second term can either be analytically or numerically

integrated. Improved accuracy in the solution of the integral equation is achieved through

use of analytical solutions for the second and third terms in Eqn. 3.4. Analytical solutions

were derived with the help from the Mathematica numerical software package [67]. For

example, a finite slab in one-dimensional Cartesian coordinates with width of a and a
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uniformly distributed source of strength S0, the analytical integration of the second and

third terms leads to the following expression:

Φn+1(x, t) =
∫ t

0
dt′
∫ a

0
K1D,C(x, x

′, t, t′)Σs [Φ
n(x′, t′)− Φn(x, t)] dx′ (3.5)

+
S0 +ΣsΦ

n(x, t)

Σ

([
1− e−Σvt

]

+
[
e−Σvt − e−Σx +Σx {E1 [Σx]− E1 [Σvt]}

]
H
[
t− x

v

]

+
[
e−Σvt − e−Σ(a−x) +Σ(a− x) {E1 [Σ (a− x)]− E1 [Σvt]}

]
H
[
t− a− x

v

])
.

As mentioned earlier, the integral equations are solved using an iterative process. This

is indicated through the use of the superscripts n in Eqns. 3.4 and 3.6. The scalar flux

at any given iteration (n+ 1) is calculated using the previous iterate for the scalar flux

n. To begin the iterative process, a guess for the flux at the current time and position is

required, the zeroth iterate n = 0. This initial guess can either use the solution from the

previous iteration at that point or can obtain a solution by interpolating over the previous

values of the scalar flux at the current position. A numerical interpolation scheme which

interpolates the scalar flux using up to a 5th order polynomial (six previous points) was

implemented to calculate a more accurate guess. In order to calculate the interpolating

polynomial, a simple divided difference method was used [66].

The numerical solution was found once the change in the scalar flux from the nth

to the (n + 1th) iteration is below some predetermined tolerance. Table 3.1 shows the

average number of iterations that are required to reduce the change in the scalar flux for

several tolerances run with typical one-dimensional Cartesian problems.

The numerical evaluation of Eqn. 3.6 proceeds by subdividing both the spatial and

time domains. For simplicity, the geometry of interest is divided into equally spaced

subdivisions. Time-steps are chosen such that the monoenergetic particle travels one

spatial division during one time step: ∆t = ∆x/v . The flux at the current time and

position is calculated by integrating back over previous values of the flux at all spatial



35

Table 3.1: Iterations for specific Tolerances

Tolerance Iterations

10−2 2

10−4 4

10−6 7

10−8 9

10−10 11

locations which satisfy the causality constraint. The numerical integration in both the

spatial and temporal dimensions is carried out using a 5th order Gregory integration rule

whenever possible [62].

In order to use the 5th order Gregory method, a minimum of six initial points are

needed. When there are fewer than six points in either the spatial or the temporal direc-

tion, a Newton-Cotes integration rule [63, 64] corresponding to the number of available

points is used. In the temporal dimension, at the ith time step there are i + 1 points.

For example, at the first time-step there are two temporal points available and hence the

trapezoid integration rule is used. The Romberg extrapolation procedures is employed

to obtain benchmark solutions.

3.3 Calculational Results

All the problems analyzed, except for the benchmark problem proposed by Ganapol in

Section 3.3.1 and the heterogeneous benchmark, are finite media utilizing the time-

dependent, homogeneous kernels displayed in Table 2.1. In Section 3.3.1 the time-

dependent integral transport method is compared to a benchmark problem proposed
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by B.D. Ganapol [71]. In Sections 3.3.2, 3.3.3, 3.3.4, and 3.3.5 time-dependent bench-

mark solutions for finite media in one-dimensional Cartesian and spherical geometries

are presented. Time-dependent integral calculations are compared to time-dependent

diffusion based results in Section 3.4.

In all the homogeneous benchmark solutions, the particles are assumed to have a

velocity of 1 cm/s and material properties found in Table 3.2. The only change in

the material will be in the scattering cross section. For the infinite media benchmark,

the material will be purely scattering Σs = 1.0 cm−1. The finite homogeneous media

benchmarks will have a scattering cross section of Σs = 0.9 cm−1.

Table 3.2: Material Properties for Particles in Unit Material

Total Cross Section Σ 1.0 cm−1

Infinite Media Σs 1.0 cm−1

Finite Media Σs 0.9 cm−1

Isotropic source strength 1.0 n/cm3-s

For every benchmark case, Romberg integration techniques were used. To begin the

process, 20 nodes were distributed uniformly throughout the interior of the problem.

The simulation was run and results were obtained. At that point the results were de-

fined as the R(1,1) level for the Romberg integration. The same simulation was run

again for each benchmark using twice the number of nodes and thus calculating the

R(2, 1), R(3, 1), ...R(K, 1) levels of the Romberg integration scheme until the difference

between the kth and the k + 1th Romberg integration yielded results with no less than 4

significant figures for all times and spatial positions. This criteria was satisfied in each

benchmark case after the 6th level of Romberg integration was computed with 640 spatial
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nodes distributed uniformly throughout the interior of the each particular problem.

The benchmark solution was calculated from the R(6,6) level of the Romberg in-

tegration technique using the scheme shown in Table 3.3 with the intermediate values

calculated using Equation 3.6.

Table 3.3: Romberg Integration

R(1,1)

R(2,1) R(2,2)+

R(3,1) R(3,2) R(3,3)

R(4,1) R(4,2) R(4,3) R(4,4)

...
...

...
...

. . .

R(K,1) R(K,2) R(K,3) R(K,4) · · · R(K,K)

+R (n+ 1,m+ 1) = R (n+ 1,m) +
1

4m − 1
[R (n+ 1,m)−R (n,m)] (3.6)

3.3.1 Infinite Medium Benchmark Comparison

The most active researcher involved in the generation of time-dependent benchmark

solutions has been B.D. Ganapol, who in the past has referred to himself as the “4

place theorist” [72]. He has applied the multiple collision method and the so-called

reduced collision equations to obtain benchmark solutions to isotropically emitting point,

planar and line sources within an infinite medium, to semi-infinite medium problems with

mono-directional incoming sources and to multigroup and continuous energy problems

for infinite media [71-81].

One of the methods by which the time-dependent integral transport was benchmarked
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is against semi-analytical infinite medium results [71]. B.D. Ganapol was able to derive

time-dependent semi-analytical results for the scalar flux of particles in semi and infinite

media problems. This particular comparison was for a unit source of pulsed particles

located at the origin of an infinite medium in one-dimensional planar geometry.

Particles released from the source have a velocity of 1 cm/s. Therefore, a position ‘x’

cm from the source will only have flux if ‘x’ seconds have passed for the particles to travel

from the source to that position. The medium was purely scattering with a macroscopic

interaction cross section of 1.0 cm−1. The pulsed source is defined as:

S(x, t) = S0 δ(t) δ(x), (3.7)

where S0 = 1. This is a difficult problem to solve as the source is singular emitting

neutrons only at t = 0 from the origin at x = 0.

Insertion of this source distribution into the general time-dependent integral equation,

application of the one-dimensional Cartesian coordinate kernel, and analytical evaluation

of the source component gives:

Φ(x, t) = Σs

∫ t

0
dt′
∫ ∞

−∞

e−Σ v(t−t′)

2(t− t′)
H

(
t− t′ − |x− x′|

v

)
Φ(x′, t′) dx′ (3.8)

+S0
e−Σvt

2 t
H

(
t− |x|

v

)
.

The forcing function for the integral equation represents the uncollided flux distribution

and the singularity at t = 0 is inherited from the original source function. Attempts

to solve this equation proved unsatisfactory due to the singularity at t = 0. Since the

uncollided flux is infinite at t = 0, the integration around this point must be performed

with high precision to obtain accurate results at later times. To circumvent this problem,

the following functional form for Φ(x, t) is introduced into Eqn. 3.9:

Φ(x, t) = Ψ(x, t)
e−Σvt

t
. (3.9)
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Substitution of this relation into Eqn. 3.9 leads to the following integral equation for

Ψ(x, t):

Ψ(x, t) = Σs

∫ t

0
dt′
∫ ∞

−∞

Ψ(x′, t′)t

2(t− t′) t′
H

(
t− t′ − |x− x′|

v

)
dx′ +

S0

2
H

(
t− |x|

v

)
. (3.10)

The singularities in the integrand at t′ = 0 and t′ = t are handled with the method of

subtraction of singularity as mentioned in Section 3.2.

Table 3.4, 3.5, and 3.6 show Ganapol’s results [71] compared to the results calculated

using the time-dependent integral method. The results are in excellent agreement. The

two methods agree to four significant figures throughout the entire simulation. In addition

only at four points, as indicated with underscores in the table, do the two methods differ

at the 5th significant figure. This comparison shows that highly accurate solutions can

be obtained using the time-dependent integral formulation.

Although Table 3.4, Table 3.5 and Table 3.6 show the direct comparisons to Ganapol’s

analytical method. All the times and positions from t = 0 x = 0 to t = 45 and x = 45

were calculated using the numerical method. Ganapol, only published the analytical

results for specific times and positions; however, a more complete table of the flux for

this particular problem is presented in Appendix C.
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Table 3.4: Error Analysis for Integral Method vs. Ganapol’s Results - Early Times

Time x Flux Ganapol Flux Integral

1 1 1.8394E-01 1.8394E-01

1 2 0.0000E+00 0.0000E+00

1 3 0.0000E+00 0.0000E+00

1 4 0.0000E+00 0.0000E+00

1 5 0.0000E+00 0.0000E+00

1 6 0.0000E+00 0.0000E+00

3 1 2.3942E-01 2.3942E-01

3 2 9.3836E-02 9.3835E-02

3 3 8.2978E-03 8.2978E-03

3 4 0.0000E+00 0.0000E+00

3 5 0.0000E+00 0.0000E+00

3 6 0.0000E+00 0.0000E+00

5 1 1.9957E-01 1.9957E-01

5 2 1.2105E-01 1.2105E-01

5 3 4.9595E-02 4.9595E-02

5 4 1.1823E-02 1.1823E-02

5 5 6.7379E-04 6.7379E-04

5 6 0.0000E+00 0.0000E+00
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Table 3.5: Error Analysis for Integral Method vs. Ganapol’s Results - Middle Times

Times

Time x Flux Ganapol Flux Integral

7 1 1.7347E-01 1.7347E-01

7 2 1.2293E-01 1.2293E-01

7 3 6.8028E-02 6.8028E-02

7 4 2.8447E-02 2.8447E-02

7 5 8.4158E-03 8.4157E-03

7 6 1.5036E-03 1.5036E-03

9 1 1.5528E-01 1.5528E-01

9 2 1.1935E-01 1.1935E-01

9 3 7.6384E-02 7.6384E-02

9 4 4.0186E-02 4.0186E-02

9 5 1.7004E-02 1.7004E-02

9 6 5.5765E-03 5.5764E-03

15 1 1.2269E-01 1.2269E-01

15 2 1.0514E-01 1.0514E-01

15 3 8.1158E-02 8.1159E-02

15 4 5.6305E-02 5.6305E-02

15 5 3.4985E-02 3.4985E-02

15 6 1.9376E-02 1.9376E-02
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Table 3.6: Error Analysis for Integral Method vs. Ganapol’s Results - Late Times

Time x Flux Ganapol Flux Integral

25 1 9.6128E-02 9.6128E-02

25 2 8.7720E-02 8.7720E-02

25 3 7.5287E-02 7.5287E-02

25 4 6.0744E-02 6.0744E-02

25 5 4.6042E-02 4.6042E-02

25 6 3.2757E-02 3.2757E-02

35 1 8.1632E-02 8.1632E-02

35 2 7.6491E-02 7.6491E-02

35 3 6.8624E-02 6.8624E-02

35 4 5.8937E-02 5.8937E-02

35 5 4.8445E-02 4.8445E-02

35 6 3.8099E-02 3.8099E-02

45 1 7.2182E-02 7.2182E-02

45 2 6.8630E-02 6.8630E-02

45 3 6.3091E-02 6.3091E-02

45 4 5.6074E-02 5.6074E-02

45 5 4.8177E-02 4.8177E-02

45 6 4.0007E-02 4.0007E-02
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3.3.2 Benchmark 1: One-Dimensional Cartesian with Uniform Source

The time-dependent integral transport method produced highly accurate results; there-

fore, finite media benchmarks were calculated with a degree of confidence. The first

of the four benchmarks presented in this chapter was of a uniformly distributed source

embedded in a one-dimensional slab. The infinite medium problem simulated the effect

of an outgoing wavefront. This problem showed the time-dependent effects that vacuum

boundaries have on finite media problems.

Figure 3.3 shows the geometry of the problem. The media for all the homogeneous

benchmarks has a scattering cross section of Σs = 0.9 cm−1. The other material properties

are found in Table 3.2. The slab is 10 mean free paths (mfp) thick. There are no particles

within the slab at t = 0− and the source is turned on at t = 0+. The source remains

at a constant strength level of 1.0 n/cm3-s throughout the entire simulation. Particles

released from the source have a velocity of 1 cm/s. For this simple source distribution,

the uncollided flux is computed analytically. The integral equation which is numerically

solved along with the analytical expressions for the uncollided flux and the integration

of the singularity is presented in Equation B.5 of Appendix B.

The results shown in Table 3.7 are qualitative values for the particle flux at discrete

points in the slab after: 1.0, 2.5, 5.0, and 10 mean free times (mft) respectively. At these

particular times the particles have had enough time to travel exactly 1/10, 1/4, 1/2, 3/4

of the way, and completely across the slab.

Figure 3.4 shows a graphical output for the scalar flux. The scalar flux increases in

magnitude for each succeeding step as expected during the early stages of the simulation.

Each curve represents an increment of 1/2 of a mean free time (mft), or the amount of

time that it takes for particles to travel 1/2 of a mean free path length (mfp).

At the beginning of the simulation the particle flux within the interior of the slab is
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Figure 3.3: Geometry for Uniform Source in 10 mfp Slab
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Figure 3.4: Time-Dependent Flux for Uniform Source in 10 mfp Thick Slab
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flat. Particles in the interior of the slab require a finite amount of time to communicate

with the vacuum boundaries. Initially, these interior points have not felt the leakage

depletion wave, which is launched from the boundaries at t = 0+, and therefore behave

as though they were in an infinite medium.

These interior points, which have not communicated with the vacuum boundaries,

can be benchmarked against the analytical time-dependent infinite medium solution for

the scalar flux. The analytical infinite medium time-dependent solution is:

Φ(x, t) =
S0

Σa
(1− e−Σavt) . (3.11)

The numerical solution for the points in the interior of the slab differ by no more than

1.44 × 10−7% from the analytical results presented in Eqn. 3.11. This maximum error

occurs at the first time-step of the simulation. This behavior is expected, for as mentioned

earlier, the lack of integration nodes in the time domain at early times necessitates the

use of lower order integration rules.

As the simulation proceeds, higher order integration rules are used. As a result, by

the 10th time step the error has decreased to 2.65 × 10−8%. Eventually enough time

passes for particles born in the interior to travel to the edges and escape.

An important check is whether or not the time-dependent results converge to the

correct steady-state values. After an extended period of time and with the condition

that the source distribution remained at a constant level, the simulation converged to a

steady-state flux distribution. The time-dependent kernels converge to their correspond-

ing steady-state functional forms as t → ∞ [56], however this type of calculation showed

how well the code converged to the correct steady-state result.

The time-dependent code with twenty spatial nodes, was allowed to run until a con-

verged steady-state result was achieved. The flux was deemed to converged once the

maximum change in consecutive time-steps (ith to the (i + 1)th) was less than 10−8%
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Figure 3.5: Converged Time-Dependent Results for Uniform Source in Slab

for any given spatial node. The convergence criteria was satisfied after 100 mft. The

converged result, with 20 nodes distributed in the interior of the slab, was used as the

R(1,1) level for the Romberg integration. The number of nodes for the problem was then

doubled, until the R(6,1) level of the Romberg integration was completed. At this point,

the final results, or the R(6,6) level of the Romberg integration, was calculated using the

techniques discussed earlier.

The converged time-dependent calculation was compared to a steady-state result com-

puted using identical source, material conditions, and using the same six level Romberg

integration convergence techniques. Figure 3.5 shows the convergence of the time-

dependent scalar flux to a steady state result. The figure shows 10 curves with each

curve representing 10 mft. The derivation of the steady-state results for the benchmark

problems are presented in Appendix D. Each curve corresponds to 10 mft. This corre-

sponds to the amount of time that is necessary for particles to travel completely across

the slab.

Table 3.8 shows data from the first benchmark case for 20, 50, 70, and 100 mft. From
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Figure 3.6: Relative Error between the Converged Time-Dependent Calculations and the

Steady-State Results

this data it is apparent that the results are converging to a steady-state result.

The relative error between the converged time-dependent calculation and the con-

verged steady-state results are shown in Figure 3.6. The maximum error occurs near the

vacuum boundary. The integration is divided up into leftward and rightward traveling

particles. Therefore, at one node in from the boundary there are only two integration

nodes to calculate the particles that are traveling away from the boundary and a low

order trapezoidal scheme is used. However, it should be noticed that the maximum er-

ror between the two results is only a miniscule 0.05% and the results are in excellent

agreement with each other.
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Table 3.7: Benchmark Solutions for Uniform Source in 10 mfp Slab at Early Times

x [cm] 1.0 mft 2.5 mft 5.0 mft 7.5 mft 10.0 mft

0.0 0.430 0.889 1.378 1.684 1.889

0.5 0.898 1.762 2.676 3.255 3.644

1.0 0.952 2.061 3.271 4.054 4.586

1.5 0.952 2.174 3.600 4.548 5.202

2.0 0.952 2.207 3.777 4.855 5.611

2.5 0.952 2.212 3.867 5.041 5.880

3.0 0.952 2.212 3.909 5.151 6.053

3.5 0.952 2.212 3.926 5.213 6.161

4.0 0.952 2.212 3.932 5.245 6.226

4.5 0.952 2.212 3.934 5.261 6.259

5.0 0.952 2.212 3.934 5.265 6.269

5.5 0.952 2.212 3.934 5.261 6.259

6.0 0.952 2.212 3.932 5.245 6.226

6.5 0.952 2.212 3.926 5.213 6.161

7.0 0.952 2.212 3.909 5.151 6.053

7.5 0.952 2.212 3.867 5.041 5.880

8.0 0.952 2.207 3.777 4.855 5.611

8.5 0.952 2.174 3.600 4.548 5.202

9.0 0.952 2.061 3.271 4.054 4.586

9.5 0.898 1.762 2.676 3.255 3.644

10.0 0.430 0.889 1.378 1.684 1.889
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Table 3.8: Benchmark Solutions for Uniform Source in 10 mfp Slab at Late Times

x [cm] 20 mft 50 mft 70 mft 100 mft

0.0 2.253 2.386 2.389 2.389

0.5 4.343 4.599 4.604 4.605

1.0 5.551 5.907 5.914 5.915

1.5 6.404 6.850 6.859 6.860

2.0 7.020 7.547 7.557 7.558

2.5 7.465 8.063 8.075 8.076

3.0 7.783 8.440 8.454 8.455

3.5 8.004 8.709 8.723 8.724

4.0 8.149 8.887 8.903 8.904

4.5 8.230 8.990 9.005 9.007

5.0 8.256 9.023 9.039 9.040

5.5 8.230 8.990 9.005 9.007

6.0 8.149 8.887 8.903 8.904

6.5 8.004 8.709 8.723 8.724

7.0 7.783 8.440 8.454 8.455

7.5 7.465 8.063 8.075 8.076

8.0 7.020 7.547 7.557 7.558

8.5 6.404 6.850 6.859 6.860

9.0 5.551 5.907 5.914 5.915

9.5 4.343 4.599 4.604 4.605

10.0 2.253 2.386 2.389 2.389
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Figure 3.7: Geometry for Localized Source in 10 mfp Thick Slab

3.3.3 Benchmark 2: One-Dimensional Cartesian with Localized Source

The second benchmark case is very similar to that presented in Section 3.3.2. The only

difference between the two is that this case has a localized source distributed in the

center one-half (or inner 5 mfp) of the slab. The source strength remains 1.0 n/cm3-s

throughout the entire simulation. The integral equation, which is numerically solved

along with the analytical expressions for the uncollided flux and the integration of the

singularity, is presented in Equation B.6 of Appendix B.

The geometry of the problem is shown in Figure 3.7. The material properties are

given in Table 3.2. Vacuum boundary conditions exist on either side of the slab. There

are no particles within the slab at t = 0− and the source is turned on at t = 0+. The

source stays on and remains at a constant level throughout the simulation.

The results shown in Table 3.9 are qualitative values for the particle flux at discrete

points in the slab after: 1.0, 2.5, 5.0, 7.5, and 10.0 mean free times. At these particular

times the particles have had enough time to travel: 1/10, 1/4, 1/2, 3/4 of the way, and

completely across the slab.
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Figure 3.8: Time-Dependent Flux for Particles with Localized Source

Table 3.9 shows that at early times there is zero particle flux in the outer portions

of the slab. This shows the built in causality of the time-dependent kernels. There

physically has not been enough time for particles born in the central source region to

travel into the outer non-source portions of the slab. As a result, the particle flux is zero

until later times when particles can physically reach those areas.

For reasons mentioned in Section 3.3.2, at early times particles in the interior of the

slab have not felt the leakage effects from either the vacuum boundary nor the effects

from the source/non-source boundary. Therefore, initially these interior points behave as

though they are in an infinite medium. However, as time progresses, these interior points

feel the edge effects first from the source/non-source boundary, because of its proximity

to these inner points, and eventually from the vacuum boundary.

Figure 3.8 shows a graphical output for the scalar flux. Each curve represents an

increment of 1/2 mft, or the amount of time that it takes for particles to travel 1/2 of a

mfp. As expected, the particle flux builds up and is greatest in the central source region

and decreases in the non-source region as particles are lost either through absorption or
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Figure 3.9: Converged Time-Dependent Results for Localized Source

leakage from the boundary.

Upon closer examination of Figure 3.8, one notices slight “bumps” on either side

of the source region. These “bumps” are artifacts from the graphics program used to

plot the data. The curves are actually polynomial fits of the finite data points used in

the calculation. The interpolation polynomial tends to experience a Gibbs effect near

boundaries where the scalar flux under goes a large change. Thus, in reality, instead of

a “bump” there should be a straight line throughout the center of the source region for

those two curves at early times.

The time-dependent code was run until a converged steady-state result was achieved

and then compared to a steady-state result computed using identical source and material

conditions. The convergence criteria was identical to that presented in Section 3.3.2.

Figure 3.9 shows the convergence of the time-dependent scalar flux to a steady state

result. Each curve corresponds to an increment of 10 mft. The flux builds up until a

steady level is attained.

Table 3.10 shows data from the second benchmark case for 20, 50, 70, and 100 mft.
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Figure 3.10: Relative Error between the Converged Time-Dependent Calculations and

the Steady-State results

From this data it is apparent that the results are converging to a steady-state result.

The relative error between the converged time-dependent calculation and the con-

verged steady-state results are shown in Figure 3.10. The maximum error for the local-

ized source in Cartesian coordinates occurs at the vacuum boundary and the boundary

between the source and non-source region. As mentioned earlier, these maximum er-

rors are the result of the quadrature set and how the integration is performed. The

maximum error was relatively small peaking at 0.075%. This shows that the converged

time-dependent and steady-state results are in excellent agreement.
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Table 3.9: Benchmark Solutions for Localized Source in 10 mfp Slab at Early Times

x [cm] 1.0 mft 2.5 mft 5.0 mft 7.5 mft 10.0 mft

0.0 0.000 0.000 0.051 0.144 0.235

0.5 0.000 0.005 0.138 0.333 0.511

1.0 0.000 0.036 0.290 0.586 0.845

1.5 0.000 0.140 0.562 0.972 1.313

2.0 0.052 0.405 1.035 1.571 1.993

2.5 0.476 1.106 1.968 2.634 3.137

3.0 0.899 1.807 2.900 3.692 4.270

3.5 0.952 2.071 3.371 4.275 4.917

4.0 0.952 2.175 3.636 4.628 5.320

4.5 0.952 2.207 3.771 4.819 5.542

5.0 0.952 2.212 3.812 4.880 5.613

5.5 0.952 2.207 3.771 4.819 5.542

6.0 0.952 2.175 3.636 4.628 5.320

6.5 0.952 2.071 3.371 4.275 4.917

7.0 0.899 1.807 2.900 3.692 4.270

7.5 0.476 1.106 1.968 2.634 3.137

8.0 0.052 0.405 1.035 1.571 1.993

8.5 0.000 0.140 0.562 0.972 1.313

9.0 0.000 0.036 0.290 0.586 0.845

9.5 0.000 0.005 0.138 0.333 0.511

10.0 0.000 0.000 0.051 0.144 0.235
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Table 3.10: Benchmark Solutions for Localized Source in 10 mfp Slab at Late Times

x [cm] 20 mft 50 mft 70 mft 100 mft

0.0 0.443 0.528 0.530 0.530

0.5 0.917 1.081 1.085 1.085

1.0 1.415 1.644 1.649 1.649

1.5 2.038 2.325 2.331 2.332

2.0 2.863 3.204 3.211 3.212

2.5 4.139 4.525 4.533 4.534

3.0 5.386 5.812 5.821 5.821

3.5 6.128 6.585 6.594 6.595

4.0 6.601 7.081 7.091 7.092

4.5 6.867 7.360 7.371 7.371

5.0 6.953 7.451 7.461 7.462

5.5 6.867 7.360 7.371 7.371

6.0 6.601 7.081 7.091 7.092

6.5 6.128 6.585 6.594 6.595

7.0 5.386 5.812 5.821 5.821

7.5 4.139 4.525 4.533 4.534

8.0 2.863 3.204 3.211 3.212

8.5 2.038 2.325 2.331 2.332

9.0 1.415 1.644 1.649 1.649

9.5 0.917 1.081 1.085 1.085

10.0 0.443 0.528 0.530 0.530
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Figure 3.11: Geometry for Localized Source in 10 mfp Sphere

3.3.4 Benchmark 3: One-Dimensional Sphere with Localized Source

The third benchmark problem is a calculation of a one-dimensional homogeneous sphere

with a localized source distributed in the outer 2 cm of the sphere. The source strength

remains 1.0 n/cm3-s throughout the entire simulation. The integral equation, which is

numerically solved, along with the analytical expressions for the uncollided flux and the

integration of the singularity is presented in Equation B.7 of Appendix B.

The geometry of the problem is shown in Figure 3.11. A vacuum boundary surrounds

the sphere. There are no particles within the sphere at t = 0− and the source is turned on

at t = 0+. The source stays on and remains at a constant level throughout the simulation.

As with the previous benchmarks, this problem was run using Romberg Integration

techniques and convergence criteria presented in Section 3.3.2.

The results shown in Table 3.11 are qualitative values for the particle flux at discrete
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Figure 3.12: Time-Dependent Flux for Particles in Localized Source Sphere

points in the sphere after: 1.0, 2.5, 5.0, 7.5, and 10.0 mean free times respectively. At

these particular times the particles have had enough time to travel 1/10, 1/4, 1/2, 3/4

of the way, and finally completely across the sphere.

The results given in Table 3.11 show that it takes a finite amount of time for particles

to travel from the outer source region into the inner non-source region. Points in the

interior are not populated with particles at early times because they are too distant at

that particular time to feel the influence of the outer source region.

Figure 3.12 shows the build up of the scalar flux over time. Every line of output

represents an increment of 1/2 mft. As expected, the particle flux is greatest in the outer

source region and decreases in the non-source region as particles are lost either through

absorption or leakage from the boundary conditions.

The slight “dip” that appears in Figure 3.12 on either side of the source region at

early times, is caused because of the polynomial fit that the graphical routine uses to fit

the data points. All the data points across the source region have identical values, until

the depletion wave from the source/non-source or vacuum boundary arrives.
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Figure 3.13: Converged Time-Dependent Results for Localized Source in Sphere

The time-dependent code was run until a converged steady state result was achieved.

The convergence criteria was identical that that presented in Section 3.3.2. The converged

time-dependent calculation was compared to a steady state result computed using iden-

tical source and material conditions. As for the previous cases, Figure 3.13 shows the

convergence of the time-dependent scalar flux to a steady state result. Each line of output

corresponds to 10 mean free times.

Table 3.12 shows data from the third benchmark case for 20, 50, 70, and 100 mft.

The data clearly shows that the problem is converging towards a steady-state solution.

The relative error between the converged time-dependent calculation and the con-

verged steady-state results are shown in Figure 3.14. The two areas of highest error are

at the vacuum boundary and the source/non-source interface region. Again, the higher

errors at these two locations are a result of the quadrature set used to integrate across

the source region. In the portions of the slab, be that in the source or non-source regions,

that are away from these discontinuities the error is only a fraction of the peaks. The

maximum error is only 0.12%.
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the Steady-State results for a Localized Source in Spherical Coordinates
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Table 3.11: Benchmark Solutions for Localized Source in 10 mfp Sphere at Early Times

x [cm] 1.0 mft 2.5 mft 5.0 mft 7.5 mft 10.0 mft

0.0 0.000 0.000 0.000 0.000 0.005

0.5 0.000 0.000 0.000 0.000 0.006

1.0 0.000 0.000 0.000 0.000 0.008

1.5 0.000 0.000 0.000 0.001 0.014

2.0 0.000 0.000 0.000 0.002 0.022

2.5 0.000 0.000 0.000 0.006 0.037

3.0 0.000 0.000 0.000 0.013 0.060

3.5 0.000 0.000 0.001 0.028 0.095

4.0 0.000 0.000 0.004 0.056 0.148

4.5 0.000 0.000 0.014 0.102 0.225

5.0 0.000 0.000 0.040 0.176 0.333

5.5 0.000 0.000 0.094 0.291 0.483

6.0 0.000 0.007 0.196 0.461 0.686

6.5 0.000 0.046 0.373 0.707 0.960

7.0 0.000 0.167 0.660 1.055 1.327

7.5 0.057 0.456 1.113 1.552 1.830

8.0 0.489 1.164 1.948 2.401 2.671

8.5 0.903 1.805 2.639 3.074 3.319

9.0 0.952 1.920 2.705 3.084 3.288

9.5 0.894 1.691 2.320 2.608 2.759

10.0 0.420 0.842 1.186 1.339 1.417
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Table 3.12: Benchmark Solutions for Localized Source in 10 mfp Sphere at Late Times

x [cm] 20 mft 50 mft 70 mft 100 mft

0.0 0.159 0.339 0.343 0.344

0.5 0.162 0.342 0.347 0.347

1.0 0.174 0.354 0.359 0.359

1.5 0.194 0.375 0.379 0.380

2.0 0.224 0.405 0.409 0.410

2.5 0.265 0.446 0.450 0.451

3.0 0.319 0.500 0.504 0.504

3.5 0.389 0.568 0.572 0.572

4.0 0.478 0.655 0.658 0.659

4.5 0.590 0.763 0.766 0.767

5.0 0.731 0.899 0.902 0.902

5.5 0.908 1.068 1.071 1.071

6.0 1.130 1.281 1.284 1.284

6.5 1.411 1.551 1.553 1.553

7.0 1.771 1.898 1.900 1.900

7.5 2.251 2.364 2.366 2.366

8.0 3.055 3.151 3.152 3.153

8.5 3.650 3.729 3.730 3.730

9.0 3.554 3.615 3.616 3.616

9.5 2.949 2.991 2.992 2.992

10.0 1.514 1.535 1.536 1.536
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Figure 3.15: Geometry for Localized Source in 10 mfp Slab

3.3.5 Benchmark 4: Heterogeneous Cartesian Benchmark

The final benchmark problem is a simulation of a one-dimensional heterogeneous slab

with a localized source confined in the inner 1/2 of the slab, or totally within the central

material. Figure 3.15 shows the geometry for this problem. A vacuum boundary sur-

rounds the slab on either side. There are no particles within the heterogeneous slab at

t = 0− and the source is turned on at t = 0+. The source strength remains 1.0 n/cm3-s

throughout the entire simulation. The integral equation, which is numerically solved

along with the analytical expressions for the uncollided flux and the integration of the

singularity, is presented in Equation B.12 of Appendix B. The one-dimensional geometry,

as described in Figure 3.15, was run using Romberg Integration techniques and conver-

gence criteria presented in Section 3.3.2. The slab is heterogeneous with two differing

types of materials. The material properties for both regions are given in Table 3.13

The results shown in Table 3.14 are qualitative values for the particle flux at discrete

points in the slab after: 1.0, 2.5, 5.0, 7.5, and 10.0 mean free times respectively. At these

particular times the particles have had enough time to travel 1/10, 1/4, 1/2, 3/4 of the
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Table 3.13: Material Properties for Particles in Heterogeneous Benchmark

Material 1 Material 2

Σ 2.0 cm−1 1.0 cm−1

Σs 1.5 cm−1 0.9 cm−1

So 1.0 n/cm3-s 0 n/cm3-s

way, and finally completely across the slab.

The results given in Table 3.14 show that it takes a finite amount of time for particles

to travel from the inner source region into the outer non-source region. Points in the

interior of the slab which have no values for the scalar flux at early times, are locations

that are too distant at that particular time to feel the influence of the outer source region.

Figure 3.16 shows the build up of the scalar flux over time. Every curve represents an

increment of 1/2 mft. As expected, the particle flux is greatest in the inner source region

and decreases in the non-source region as particles are lost either through absorption or

leakage from the boundary. As mentioned in the previous section, the small “bumps”

that appear on either side of the source region at early times are artifacts from the

interpolating polynomial used to plot the data.

A point of difference between this benchmark problem and that presented for the

localized problem in a homogeneous material, is the rate at which they reach a steady-

state solution. Because this problem has a material in the center with a higher total cross

section, fewer particles are able to communicate directly across the central source region.

Therefore, particles that travel long distances across the slab are not as important when

calculating the scalar flux. Thus the heterogeneous case, for the material conditions

given, reaches a steady-state solution faster than the homogeneous localized case. If
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Figure 3.16: Time-Dependent Flux for Particles in Heterogeneous Slab

the central material was composed of a material with a smaller total cross section, the

heterogeneous case would take longer to reach a steady-state solution.

The time-dependent code was run until a converged steady-state result was achieved,

and the convergence criteria was identical to that presented in Section 3.3. The con-

verged time-dependent calculation was compared to a steady-state result computed us-

ing identical source and material conditions. Figure 3.17 shows the convergence of the

time-dependent scalar flux to a steady-state result. Each curve corresponds to 10 mean

free times. There are 10 curves shown on Figure 3.17, corresponding to 100 mft, however

because the solution reaches a steady-state solution very quickly only two of these curves

are evident.

Table 3.15 shows data from the fourth benchmark case for 20, 50, 70, and 100 mft.

As mentioned previously, the heterogeneous case reaches a steady-state solution much

more quickly than the previous cases.

Figure 3.18 shows the percent error between the converged time-dependent results

to the Romberg integrated steady-state results. The error for this particular case is



65

0.0

0.5

1.0

1.5

2.0

2.5

0 2 4 6 8 10

Distance [cm]

F
lu

x
[n

/c
m

^2
*s

] Time

Figure 3.17: Converged Time-Dependent Results for Heterogeneous Slab

greater than that presented for the earlier benchmark case. This error can be explained

because the heterogeneous benchmark and the steady-state are not identical. This slight

difference is due to the different methods by which the steady-state method and the time-

dependent method define material boundaries. For the time-dependent method used in

the benchmark, the nodes lay immediately on the material discontinuity. Whereas for the

steady-state method, the material is defined on the node and thus material discontinuities

change at dx/2. Therefore, as the number of nodes → ∞ the error goes to zero. However,

for these benchmark cases 640 nodes were uniformly scattered over the 10 mfp (10 cm).

Thus there is a difference of: 0.5∗dx = 5/640 or 0.0078125 cm between the two methods.

As expected, the highest error occurs at the material source interface conditions and at

the vacuum boundary conditions. In the portions of the slab were there is a source the

error is quite low. However, at the interface the error peaks at −0.8%.
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Figure 3.18: Relative Error between the Converged Time-Dependent Calculations and

the Steady-State results for Localized Source in Spherical Coordinates
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Table 3.14: Benchmark Solutions for 10 mfp Heterogeneous Slab at Early Times

x [cm] 1.0 mft 2.5 mft 5.0 mft 7.5 mft 10.0 mft

0.0 0.000 0.000 0.036 0.080 0.107

0.5 0.000 0.004 0.094 0.177 0.227

1.0 0.000 0.031 0.183 0.296 0.360

1.5 0.000 0.111 0.330 0.462 0.533

2.0 0.048 0.292 0.560 0.697 0.768

2.5 0.379 0.698 0.960 1.080 1.138

3.0 0.755 1.237 1.520 1.614 1.652

3.5 0.787 1.380 1.712 1.806 1.837

4.0 0.787 1.419 1.789 1.888 1.917

4.5 0.787 1.426 1.818 1.922 1.951

5.0 0.787 1.427 1.826 1.931 1.960

5.5 0.787 1.426 1.818 1.922 1.951

6.0 0.787 1.419 1.789 1.888 1.917

6.5 0.787 1.380 1.712 1.806 1.837

7.0 0.755 1.237 1.520 1.614 1.652

7.5 0.379 0.698 0.960 1.080 1.138

8.0 0.048 0.292 0.560 0.697 0.768

8.5 0.000 0.111 0.330 0.462 0.533

9.0 0.000 0.031 0.183 0.296 0.360

9.5 0.000 0.004 0.094 0.177 0.227

10.0 0.000 0.000 0.036 0.080 0.107
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Table 3.15: Benchmark Solutions for 10 mfp Heterogeneous Slab at Late Times

Distance 20 mft 50 mft 70 mft 100 mft

0.0 0.136 0.138 0.138 0.138

0.5 0.280 0.284 0.284 0.284

1.0 0.426 0.431 0.431 0.431

1.5 0.605 0.610 0.610 0.610

2.0 0.837 0.842 0.842 0.842

2.5 1.194 1.198 1.198 1.198

3.0 1.684 1.686 1.686 1.686

3.5 1.859 1.860 1.860 1.860

4.0 1.934 1.935 1.935 1.935

4.5 1.965 1.965 1.965 1.965

5.0 1.973 1.974 1.974 1.974

5.5 1.965 1.965 1.965 1.965

6.0 1.934 1.935 1.935 1.935

6.5 1.859 1.860 1.860 1.860

7.0 1.684 1.686 1.686 1.686

7.5 1.194 1.198 1.198 1.198

8.0 0.837 0.842 0.842 0.842

8.5 0.605 0.610 0.610 0.610

9.0 0.426 0.431 0.431 0.431

9.5 0.280 0.284 0.284 0.284

10.0 0.136 0.138 0.138 0.138
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3.4 Benchmark Comparison with Diffusion Theory

In this section, time-dependent transport results are compared to similarly posed dif-

fusion results using integral methods. This illustrates the differences between both

schemes. Diffusion theory is known to be accurate in the center of large highly dif-

fusive media; however, it produces less accurate results in highly absorptive media and

near vacuum boundaries. Two examples will be simulated showing the differences be-

tween time-dependent transport and time-dependent diffusion theory varying only the

source distributions. Both examples are simulated in Cartesian geometry with a slab of

40 cm in thickness (over 15 mfp). The first case simulated a uniform thermal neutron

source and the second simulate a localized source in the inner 1/2 of the slab. For both

cases, there are no neutrons in the slab at t = 0− and the source is turned on at t = 0+

and remains on. The material properties of thermal neutrons in carbon are given in

Table 3.16 [90]:

Table 3.16: Material Properties for Thermal Neutrons in Carbon

Σ 0.38532 cm−1

Σs 0.385 cm−1

S0 1.0 n/cm3-s

The time-dependent diffusion equation in one-dimensional Cartesian coordinates is:

1

v

dφ

dt
−D

d2φ

dx2
+Σaφ (x, t) = S (x, t) . (3.12)

Eqn. 3.12 can be converted into an integral equation using Laplace transforms [56].

The resulting time-dependent integral diffusion equation is of the same form as Eqn. 3.2

with the only difference coming in the functional form of the kernel. The time-dependent
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one-dimensional kernel was generated using extrapolated boundary conditions and pre-

sented in Table 3.17. The kernel was deemed to have converged once the difference from

the n to the (n+ 1) term was less than 10−8%.

Table 3.17: One-Dimensional Cartesian Time-Dependent Diffusion Kernels

x > x
′

K1D,C(x, x′; t, t′) =
√
v exp(−Σa v[t−t′])

2

√
πD[t−t′]

×

∑∞
n=1

[
exp

(
− κ2

a

4[t−t′]

)
+ exp

(
− κ2

b

4[t−t′]

)
+ exp

(
− κ2

c

4[t−t′ ]

)
+ exp

(
− κ2

d

4[t−t′]

)]

κa =
−x+x′+4a(n+1)√

vD
κb =

x−x′+4an√
vD

κc =
x+x′+4an+2a√

vD
κd =

−x−x′+4an+2a√
vD

x < x
′

K1D,C(x, x′; t, t′) =
√
v exp(−Σa v[t−t′])

2

√
πD[t−t′]

×

∑∞
n=1

[
exp

(
− ζ2a

4[t−t′]

)
+ exp

(
− ζ2b

4[t−t′]

)
+ exp

(
− ζ2c

4[t−t′ ]

)
+ exp

(
− ζ2d

4[t−t′]

)]

ζa =
−x+x′+4an√

vD
ζb =

x−x′+4a(n+1)√
vD

ζc =
x+x′+4an+2a√

vD
ζd =

−x−x′+4an+2a√
vD

For the first comparison, a uniform unit source (1 n/cm3-s) is distributed throughout

the interior of a carbon slab. The slab had a width of 40 cm. A larger slab width was

used for these particular cases because in order for diffusion theory to be sufficiently

accurate the slab must be “many” mean free path lengths in width. The results of the

comparison are shown in Figure 3.19.

As shown the two methods compare favorably for the initial time-steps. However,

after approximately 100 microseconds the two solutions begin to show slight differences
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Figure 3.19: Diffusion vs. Transport for Uniform in Carbon (Blowup at Right Boundary

after 365.8 µ sec)

near the boundaries. The diffusion based calculation overestimates the scalar flux close

to the boundary. This is expected as diffusion based calculations are known to model the

scalar flux incorrectly near vacuum boundaries. As time continues to progress, the two

methods begin to differ near the center of the slab, with the transport solution calculating

slightly higher (∼ 0.5%) scalar fluxes. As expected, the time-dependent diffusion theory

and transport theory agree to within a fraction of a percent over the vast majority of the

slab.

The next comparison shows the inadequacies of diffusion based methods in modeling

time-dependent problems. The material is again a 40 cm slab of carbon; however, in this

case the source is confined to the inner 20 cm of the slab.

Figure 3.20 shows the results of the comparison. After 10 mean free times, the first

curve on Figure 3.20, the diffusion based solution differs by a maximum of 1% over the

interior of the source region. As time progresses, the agreement between the diffusion

based and transport results becomes progressively less. After 100 mean free times, the
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Figure 3.20: Diffusion vs. Transport for Localized Source in Carbon

upper curve on Figure 3.20, diffusion theory predicts a scalar flux 7% lower than transport

theory in the source region.

Figure 3.21 shows the region just adjacent to the source region 7.5 microseconds after

the source is turned on. The predictions of the two methods are shown on the figure.

The transport solution kernel has causality information built into the kernel. This means

that after only 7.5 microseconds there has not been enough time for neutrons to travel

any further than 1 cm away from the inner source region. The transport solution agrees

with this causality information and Figure 3.21 shows this characteristic. The diffusion

based method predicts a scalar flux in portions of the slab for which there has not been

enough time for neutrons to populate. This is shown in the figure as values for the flux

further than 1 cm away from the inner source region.

In summary, diffusion theory and transport theory compare favorably in regimes for

which diffusion theory holds true, uniform source and highly scattering regions. However,

for geometries in which there is an obvious causality effect, such as a localized source

regions and a few mean free path lengths away from boundaries for localized source
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Figure 3.21: Diffusion vs. Transport for Localized Source in Carbon at 7 µs

regions, diffusion theory models the scalar flux incorrectly because of its assumption of

infinite propagation speed and low degree of particle field anisotropy.
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Chapter 4

TBIT Theory and Implementation

When developing a time-dependent radiative transport method for general use it should

be: accurate, fast and ideally, only require that data need to be saved from the previous

time-step to calculate the current time-step. The “standard integral method”, as dis-

cussed in the previous chapter, is very accurate; however, it suffers inadequacies in the

later two requirements.

The most important disadvantage for the “standard” integral method is the require-

ment that all the information up until the time-step of interest t must be kept. Therefore,

the amount of information that must be kept scales with the number of nodes in each

dimension multiplied by the number of temporal time-steps. For simple one-dimensional

calculations this is not much of a problem; however, for three-dimensional problems with

hundreds of nodes in each dimension, array sizes become increasingly large. Even if the

memory requirements were not a problem, some codes do not save the spatial, material,

and source conditions for time-steps in the distant past which would be necessary to

calculate the scalar flux using the “standard” method.

In addition to the memory requirements, the computational time increases with ev-

ery time-step. In order to solve the integral equations presented in Table 2.1 and 2.2,

calculations at the nth time-step must integrate all the way back to the first time-step.

Although in practice integration back 10 mfp is adequate. Problems solved using the

“standard” integral method scale to the cubed root of the number of spatial nodes for

one-dimensional problems. Doubling the number of nodes results in eight times the

amount of CPU time necessary for completion.
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The purpose of this research is to produce an integral method that retains the ac-

curacy of the “standard method”; yet, does not suffer the penalty of having to save all

the information in the problem at every calculational time-step. For one-dimensional

geometries, a time-step method would scale as the square of the number of spatial nodes.

This would save a great amount of time over the “standard” method which scales as

the cube of the number of nodes. This new time-dependent radiative transport method,

or the Time-Dependent Bubble Integral Transport (TBIT) Method, will be required to

calculate the angular flux instead of the scalar flux that is necessary for the “standard”

method.

Chapter 4 is divided into several sections. Section 4.1 will present the derivation

of the angular form of the time-dependent integral equation. In Section 4.2 the Time-

Dependent Bubble Integral Transport (TBIT) method will be derived and the numerical

method will be discussed. This chapter will conclude with a description of the code in

Section 4.3

4.1 Derivation of Integral Transport Equation

The neutral particle transport equation is a version of the Boltzmann equation used in the

kinetic theory of gases. This equation describes the transport of particles as a function

of space, �r, directional travel, Ω̂, energy, E, and time, t. The Boltzmann equation is:

[
1

v

∂

∂t
+ Ω̂ · �∇+Σ(�r, E, t)

]
ψ
(
�r, Ω̂, E, t

)
= Qex

(
�r, E, Ω̂, t

)
, (4.1)

where: ψ
(
�r, Ω̂, E, t

)
is the time-dependent angular flux, Σ (�r, E, t) is the total macro-

scopic cross section for particles with energy of E, Σs

(
�r, E

′ → E, Ω̂
′ → Ω̂, t

)
is the macro-

scopic scattering cross section, and Qex (�r,Ω, E, t) is the source term which includes the

addition of particles from any arbitrary source. The source term can include the addition

of particles that are created from fission, fusion, up-scattering down-scattering, or any
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other physical process that results in the addition of particles into the energy group of

interest.

In Cartesian coordinates, the first two derivative terms in Equation 4.1, ∂
∂t

and Ω̂ · �∇,

are: (
1

v

∂

∂t
+Ωx

∂

∂x
+Ωy

∂

∂y
+Ωz

∂

∂z

)
ψ
(
�r, Ω̂, E, t

)
. (4.2)

The total derivative, using the method of characteristics, is written as:

dψ

ds
=

∂ψ

∂t

dt

ds
+

∂ψ

∂x

dx

ds
+

∂ψ

∂y

dy

ds
+

∂ψ

∂z

dz

ds
. (4.3)

Identifying each term from Equation 4.2 and 4.3 the corresponding solutions for each

term in the total derivative is:

dt

ds
=

1

v
with solutions t = t0 +

s

v
dx

ds
= Ωx x = x0 + sΩx

dx

ds
= Ωy y = y0 + sΩy

dx

ds
= Ωz z = z0 + sΩz, (4.4)

where x0, y0, and z0 are arbitrary constants of integration. Equation 4.1 can be rewritten

as:

d

ds
ψ
(
�r0 + sΩ̂, Ω̂, E, t0 +

s

v

)
+Σψ = Q

(
�r0 + sΩ̂, Ω̂, E, t0 +

s

v

)
. (4.5)

Equation 4.5 is just a first order equation which can be integrated and solved by using

the proper integration factor. The following solution is obtained:

d

ds

[
ψ
(
�r0 + sΩ̂, Ω̂, E, t0 +

s

v

)
exp

[∫ s

Σ
(
�r0 + s

′�Ω, E
)
ds′
]]

=

exp
[∫ s

Σ
(
�r0 + s

′�Ω, E
)
ds′
]
Q
(
�r0 + sΩ̂, Ω̂, E, t0 +

s

v

)
. (4.6)

This equation can be solved as the following:

ψ
(
�r0 + sΩ̂, Ω̂, E, t0 +

s

v

)
=∫ s

−∞
exp

[∫ s

s′
−Σ

(
�r0 + s

′
Ω̂, E

)
ds′′
] [

Q
(
�r0 + sΩ̂, Ω̂, E, t0 +

s

v

)]
ds′ (4.7)
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In arriving at Equation 4.7, an assumption was made that there were no particles in the

system at early times. Therefore, the second term that results from the evaluation of the

lower limit from Equation 4.6 is identical to zero or:

ψ
(
�r0 + sΩ̂, Ω̂, E, t0 +

s

v

)
→ 0 as s → −∞. (4.8)

Equation 4.7 is simplified by the following:

�r0 + sΩ̂ = �r and t0 +
s

v
= t, (4.9)

and changing the integration so that it runs from 0 to ∞ instead of from 0 to s′ in the

two integrals. The final version of the time-dependent angular integral equation is:

ψ
(
�r0 + sΩ̂, Ω̂, E, t0 +

s

v

)
=
∫ ∞

0

[
e−τ(�r−s

′Ω̂,E,t)Q
(
�r0 + sΩ̂, Ω̂, E, t0 +

s

v

)]
ds′, (4.10)

where the optical distance between two points x and s′ is just:

τ
(
�r, Ω̂, E, t

)
=
∫ s′

0
Σ
(
�r − s′′Ω̂, E, t

)
. (4.11)

The integration over s′ need not be from 0 until ∞, as would be the case if the

calculational point is within an infinite media. However if the calculational point is

within a finite media, then the path of integration need only proceed along �r = sΩ̂

until the path of integration intersects with the vacuum boundary. If there is an external

source condition at the vacuum boundary, then an additional source term is added. With

these previous conditions and assuming that the boundary B is located such that all the

initial uncollided source particles have traveled out of the system, then the following is

obtained:

ψ
(
�r0 + sΩ̂, Ω̂, E, t0 +

s

v

)
= (4.12)

∫ B

0

[
e−τ(�r−s

′Ω̂,E,t)Q
(
�r0 + sΩ̂, Ω̂, E, t0 +

s

v

)]
ds

+ψboundary

(
�r0 +BΩ̂, Ω̂, E, t0 +

B

v

)
e−τ(�r−s

′Ω̂,E,t).
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4.2 Derivation of the Time-Dependent Bubble Integral Transport Method

Equation 4.13 can be transformed into an integral equation in terms of the scalar flux

as described in Chapter 2. However, as mentioned earlier, integral equations of this

form produce integrals that must be integrated over temporal limits of 0 to the current

time of interest t. Although this method produces highly accurate results, which was

used in Chapter 3 to produced time-dependent finite media benchmarks, the temporal

integration constraint proves extremely disadvantageous.

Therefore, an alternative integral method must be developed with the constraint that

it must only need to save information from the previous time time-step. The Time-

Dependent Bubble Integral Transport (TBIT) Method will use the angular flux instead

of the scalar flux. The derivation starts with Equation 4.6

d

ds

[
ψ
(
�r0 + sΩ̂, Ω̂, E, t0 +

s

v

)
exp

[∫ s

Σ
(
�r0 + s

′�Ω, E
)
ds′
]]

=

exp
[∫ s

Σ
(
�r0 + s

′�Ω, E
)
ds′
]
Q
(
�r0 + sΩ̂, Ω̂, E, t0 +

s

v

)
. (4.13)

However unlike the general method where one integrates back along the characteristic

path from s = 0 to ∞, the TBIT method only integrates from s = 0 back one time-step.

This time-step is defined as ∆x = vg∆t. Where, vg is the velocity of the particles in the

gth energy group and ∆x is the spacing between spatial nodes. Normally, this condition

determines the duration of the time-step as the other two variables are predetermined.

Thus, the time-step for the gth energy group will have a duration in proportion to the

other energy groups based on the square root of the velocities of the two groups in

question. The following is arrived at:

ψ
(
�r, Ω̂, E, t

)
=
∫ ∆x

0

[
e−τ(�r−sΩ̂,E,t)Q

(
�r0 + sΩ̂, Ω̂, E, t0 +

s

v

)]
ds′

+ψ
(
�r −∆xΩ̂, Ω̂, E, t−∆t

)
e−τ(�r,Ω̂,E,t). (4.14)

The assumption is made that all the scattering in the system is isotropic in the center



79

of mass coordinate system (ie no scattering angles are preferred), then expanding the

source term into its constituent components of its collided and uncollided sources, the

following is arrived at:

ψ
(
�r, Ω̂, E, t

)
=∫ ∆x

0
e−τ(�r−sΩ̂,E,t)

[
Σs

(
�r, Ω̂, E, t

)
Φ
(
�r, Ω̂, E, t

)
+ So

(
�r, Ω̂, E, t

)]
ds′

+ψboundary

(
�r −∆xΩ̂, Ω̂, E, t−∆t

)
e−τ(�r−sΩ̂,E,t). (4.15)

Perhaps it is best to understand Equation 4.15 through a visual representation. Fig-

ure 4.1 shows Equation 4.15 from a visual standpoint. The TBIT method calculates

Point
Calculational 

dx

Scattered
Source

Boundary 
Source

Figure 4.1: Graphical representation of TBIT Method

the time-dependent scalar flux at a particular point by drawing a sphere of radius one

∆x around the calculational point. Thus, only particles that scatter during the current

time-step into the calculational angle, or particles that are on the boundary of the sphere

during the previous time-step will influence the angular flux at the current time-step. The

scattered component is calculated by integrating along the line of sight until the bound-

ary of the ’sphere’ or material/vacuum boundary is met. The boundary component is
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calculated through simple exponential attenuation along the line of sight.

4.3 Numerical Implementation of Time-Dependent Bubble Method

In a simplistic manner, the scalar flux could be calculated by solving Eqn. 4.15 along

specific angular directions and then integrating these directions in order to solve for the

scalar flux. After each time-step, the boundary source term is updated and the calculation

can proceed with only the information from the previous time-step needed.

However, there are several complications that must be addressed. The first problem

is how exactly to determine the incoming boundary source such that every zone is guar-

anteed to affect the scalar flux at any calculational point. Once this is determined, a

second question is how to integrate the scattered source, when none of the points used in

the integration is guaranteed to rest on a point for which the scattered source is known

exactly. A third problem is how to calculate the constantly changing streaming angles

as particles travel through spherical coordinates. A final difficulty presents itself when

trying to calculate the down-scattered flux. Each of these issues will be discussed in the

remainder of this chapter.

4.3.1 Determination of Angular Source Term

The first problem that arises when determining a workable method by which the time-

dependent flux can be calculated using the TBIT method, is the determination of the

boundary source term. From a naive standpoint, the value of the boundary term could

be taken at the point where the angular direction intersects with the sphere at one dx.

Figure 4.2 shows this simple case. The angular flux is calculated in the direction µ.

Once the value for the boundary flux is determined, then its influence on the angular

flux at the current time and position is calculated through simple exponential decay.
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dx

Incoming
Boundary 
TermMu

Direction
Angular

Figure 4.2: Simplistic Calculation for the Boundary Source Term

In Cartesian coordinates, the angular directions can be easily distributed such that

the distributions guarantees that every spatial node will influence the angular flux to

some extent. Taking the angular directions back into time will insure that they will

intersect with every calculational node.

Unfortunately, in spherical coordinates this is not the case. Although the TBIT

method only integrates back one time-step, or a distance of dx, boundary source terms

are communicated across the problem from one boundary to the next. Thus they are

“effectively” integrated along a specific angular direction from the calculational point.

However because of the spherical coordinates and the resultant streaming of the particles

across the geometry, it is possible that particular regions of the sphere could be missed

as a result. Figure 4.3 shows this behavior for one-dimensional spherical coordinates.

Any time-dependent, time-step integral method used must integrate along discrete

angular directions, i.e. the number of angular directions must be less than infinity.

As such, integrating along specific characteristics in spherical coordinates, there is the

possibility of missing specific regions entirely.

Figure 4.3 shows the calculation along specific characteristics for a time late enough
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that the point in question can communicate all across the sphere. As shown in the

figure there are two regions that are missed entirely in the integration along these lines.

In calculating the total scalar flux correctly, contributions from every region that can

contribute directly with the calculational point must be included in the integration.

There are several proposed methods to fix this error:

• Increase the number of spatial directions

• Increase the number of integration nodes along the spatial direction

• Vary the spatial directions of the nodes such that at least one spatial direction is

guaranteed to intersect with each node

• Integrate the source contribution on surfaces rather than along spatial lines

All of the proposed fixes would add complexity to the algorithm. The first two solu-

tions, increasing the number of spatial directions or increasing the number of integration

nodes, do not guarantee that contributions from each spatial subdivision contribute to

the scalar flux at the calculational point.

The third solution, although it will guarantee that every characteristic will intersect

every zonal region, forces any numerical calculation to recalculate at every time-step the

angular directions. In addition, it is possible that there will be as many angular directions

as there are regions in the problem. This will add considerable calculational overhead to

the problem.

Only the last method, integrate the source contribution on the surfaces rather than

along spatial lines, guarantees that every spatial region will be included in the calculation

while providing that the angular directions are constant for every spatial position. Figure

4.4 shows how this integration will be performed in practice. Instead of calculating the

boundary source from a single discrete angle (left side of the figure), the boundary source
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term will be the result of an integration along the curved boundary between the lower

and upper midpoints of the angular directions.
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Figure 4.3: Error cause by Direct Application of Equation 4.15
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Figure 4.4: Integration along the Surface for the Boundary Source Term
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4.3.2 Integration of the Scattered and Boundary Flux

Now that the surface term is handled in a more correct fashion, additional difficulties are

added in determining the angular flux. Figure 4.5 shows the calculation of the angular

flux in a particular direction µj in one-dimensional Cartesian geometry.

For this particular example, the surface integration is performed along the circular

boundary using five distinct points. All of these points are boundary source terms saved

from the previous time-step. These boundary values necessary for the integration of

the source term neither lay on integer values for the spatial grid, i − 1, i, or i + 1, nor

on the angular grid, j. Only angular and spatial positions that lay on integer values

were calculated in the previous time-step. Similarly, this is a problem when calculating

the scattered flux. In order to obtain values for these positions several methods were

proposed and tested:

1. linear approximation in space and angle

2. linear approximation and/or cubic spline approximation in space and Legrende

polynomial expansion in angle

3. cubic spline approximation in space and angle

Through testing, the cubic spline approximations appeared to converge to the time-

dependent benchmarks (presented in Chapter 3) in a more accurate fashion than either

of the previous two methods. Therefore, for the TBIT method cubic splines were used

to interpolate data in both space and angle when the calculational nodes lay off known

data points.
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Figure 4.5: Integration of the Scattered and Boundary Flux
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Figure 4.6: Constant Streaming Directions in Cartesian Coordinates

4.3.3 Streaming in Spherical Coordinates

In Cartesian coordinates, the streaming angles of particles as they cross the geometry

remains constant. Particles in Cartesian coordinates that are emitted with angular di-

rections θ and φ always travel with those angular directions throughout the entire slab.

This is shown in Figure 4.6.

Unlike Cartesian geometries, the streaming angles in spherical coordinates change as

the particle travels through the material. Thus as the TBIT code integrates back along

the particles path, the streaming angles change with the angular positions of the particle.

This occurs even though the integration is carried out over only one time-step. Geometric

relationships must be derived to allow the TBIT code to calculate the streaming angles

for any arbitrary angular position.
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Figure 4.7: Streaming Directions in 1-D Spherical Coordinates

4.3.3.1 Streaming in One Dimensional Spherical Coordinates

In one-dimensional spherical coordinates, the particle flux only depends on the radial

position r. Likewise, the only streaming direction that TBIT must recalculate is µ,

which can range from 0 to π. Figure 4.7 shows a pictorial representation of calculational

variables in one-dimensional spherical coordinates. The new radial position is therefore:

r′ =
√
r2 + r′′2 + 2rr′′ cosµ. (4.16)

The the new streaming direction µ′ is:

µ′ = π + dθ − µ. (4.17)

4.3.3.2 Streaming in Two-Dimensional Spherical Coordinates

In two-dimensional spherical coordinates, the particle flux depends on the radial position

r and the polar angle θ. Like the one-dimensional case, only a single streaming variable

µ is needed; however, unlike the one-dimensional case µ runs from 0 to 2π. Figure 4.8

shows a pictorial representation of calculational variables in two-dimensional spherical

coordinates. The new radial position is therefore:
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Figure 4.8: Streaming Directions in 2-D Spherical Coordinates

r′ =
√
r2 + r′′2 + 2rr′′ cosµ. (4.18)

The angle dθ is:

dθ = cos−1

(
r′2 + r2 − r′′2

2r′r

)
. (4.19)

Therefore the new angular position of the point is:

θ
′
= θ + dθ. (4.20)

The new streaming direction µ′ is calculated as:

µ′ = π + dθ − µ. (4.21)

4.3.3.3 Streaming in Three-Dimensional Spherical Coordinates

The calculation of the streaming directions in three-dimensional coordinates is consider-

ably more difficult than the relatively easy transformations in one and two dimensions.

The basic methodology used will be to transform the coordinates of the calculational

point (r, θ, φ) into Cartesian coordinates (x, y, z). This coordinate system will be ro-

tated using the directional streaming angles and the streaming point will be calculated

in Cartesian coordinates and then transferred back into spherical coordinates (r′ θ′, φ′).
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Figure 4.9: Streaming Directions in 3-D Spherical Coordinates

Fortunately, calculating the streaming angles at the new point is not as difficult and

can be done easily without any coordinate transformations. Figure 4.9 shows a pictorial

representation of calculational variables in one-dimensional spherical coordinates.

The calculational point (r, θ, φ) is first transformed into Cartesian coordinates through

the well known coordinate transformation:

x = rcos (θ) sin (φ) (4.22)

y = rsin (θ) sin (φ)

z = r cos (φ).

The coordinate system is translated such that the origin of the Cartesian coordinate

system is centered on the calculational point. The streaming point is calculated in the



92

shifted Cartesian coordinates as:

x′
streaming = rcos (µ) sin (η) (4.23)

y′streaming = rsin (µ) sin (η)

z′streaming = rcos (η) .

where: µ and η are the streaming angles from the original calculational point measured

as the polar and azimuthal angles respectively.

The streaming Cartesian coordinates (x′
stream,y

′
stream, z′stream) are translated to the

calculational Cartesian coordinates through the following:




xstream

ystream

zstream



=




cos (θ) cos (φ) −sin (θ) cos (θ) sin (φ)

sin (θ) cos (φ) cos (θ) sin (θ) sin (φ)

−sin (φ) 0 cos (φ)







x′
stream

y′stream

z′stream




. (4.24)

Once the coordinates are transformed, it is simple to recalculate the streaming posi-

tions in the original spherical coordinate system by translating the coordinates back to

the original origin and then transforming the Cartesian coordinate system back into the

original spherical coordinate system.

In a similar fashion to the one and two dimensional cases, the directional angles at

the new coordinates can be found. The directional angles µ and η are calculated by the

following and shown in Figure 4.10:
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Figure 4.10: Directional Angle µ and η
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Table 4.1: Directional angle µ

µ < π π − cos−1

(
r′2 + r′′2 − r2

2r′r′′

)

µ >= π π + cos−1

(
r′2 + r′′2 − r2

2r′r′′

)

Table 4.2: Directional angle η

η < 0.5π −0.5π + cos−1

(
r′2 + r′′2 − r2

2r′r′′

)

η >= 0.5π 1.5π − cos−1

(
r′2 + r′′2 − r2

2r′r′′

)
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4.3.4 Down-scattering with TBIT

Transporting down-scattered photons with the TBIT method is fairly simple. The upper

energy groups are determined, and the lower energy groups are then calculated from the

down-scattered component and the uncollided source term for that particular frequency

group. Furthermore, because all the lower energy groups travel at the same speed, the

time-steps and spatial steps are equal.

Difficulties arise when dealing with neutronic transport because the lower energy

groups travel at slower velocities than the higher energy groups. This places restraints

on energy groups the time-dependent code can use. All energy groups used in the direct

calculations must have integer multiples of the highest energy group. Thus, if the next

lower energy group has twice the time-step of the higher energy group, the lower energy

group must have one-fourth the energy, assuming a non-relativistic particle (E = 1
2
mv2).

However, if the energy groups need to be closer than multiples of one-fourth the energy

of each other, then the TBIT method calculates the higher energy group throughout

the simulation. The down-scattered flux is then written to an output file along with

the spatial and temporal time-steps for the point in the simulation where the particles

appear as lower energy particles. Once the lower energy is calculated and the time-step

is reached where the down-scattered particles appear, the down-scattered source is read

into the TBIT method as uncollided particles in the lower energy group. This second

method will be used when simulating the time-of-flight neutron diagnostics ICF devices

as simulated in Section 6.2.

4.4 Description of the TBIT Code

The numerical development for the Time-Dependent Bubble Method was written using

C++. Figure 4.11 shows how the TBIT code is organized. The remainder of Chapter 4
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will describe in brief, each of the major components of the TBIT code

The Initialize routine, takes the data input and reads it into TBIT. The input file

is described more in depth in Appendix F; however in brief, in the first couple of lines

the user must enter the number of dimensions and the geometry type. The initialization

routine reads data based off the type of problem which was inputed.

The subroutine InitArray handles the dynamic declaration of all the arrays for the

problem. Typical array sizes can range over several orders of magnitude. The angular

flux array for a simple one-dimensional problem with 20 nodes in the spatial variable and

16 angular directions has only 640 double precision elements or 5.1k. However, for large

three dimensional problems with 80 nodes in each direction and 64 nodes in the polar

angle and 32 in the azimuthal the number of elements is 2.1× 109 or 16.8 gigabytes of

memory.

The Source routine handles the uncollided source for each energy group. As mentioned

previously, the down-scattered flux can either be calculated directly from the code or

read in from an input file. If the down-scattered flux is less than 1/2 of the energy of

the current group and an input file must be read, the source routine also reads in this

down-scattered flux. The uncollided source distribution for each energy group must be

entered into the code before each run.

The Gauleg subroutine is used if the spatial integration in the radial direction will

be done using a Gauss-Quadrature set. Typical problems show little difference between

uniform spacing in the radial direction and the non-uniform spacing necessary for Gauss-

Quadrature sets. As such, this routine is only used if the user determines that the

particular problem converges better using Gauss Quadrature. If the user does not specify

the integration, then Newton-Cotes type rules are used. The quadrature sets for Newton-

Cotes type rules are initialized in the Initialize routine.

The Calculation subroutines calculates the angular flux for each time-step. Each
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subroutine is slightly different because of geometry and dimensional differences in the

calculation. Each of the six geometries which can be calculated have the five major sub-

routines that are shown in lower portion of Figure 4.11. The Bubble subroutine calculates

the scattered component of the angular flux. This is the angular component which scat-

ters within one ∆x of the calculational point. The uncollided component of the angular

flux, particles which have not suffered a collision since they were born, are calculated in

the Line subroutine. The Boundary routine calculates the portion of the angular flux

which is the result of scattered particles that have suffered a collision outside of one ∆x.

The particles which are down-scattered from higher energy groups and are born as source

particles in the current energy group are calculated in the DownScattered subroutine. Fi-

nally, the spatial and angular interpolation is handled in the Spline subroutine. However,

the interpolation itself does not have to be performed using cubic splines. The flux can

be expanded using a wide variety of methods such as a simple linear method or expan-

sion based on Legrende polynomials. However, in each of the cases the interpolation or

expansion technique must be modified in the Spline routines.

The Output subroutine formats the output for the particular problem. Depending on

the requirements for output, each particular case of output can be formatted to meet

the requirements for the particular user. Currently, the output is formatted for use in

Microsoft Excel (used for the graphs) and Tecplot (used for multi-dimensional graphs

and movies).

Finally, the VoidArray subroutines will dynamically reclaim all the memory that

was allocated. This is extremely important because the memory requirements for some

problems are extremely high. As such, once the problem has been completed, freeing up

memory for other applications is a necessity.
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Chapter 5

TBIT Validation

Chapter 3 presented four finite media time-dependent benchmarks. In Chapter 5, the

TBIT method will be validated using these benchmarks. In Section 5.1 one-dimensional

problems using the TBIT method will be compared to the benchmarks in Chapter 3. In

Sections 5.2 and 5.3 two and three dimensional problems in spherical coordinates will be

validated.

The TBIT method will be compared to a particle balance in Section 5.4. This com-

parison will show how well the TBIT method conserves particles in addition to producing

results that benchmark favorably. The particle check will be accomplished by using the

conservation equation to measure the balance of particles (loses and gains) over each

node using the heterogeneous benchmark problem (benchmark number 4) for reference.

Section 5.5 will present a new heterogeneous two-dimensional Cartesian finite media

benchmark. Although the TBIT method produces results that are within a fraction of a

percent of the “true” value and are not as accurate as those results presented in Chapter

3, this two-dimensional benchmark is of valuable use for future researchers in validating

their time-dependent methods.

5.1 One-Dimensional TBIT comparisons to finite benchmarks

The TBIT method was compared to all four of the one-dimensional benchmark cases

presented in Section 3.3. For each comparison, the TBIT method was benchmarked

using the same Romberg integration techniques as presented in Chapter 3. This means

that six levels of calculations were used in determining the final converged result that
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was then compared to the benchmarks. Sixty-four discrete directions in the polar angle,

spanning from π >= θ >= 0, were used for all of the one-dimensional TBIT calculations.

5.1.1 Benchmark Homogeneous Cartesian with Uniform Source

The TBIT method was compared to the one-dimensional homogeneous benchmark with

a uniform source. The geometry for this benchmark was given previously in Figure 3.3.

Figure 5.1 shows the percent error between the TBIT method and the first benchmark

case from zero until ten mean free times. Each curve represents the passage of one-half

of a mft. As shown in the figure, the error is highest near the edges for the first couple of

time-steps peaking at −1.2%. The error in the center of the slab is much lower, peaking

at approximately 0.20%. Table 5.1 shows the numerical error between the TBIT method

and the benchmark after 1.0, 2.5, 5.0, 7.5, and 10.0 mft have past.

As time passes, the absolute value for the error on the vacuum boundary decreases

while the error in the center of the slab slightly increases. This shows that the TBIT

method is converging towards the correct steady-state value.

Furthermore, the error is slightly asymmetric. For the standard integral method,

given enough time all the points within the slab contribute directly to the integration of

the scalar flux at a particular point and time. However, not all the points in the TBIT

method contribute directly to the angular flux at a discrete point and direction. Some

boundary points are calculated using interpolation procedures discussed in the previous

chapter. Small differences in the calculation of the cubic splines for the boundary and

scattered sources result in the slight asymmetry evident from the figure.

Figure 5.2 shows the percent error for the TBIT method verses the first benchmark

case from 10 until 100 mft. Each curve represents a time-step of 10 mft. Again, as

for the early time-steps, the maximum error occurs near the vacuum boundaries. The

absolute value of the error in the center of the slab continues to increase until it reaches
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Figure 5.1: TBITMethod vs Cartesian Homogeneous Uniform Benchmark at Early Times

a steady-state value.

Table 5.2 shows the numerical error between the TBIT method and the benchmark

after 20, 50, 70 and 100 mft have past. This table shows that the TBIT method has

converged to within 0.56% of the benchmark solutions. As evident from the data, the

error converges between the benchmark data and the TBIT results. Hence, the TBIT

method also converges to the correct values.
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Figure 5.2: Error for TBIT Method vs Cartesian Homogeneous Uniform Benchmark at

Late Times



103

Table 5.1: TBIT vs Cartesian Homogeneous Uniform Benchmark at Early Times

Distance 1.0 mft 2.5 mft 5.0 mft 7.5 mft 10.0 mft

[cm] [Error %] [Error %] [Error %] [Error %] [Error %]

0.0 -1.201 -1.123 -0.643 -0.568 -0.536

0.5 -0.056 -0.118 -0.097 -0.104 -0.113

1.0 0.017 -0.038 -0.057 -0.065 -0.074

1.5 0.017 -0.002 -0.032 -0.042 -0.051

2.0 0.017 0.013 -0.013 -0.025 -0.035

2.5 0.017 0.015 0.000 -0.013 -0.022

3.0 0.017 0.015 0.008 -0.004 -0.012

3.5 0.017 0.015 0.011 0.003 -0.005

4.0 0.017 0.015 0.013 0.007 -0.001

4.5 0.017 0.015 0.013 0.009 0.002

5.0 0.017 0.015 0.013 0.010 0.003

5.5 0.017 0.015 0.013 0.009 0.002

6.0 0.017 0.015 0.013 0.007 -0.001

6.5 0.017 0.015 0.011 0.003 -0.005

7.0 0.017 0.015 0.008 -0.004 -0.012

7.5 0.017 0.015 0.000 -0.013 -0.022

8.0 0.017 0.013 -0.013 -0.025 -0.035

8.5 0.017 -0.002 -0.032 -0.042 -0.051

9.0 0.017 -0.038 -0.057 -0.065 -0.074

9.5 -0.056 -0.118 -0.097 -0.104 -0.113

10.0 -1.201 -1.123 -0.643 -0.568 -0.536
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Table 5.2: TBIT vs Cartesian Homogeneous Uniform Benchmark at Late Times

Distance 20 mft 50 mft 70 mft 100 mft

[cm] [Error %] [Error %] [Error %] [Error %]

0.0 -0.550 -0.561 -0.561 -0.562

0.5 -0.164 -0.192 -0.192 -0.194

1.0 -0.116 -0.146 -0.146 -0.147

1.5 -0.087 -0.118 -0.118 -0.119

2.0 -0.066 -0.098 -0.098 -0.099

2.5 -0.049 -0.082 -0.082 -0.084

3.0 -0.036 -0.070 -0.070 -0.072

3.5 -0.026 -0.060 -0.060 -0.062

4.0 -0.019 -0.054 -0.054 -0.055

4.5 -0.015 -0.049 -0.049 -0.051

5.0 -0.014 -0.048 -0.048 -0.050

5.5 -0.015 -0.049 -0.049 -0.051

6.0 -0.019 -0.054 -0.054 -0.055

6.5 -0.026 -0.060 -0.060 -0.062

7.0 -0.036 -0.070 -0.070 -0.072

7.5 -0.049 -0.082 -0.082 -0.084

8.0 -0.066 -0.098 -0.098 -0.099

8.5 -0.087 -0.118 -0.118 -0.119

9.0 -0.116 -0.146 -0.146 -0.147

9.5 -0.164 -0.192 -0.192 -0.194

10.0 -0.550 -0.561 -0.561 -0.562
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5.1.2 Benchmark Homogeneous Cartesian with Localized Source

The one dimensional homogeneous benchmark with a localized source in Cartesian coor-

dinates was compared against the results obtained from the TBIT method. The geometry

for this benchmark was shown previously in Figure 3.7.

Figure 5.3 shows the percent error for the TBIT method verses the second benchmark

case from zero until 10 mean free times. Each curve represents the passage of 0.5 mft. As

shown in Figure 5.3, the maximum error occurs at the wave front as it moves out from

the central source region. The maximum error peaks at roughly 1.0% roughly 1.5 mfp

from the vacuum boundary. After this point, the error on the wave front decreases as it

approaches the vacuum boundary. After the wave front passes out of the material, the

maximum error continually decreases, from 6 mft until 10 mft. At 10 mft, the maximum

error over the entire slab is less than 0.2%.
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Figure 5.3: Error for TBIT Method vs Cartesian Homogeneous Localized Benchmark at

Early Times
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Table 5.3 shows the numerical error between the TBIT method and the benchmark

at fix distances after 1.0, 2.5, 5.0, 7.5, and 10.0 mean free times.

Figure 5.4 shows the percent error for the TBIT method verses the second benchmark

case from 10 until 100 mean free times. Each line represents a time-step of 10 mft. As

with the first benchmark, the maximum error occurs at the vacuum boundary condition

with the TBIT method converging on a steady-state solution. However, in this case there

is a localized maximum error that occurs near the source boundary. The absolute value

for the error is increasing over the simulation until a steady-state solution is achieved

after approximately 50 mft. At that point the error converges.

As mentioned and explained in the previous section, the error over the slab is slightly

asymmetric. This is evident from the figure as the error on the right side of the slab is

slightly higher that that on the left.
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Figure 5.4: Error for TBIT Method vs Cartesian Homogeneous Localized Benchmark at

Late Times
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Table 5.4 shows the numerical error between the TBIT method and the benchmark

after 20, 50, 70 and 100 mean free times have past. This table shows that the TBIT

method has converged to within 0.50% of the correct steady-state value as given by the

second benchmark.
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Table 5.3: TBIT vs Cartesian Homogeneous Localized Benchmark at Early Times

Distance 1.0 mft 2.5 mft 5.0 mft 7.5 mft 10.0 mft

[cm] [Error %] [Error %] [Error %] [Error %] [Error %]

0.0 0.000 0.000 0.431 0.177 0.067

0.5 0.000 0.884 0.369 0.182 0.093

1.0 0.000 0.724 0.275 0.154 0.092

1.5 0.000 0.465 0.189 0.113 0.071

2.0 0.911 0.298 0.133 0.082 0.052

2.5 0.227 0.101 0.051 0.029 0.013

3.0 -0.026 -0.048 -0.043 -0.045 -0.049

3.5 0.017 -0.015 -0.026 -0.034 -0.041

4.0 0.017 0.003 -0.015 -0.027 -0.035

4.5 0.017 0.014 -0.008 -0.022 -0.031

5.0 0.017 0.016 -0.005 -0.020 -0.029

5.5 0.017 0.014 -0.008 -0.022 -0.031

6.0 0.017 0.003 -0.015 -0.027 -0.035

6.5 0.017 -0.015 -0.026 -0.034 -0.041

7.0 -0.026 -0.048 -0.043 -0.045 -0.049

7.5 0.227 0.101 0.051 0.029 0.013

8.0 0.911 0.298 0.133 0.082 0.052

8.5 0.000 0.465 0.189 0.113 0.071

9.0 0.000 0.724 0.275 0.154 0.092

9.5 0.000 0.884 0.369 0.182 0.093

10.0 0.000 0.000 0.431 0.177 0.067
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Table 5.4: TBIT vs Cartesian Homogeneous Localized Benchmark at Late Times

Distance 20 mft 50 mft 70 mft 100 mft

[cm] [Error %] [Error %] [Error %] [Error %]

0.0 -0.285 -0.493 -0.500 -0.501

0.5 -0.151 -0.338 -0.346 -0.346

1.0 -0.063 -0.226 -0.232 -0.232

1.5 -0.047 -0.183 -0.188 -0.189

2.0 -0.040 -0.151 -0.156 -0.156

2.5 -0.107 -0.186 -0.190 -0.190

3.0 -0.230 -0.286 -0.289 -0.289

3.5 -0.202 -0.255 -0.258 -0.258

4.0 -0.184 -0.236 -0.239 -0.239

4.5 -0.172 -0.223 -0.225 -0.226

5.0 -0.164 -0.216 -0.218 -0.218

5.5 -0.172 -0.223 -0.225 -0.226

6.0 -0.184 -0.236 -0.239 -0.239

6.5 -0.202 -0.255 -0.258 -0.258

7.0 -0.230 -0.286 -0.289 -0.289

7.5 -0.107 -0.186 -0.190 -0.190

8.0 -0.040 -0.151 -0.156 -0.156

8.5 -0.047 -0.183 -0.188 -0.189

9.0 -0.063 -0.226 -0.232 -0.232

9.5 -0.151 -0.338 -0.346 -0.346

10.0 -0.285 -0.493 -0.500 -0.501
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5.1.3 Benchmark Homogeneous Spherical with Localized Source

The one-dimensional homogeneous benchmark with a localized source in spherical coordi-

nates was compared against the results obtained from the TBIT method. The geometry

for this benchmark is shown in Figure 3.11.

Figure 5.5 shows the percent error for the TBIT method verses the homogeneous

spherical benchmark from zero until ten mean free times. Each curve represents one-half

of a mean free time of output. As shown in the figure, the error is highest on the inward

launched particle wave as it travels from the outer source region into the non-source

interior. The error, however, remains less than 2.0% for the first 10 mft. The maximum

error occurs 1.5 mfp from the center of the sphere. After the inward launched wave has

passed this point, the maximum error decreases through the remainder of the simulation.

As for the previous two cases, the TBIT method predicts values for the flux in the source

region slightly less than the benchmark results.

Table 5.5 shows the numerical error between the TBIT method and the benchmark

at fixed distances after 1.0, 2.5, 5.0, 7.5, and 10.0 mean free times have past.

Figure 5.6 shows the percent error for the TBIT method verses the localized spherical

benchmark for times between 10 and 100 mft. Each curve represents a time-step of

10 mft. As expected from the previous comparisons, the error peaks near the vacuum

boundary.

In addition, in this particular case the error also peaks nearest to the center of the

sphere. The closer particles get to the center of the sphere, the greater the change in

their streaming angles. As with the previous cases, the TBIT method converged to the

correct steady-state solution. However, for this spherical case the agreement is to within

1.5%.

Table 5.6 shows the numerical error between the TBIT method and the benchmark
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Figure 5.5: Error for TBIT Method vs Spherical Homogeneous Localized Benchmark at

Early Times

after 20, 50, 70 and 100 mean free times have past.



112

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.0 2.0 4.0 6.0 8.0 10.0

Distance [cm]

E
rr

o
r 

[%
]

Figure 5.6: Error for TBIT Method vs Spherical Homogeneous Localized Benchmark at

Late Times



113

Table 5.5: TBIT vs Spherical Homogeneous Localized Benchmark at Early Times

Distance 1.0 mft 2.5 mft 5.0 mft 7.5 mft 10.0 mft

[cm] [Error %] [Error %] [Error %] [Error %] [Error %]

0.0 0.000 0.000 0.000 0.000 -0.001

0.5 0.000 0.000 0.000 0.000 0.240

1.0 0.000 0.000 0.000 1.671 0.280

1.5 0.000 0.000 0.000 0.676 0.256

2.0 0.000 0.000 0.000 0.269 0.215

2.5 0.000 0.000 0.000 0.144 0.179

3.0 0.000 0.000 0.000 0.120 0.150

3.5 0.000 0.000 1.255 0.130 0.123

4.0 0.000 0.000 -0.151 0.134 0.097

4.5 0.000 0.000 0.031 0.138 0.075

5.0 0.000 0.000 0.166 0.111 0.045

5.5 0.000 0.000 0.168 0.091 0.023

6.0 0.000 0.366 0.147 0.061 0.001

6.5 0.000 0.343 0.100 0.020 -0.028

7.0 0.000 0.323 0.076 -0.007 -0.045

7.5 0.559 0.279 0.079 0.008 -0.028

8.0 0.453 0.240 0.116 0.057 0.026

8.5 -0.034 -0.054 -0.060 -0.085 -0.099

9.0 0.005 -0.084 -0.129 -0.150 -0.160

9.5 -0.097 -0.130 -0.205 -0.222 -0.229

10.0 -0.272 -0.402 -0.460 -0.473 -0.478
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Table 5.6: TBIT vs Spherical Homogeneous Localized Benchmark at Late Times

Distance 20 mft 50 mft 70 mft 100 mft

[cm] [Error %] [Error %] [Error %] [Error %]

0.0 -1.057 -1.164 -1.168 -1.168

0.5 -0.774 -0.915 -0.919 -0.919

1.0 -0.758 -0.898 -0.902 -0.902

1.5 -0.766 -0.895 -0.898 -0.898

2.0 -0.785 -0.897 -0.899 -0.900

2.5 -0.807 -0.901 -0.903 -0.903

3.0 -0.824 -0.903 -0.905 -0.905

3.5 -0.835 -0.901 -0.902 -0.903

4.0 -0.837 -0.893 -0.894 -0.895

4.5 -0.818 -0.870 -0.871 -0.871

5.0 -0.791 -0.838 -0.839 -0.839

5.5 -0.767 -0.808 -0.810 -0.809

6.0 -0.706 -0.744 -0.745 -0.745

6.5 -0.647 -0.682 -0.682 -0.681

7.0 -0.588 -0.616 -0.617 -0.616

7.5 -0.500 -0.523 -0.524 -0.524

8.0 -0.443 -0.460 -0.460 -0.460

8.5 -0.687 -0.693 -0.693 -0.693

9.0 -0.506 -0.515 -0.515 -0.515

9.5 -0.572 -0.578 -0.579 -0.579

10.0 -1.530 -1.531 -1.531 -1.532
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5.1.4 Benchmark Heterogeneous Cartesian with Localized Source

The one-dimensional heterogeneous benchmark with a localized source in Cartesian coor-

dinates was compared against the results obtained from the TBIT method. The geometry

for this benchmark was shown in Figure 3.15.

Figure 5.7 shows the percent error for the TBIT method verses the fourth, and final,

benchmark case from zero until 10 mean free times. Each curve represents one half of a

mean free time of output. As with the localized homogeneous case, the maximum error

occurs on the wave boundary as it travels away from the source region. For the time

period up until the wave hits the boundary, the TBIT method errors on the positive side.

After that point, the error slowly decreases until by the 10 mft the TBIT method errors

completely on the negative side from the benchmark case.

Unlike the homogeneous case, the material discontinuity has an effect on the error.

This is evident as the TBIT method predicts slightly lower results in the area immediately

to either side of the material boundary after the particle wave has passed outside the

material (after 5 mft).

From Figure 5.7 a relatively large error, as compared to the global errors in this prob-

lem, is noticed at the material/source interface conditions. This error can be explained

because the heterogeneous benchmark and the TBIT simulation are not exactly identi-

cal. This slight difference is due to the different methods by which the TBIT method

and the standard method define material boundaries. For the standard method used in

the benchmark, the nodes lay immediately on the material discontinuity. Whereas for

the TBIT method, the material is defined on the node and thus material discontinuities

change at dx/2. Therefore, as the number of nodes → ∞ the error goes to zero. However

for this benchmark case, 640 nodes were uniformly scattered over the 10 mfp (10 cm) of

the slab. Thus, there is a difference of: 0.5× dx = 5/640 or 0.0078125 cm between the
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Figure 5.7: Error for TBIT Method vs Cartesian Heterogeneous Localized Benchmark at

Early Times

two.

Table 5.7 shows the numerical error between the TBIT method and the benchmark

at fix distances and after 1.0, 2.5, 5.0, 7.5, and 10.0 mean free times. As mentioned

previously and shown in the table, the TBIT method produces results that are slightly

asymmetric across the slab.

Figure 5.8 shows the percent error for the TBIT method verses the heterogeneous

benchmark case from 10 until 100 mean free times. Each curve represents a time-step of

10 mft. As with all of the previous benchmarks, the maximum error occurs at the vacuum

boundary. In addition the error also peaks near the material discontinuity; however, the

reason for this error was explained earlier. In addition, a steady state-solution is achieved

as evident from the convergence of the error solutions.

Table 5.8 shows the numerical error between the TBIT method and the benchmark
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Figure 5.8: Error for TBIT Method vs Cartesian Heterogeneous Localized Benchmark at

Late Times

after 20, 50, 70 and 100 mean free times have past. This table shows that the TBIT

method has converged to within 0.350% of the correct steady-state value.

From these one-dimensional benchmarks, several conclusions can be made. First,

the TBIT method errors the greatest near vacuum and/or source boundary conditions.

In addition, the TBIT method produces results that can be slightly asymmetric. As

mentioned in Section 5.1.1, within each bubble the scattered and boundary source terms

can converge to slightly differing results because of the interpolation routines used.

A second observation is that on the outward particle wave, the TBIT method always

errors on the positive side. The reason for this behavior, is that particles on the wave

can only be emitted in very specific angular sectors. For example, in order to travel 5

mfp from the emission location after 10 mean free times, particles have to be emitted

from −π/4 to π/4. However, because the TBIT method uses finite directions, it includes
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all particles between −π/4− ε to π/4 + ε to make absolutely sure that all particles are

included. This causes the TBIT method to overestimate the flux by some small amount

inversely proportional to the number of angular directions used.

The final global observation that can be made, is that for all the cases, the steady-

state TBIT calculation converge to a solution that is a fraction of a percent less than

the ’true’ solution as defined by the benchmark problem. This indicates the that TBIT

method is to some small extent losing particles. This issue will be addressed in Section 5.4

when a particle balance will be applied to the one-dimensional heterogeneous benchmark

using the TBIT method.
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Table 5.7: TBIT vs Cartesian Heterogeneous Localized Benchmark at Early Times

Distance 1.0 mft 2.5 mft 5.0 mft 7.5 mft 10.0 mft

[cm] [Error %] [Error %] [Error %] [Error %] [Error %]

0.0 0.000 0.000 0.149 -0.093 -0.200

0.5 0.000 0.381 0.086 -0.097 -0.183

1.0 0.000 0.442 0.000 -0.118 -0.183

1.5 0.000 0.184 -0.078 -0.153 -0.200

2.0 0.653 0.024 -0.120 -0.173 -0.208

2.5 0.603 0.156 -0.239 -0.417 -0.504

3.0 -0.036 -0.038 -0.043 -0.057 -0.068

3.5 0.000 -0.021 -0.025 -0.030 -0.035

4.0 0.000 -0.006 -0.014 -0.017 -0.019

4.5 0.000 0.000 -0.007 -0.010 -0.012

5.0 0.000 0.000 -0.005 -0.009 -0.010

5.5 0.000 0.000 -0.007 -0.010 -0.012

6.0 0.000 -0.006 -0.014 -0.017 -0.019

6.5 0.000 -0.021 -0.025 -0.030 -0.035

7.0 -0.036 -0.038 -0.043 -0.057 -0.068

7.5 0.603 0.156 -0.239 -0.417 -0.504

8.0 0.653 0.024 -0.120 -0.173 -0.208

8.5 0.000 0.184 -0.078 -0.153 -0.200

9.0 0.000 0.442 0.000 -0.118 -0.183

9.5 0.000 0.381 0.086 -0.097 -0.183

10.0 0.000 0.000 0.149 -0.093 -0.207
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Table 5.8: TBIT vs Cartesian Heterogeneous Localized Benchmark at Late Times

Distance 20 mft 50 mft 70 mft 100 mft

[cm] [Error %] [Error %] [Error %] [Error %]

0.0 -0.331 -0.352 -0.352 -0.352

0.5 -0.303 -0.322 -0.322 -0.322

1.0 -0.281 -0.297 -0.297 -0.297

1.5 -0.277 -0.289 -0.289 -0.289

2.0 -0.267 -0.276 -0.276 -0.276

2.5 -0.603 -0.612 -0.611 -0.611

3.0 -0.087 -0.089 -0.089 -0.089

3.5 -0.042 -0.043 -0.043 -0.043

4.0 -0.023 -0.023 -0.023 -0.023

4.5 -0.014 -0.015 -0.015 -0.015

5.0 -0.012 -0.012 -0.012 -0.012

5.5 -0.014 -0.015 -0.015 -0.015

6.0 -0.023 -0.023 -0.023 -0.023

6.5 -0.042 -0.043 -0.043 -0.043

7.0 -0.087 -0.089 -0.089 -0.089

7.5 -0.603 -0.612 -0.611 -0.611

8.0 -0.087 -0.089 -0.089 -0.089

8.5 -0.277 -0.289 -0.289 -0.289

9.0 -0.281 -0.297 -0.297 -0.297

9.5 -0.303 -0.322 -0.322 -0.322

10.0 -0.331 -0.352 -0.352 -0.352
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5.2 Two-Dimensional Spherical TBIT comparisons to Benchmarks

A two-dimensional spherical calculation was compared to the finite media spherical lo-

calized benchmark (number 3). Whereas, a two-dimensional Cartesian problem can not

be formulated in such a way that the one-dimensional Cartesian benchmarks are valid, a

two-dimensional spherical problem is easily compared to the one-dimensional benchmark.

The two-dimensional formulation of the one-dimensional spherical benchmark was shown

in Figure 3.11.

Figure 5.9 shows the percent error for the TBIT method verses the third benchmark

case from zero until 10 mean free times. On the figure each curve represents one half of

a mean free time of output. As shown in the figure, the error is highest on the inward

launched particle wave as it travels from the source region into the non-source interior.

This behavior is identical to that shown for the one-dimensional spherical case. However,

the error in the two-dimensional spherical case reaches a maximum of 4.0% for the first

10 mft.

Table 5.9 shows the numerical error between the TBIT method and the benchmark

at fixed distances and at 1.0, 2.5, 5.0, 7.5, and 10.0 mean free times.
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Figure 5.9: Two-Dimensional TBIT comparison to Spherical Homogeneous Cartesian

Localized Benchmark
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Table 5.9: Two-Dimensional TBIT comparison to Spherical Benchmark

Distance 1.0 mft 2.5 mft 5.0 mft 7.5 mft 10.0 mft

[cm] [Error %] [Error %] [Error %] [Error %] [Error %]

0.0 0.000 0.000 0.000 0.000 -0.097

0.5 0.000 0.000 0.000 0.000 0.701

1.0 0.000 0.000 0.000 2.630 1.057

1.5 0.000 0.000 0.000 2.249 1.147

2.0 0.000 0.000 0.000 2.064 1.100

2.5 0.000 0.000 0.000 1.822 0.987

3.0 0.000 0.000 0.000 1.554 0.847

3.5 0.000 0.000 3.829 1.294 0.707

4.0 0.000 0.000 2.565 1.036 0.566

4.5 0.000 0.000 1.844 0.800 0.430

5.0 0.000 0.000 1.334 0.583 0.301

5.5 0.000 0.000 0.926 0.397 0.185

6.0 0.000 3.201 0.589 0.233 0.078

6.5 0.000 1.515 0.331 0.093 -0.016

7.0 0.000 0.692 0.117 -0.029 -0.103

7.5 1.033 0.188 -0.046 -0.131 -0.179

8.0 0.103 0.016 -0.098 -0.156 -0.191

8.5 -0.055 -0.107 -0.161 -0.202 -0.227

9.0 -0.003 -0.148 -0.194 -0.232 -0.254

9.5 -0.094 -0.190 -0.239 -0.278 -0.299

10.0 -0.277 -0.402 -0.462 -0.511 -0.535
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The error plots between the one and two dimensional spherical cases are striking.

Both figures have similar features: negative error in the source region, error peaking on

inward particle wave and decreasing once the wave reaches the center of the sphere. The

only major difference between the two is that for the two-dimensional case, the inward

error peaks at 3.0 mfp instead of 1.5 for the one-dimensional case.

5.3 Three-Dimensional TBIT comparisons to finite benchmarks

In a similar fashion to the calculations in Section 5.2, benchmark comparisons can be

made with a three-dimensional spherical problem. However, unlike all of the other TBIT

benchmark validation cases, six levels of Romberg integration were not used. For this

particular case only three levels are used. This was not because of any problem with the

algorithm, but was caused by the limitations placed by the computer hardware used in

the numerical evaluation. The TBIT method stores all the values for the current and

the previous value of the angular flux as double precision values. Thus, if there are 20

nodes in the radial direction, 20 in the θ, 10 in the φ, 20 in the µ, and 10 in the η. This

amounts to 1.6 million entries for all the angular values for the current and the previous

time-step, or 25 megabytes of ram. The sixth level of the Romberg integration would

produce memory requirements 64 times this or over 1 gigabyte of addressable memory

just for the angular flux. In order to produce run-times that did not require a substantial

amount of hard-disk swapping three Romberg integration levels were used.

Figure 5.10 shows the percent error for the three-dimensional spherical TBIT method

verses the first benchmark case from zero until 10 mft. Each curve represents one-half of

a mean free time of output. As with all the comparisons, the highest error occurs on the

wave front as it is launched inwards. For the three-dimensional case, the maximum error

occurs once the wave is 1 mft from the center of the slab, and peaks at nearly 7.0%.
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Comparing the one, two and three dimensional spherical TBIT benchmarks show

that with each additional dimension the maximum error increases. However, as men-

tioned previously, the three-dimensional case was not run to the same level of Romberg

convergence criteria as the one and two dimensional cases.
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Figure 5.10: Three-Dimensional TBIT comparison to Spherical Homogeneous Cartesian

Localized Benchmark

Table 5.10 shows the numerical error between the TBIT method and the benchmark

at fix distances and at 1.0, 2.5, 5.0, 7.5, and 10.0 mean free times.
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Table 5.10: Three-Dimensional TBIT comparison to Spherical Benchmark

Distance 1.0 mft 2.5 mft 5.0 mft 7.5 mft 10.0 mft

[cm] [Error %] [Error %] [Error %] [Error %] [Error %]

0.0 0.000 0.000 0.000 0.000 1.161

0.5 0.000 0.000 0.000 0.000 1.204

1.0 0.000 0.000 0.000 6.400 1.083

1.5 0.000 0.000 0.000 2.940 0.919

2.0 0.000 0.000 0.000 1.901 0.760

2.5 0.000 0.000 0.000 1.367 0.620

3.0 0.000 0.000 0.000 1.015 0.499

3.5 0.000 0.000 4.313 0.764 0.396

4.0 0.000 0.000 1.898 0.574 0.307

4.5 0.000 0.000 1.138 0.427 0.231

5.0 0.000 0.000 0.751 0.309 0.167

5.5 0.000 0.000 0.502 0.216 0.112

6.0 0.000 1.777 0.327 0.139 0.065

6.5 0.000 0.789 0.207 0.081 0.027

7.0 0.000 0.368 0.109 0.028 -0.009

7.5 1.241 0.306 0.092 0.026 -0.005

8.0 0.064 0.038 -0.020 -0.049 -0.063

8.5 -0.074 -0.093 -0.115 -0.126 -0.132

9.0 0.015 -0.074 -0.111 -0.124 -0.131

9.5 -0.096 -0.150 -0.176 -0.184 -0.188

10.0 -0.072 -0.127 -0.173 -0.188 -0.194
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5.4 TBIT comparisons to balance of particles

In an effort to make the TBIT method as accurate as possible, comparisons were made

against the conservation equation. This was done to ensure that a particle balance around

each nodal region was maintained, or more simply put the time rate of change for the

number of particles in a specific region plus the number that leak out or are absorbed

must equal the number of particles created in that particular region.

The conservation equation is obtained through the following simple derivation. The

single speed Boltzmann equation can be written as:

[
1

v

∂

∂t
+ Ω̂ · �∇+Σ(�r, E, t)

]
ψ
(
�r, Ω̂, E, t

)
= q

(
�r, Ω̂, Et

)
. (5.1)

Integrating Equation 5.1 over all angles one obtains:

1

v

1

∂t

∫
dΩψ

(
�r, Ω̂, E, t

)
+ �∇ ·

∫
dΩψ

(
�r, Ω̂, E, t

)

Σ(�r, E, t)
∫

dΩψ
(
�r, Ω̂, E, t

)
=
∫

dΩ q
(
�r, Ω̂, E, t

)
. (5.2)

Using the standard definitions for the scalar flux and current and defining:

Q (�r, E, t) =
∫

dΩq
(
�r, Ω̂, E, t

)
, (5.3)

one obtains the standard form for the balance or conservation equation as:

1

v

∂

∂t
Φ(�r, E, t) + �∇ · �J (�r, E, t) + Σ(�r, E, t)Φ (�r, E, t) = Q (�r, E, t) . (5.4)

Implementing a simple numerical scheme to numerically difference Equation 5.4 and

bringing the source term to the left hand side one arrives at the following:

Φn+1
i − Φn

i

∆x
+

Σa

2

(
Φn+1
i −Φn

i

)
+

(
Jn+1
i+1 + Jn

i+1 − Jn+1
i−1 − Jn

i−1

)
4∆xΣa

+
1

2

(
Qn+1
i +Qn

i

)
= 0

(5.5)
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Figure 5.11: Particle Balance for the TBIT Method

where: n is the time index, i is the spatial index, and recalling that ∆x is defined as v∆t.

The particle current is defined at each cell as:

�J ≡
∫

dΩΩ̂ψ
(
�r, Ω̂, E, t

)
. (5.6)

Equation 5.5 was implemented in the TBIT code as a check for the one-dimensional

benchmarks described earlier in the chapter. At every spatial node for every time-step

a simple check was performed to make sure that the particle balance was correct. Fig-

ure 5.11 shows the deviation from zero for the right hand side of Equation 5.5.

The results presented in this section are for the one-dimensional heterogeneous bench-

mark with 640 nodes distributed throughout the interior of the slab. The same hetero-

geneous materials used in the earlier benchmark were used for this balance calculation,

Table 3.13. Four different curves are shown on the figure. These curves correspond to the

particle balance after: 2.5, 5.0, 7.5, and 10.0 mft. Hence, at the last output particles have

traveled completely across the slab. The curve shown with the high frequency response is
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the balance at 2.5 mft. As shown in the figure, the balance at 2.5 mft balances particles

almost exactly in the center of the slab. As time progresses, the balance in the center

source region errors on the negative side.

As shown in Figure 5.11 a majority of nodes conserve particles to within 1 part in

105. Points close to the vacuum boundary conserve particles to within 1.5 parts in 105.

As expected, in those regions that are source driven (central region) differ from zero by a

negative amount. This is because the external source termQ dominates and contributes a

negative quantity to Equation 5.5. Likewise, the regions that are dominated by streaming

deviate from zero by a positive amount.

Table 5.11 shows the numerical deviation from zero. If the number of particles are

conserved, both sides of Equation 5.5 are identical to zero. If the balance of particles is

increasing, then a numerical evaluation of Equation 5.5 will be negative, and, similarly, if

the balance is decreasing a numerical evaluation of Equation 5.5 will result in a positive

value.
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Table 5.11: Balance of Particles for TBIT Method

Distance 2.5 mft 5.0 mft 7.5 mft 10.0 mft

[cm] [Error %] [Error %] [Error %] [Error %]

0.0 0.000E+00 -6.427E-04 -1.494E-03 -2.247E-03

0.5 -9.346E-05 3.035E-04 3.377E-04 3.226E-04

1.0 3.001E-04 5.289E-04 5.954E-04 6.020E-04

1.5 5.908E-04 8.060E-04 8.570E-04 8.608E-04

2.0 1.383E-03 1.088E-03 1.113E-03 1.104E-03

2.5 -2.245E-06 -2.572E-06 -2.200E-05 -5.261E-05

3.0 -1.387E-03 -1.096E-03 -1.168E-03 -1.223E-03

3.5 -5.953E-04 -8.257E-04 -9.441E-04 -1.022E-03

4.0 -3.049E-04 -5.989E-04 -7.489E-04 -8.457E-04

4.5 9.012E-05 -4.293E-04 -6.269E-04 -7.382E-04

5.0 -2.472E-06 -3.784E-04 -5.883E-04 -7.025E-04

5.5 9.012E-05 -4.293E-04 -6.269E-04 -7.382E-04

6.0 -3.049E-04 -5.989E-04 -7.489E-04 -8.457E-04

6.5 -5.953E-04 -8.257E-04 -9.441E-04 -1.022E-03

7.0 -1.387E-03 -1.096E-03 -1.168E-03 -1.223E-03

7.5 -2.245E-06 -2.572E-06 -2.200E-05 -5.261E-05

8.0 1.383E-03 1.088E-03 1.113E-03 1.104E-03

8.5 5.908E-04 8.060E-04 8.570E-04 8.608E-04

9.0 3.001E-04 5.289E-04 5.954E-04 6.020E-04

9.5 -9.346E-05 3.035E-04 3.377E-04 3.226E-04

10.0 0.000E+00 -6.427E-04 -1.494E-03 -2.247E-03
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5.5 TBIT calculation of a Two-Dimensional Finite Heterogeneous Media

Benchmark

The previous sections demonstrated that the TBIT technique produced results that were

within a fraction of a percent, for Cartesian geometries, and within a few percent, for

spherical geometries, to the time-dependent finite media benchmarks. The higher er-

ror in spherical geometries is due, in most part, to the added difficulties in calculating

the streaming angles when particles traverse the geometry. However, all the previous

comparisons with TBIT have been against one-dimensional benchmarks. This restric-

tion was placed because of the complications involved with analytically solving for the

uncollided flux and integrating the kernel in more than one dimension. In an effort to

supply a benchmark in two-dimensions that should be within 1% of the actual value, a

two-dimensional TBIT benchmark problem was run.

The geometry of the problem is shown in Figure 5.12 and the material properties are

given in Table 3.13. The inner source region is a square with inner dimensions that run

from 2.25 to 7.75 cm.

As with the previous benchmark cases, six levels of Romberg integration were run

and a converged result was calculated. The scalar flux at selected points at 1.0, 2.5, 5.0,

7.5, and 10.0 mft are given in Tables 5.12, 5.13, 5.14, 5.15, and 5.16.
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Figure 5.12: Geometry for Two-Dimensional Heterogeneous Benchmark

Table 5.12: Particle Flux at 1.0 mft for Two-Dimensional Heterogeneous Benchmark

x/y [cm] 0.0 1.0 2.0 3.0 4.0 5.0

0.0 0.00E+00 0.00E+00 0.00E+00 0.000E+00 0.00E+00 0.00E+00

1.0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000E+00 0.00E+00

2.0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000E+00 0.00E+00

3.0 0.00E+00 0.00E+00 0.00E+00 4.42E-01 4.42E-01 4.42E-01

4.0 0.00E+00 0.00E+00 0.00E+00 4.42E-01 4.42E-01 4.42E-01

5.0 0.00E+00 0.00E+00 0.00E+00 4.42E-01 4.42E-01 4.42E-01
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Table 5.13: Particle Flux at 2.5 mft for Two-Dimensional Heterogeneous Benchmark

x/y [cm] 0.0 1.0 2.0 3.0 4.0 5.0

0.0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1.0 0.00E+00 2.232E-03 1.94E-02 4.82E-02 6.51E-02 6.71E-02

2.0 0.00E+00 1.937E-02 1.07E-01 2.63E-01 3.45E-01 3.58E-01

3.0 0.00E+00 4.82E-02 2.63E-01 9.81E-01 1.16E+00 1.17E+00

4.0 0.00E+00 6.51E-02 3.45E-01 1.16E+00 1.38E+00 1.41E+00

5.0 0.00E+00 6.71E-02 3.58E-01 1.17E+00 1.41E+00 1.43E+00

Table 5.14: Particle Flux at 5.0 mft for Two-Dimensional Heterogeneous Benchmark

x/y [cm] 0.0 1.0 2.0 3.0 4.0 5.0

0.0 3.46E-03 1.27E-02 2.78E-02 4.62E-02 6.08E-02 6.61E-02

1.0 1.27E-02 4.69E-02 1.02E-01 1.72E-01 2.25E-01 2.43E-01

2.0 2.78E-02 1.02E-01 2.37E-01 4.35E-01 5.63E-01 5.96E-01

3.0 4.62E-02 1.72E-01 4.35E-01 1.16E+00 1.39E+00 1.43E+00

4.0 6.08E-02 2.25E-01 5.63E-01 1.39E+00 1.68E+00 1.73E+00

5.0 6.61E-02 2.43E-01 5.96E-01 1.43E+00 1.73E+00 1.78E+00
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Table 5.15: Particle Flux at 7.5 mft for Two-Dimensional Heterogeneous Benchmark

x/y [cm] 0.0 1.0 2.0 3.0 4.0 5.0

0.0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1.0 0.00E+00 2.23E-03 1.94E-02 4.82E-02 6.51E-02 6.71E-02

2.0 0.000E+00 1.94E-02 1.07E-01 2.63E-01 3.45E-01 3.58E-01

3.0 0.00E+00 4.82E-02 2.63E-01 9.81E-01 1.16E+00 1.17E+00

4.0 0.00E+00 6.51E-02 3.45E-01 1.16E+00 1.38E+00 1.41E+00

5.0 0.00E+00 6.71E-02 3.58E-01 1.17E+00 1.41E+00 1.43E+00

Table 5.16: Particle Flux at 10.0 mft for Two-Dimensional Heterogeneous Benchmark

x/y [cm] 0.0 1.0 2.0 3.0 4.0 5.0

0.0 1.74E-02 4.15E-02 6.85E-02 9.59E-02 1.16E-01 1.24E-01

1.0 4.15E-02 1.11E-01 1.91E-01 2.77E-01 3.40E-01 3.62E-01

2.0 6.85E-02 1.91E-01 3.52E-01 5.59E-01 6.95E-01 7.32E-01

3.0 9.59E-02 2.77E-01 5.59E-01 1.26E+00 1.48E+00 1.53E+00

4.0 1.16E-01 3.40E-01 6.95E-01 1.48E+00 1.77E+00 1.82E+00

5.0 1.24E-01 3.62E-01 7.32E-01 1.53E+00 1.82E+00 1.88E+00
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Figure 5.13: Particle Flux at 1.0 mft for Two-Dimensional Heterogeneous Benchmark

Similarly, graphical outputs at 1.0, 2.5, 5.0, 7.5, and 10.0 mft are shown in Fig-

ures 5.13, 5.14, 5.15, 5.16, 5.17. At early times, particles have made few collisions, and,

therefore, a majority of the particles entering the outer non-source region are uncollided.

The flux contours verify this by emulating the inner square source region. Although the

magnitude of the uncollided flux decreases as time progresses and making it difficult to

discertain from the figures, the sharp edges that result from the uncollided flux progress

outwards until they reach the material boundary. At this point, all the points within the

geometry can communicate with the inner source region.

As time progresses, particles are able to travel further away from the source region

while undergoing multiple collisions. The flux contours at these later times show that

the further one travels from the inner source region the more circular they become.
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Figure 5.14: Particle Flux at 2.5 mft for Two-Dimensional Heterogeneous Benchmark
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Figure 5.15: Particle Flux at 5.0 mft for Two-Dimensional Heterogeneous Benchmark
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Figure 5.16: Particle Flux at 7.5 mft for Two-Dimensional Heterogeneous Benchmark
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Figure 5.17: Particle Flux at 10.0 mft for Two-Dimensional Heterogeneous Benchmark
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Chapter 6

TBIT Applications to ICF Problems

In the previous two chapters, the Time-Dependent Bubble Integral Transport Method

(TBIT) was introduced and developed. The TBIT method was benchmarked against a

series of finite media time-dependent benchmarks. In Chapter 6, the TBIT method will

be used to simulate two problems pertaining to radiative transport in ICF targets.

The first application will calculate three dimensional radiative transport in a spherical

hohlraum. This is done to investigate the effect that the placement and size of the laser

entrance holes have on the non-uniformity of the illumination on the capsule.

The second application will be that of neutron transport down a tube that measures

the energy spectrum based on the time of flight from the fusion event to the detector.

This will show how scattering events in the tube affect the perceived energy spectrum

by scattering into lower energy groups and increasing the distance over which neutrons

must travel.

6.1 3-D radiation transport on Spherical Hohlraum

As mentioned in Chapter 1, one of the routes to high gain targets and ignition is through

the use of thin wall cylindrical hohlraums composed of a high Z material, usually gold,

that surrounds a DT target suspended in the center. Laser energy enters through two

laser entrance holes (LEH) on either side of the cylinder and proceed to heat up the

high Z material of the hohlraum resulting in the production of X-rays. The X-rays then

irradiate the capsule as well as other portions of the hohlraum not directly heated by the

laser energy. These “secondary” zones then proceed to emit X-rays of their own. Under
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ideal circumstances, the capsule is illuminated as uniformly as possible. For a capsule to

properly compress and initiate fusion, the non-uniformity of the X-ray illumination must

be on the order of ∼ 1% [92]

In general, a cylindrical hohlraum has a length that is greater than its diameter. This

type of geometry is needed to balance the lack of a X-ray source at the LEH with the

large source caused by the lasers striking the hohlraum and the resultant X-ray emission.

An alternate design would be to make the hohlraum spherical instead of cylindrical

and aim the lasers into the hohlraum such that they illuminate the area beyond the LEH.

In contrast to cylindrical hohlraums, where beam phasing is needed to ensure a uniform

illumination, spherical hohlraums can use identical temporal beam histories thereby pro-

ducing more symmetrical capsule illuminations [93]. There are several disadvantages to

using spherical hohlraums [93]:

1. Beam placement for spherical hohlraums may be incompatible with cylindrical

hohlraum designs.

2. The hydrodynamics and radiative transport is more difficult to model in three-

dimensional spherical coordinates.

3. There may be greater radiative losses because of the added number of LEH.

When designing spherical hohlraums several considerations must be made when de-

termining the area of the LEH as compared to the total area of the hohlraum. Ideally,

the lasers should convert all of their energy into X-rays in the interior of the hohlraum.

Obviously, total conversion is impossible; however, the LEH must be large enough such

that the lasers enter into the hohlraum unimpeded by the plasma ablating off near the

LEH.

On the other hand, an ideal design should also allow all of the X-ray energy to be

transported into the capsule. This means that the LEH be as small as possible to avoid
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X-ray losses. These two design considerations are in direct conflict with one another.

When balancing these two criteria, the overriding consideration must be the uniformity

of the capsule illumination.

Provided in Table 6.1 and shown in Figure 6.1 are the proposed dimensions for a

spherical hohlraum on the NIF [93].

Table 6.1: Proposed Spherical Hohlraum Design for NIF

Case Radius Rc (mm) 4.55

Hole Radius Rh (mm) 1.14

Capsule Radius Rcap (mm) 1.13

Rcap/Rc 0.25

Case Area Ac (mm2) 243.8

Total Hole Area Ah (mm2) 16.33

Ah/Ac 0.067

The proposed spherical hohlraum for the NIF has four holes placed at the vertices of

a tetrahedron, or known as a “tetrahedral hohlraum. Although there have been different

proposed angles for the LEH on the NIF tetrahedral hohlraum, the calculations will

proceed using LEH that are uniformly distributed over the surface of the hohlraum at

60 degree angles from each other.

The TBIT method is used to investigate the uniformity of the capsule illumination

for three different spherical hohlraums designs: two LEH holes at either pole on the

hohlraum, the NIF tetrahedral hohlraum, and a six hole design with two LEHs on either

pole and four uniformly distributed LEHs on the equator. The total surface area will be

the same for all three designs.



143

Side Top

Laser Enterance Holes

R

R

Hole

Hohlraum

Figure 6.1: Proposed NIF Spherical Hohlraum

The figure of merit when determining the uniformity of the capsule illumination is the

area of the LEH verses the total area of the hohlraum. For each of the three geometry

types, three different LEH surface areas will be run. The first will have a LEH surface

area of 50% that of the NIF design, the second equal to the NIF design, and the final

200% that of the NIF. The code will then calculate the capsule illumination for each of

the three geometry types and for each of the three LEH surface areas.

Several complications arise when using the TBIT method. First, the LEH, not posi-

tioned at either pole of the spherical hohlraum, can not be modeled as circular using the

currently implemented TBIT method. The coordinate system for the code is defined at

the center of the capsule and the material boundaries on the hohlraum can only change

at discrete values for the azimuthal and polar angles. As a result, the area of these LEH

are “arcs” on the hohlraum with areas of ALEH = ρ2dθdφ. These LEH holes have the

same area as those at the poles with the only difference coming in the shape of the hole.

The TBIT method was run using the numerical parameters shown in Table 6.2.

Several simplifying assumptions are made. First the capsule is assumed to be com-
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Table 6.2: Numerical Parameters for TBIT method

Nodes in Radial Direction 20

dr (mm) 0.2275

dt (picosecond) 0.758

Nodes in Polar Direction 40

Nodes in Azimuthal Direction 20

pletely black. This means that any incident X-ray flux will be absorbed and not trans-

ported through the capsule. This need not necessarily be the case. Real opacities could

be used for the DT target; however, as the TBIT method is not coupled to a hydrody-

namics code and the opacities and geometry for the problem are fixed, radiation would

just travel through the capsule and affect the illumination on the other side. The present

calculations are to determine the capsule illumination as a result of the X-ray flux incident

on the capsule, and any “from the rear” illumination would distort the results.

Second, because the material changes on discrete nodes, the capsule in the simulation

is slightly larger than the NIF target given in Table 6.2. For this particular problem

there are 20 nodes scattered uniformly in the interior of the hohlraum, dr=0.2275 mm.

The capsule in the interior is completely black to all radiation and is composed of the

inner 5 nodes, or 1.14 mm.

Only a signal frequency will be transported for the purpose of this simulation. This

will allow the determination of the effect that the LEH size and placement has on the

uniformity of the capsule illumination.

A uniform, isotropic, unit source will be distributed over each LEH. All of the outgoing

photons from the LEH are pointed towards the hohlraum. Once the photon flux intersects
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Figure 6.2: Two Laser Entrance Hole Spherical Hohlraum

with the hohlraum, 80% of the incoming intensity will be isotropically remitted as X-rays

at the next time-step.

6.1.1 Two Laser Entrance Holes

The first simulation is of a spherical hohlraum with identical dimensions to that of the

NIF hohlraum given in Table 6.1, including the total surface area of the LEH. The

simulated two LEH hohlraum is shown in Figure 6.2.

Figure 6.3 shows the capsule illumination at 27.32 picoseconds. Figure 6.4 shows

the capsule mapped onto a two-dimensional plane. At this early time, X-rays have just

enough time to travel from the LEH to the hohlraum and then to the capsule. The effect

of the LEH is noticeable from both pictures as a large “cool”area located on either pole

of the capsule. The middle of the capsule has the highest illumination, because it is the

only area that can be illuminated by both of the LEH.

Figures 6.5 and 6.6 show the capsule illumination at 59.19 picoseconds. At this later

time, X-rays can travel approximately twice across the diameter of the hohlraum. The
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Figure 6.3: Two LEH Capsule at 27.32 picoseconds
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Figure 6.5: Two LEH Capsule at 59.19 picoseconds

basic features from the earlier time are featured in these two later figures. The LEH

holes are the the coolest regions of the capsule and the warmest is along the equator.

Two additional scenarios were run using the same two holed LEH, with the only

difference coming in the total surface area of the LEH. The first case was run with half

the surface area of the NIF design and the second was run with twice the surface area.

Table 6.3 compares the percent non-uniformity for each of the three cases.

As expected, the smaller the LEH, the more uniform the capsule illumination. The

third column of Table 6.3 shows the percent increase in the rms non-uniformity over

the previous surface area configuration. The TBIT method predicts that doubling the

LEH surface area will approximately double the capsule non-uniformity. From the data

calculated, the two LEH design is clearly unfavorable for successful implosions, as the

best capsule illumination is over 10%, well above the 1% needed for successful implosion.
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Figure 6.6: Two LEH Capsule at 59.19 picoseconds

Table 6.3: RMS Non-uniformity for Two-Hole Hohlraum

Total Hole Area RMS Percent Increase

(mm2) Non-uniformity % RMS Non-uniformity %

8.17 12.04 -

16.33 18.80 56.15

32.66 28.35 50.79
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Figure 6.7: Four LEH Capsule at 27.32 picoseconds

6.1.2 Four LEH “Tetrahedral” Hohlraum

The proposed spherical NIF hohlraum was simulated, Table 6.2, and shown previously

in Figure 6.1. Recall that the LEH holes that lay off the poles of the hohlraum are

represented as “arcs” on the hohlraum instead of circular holes.

Figure 6.7 shows the capsule illumination at 27.32 picoseconds. At early times, the

capsule illumination is fairly uniform except over the LEH. As expected, the portion of

the capsule that has the most direct line of sight to the LEH is the coolest.

Figures 6.9 and 6.10 show the capsule illumination at 59.19 picoseconds. At this

time, the hottest portion of the capsule are the three areas that are between the four

LEH. At these locations, the capsule’s surface has the greatest view of the hohlraum
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Figure 6.8: Four LEH Capsule at 27.32 picoseconds

without a LEH. As expected, the coolest regions are those that lay directly below the

LEH. Schnittman ran a similar NIF tetrahedral capsule illumination using the Buttercup

view-factor code. The calculated results showed a similar illumination pattern to that

presented as the steady-state illumination patterns in Figures 6.9 and 6.10 [93].

As for the two-holed spherical hohlraum case, the tetrahedral hohlraum was run using

identical conditions; however, the surface area of the LEH was changed. The smallest

surface area is 50% that of the proposed NIF design, the middle value is the nominal

case, and the largest is 200% of the NIF.

As expected, the smaller the LEH the more uniform the capsule illumination. The

third column of Table 6.4 shows the percent increase in the rms non-uniformity over the

previous surface area configuration. TBIT predicts that the NIF tetrahedral hohlraum

lays within an optimal range of LEH area to total hohlraum surface area. A reduction of

50% for the surface area of the LEH decreases the non-uniformity by 13.72%. Whereas,



151

X Y

Z

FLUX

2.02487
1.74558
1.46629
1.18699
0.907702
0.628409
0.349116
0.0698232

Figure 6.9: Four LEH Capsule at 59.19 picoseconds
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Figure 6.10: Four LEH Capsule at 59.19 picoseconds
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Table 6.4: RMS Non-uniformity for Four-Hole Hohlraum

Total Hole Area RMS Percent Increase

(mm2) Non-uniformity % RMS Non-uniformity %

8.17 5.76 -

16.33 6.55 13.72

32.66 10.94 67.02

doubling the LEH area increases the non-uniformity by 67.02%.

Clearly, this capsule design is better than the two LEH presented earlier, as the

illumination now varies over the capsule by a couple of a percent. The tetrahedral design

has smaller radius LEH than the two holed design. The smaller LEH mean that any

given point that lays with the “shadow” of the LEH can see more of the X-ray source on

the hohlraum.
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Figure 6.11: Six Laser Entrance Hole Spherical Hohlraum

6.1.3 Six Laser Entrance Holes

The final simulation is that of a six LEH hohlraum. The simulated six LEH hohlraum is

shown in Figure 6.11. Again, as in the previous two cases the surface area is identical to

the NIF design.

Figures 6.12and 6.13 show the capsule illumination at 27.32 picoseconds. As with

the tetrahedral design, the illumination over the capsule is fairly uniform except over the

LEH. Figure 6.14 shows that the “shadow” cast by the square panel LEH is oval on the

capsule. This shows that the radiative transport within the hohlraum tends to soften

any hard edges.

After 59.19 picoseconds, the capsule illumination has reached 95% the magnitude of

the steady state illumination and the illumination pattern has stabilized. The coolest

areas are the regions on the capsule directly facing the LEH. Like the previous cases, the

hottest portion of the capsule is the portion that lays between the LEH. For the six LEH

hohlraum, there are twelve hot spots on the capsule.

The six LEH design was run with the same geometric configuration but with 50% and
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Figure 6.12: Six LEH Capsule at 27.32 picoseconds
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Figure 6.13: Six LEH Capsule at 27.32 picoseconds
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Figure 6.14: Six LEH Capsule at 59.19 picoseconds
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200% the surface area of the NIF design. As expected, the smaller the holes, the more

uniform the capsule illumination. The non-uniformity for the six hole hohlraum is less

than the previous two cases for all surface areas. This is expected as the greater number

of holes for a given surface area should provide a better capsule illumination.

Table 6.5: RMS Non-uniformity for Six-Hole Hohlraum

Total Hole Area RMS Percent Increase

(mm2) Non-uniformity % RMS Non-uniformity %

8.17 4.46 -

16.33 5.79 29.82

32.66 9.43 62.87

As with the tetrahedral design, as the surface area of the LEH is halved, the non-

uniformity of the capsule illumination only decreases by 29.82%. Whereas once the

surface area is doubled, the non-uniformity increases by 62.87%.
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Figure 6.16: Neutron Time of Flight System - 1

6.2 2-D simulation of Neutron Time of Flight Diagnostic

A second application to which the TBIT method will be applied is the neutron time

of flight diagnostics found on experimental ICF systems. Simply put, these diagnostic

devices determine the energy spectrum of an ICF target by using neutron time-of-flight

techniques. Hence, the energy of the neutrons can be easily determined knowing the

length from the target and the time that it takes for neutrons to arrive at the target

Figure 6.16 shows the simple ICF time of flight diagnostic that was simulated. The

fusion reaction occurs in a target chamber that has a 3 meter radius. The time of flight

diagnostic tube is made out of aluminum with a thickness of 2 cm. The length of the tube

is 20 meters in length. As the TBIT method can not model cylindrical geometries the

time-of-flight tube is modeled using Cartesian coordinates. Thus, the tube is simulated

as two parallel slabs of aluminum.

The neutrons entering into the tube, because of the radius of the ICF chamber and

the diameter of the neutron diagnostic, have a spread of 19 degrees. This is shown in



158

10 cm

3 meters
Fusion
Event

10 cm
Diagnostic

19.09
o

Figure 6.17: Neutron Time of Flight System - 2

Figure 6.17.

This means that neutrons entering the tube are not necessarily traveling directly down

the tube. As a result, particles can travel down the tube in several different methods.

These are shown in Figure 6.18. Neutrons that enter the tube very nearly radially outward

can travel directly down the diagnostic tube without undergoing any collisions with the

walls (case 1).

However, particles that enter the diagnostic tube in a 0.25 degree arc to either side of

vertical will interact with the wall once before they reach the detector. These particles

could then scatter in such a way that they are angled back down the tube and towards

the detector (case 2). Particles that arrive at the detector after having scattered one or

more times appear to arrive with a lower energy. These scattered neutrons have traveled

a longer distance to the detector and even if they retain their initial velocity will arrive
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Figure 6.18: Neutron Time of Flight System - 3

later than a similar particle that travels directly down the tube.

Twenty-four energy groups were used to simulate the continuous energy spectrum of

incoming neutrons that will impact the first wall and enter the diagnostic tube. These

energy groups are shown in Table 6.6. All energy groups, except the first for which the

particles have a velocity that corresponds to an energy of 14.1 MeV, have a velocity that

corresponds to EMidpoint for that group.

All the incoming neutrons are assumed to have initial angles between -19.0 and 19.0

degrees. Time of flight calculations were then performed for each energy group and

the two energy groups immediately below. Thus for the first calculation, the incoming

source particles will have energies of 14.1 MeV and the code will then transport particles

in this energy group and the resultant scattered particles from the 2nd and the 3rd

energy group. Only two down-scattered energy groups are needed because the energy of

a neutron scattering at a 90 degree angle off aluminum results in the neutron retaining

96% of its initial energy. Thus, two energy groups will cover all neutrons that have two

large scattering events. In any case, most of the scattered particles that end up at the
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diagnostic will be the result of small angle scattering events and thus possess nearly all

of their original energy, but will travel a longer path length. The detector will tend to

predict a spectrum slightly down-shifted in energy from the spectrum that enters in the

diagnostic tube.

Five hundred spatial nodes were used along the length of the time of flight tube, or

one node every 4 cm. Ten nodes were placed in the radial direction, or one node every 2

cm. The geometry was simulated using two-dimensional Cartesian coordinates. Ideally,

the problem should be performed in cylindrical; however, as the method currently does

not support cylindrical coordinates, Cartesian was used in substitution.

A source of uncollided neutrons was placed at the diagnostic entrance. The source

has a pulse width of one dt, or the amount of time that it takes for particles to travel one

dx. Downscattered neutrons are placed in the tube at the spatial and temporal position

at which they are scattered from the higher energy group. The calculation was then

allowed to proceed until there has been enough time for the particles in any given energy

group to travel 30 meters, or 50% longer than the tube itself.

Figure 6.19 shows the neutron spectrum at the front of the tube (shown as the solid

line) verses the spectrum that the diagnostic would see at the end of the 20 meter tube

(data points) using the neutron energy groups provided in Table 6.6 [94]. There is very

little difference between the two groups of data. This is because the energy groups are

fairly far apart. As a result, any difference caused by small angle scattering resulting in

slightly longer path length would not show up in these widely spaced energy groups.

Figure 6.20 shows a more detailed view of the energy spectrum that the detector

would “see” resulting from a pulse of 14.1 MeV neutrons entering detector tube. The

data is normalized to the flux value at the end of the tube for the “uncollided” direct

flight 14.1 MeV neutrons. The figure shows that the vast majority of initial 14.1 MeV

neutrons appear to the time of flight detector with energies above 13.9 MeV. This means,
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Figure 6.19: Spectrum at the Diagnostic vs Initial Spectrum

however, that if the detector can detect the differences of a fraction of an MeV, then there

will be a slight drift towards lower energies.

The observations made for Figure 6.20 hold true for all the other energy groups.

Figure 6.21, shows the observed energy spectrum for an initial particle flux of 1.5901

MeV (20th energy group). Like the previous case, a vast majority of particles lay within

95% of the energy of the initial particle flux. However, slight differences arise in the lower

values of the graph. This is caused by the differences in the scattering cross section for

the particular energy group. The higher the cross section, the more likely particles will

be to scatter down the tube, once they interact with the aluminum tubing.
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Figure 6.20: Spectrum seen by Diagnostic for 14.1 MeV Neutrons (Energy Group 1)
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Figure 6.21: Spectrum seen by Diagnostic for 1.5901 MeV neutrons (Energy Group 20)
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Table 6.6: Energy Groups (MeV) for Time of Flight Problem

Group ETop ELow EMidpoint

1 14.918 13.499 14.208

2 13.499 12.214 12.856

3 12.214 11.052 11.633

4 11.052 10.000 10.526

5 10.000 9.0484 9.5242

6 9.0484 8.1873 8.6187

7 8.1873 7.4082 7.7077

8 7.4082 6.7032 7.0557

9 6.7032 6.0653 6.3843

10 6.0653 5.4881 5.7767

11 5.4881 4.9659 5.2270

12 4.9659 4.4933 4.7296

13 4.4933 4.0657 4.2795

14 4.0657 3.6788 3.8722

15 3.6788 3.3287 3.5038

16 3.3287 3.0119 3.1703

17 3.0119 2.7253 2.8686

18 2.7253 2.4660 2.5956

19 2.4660 1.8268 2.1464

20 1.8268 1.3534 1.5901

21 1.3534 1.0026 1.1700

22 1.0026 0.74274 0.87267

23 0.74274 0.55023 0.64848
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Radiation transport plays an important roll throughout the Inertial Confinement of Fu-

sion process. The target must be illuminated with as symmetric a source as possible to

ensure an isentropic compression. Once the fusion event begins, energy is taken away

from the burn via radiation transport. This process represents a large percentage of the

total energy loss.

Neutronic transport, similarly, is important to calculate accurately in ICF targets as

it influences neutronic heating and the time-dependent neutron spectrum. Both radiative

and neutronic transport are valuable as a diagnostic tool. As the ICF process is inherently

time-dependent, a time-dependent transport method was deemed necessary.

Any time-dependent procedure must be benchmarked to ensure its results are accu-

rate. The standard integral transport method was compared against a known infinite

media benchmark. Four one-dimensional, finite media, time-dependent benchmarks were

calculated: homogeneous Cartesian with uniform source, homogeneous Cartesian with lo-

calized source, homogeneous spherical with localized source, and heterogeneous Cartesian

with localized source . The benchmarks were calculated by solving for the uncollided flux

analytically and numerically solving for the collided flux.

The Time-Dependent Bubble Integral Transport (TBIT) method was introduced.

The technique is able to follow the causality of particles exactly without the need to

save the complete history of the problem like the “standard” integral method. TBIT was

extended into multidimensional spherical and Cartesian geometries. The process was
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then compared to the finite media time-dependent benchmarks presented in Chapter 3.

In one-dimension, the TBIT method produced results that differed from the benchmarks

at all temporal and spatial positions by no more than 1.6%.

The two-dimensional spherical TBIT technique was validated by posing the problem

so that it was identical to the one-dimensional benchmark. This comparison showed that

the two results differed by no more than 4.0%. Similarly, the three-dimensional spherical

TBIT technique had errors of less than 6.5%. TBIT produced the highest errors in

spherical geometry because of the added difficulty of calculating the streaming angles as

the particles traverse the system. The TBIT method was shown to conserve particles to

1 part in every 100,000. This was performed by comparing the time-rate of change to

the losses and gains at each spatial and temporal node.

A two-dimensional heterogeneous benchmark was calculated using the TBIT method.

As discussed in Chapter 3, when producing benchmark quality results, an analytical

solution for the uncollided flux is necessary. In two-dimensions, the analytical derivation

becomes very unwieldy. Fortunately, the TBIT method produces results that are within

a couple of percent of the “true” benchmark in Cartesian coordinates. Thus, a time-

dependent benchmark was calculated using the TBIT method but using the identical

Romberg convergence criteria presented in Chapter 3.

Two application driven results were calculated. A three-dimensional spherical capsule

illumination was calculated for a two, four, and six hole spherical hohlraum. As the

surface area of the laser entrance holes get larger, the capsule illumination becomes more

non-uniform. The TBIT method predicted that the greater the number of LEH holes,

for equal LEH surface areas, the more uniform the capsule illumination.

The second application was that of a neutron time of flight diagnostic typical to that

found on ICF devices. The simulation showed that scattering effects from the wall will

shift the “observed” spectrum seen by the detector only a small amount.
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The TBIT technique was shown to be accurate and extendible into multi-dimensions.

The method computes results much faster then the standard integral method, and does

not suffer from the penalty of saving all of the accumulated information to calculate the

next value.

7.2 Future Work

There are several areas that could be investigated further. First, every effort should be

made to broaden the number and variety of time-dependent benchmarking tools that

are available to the researcher. To this end, additional one-dimensional benchmarks

could easily be created in a similar fashion to those presented in Chapter 3. Perhaps

more important, would be the development of two and three dimensional time-dependent

benchmarks. Extending the one-dimensional benchmarks into higher dimensions can only

be done for spherical coordinates and, thus, the two and three dimensional Cartesian

results for the TBIT method were not compared.

The functionality of the TBIT method could be expanded. Cylindrical geometries

could be easily included in TBIT and thus all of the three major coordinate systems

would be covered. This would allow capsule illumination simulations similar to the

spherical hohlraum cases presented in Chapter 6 and to the Nova hohlraum simulation

in Appendix F.

TBIT could be improved in how it handles vacuum boundary conditions. As men-

tioned earlier, the spatial directions are either distributed uniformly in the cosine of the

angle or according to Gaussian quadrature rules. At vacuum boundaries, a minimum of

half the angular directions are pointing in from the vacuum (Figure 7.1 case1). As there

are no particles coming into the system from the vacuum boundary, all of these directions

are essentially wasted when calculating the scalar flux. An alternative would be to redis-
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Vacuum Boundary Vacuum Boundary

Case 1 Case 2

Figure 7.1: Angular Directions at Vacuum Boundaries

tribute the angular directions on the vacuum boundary such that every direction would

now contribute to the scalar flux. A pictorial representation of this method is shown in

Figure 7.1.

Currently, the TBIT technique is calculated on uniform meshes. This need not be

the case. The calculation could proceed just as easily on non-uniform mesh spacing with

the only modification resulting in the calculation of the time-step. The time-step would

no longer be determined by the travel time across a single node, but, instead, be based

on the time scale particles take to travel over a characteristic distance in the problem.

Similarly, the TBIT method could easily be extended into problems where the ma-

terials change after each time-step. With very little modification, the code could read

in data at every time-step which would describe the material property changes within

each node. With these two additions, the TBIT method could be integrated into a hy-

drodynamics code allowing a more accurate calculation of radiation transport than the

diffusion based approximations currently used.

Finally, there are several areas of improvement in terms of computational efficiency. A

graphical user interface could be created in order to set up complicated multi-dimensional
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geometries with greater ease. The current configuration of text input becomes quite

cumbersome for highly complicated geometries and mistakes are easily made.

All of the computer development has thus far been on Pentium-II class personal com-

puters. The method could easily be extended onto parallel machines. The geometry of

the problem would be spatially decomposed into smaller regions with each CPU calculat-

ing the time-dependent flux for the current time-step within the smaller spatial region.

Information between the regions would be communicated through the boundary terms.

A final word must be said about benchmarking. The importance of highly accurate

time-dependent benchmarking results can not be over-stated. The addition of multi-

dimensional benchmark results that could be used to validate the multi-dimensional

functionality of the TBIT method would only increase confidence in the algorithm.
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Appendix A

Analytical Derivation of Heterogeneous Multigroup Kernels

A.1 Derivation of Heterogeneous Point Kernel

The monoenergetic neutral particle transport equation in a heterogeneous medium is:

(
1

v

∂

∂t
+ Ω̂ · �∇+Σ(�r)

)
ψ(�r, Ω̂, t) =

Q(�r, t)

4π
. (A.1)

Taking the Laplace transform of the previous equation one arrives at:

(
Ω̂ · �∇+ Σ̃(�r)

)
ψ̃(�r, Ω̂, s) =

Q̃(�r, s)

4π
. (A.2)

This last equation is the steady state transport equation with the macroscopic cross

section replaced with Σ̃(�r) = Σ(�r) +
s

v
. Therefore if the heterogeneous steady-state

point kernel is known, the time-dependent kernel is derived in a similar fashion to that

presented in Henderson and Maynard [56]. The steady-state heterogeneous point kernel

is [46]:

Kpt(�r, �r
′
) =

exp(−τ (�r, �r
′
))

4πR2
(A.3)

where:

R =
∣∣∣�r − �r

′∣∣∣
τ (�r, �r

′
) =

∫ R

0
Σ

(
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�r − �r
′

R

)
dω

The derivation of the heterogeneous point kernel then proceeds as follows:

Kpt(�r, �r
′
, t) = L−1



exp

(
−
∫ R
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=
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The time-dependent integral equation 2.35 is derived through the use of convolution

integrals [56]. Therefore, the temporal dependence is expressed in terms of a time-shift

(t− t
′
) instead of absolute time t. The final form for the heterogeneous time-dependent

point kernel is arrived by this replacement:

Kpt(�r, �r
′
; t, t′) =

exp(−τ (�r, �r
′
))

4π |�r − �r ′|2
δ


t− t

′ −

∣∣∣�r − �r
′
∣∣∣

v


. (A.5)

If the material is homogeneous, then the optical distance between any two points is

vΣ(t − t
′
) and one can show that the heterogeneous point kernel simplifies into the

homogeneous case, as presented in Table 2.1.

A.2 Derivation of Heterogeneous Planar Kernels

The derivation of the heterogeneous planar kernel proceeds in similar fashion to that

presented in Appendix A.1. The steady-state heterogeneous planar kernel is [46]:

Kpl(x, x
′) =

1

2
E1 (τ (x, x

′)). (A.6)

The macroscopic cross section is replaced with the modified Laplace transformed cross

section, Σ̃(�r) = Σ(�r) +
s

v
. The derivation proceeds as follows:

Kl(x, x
′; t) = L−1


1

2
E1


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∣∣∣x−x′∣∣∣

0
dωΣ
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= L−1


1

2
E1


τ (x, x′

) +
s
∣∣∣x− x

′
∣∣∣

v






=
1

2

∫ ∞

1

exp (−τu)

u
L−1


exp


−s

∣∣∣x− x
′
∣∣∣u

v




 du

=
1

2

∫ ∞

1

exp (−τu)

u
δ


t−

∣∣∣x− x
′
∣∣∣ u

v


 du

=
exp

(
−τ (x,x

′
)vt

|x−x′|
)

2t
H


t−

∣∣∣x− x
′
∣∣∣

v


. (A.7)

As mentioned in Appendix A.1, the final form of the time-dependent kernels are

arrived by replacing t with t − t
′
in equation A.7. The time-dependent heterogeneous

slab kernel is:

Kpl(x, x
′
; t, t

′
) =

exp
(

−τ (x,x
′
)v(t−t′)

|x−x′|
)

2(t− t′)
H


t− t

′ −

∣∣∣x− x
′
∣∣∣

v


. (A.8)

If the material is homogeneous, then the optical distance between any two points is:

Σ
∣∣∣x− x

′
∣∣∣. The planar kernel then becomes:

Kpl(x, x
′
, t) =

exp(−vΣ(t− t
′
))

2(t− t′)
H

[
t− t′ − |x− x′|

v

]
(A.9)

As expected, the heterogeneous planar kernel simplifies into the homogeneous kernel as

given in Table 2.1.

A.3 Derivation of Heterogeneous Line / 2-D Cartesian Kernel

The steady state heterogeneous line kernel is [46]:

Kl(r, r
′;φ, φ′) =

Ki1 (τ (r, r′;φ, φ′))

2πρ
, (A.10)

where:

ρ =
√
r2 + r′2 − 2rr′ cos(φ− φ′), (A.11)
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and Ki1(τ ) is the Bickley function defined as [95]:

Ki1(x) =
∫ π/2

0
exp

( −x

sin θ

)
dθ. (A.12)

The macroscopic cross section is replaced with the modified Laplace transformed cross

section Σ̃(�r) = Σ(�r)+
s

v
. The derivation for the time-dependent heterogeneous line kernel

then proceeds:

Kl(r, r
′;φ, φ′; t) = L−1

{
1

2φρ
Ki1

(∫ ρ

0

[
Σ

(
r − ω

r − r′

ρ

)
+

s

v

]
dω

)}

= L−1

{
1

2φρ
Ki1

(
τ (r, r′) +

sρ

v

)}

= L−1

{
1

2φρ

∫ π/2

0
exp

(
−τ (r, r′) + sρ

v

sin θ

)
dθ

}

=
exp

(
−τ (r,r′)vt

ρ

)
2πt
√
(vt)2 − ρ2

H
[
t− ρ

v

]
. (A.13)

Replacing t with t− t
′
in A.13, the final form of the time-dependent heterogeneous line

kernels is:

Kl(r, r
′;φ, φ

′
; t, t

′
) =

exp
(

−τ (r,r
′
,φ,φ

′
)v(t−t′)

ρ

)

2π(t− t′)
√
[v(t− t′)]2 − ρ2

H
[
t− t

′ − ρ

v

]
. (A.14)

Transforming equation A.14 into two-dimensional Cartesian coordinates one arrives at

the following:

K2D,C(x, x
′; y, y

′
; t, t

′
) =

exp
(

−τ (x,x
′
;y,y

′
)v(t−t′)√

|x−x′|2+|y−y′ |2

)

2π(t− t′)
√
[v(t− t′)]2 − |x− x′|2 − |y − y′|2

×

H


t− t

′ −

√
|x− x′|2 + |y − y′|2

v


. (A.15)

Once again if the material is homogeneous, τ = Σ
√
|x− x′|2 + |y − y′|2, the heteroge-

neous kernel simplifies into the homogeneous case, as presented in Table 2.1.
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A.4 Derivation of Multigroup Kernels

The time dependent neutral particle equation for the gth energy group in a heterogeneous

medium with an arbitrary isotropic source is:

(
1

vg

∂

∂t
+ Ω̂ · �∇+Σg (�r)

)
ψg (�r, Ω̂, t) =

Qg(�r, t)

4π
. (A.16)

The resulting integral equation for the scalar flux in the gth energy group is [56]:

Φg(�r, t) =
∫ t

0
dt′
∫
V ′

Kg(�r, �r
′; t, t′)Qg(�r

′, t′)d�r
′
, (A.17)

where: Kg(�r, �r ′; t, t′) is the time-dependent kernel for the gth energy group and Qg(�r ′, t′)

is the time-dependent source for the gth energy group. The integration is carried out over

the volume of interest, V ′, from t = 0 until some later time t.

The heterogeneous kernels derived in Appendices A.1, A.2, and A.3 are used in

multigroup transport. The only modification to these kernels is that now the optical

depth is energy dependent. The multigroup source term must include an isotropic source

and all the possible scattering events which result in a final energy within the gth en-

ergy group. Table A.1 compares the homogeneous monoenergetic and the heterogeneous

multigroup source terms.
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Table A.1: Time-Dependent Source Term

Location Qi(�r
′
, t′)

Monoenergetic Homogeneous Σs Φ(�r
′
, t′) + S(�r

′
, t′)

Multigroup Heterogeneous
n∑
i=1

(
Σsi→g (�r

′
)Φi(�r

′
, t′)
)
+ Sg(�r

′
, t′)
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Appendix B

Analytical Derivation of Uncollided and Scattered Source for

Benchmark Problems

Appendix B will give the analytical solutions for the integration of the kernel and the

uncollided flux for the four benchmark problems presented in Chapter 3. Recall, that in

general the time dependent integral equation takes the following form:

Φ(�r, t) =
∫ t

0
dt′
∫
V ′

K(�r, �r ′; t, t′)Q(�r ′, t′) d�r ′ , (B.1)

where: K(�r, �r ′; t, t′) is the time-dependent kernel and Q(�r ′, t′) is the time-dependent

source. The source term Q(�r, t) includes contributions from both an isotropic scattering

flux and an arbitrary isotropic source:

Q(�r, t) = Σs Φ(�r, t) + S(�r, t) . (B.2)

Using the subtraction of the singularity method presented in Chapter 3, Equation B.1

takes the following form:

Φn+1(�r, t) =
∫ t

0
dt′
∫
V ′

K(�r, �r ′; t, t′)[Σs{Φn(�r ′, t′)− Φn(�r, t)}] d�r ′

+
∫ t

0
dt′
∫
V ′

S(�r ′, t′)K(�r, �r ′; t, t′) d�r ′

+ ΣsΦ(r, t)
∫ t

0
dt′
∫
V ′

K(�r, �r ′; t, t′) d�r ′ . (B.3)

The first term is calculated numerically using the procedures described in Chapter

3. The second term is simply the uncollided flux and the third is the integration of the

kernel. In general neither of these terms can be analytically predetermined; however, for

these simple benchmark cases a functional form can be found.
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For each of the next four benchmark solutions analytical solutions for the second (un-

collided flux) and third term (integration of the kernel) will be presented. The following

benchmark cases will be presented:

• Appendix B.1: Homogeneous slab with uniform source

• Appendix B.2: Homogeneous slab with localized source

• Appendix B.3: Homogeneous sphere with localized source

• Appendix B.4: Heterogeneous slab with localized source

B.1 Analytical Expression for Uniform Source in Cartesian Coordinates

Section B.1 presents the uncollided flux and the integration of the kernel for a one-

dimensional homogeneous slab with a uniform source. The geometry was already pre-

sented in Figure 3.3. The analytical solution for the uncollided flux is:

∫ t

0
dt′
∫ a

0
So

exp(−Σ v[t− t′])

2(t− t′)
H

(
t− t′ − |x− x′|

v

)
dx ′ = (B.4)

+
So
Σ

([
1− e−Σvt

]

+
[
e−Σvt − e−Σx +Σx {E1 [Σx]− E1 [Σvt]}

]
H
[
t− x

v

]

+
[
e−Σvt − e−Σ(a−x) +Σ(a− x) {E1 [Σ (a− x)]− E1 [Σvt]}

]
H
[
t− a− x

v

])
.

Similarly, the analytical solution for the integration of the kernel for a one-dimensional

homogeneous slab with a uniform source is identical to that presented in Equation B.5

with the arbitrary source term replaced with the scattered source ΣsΦn (x, t).

B.2 Analytical Expression for Localized Source in Cartesian Coordinates

The analytical solution for the uncollided flux and the integration of the kernel in one-

dimensional Cartesian coordinates for a homogeneous media with a localized source is
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calculated. The geometry of the problem is shown in Figure 3.7. The slab has a width a

with a localized source, confined from x1 to x2. The analytical solution for the uncollided

flux with the following source distribution:

S (x′, t′) = SoH (x′ − x1)H (x2 − x′) ,

is:

∫ t

0
dt′
∫ a

0
So (x

′, t′)
exp(−Σ v[t− t′])

2(t− t′)
H

(
t− t′ − |x− x′|

v

)
dx ′ = (B.5)
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So
2Σ

∗




x ≤ x1[(
e−Σ(x1−x) − e−Σvt − Σ(x1 − x) (E1 [Σ (x1 − x)]− E1 [Σvt)]

)
H
(
t− x1−x

v

)
−
(
e−Σ(x2−x) − e−Σvt − Σ(x2 − x) (E1 [Σ (x2 − x)]−E1 [Σvt])

)
H
(
t− x2−x

v

)]

x = x1

[( 1− e−Σvt )H (t)

−
(
e−Σ(x2−x) − e−Σvt − Σ(x2 − x) (E1 [Σ (x2 − x)]−E1 [Σvt])

)
H
(
t− x2−x

v

)]

x ≤ x2

[2( 1− e−Σvt )H (t)

+
(
e−Σ(x−x1) − e−Σvt −Σ(x− x1) (E1 [Σ (x− x1)]− E1 [Σvt)]

)
H
(
t− x−x1

v

)
−
(
e−Σ(x2−x) − e−Σvt − Σ(x2 − x) (E1 [Σ (x2 − x)]−E1 [Σvt])

)
H
(
t− x2−x

v

)]

x = x2

[( 1− e−Σvt )H (t)

+
(
e−Σ(x−x1) − e−Σvt −Σ(x− x1) (E1 [Σ (x− x1)]− E1 [Σvt)]

)
H
(
t− x−x1

v

)

x > x2[(
e−Σ(x−x2) − e−Σvt − Σ(x− x2) (E1 [Σ (x− x2)]− E1 [Σvt)]

)
H
(
t− x−x2

v

)
−
(
e−Σ(x−x1) − e−Σvt − Σ(x− x1) (E1 [Σ (x− x1)]−E1 [Σvt])

)
H
(
t− x−x1

v

)]
.

Similarly, the analytical solution for the integration of the kernel for a one-dimensional

homogeneous slab with a localized source is identical to that presented earlier in Equa-

tion B.5 with the source term replaced with the scattered source.
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B.3 Analytical Expression for Localized Source in Spherical Coordinates

The analytical solution for the uncollided flux and the integration of the kernel in one-

dimensional Spherical coordinates for a homogeneous sphere with a localized source is

solved in Section B.3. The source is confined from r1 to r2 (where in this particular

problem as shown in Figure 3.11 r2 is equal to the outer radius a). The functional form

of the source is:

S (r′, t′) = SoH (r′ − r1)H (r2 − r′) ,

The analytical solution for the uncollided flux is:

∫ t

0
dt′
∫ a

0
So (r

′, t′)
4πr′2 exp (−Σ v[t− t′])

8πrr′(t− t′)
H

(
t− t′ − |r − r′|

v

)
dx ′ = (B.6)



191

+
So
2r

∗




0 ≤ r ≤ r1[
(r2−r21)

2
[E1 [Σ (r1 − r)]− E1 [Σvt]]− r

Σ

[
e−Σ(r1−r) − e−Σvt

]

+ 1
2Σ2

[
(1 + Σ(r1 − r)) e−Σ(r1−r) − (1 + Σvt)E−Σvt

]]
H
[
t− (r1−r)

v

]
+
[
(r22−r2)

2
[E1 [Σ (r2 − r)]− E1 [Σvt]]− r

Σ

[
e−Σ(r2−r) − e−Σvt

]

+ 1
2Σ2

[
(1 + Σ(r2 − r)) e−Σ(r2−r) − (1 + Σvt)E−Σvt

]]
H
[
t− (r2−r)

v

]
+
[
(r2−r22)

2
[E1 [Σ (r + r2)]−E1 [Σvt]]− r

Σ

[
e−Σ(r+r2) − e−Σvt

]

+ 1
2Σ2

[
(1 + Σ(r + r2)) e−Σ(r+r2) − (1 + Σvt) e−Σvt

]]
H
[
t− (r+r2)

v

]
+
[
(r21−r2)

2
[E1 [Σ (r + r1)]−E1 [Σvt]] + r

Σ

[
e−Σ(r+r1) − e−Σvt

]

+ 1
2Σ2

[
(1 + Σ(r + r1)) e−Σ(r+r1) − (1 + Σvt) e−Σvt

]]
H
[
t− (r+r1)

v

]

r1 ≤ r ≤ r2[
(r22−r2)

2
[E1 [Σ (r2 − r)]− E1 [Σvt]]− r

Σ

[
e−Σ(r2−r) − e−Σvt

]

+ 1
2Σ2

[
(1 + Σ(r2 − r)) e−Σ(r2−r) − (1 + Σvt)E−Σvt

]]
H
[
t− (r2−r)

v

]
+
[
(r2−r21)

2
[E1 [Σ (r − r1)]− E1 [Σvt]]− r

Σ

[
e−Σ(r−r1) − e−Σvt

]

+ 1
2Σ2

[
(1 + Σ(r − r1)) e−Σ(r−r1) − (1 + Σvt)E−Σvt

]]
H
[
t− (r1−r)

v

]
+2r

Σ

[
1− e−Σvt

]
+
[
(r2−r22)

2
[E1 [Σ (r + r2)]−E1 [Σvt]]− r

Σ

[
e−Σ(r+r2) − e−Σvt

]

+ 1
2Σ2

[
(1 + Σ(r + r2)) e−Σ(r+r2) − (1 + Σvt) e−Σvt

]]
H
[
t− (r+r2)

v

]
+
[
(r21−r2)

2
[E1 [Σ (r + r1)]−E1 [Σvt]] + r

Σ

[
e−Σ(r+r1) − e−Σvt

]

+ 1
2Σ2

[
(1 + Σ(r + r1)) e−Σ(r+r1) − (1 + Σvt) e−Σvt

]]
H
[
t− (r+r1)

v

]
.

(B.7)

Similarly, the analytical solution for the integration of the kernel for a one-dimensional

homogeneous sphere with a localized source is:

ΣSΦ
n (r, t)

∫ t

0
dt′
∫ a

0

4πr′2 exp (−Σ v[t− t′])

8πrr′(t− t′)
H

(
t− t′ − |r − r′|

v

)
dx ′ = (B.8)
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+
ΣsΦn (r, t)

2Σ
∗




2
(
1− e−Σvt

)
H (t)

−
[
E2 (Σ (a− r)) +

Σ2(a2−r2)
2Σr

E1 (Σvt)− e−Σvt

+Σ(a−r)
Σr

E2 (Σ (a− r)) 1
Σr

E3 (Σ (a− r))− (Σvt)2

2Σr
E1 (Σvt)

−Σvt
Σr

E2 (Σvt)− 1
Σr

E3 (Σvt)
]
H
[
t− a−r

v

]

−
[
E2 (Σ (a+ r))− Σ2(a2−r2)

2Σr
E1 (Σvt)− e−Σvt

+Σ(a+r)
Σr

E2 (Σ (a+ r))

+ 1
Σr

E3 (Σ (a+ r))− (Σvt)2

2Σr
E1 (Σvt)

−Σvt
Σr

E2 (Σvt)− 1
Σr

E3 (Σvt)
]
H
[
t− a+r

v

]
.

B.4 Analytical Expression for Localized Source in Heterogeneous Cartesian

Coordinates

As with the previous homogeneous cases, in order to calculate benchmark quality results

for heterogeneous Cartesian geometries one uses the analytical results for the integration

of the kernel and the uncollided flux. The integral equation for the time-dependent scalar

flux in a homogeneous slab of width a with an uniformly distributed source is shown in

Eqn. B.9.

Φn+1(x, t) =
∫ t

0
dt′
∫ a

0
K(x, x′; t, t′)Σs{Φn(x′, t′)− Φn(x, t)} dx′

+ So

∫ t

0
dt′
∫ a

0
K(x, x′; t, t′) dx′

+ ΣsΦ
n(x, t)

∫ t

0
dt′
∫ a

0
K(x, x′; t, t′) dx′ . (B.9)

Where the heterogeneous planar kernel is:

K(x, x′; t, t′) =
exp

(
−τ (x,x

′
)vt

|x−x′ |
)

2 (t− t′)
H


t− t′ −

∣∣∣x− x
′
∣∣∣

v


 . (B.10)
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The geometry of the problem used in this benchmark is presented in Figure 3.15. The

slab has the same material on either side of the inner source material. The geometry,

and hence the function form of the solution, is symmetric around the mid plan of the

problem x = a
2
. Therefore, the analytical solutions will take advantage of this and only

present the analytical solution for the half space from x ≤ a
2
.

Although, this geometry is relatively simple. As will be shown the analytical solutions

for the uncollided flux and the integration of the kernel, terms 2 and 3 in Equation B.9,

are fairly unwieldy. This is due in most part to the changing functional form of the optical

depth τ (x, x′) depending of whether the calculational point lays within the source region

or outside.

The analytical solution for the uncollided flux with the following source distribution:

S (x′, t′) = SoH (x′ − x1)H (x2 − x′) ,

∫ t

0
dt′
∫ a

0
So (x

′, t′)
exp

(
−τ (x,x

′
)vt

|x−x′|
)

2 (t− t′)
H


t− t′ −

∣∣∣x− x
′
∣∣∣

v


 (B.11)
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=
So
2

∗




x < x2

1
Σ1

{2( 1− e−Σ1vt )H (t)

+
(
e−Σ1(x−x1) − e−Σ1vt − Σ1 (x− x1)

(E1 [Σ1 (x− x1)]− E1 [Σ1vt)])H
(
t− x−x1

v

)
−
(
e−Σ1(x2−x) − e−Σ1vt − Σ1 (x2 − x)

(E1 [Σ1 (x2 − x)]− E1 [Σ1vt]))H
(
t− x2−x

v

)}

x = x2

1
Σ1

{( 1− e−Σ1vt )H (t)

+
(
e−Σ1(x−x1) − e−Σ1vt − Σ1 (x− x1)

(E1 [Σ1 (x− x1)]− E1 [Σ1vt)])H
(
t− x−x1

v

)}

x > x2

τ ∗ = (Σ1 − Σ2) + Σ2x

1
Σ2

{
e−τ

∗+Σ1x2 − e−τ
∗−Σ(vt−x) + e−Σ1vt (τ ∗ − Σ1v)Ei [−τ ∗ +Σ1x]

+e−Σ1vt (τ ∗ − Σ1x)Ei
[
vt[−τ∗+Σ1x]

x−x2

]
+ (τ ∗ − Σ1x2)

(
Ei [−τ ∗ +Σ1x2]− Ei

[
vt[−τ∗+Σ1x]

x−x2

])}
H
(
t+ x2−x

v

)
1

Σ2

{
e−τ

∗+Σ1x1 − e−τ
∗−Σ(vt−x) + e−Σ1vt (τ ∗ − Σ1v)Ei [−τ ∗ +Σ1x]

+e−Σ1vt (τ ∗ − Σ1x)Ei
[
vt[−τ∗+Σ1x]

x−x1

]
+ (τ ∗ − Σ1x1)

(
Ei [−τ ∗ +Σ1x1]− Ei

[
vt[−τ∗+Σ1x]

x−x1

])}
H
(
t+ x1−x

v

)
.

Similarly, the analytical solution for the integration of the kernel for a one-dimensional

heterogeneous slab with a localized source from x = x1 to x = x2 is:

ΣS,1φ
n (x, t)

∫ t

0
dt′
∫ a

0

exp
(

−τ (x,x
′
)vt

|x−x′ |
)

2 (t− t′)
H


t− t′ −

∣∣∣x− x
′
∣∣∣

v


 (B.12)
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x < x2 (x+ vt) ≤ x2 (x− vt) ≥ x1

1
Σ1

(
1− e−Σ1vt

)
x < x2 (x+ vt) > x2 (x− vt) ≥ x1

τ ∗ = (Σ1 − Σ2)− Σ1x xhigh = x+ vt <> a

1
2Σ1

{
2
(
1− e−Σ1vt

)
(
e−Σ1(x2−x) − e−Σ1vt +Σ(x2 − x)− (Ei [Σ1 (x2 − x)]− Ei [−Σ1vt])

}

+ 1
2Σ2

{
e−τ

∗−Σ2x2 − e−Σ2vt −
(
e−τ−Σ2x + (τ ∗ +Σ2x)Ei [−τ ∗ − Σ2x]

)
+e−Σ2vt (τ ∗ +Σ2x)Ei

[
vt(τ∗+Σ2x)

x−x2

]
+ (τ ∗ +Σ2x)

(
Ei [−τ ∗ − Σ2x2]− Ei

[
vt(τ∗+Σ2x2)

x−x2

])}

− 1
2Σ2

{
e−τ

∗−Σ2xhigh − e−Σ2vt
(
e−τ−Σ2x + (τ ∗ +Σ2x)Ei [−τ ∗ − Σ2x]

)
+e−Σ2vt (τ ∗ +Σ2x)Ei

[
vt(τ∗+Σ2x)
x−xhigh

]
+ (τ ∗ +Σ2x)

(
Ei [−τ ∗ − Σ2xhigh]− Ei

[
vt(τ∗+Σ2xhigh)

x−xhigh

])}
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x < x2 (x+ vt) > x2 (x− vt) < x1

τ ∗ = (Σ1 − Σ2)− Σ1x τ ∗∗ = Σ1 (x2 − a+ x)− Σ2x2

xhigh = x+ vt <> a xlow = (a− x) + vt <> a

1
2Σ1

{
2
(
1− e−Σ1vt

)
−
(
e−Σ1(x2−x) − e−Σ1vt +Σ(x2 − x)

(Ei [−Σ1 (x2 − x)]− Ei [−Σ1vt])}

−
(
e−Σ1(x2−(x−a)) − e−Σ1vt +Σ(x2 − (x− a))

(Ei [−Σ1 (x2 − a+ x)]− Ei [−Σ1vt])}

+ 1
2Σ2

{
e−τ

∗−Σ2x2 − e−Σ2vt
(
e−τ

∗−Σ2x + (τ ∗ +Σ2x)Ei [−τ ∗ − Σ2x]
)

+e−Σ2vt (τ ∗ +Σ2x)Ei
[
vt(τ∗+Σ2x)

x−x2

]
+ (τ ∗ +Σ2x2)

(
Ei [−τ ∗ − Σ2x2]− Ei

[
vt(τ∗+Σ2x2)

x−x2

])}
− 1

2Σ2

{
e−τ

∗−Σ2xhigh − e−Σ2vt
(
e−τ−Σ2x + (τ ∗ +Σ2x)Ei [−τ ∗ − Σ2x]

)
+e−Σ2vt (τ ∗ +Σ2x)Ei

[
vt(τ∗+Σ2x)
x−xhigh

]
+ (τ ∗ +Σ2xhigh)

(
Ei [−τ ∗ − Σ2xhigh]−Ei

[
vt(τ∗+Σ2xhigh)

x−xhigh

])}

+ 1
2Σ2

{
e−τ

∗∗−Σ2x2 − e−Σ2vt
(
e−τ

∗∗−Σ2(a−x)

+(τ ∗∗ +Σ2 (a− x))Ei [−τ ∗∗ − Σ2 (a− x)])

+e−Σ2vt (τ ∗∗ +Σ2 (a− x))Ei
[
vt(τ∗∗+Σ2(a−x))

a−x−x2

]
+ (τ ∗∗ +Σ2x2)

(
Ei [−τ ∗∗ − Σ2x2]− Ei

[
vt(τ∗∗+Σ2x2)

a−x−x2

])}
− 1

2Σ2

{
e−τ

∗∗−Σ2xlow − e−Σ2vt
(
e−τ−Σ2(a−x)

+(τ ∗ +Σ2 (a− x))Ei [−τ ∗∗ − Σ2 (a− x)])

+e−Σ2vt (τ ∗∗ +Σ2 (a− x))Ei
[
vt(τ∗∗+Σ2(a−x))

a−x−xlow

]
+ (τ ∗∗ +Σ2xlow)

(
Ei [−τ ∗∗ − Σ2xlow]− Ei

[
vt(τ∗∗+Σ2xlow)

a−x−xlow

])}
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x = x2 (x− vt) ≥ x1

τ ∗ = (Σ1 − Σ2)− Σ1x τ ∗∗ = Σ1 (x2 − a+ x)− Σ2x2

xhigh = x+ vt <> a xlow = (a− x) + vt <> a

ΣS,2

Σ2

{(
1− e−Σ2vt

)
−
(
e−Σ2(x−xhigh) − e−Σ2vt +Σ2 (xhigh − x)

(Ei [−Σ2 (xhigh − x)]− Ei [−Σ2vt]))}

+ΣS,1

Σ1

(
1− e−Σ1vt

)
x = x2 (x− vt) < x1

τ ∗ = (Σ1 − Σ2)− Σ1x τ ∗∗ = Σ1 (x2 − a+ x)− Σ2x2

xhigh = x+ vt <> a xlow = (a− x) + vt <> a

ΣS,2

Σ2

{(
1− e−Σ2vt

)
−
(
e−Σ2(x−xhigh) − e−Σ2vt +Σ2 (xhigh − x)

(Ei [−Σ2 (xhigh − x)]− Ei [−Σ2vt]))}

+ΣS,1

Σ1

{
e−τ

∗∗−Σ2x2 − e−Σ2vt
(
e−τ

∗∗−Σ2(a−x) + (τ ∗∗ +Σ2 (a− x))

Ei [−τ ∗∗ − Σ2 (a− x)])

+e−Σ2vt (τ ∗∗ +Σ2x2)Ei
[
vt(τ∗∗+Σ2(a−x))

a−x−x2

]
+ (τ ∗∗ +Σ2x2)

(
Ei [−τ ∗∗ −Σ2 (a− x)]− Ei

[
vt(τ∗∗+Σ2x2)

a−x−x2

])}
−ΣS,1

Σ1

{
e−τ

∗∗−Σ2xlow − e−Σ2vt
(
e−τ−Σ2(a−x) + (τ ∗ +Σ2 (a− x))

Ei [−τ ∗∗ − Σ2 (a− x)])

+e−Σ2vt (τ ∗∗ +Σ2 (a− x))Ei
[
vt(τ∗∗+Σ2xlow)

a−x−xlow

]
+ (τ ∗∗ +Σ2xlow)

(
Ei [−τ ∗∗ − Σ2 (a− x)]− Ei

[
vt(τ∗∗+Σ2xlow)

a−x−xlow

])}
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x > x2 (x− vt) ≥ x1

τ ∗ = (Σ1 − Σ2)− Σ1x τ ∗∗ = Σ1 (x2 − a+ x)− Σ2x2

xhigh = x+ vt <> a xlow = (a− x) + vt <> a

ΣS,2

Σ2

{(
1− e−Σ2vt

)
−
(
e−Σ2(xhigh−x) − e−Σ2vt +Σ2 (xhigh − x)

(Ei [−Σ2 (xhigh − x)]− Ei [−Σ2vt]))}

+ΣS,2

Σ2

(
1− e−Σ2vt

)
x > x2 x1 ≤ (x− vt) < x2

τ ∗ = (Σ1 − Σ2)− Σ1x τ ∗∗ = Σ1 (x2 − a+ x)− Σ2x2

xhigh = x+ vt <> a xlow = (a− x) + vt <> a

ΣS,2

Σ2

{
2
(
1− e−Σ2vt

)
−
(
e−Σ2(xhigh−x) − e−Σ2vt +Σ2 (xhigh − x)

(Ei [−Σ2 (xhigh − x)]− Ei [−Σ2vt]))

−
(
e−Σ2(x−xlow) − e−Σ2vt +Σ2 (x− xlow)

(Ei [−Σ2 (x− xlow)]−Ei [−Σ2vt])}

+ΣS,1

Σ1

{
e−τ

∗+Σ1x2 − e−τ
∗−Σ1vt

(
eΣ1x + eτ

∗
(τ ∗ − Σ1x)Ei [−τ ∗ +Σ1x]

)
+e−Σ1vt (τ ∗ −Σ1x)Ei

[
vt(−τ∗+Σ1x)

x−x2

]
+ (τ ∗ −Σ1x2)

(
Ei [−τ ∗ +Σ1x2]−Ei

[
vt(−τ∗+Σ1x2)

x−x2

])}
−ΣS,1

Σ1

{
e−τ

∗+Σ1xxlow − e−τ
∗−Σ1vt

(
eΣ1x + eτ

∗
(τ ∗ − Σ1x)Ei [−τ ∗ +Σ1x]

)
+e−Σ1vt (τ ∗ −Σ1x)Ei

[
vt(−τ∗+Σ1x)

x−xlow

]
+ (τ ∗ −Σ1xxlow)

(
Ei [−τ ∗ +Σ1xxlow]−Ei

[
vt(−τ∗+Σ1xlow)

x−xlow

])}
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x > x2 (x− vt) < x1

τ ∗ = (Σ1 − Σ2)− Σ1x τ ∗∗ = Σ1 (x2 − a+ x)− Σ2x2

xhigh = x+ vt <> a xlow = (a− x) + vt <> a

+
ΣS,1

Σ1

{
e−τ

∗+Σ1x2 − e−τ
∗−Σ1vt

(
eΣ1x + eτ

∗
(τ ∗ − Σ1x)Ei [−τ ∗ +Σ1x]

)
+e−Σ1vt (τ ∗ −Σ1x)Ei

[
vt(−τ∗+Σ1x)

x−x2

]
+ (τ ∗ −Σ1x2)

(
Ei [−τ ∗ +Σ1x2]−Ei

[
vt(−τ∗+Σ1x2)

x−x2

])}
−e−τ

∗+Σ1x1 + e−τ
∗−Σ1vt

(
eΣ1x + eτ

∗
(τ ∗ − Σ1x)Ei [−τ ∗ +Σ1x]

)
−e−Σ1vt (τ ∗ − Σ1x)Ei

[
vt(−τ∗+Σ1x)

x−x1

]
− (τ ∗ − Σ1x1)

(
Ei [−τ ∗ +Σ1x1]− Ei

[
vt(−τ∗+Σ1x1)

x−x1

])}

ΣS,2

Σ2

{
2
(
1− e−Σ2vt

)
−
(
e−Σ2(xhigh−x) − e−Σ2vt

+Σ2 (xhigh − x) (Ei [−Σ2 (xhigh − x)]− Ei [−Σ2vt]))

−
(
e−Σ2(x−xlow) − e−Σ2vt +Σ2 (x− xlow)

(Ei [−Σ2 (x− xlow)]− Ei [−Σ2vt]))}

+ΣS,2

Σ2

{
e−τ

∗∗+Σ2x1 − e−τ
∗∗−Σ2vt

(
eΣ2x + eτ

∗∗
(τ ∗∗ − Σ2x)Ei [−τ ∗∗ +Σ2x]

)
+e−Σ2vt (τ ∗∗ − Σ2x)Ei

[
vt(−τ∗∗+Σ2x)

x−x1

]
+ (τ ∗∗ − Σ2x1)

(
Ei [−τ ∗∗ +Σ2x1]− Ei

[
vt(−τ∗∗+Σ2x1)

x−x1

])}
+ΣS,2

Σ2

{
e−τ

∗∗+Σ2xlow − e−τ
∗∗−Σ2vt

(
eΣ2x + eτ

∗∗
(τ ∗∗ − Σ2x)Ei [−τ ∗∗ +Σ2x]

)
+e−Σ2vt (τ ∗∗ − Σ2x)Ei

[
vt(−τ∗∗+Σ2x)

x−xlow

]
+ (τ ∗∗ − Σ2xlow)

(
Ei [−τ ∗∗ +Σ2xlow]− Ei

[
vt(−τ∗∗+Σ2xlow)

x−xlow

])}
.
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Appendix C

Other Benchmark Quality Results

Although Chapter 3 and Appendix B go into great detail discussing the time-dependent

benchmark methods and solutions, Appendix C endeavors to provide the researcher with

a wider variety of benchmarks to use in validation.

C.1 Additional Data for Ganapol’s Infinite media problem

In Section 3.3 the time-dependent integral method was compared to a semi-analytical

benchmark problem published by B.D. Ganapol. In his paper, he only published specific

values for the scalar flux at very specific temporal and spatial positions. Tables 3.4

and 3.6 show how the integral method compares with this benchmark.

The comparisons are very favorable with the two methods only differing in the fifth

significant digit. The results in Tables C.1, C.2, and C.3 give the additional data for

the points and times that were left out from Ganapol’s original paper. The author hopes

that the additional data will provide valuable information for future researchers.

C.2 Uniform Source of Thermal Neutrons in Carbon Slab

The time-dependent benchmark described in Section 3.3.2 was run using carbon instead

of the unit material documented in Table 3.2. The geometry of the problem remains the

same as shown in Figure 3.3; however, the slab is now 10 cm across instead of 10 mean

free path lengths. The source strength remains 1.0 n/cm3-s throughout the interior of

the slab. The particles are thermal neutrons at 0.025 eV (2200 m/sec) instead of the

unit velocity particles given in Chapter 3. The material properties of carbon at thermal
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Table C.1: Additional Data for Ganapol’s Infinite Media Problem

Time 1 [cm] 2 [cm] 3 [cm] 4 [cm] 5 [cm]

1 1.8394E-01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

2 2.6256E-01 3.3834E-02 0.0000E+00 0.0000E+00 0.0000E+00

3 2.3942E-01 9.3835E-02 8.2978E-03 0.0000E+00 0.0000E+00

4 2.1736E-01 1.1360E-01 3.3287E-02 2.2895E-03 0.0000E+00

5 1.9957E-01 1.2105E-01 4.9595E-02 1.1823E-02 6.7379E-04

6 1.8523E-01 1.2322E-01 6.0604E-02 2.0710E-02 4.2106E-03

7 1.7347E-01 1.2293E-01 6.8028E-02 2.8447E-02 8.4157E-03

8 1.6364E-01 1.2143E-01 7.3032E-02 3.4901E-02 1.2790E-02

9 1.5528E-01 1.1935E-01 7.6384E-02 4.0186E-02 1.7004E-02

10 1.4806E-01 1.1699E-01 7.8590E-02 4.4479E-02 2.0905E-02

...
...

...
...

...
...

14 1.2673E-01 1.0737E-01 8.1292E-02 5.4845E-02 3.2828E-02

15 1.2269E-01 1.0514E-01 8.1159E-02 5.6305E-02 3.4985E-02

16 1.1901E-01 1.0300E-01 8.0859E-02 5.7469E-02 3.6876E-02

...
...

...
...

...
...

19 1.0968E-01 9.7166E-02 7.9349E-02 5.9663E-02 4.1241E-02

20 1.0702E-01 9.5402E-02 7.8724E-02 6.0078E-02 4.2344E-02

21 1.0455E-01 9.3719E-02 7.8066E-02 6.0376E-02 4.3305E-02
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Table C.2: Additional Data for Ganapol’s Infinite Media Problem - 2

Time 1 [cm] 2 [cm] 3 [cm] 4 [cm] 5 [cm]

24 9.8041E-02 8.9120E-02 7.5991E-02 6.0750E-02 4.5498E-02

25 9.6128E-02 8.7720E-02 7.5287E-02 6.0744E-02 4.6042E-02

26 9.4323E-02 8.6382E-02 7.4584E-02 6.0689E-02 4.6511E-02

...
...

...
...

...
...

29 8.9460E-02 8.2688E-02 7.2508E-02 6.0301E-02 4.7542E-02

30 8.7998E-02 8.1554E-02 7.1833E-02 6.0116E-02 4.7784E-02

31 8.6606E-02 8.0464E-02 7.1168E-02 5.9910E-02 4.7984E-02

...
...

...
...

...
...

34 8.2795E-02 7.7430E-02 6.9242E-02 5.9198E-02 4.8373E-02

35 8.1632E-02 7.6491E-02 6.8624E-02 5.8937E-02 4.8445E-02

36 8.0517E-02 7.5584E-02 6.8018E-02 5.8668E-02 4.8493E-02

...
...

...
...

...
...

39 7.7427E-02 7.3041E-02 6.6272E-02 5.7826E-02 4.8515E-02

40 7.6473E-02 7.2248E-02 6.5714E-02 5.7538E-02 4.8490E-02

41 7.5554E-02 7.1480E-02 6.5167E-02 5.7247E-02 4.8450E-02

...
...

...
...

...
...

44 7.2983E-02 6.9311E-02 6.3594E-02 5.6367E-02 4.8260E-02

45 7.2182E-02 6.8630E-02 6.3091E-02 5.6074E-02 4.8177E-02
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Table C.3: Additional Data for Ganapol’s Infinite Media Problem - 3

Time 10 [cm] 15 [cm] 20 [cm] 25 [cm] 30 [cm]

14 3.0305E-04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

15 4.8585E-04 1.0197E-08 0.0000E+00 0.0000E+00 0.0000E+00

16 7.1607E-04 1.5374E-07 0.0000E+00 0.0000E+00 0.0000E+00

...
...

...
...

...
...

19 1.6652E-03 3.7778E-06 0.0000E+00 0.0000E+00 0.0000E+00

20 2.0542E-03 7.3483E-06 5.1529E-11 0.0000E+00 0.0000E+00

21 2.4718E-03 1.2927E-05 9.5159E-10 0.0000E+00 0.0000E+00

...
...

...
...

...
...

24 3.8509E-03 4.7200E-05 3.9693E-08 0.0000E+00 0.0000E+00

25 4.3391E-03 6.6215E-05 8.9812E-08 2.7776E-13 0.0000E+00

26 4.8355E-03 8.9794E-05 1.8188E-07 5.1332E-12 0.0000E+00

...
...

...
...

...
...

29 6.3463E-03 1.9136E-04 9.6593E-07 3.6602E-10 0.0000E+00

30 6.8493E-03 2.3629E-04 1.5136E-06 9.4930E-10 1.5596E-15

31 7.3489E-03 2.8702E-04 2.2788E-06 2.1781E-09 2.8663E-14

...
...

...
...

...
...

34 8.8138E-03 4.7417E-04 6.4353E-06 1.6015E-08 3.0620E-12

35 9.2873E-03 5.4807E-04 8.6471E-06 2.7650E-08 8.9947E-12

36 9.7521E-03 6.2755E-04 1.1382E-05 4.5651E-08 2.3115E-11
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Table C.4: Material Properties for Thermal Neutrons in Carbon

Total cross section .38532 cm−1

Scattering cross section .385 cm−1

Isotropic source strength 1.0 n/cm3-s
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Figure C.1: Time-Dependent Flux for Thermal Neutrons with Uniform Source in Carbon

energies are given in Table C.4 [97].

The results shown in Table C.5 are qualitative values for the thermal neutron flux at

discrete points in the slab after: 4.572 µs, 11.43 µs, 34.29 µs, and 45.73 µs respectively.

At these particular times the particles have had enough time to travel roughly 1/10, 1/4,

1/2, 3/4 of the way, and finally completely across the slab.

Figure C.1 shows a graphical output for the scalar flux. As expected, the scalar flux

increases in magnitude for each succeeding step during the early stages of the simulation.

Each curve represents a time-step of 4.572 µ seconds. This is the amount of time that it

takes for a thermal neutron to travel 1 cm.
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Table C.5: Benchmark Solutions for Uniform Source in 10 cm Slab of Carbon

Distance Time Time Time Time Time

cm 4.572 µs 11.43 µs 22.86 µs 34.29 µs 45.73 µs

0.0 0.4773 1.1201 2.0444 2.8375 3.5379

0.5 0.9316 1.9278 3.2665 4.4025 5.4061

1.0 0.9998 2.2604 3.9108 5.3069 6.5424

1.5 0.9998 2.4200 4.3297 5.9503 7.3882

2.0 0.9998 2.4847 4.6048 6.4197 8.0348

2.5 0.9998 2.4990 4.7809 6.7619 8.5288

3.0 0.9998 2.4990 4.8886 7.0075 8.9000

3.5 0.9998 2.4990 4.9497 7.1780 9.1694

4.0 0.9998 2.4990 4.9806 7.2890 9.3518

4.5 0.9998 2.4990 4.9932 7.3515 9.4573

5.0 0.9998 2.4990 4.9960 7.3716 9.4918

5.5 0.9998 2.4990 4.9932 7.3515 9.4573

6.0 0.9998 2.4990 4.9806 7.2890 9.3518

6.5 0.9998 2.4990 4.9497 7.1780 9.1694

7.0 0.9998 2.4990 4.8886 7.0075 8.9000

7.5 0.9998 2.4990 4.7809 6.7619 8.5288

8.0 0.9998 2.4847 4.6048 6.4197 8.0348

8.5 0.9998 2.4200 4.3297 5.9503 7.3882

9.0 0.9998 2.2604 3.9108 5.3069 6.5424

9.5 0.9316 1.9278 3.2665 4.4025 5.4061

10.0 0.4773 1.1201 2.0444 2.8375 3.5379
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C.3 Localized Source of Thermal Neutrons in Carbon Slab

The second time-dependent benchmark described in Section 3.3.3 was run using carbon

instead of the unit material documented in Table 3.2. The geometry of the problem

remains the same as shown in Figure 3.7; however, the slab is now 10 cm across instead

of 10 mean free path lengths. The source region is confined to the inner 5 cm of the slab

and possesses a source strength of 1.0 n/cm3-s. The simulated particles are now thermal

neutrons at 0.025 eV (2200 m/sec) instead of the unit velocity particles given in Chapter

4. The material properties of carbon at thermal energies are given in Table C.4.

The results shown in Table C.6 are qualitative values for the thermal neutron flux at

discrete points in the slab after: 4.572 µs, 11.43 µs, 34.29 µs, and 45.73 µs respectively.

At these particular times the particles have had enough time to travel roughly 1/10, 1/4,

1/2, 3/4, and finally completely across the slab.

Figure C.2 shows a graphical output for the scalar flux. The scalar flux increases in

magnitude for each succeeding step during the early stages of the simulation. Each curve

represents a time-step of 4.572 µ seconds. This is the amount of time that it takes for a

thermal neutron to travel 1 cm. As with the unit material case, one can easily see that

it takes a finite amount of time for particles to travel from the interior source region into

the outer non-source region.

C.4 Localized Source of Thermal Neutrons in a Carbon Sphere

The third time-dependent benchmark described in Section 3.3.4 was run using carbon

instead of the unit material documented in Table 3.2. The geometry of the problem

remains the same as shown in Figure 3.11; however, the sphere is now 10 cm across with

the source region confined to the outer 2 cm of the sphere. The source strength remains

1.0 n/cm3-s. The simulated particles are now thermal neutrons at 0.025 eV (2200 m/sec)
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Table C.6: Benchmark Solutions for Localized Source in 10 cm Slab of Carbon

Distance Time Time Time Time Time

cm 4.572 µs 11.43 µs 22.86 µs 34.29 µs 45.73 µs

0.0 0.0000 0.0000 0.1847 0.5468 0.9429

0.5 0.0000 0.0142 0.3633 0.9126 1.4869

1.0 0.0000 0.0773 0.6150 1.3304 2.0465

1.5 0.0000 0.2303 0.9860 1.8656 2.7100

2.0 0.0674 0.5413 1.5374 2.5771 3.5380

2.5 0.4999 1.2495 2.4980 3.6871 4.7517

3.0 0.9324 1.9577 3.4558 4.7773 5.9309

3.5 0.9998 2.2687 3.9948 5.4271 6.6526

4.0 0.9998 2.4217 4.3353 5.8513 7.1298

4.5 0.9998 2.4848 4.5261 6.0942 7.4051

5.0 0.9998 2.4990 4.5876 6.1735 7.4953

5.5 0.9998 2.4848 4.5261 6.0942 7.4051

6.0 0.9998 2.4217 4.3353 5.8513 7.1298

6.5 0.9998 2.2687 3.9948 5.4271 6.6526

7.0 0.9324 1.9577 3.4558 4.7773 5.9309

7.5 0.4999 1.2495 2.4980 3.6871 4.7517

8.0 0.0674 0.5413 1.5374 2.5771 3.5380

8.5 0.0000 0.2303 0.9860 1.8656 2.7100

9.0 0.0000 0.0773 0.6150 1.3304 2.0465

9.5 0.0000 0.0142 0.3633 0.9126 1.4869

10.0 0.0000 0.0000 0.1847 0.5468 0.9429
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Figure C.2: Time-Dependent Flux for Thermal Neutrons with Localized Source in Car-

bon

instead of the unit velocity particles given in Chapter 3. The material properties of

carbon at thermal energies are given in Table C.4.

The results shown in Table C.7 are qualitative values for the thermal neutron flux at

discrete points in the sphere after: 4.572 µs, 11.43 µs, 34.29 µs, and 45.73 µs respectively.

At these particular times the particles have had enough time to travel roughly 1/10, 1/4,

1/2, 3/4 of the way, and finally completely across the sphere.

Figure C.3 shows a graphical output for the scalar flux. The scalar flux increases in

magnitude for each succeeding step as expected during the early stages of the simulation.

Each curve represents a time-step of 4.572 µ seconds. This is the amount of time that it

takes for a thermal neutron to travel 1 cm. As with the other localized cases, the thermal

neutrons take a finite amount of time to travel from the outer regions of the sphere into

the central non-source region
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Figure C.3: Time-Dependent Flux for Thermal Neutrons with Localized Source in 10cm

Sphere of Carbon

C.5 Localized Source of Thermal Neutrons in Heterogeneous slab

The final benchmark of Appendix C reproduces the heterogeneous benchmark in Sec-

tion 3.3.5. The geometry of the problem remains the same as shown in Figure 3.15;

however, the slab is now 10 cm across. The source region is confined to the inner 5 cm of

the slab and possesses a source strength of 1.0 n/cm3-s. The simulated particles are now

thermal neutrons at 0.025 eV (2200 m/sec) instead of the unit velocity particles given in

Chapter 3. The interior source region is 5 cm of water and the outer region is composed

of natural uranium. The material properties of thermal neutrons in water and natural

uranium are given in Table C.8 and Table C.9 [97].

The results shown in Table C.10 are qualitative values for the thermal neutron flux at

discrete points in the slab after: 4.572 µs, 11.43 µs, 34.29 µs, and 45.73 µs respectively.

At these particular times the particles have had enough time to travel roughly 1/10, 1/4,

1/2, 3/4 of the way, and finally completely across the slab.
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Figure C.4 shows a graphical output for the scalar flux. The scalar flux increases in

magnitude for each succeeding step as expected during the early stages of the simulation.

Each curve represents a time-step of 4.572 µ seconds. This is the amount of time that it

takes for a thermal neutron to travel 1 cm. As with the other localized cases, the thermal

neutrons take a finite amount of time to travel from the outer regions of the sphere into

the central non-source region.

The difference between the homogeneous localized carbon case and the heterogeneous

water and uranium slab is evident in the non-source region. For this particular case, the

natural uranium readily absorbs the thermal neutrons that travel from the inner water

region. The high absorption cross section prevents thermal neutrons from building up to

any large extent in the outer uranium region
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Figure C.4: Time-Dependent Flux for Thermal Neutrons in Heterogeneous Slab of Ura-

nium and Water
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Table C.7: Benchmark Solutions for 10 cm Sphere

Radius Time Time Time Time Time

cm 4.572 µs 11.43 µs 22.86 µs 34.29 µs 45.73 µs

0.0 0.0000 0.0000 0.0000 0.0000 0.2333

0.5 0.0000 0.0000 0.0000 0.0000 0.2400

1.0 0.0000 0.0000 0.0000 0.0058 0.2652

1.5 0.0000 0.0000 0.0000 0.0219 0.3087

2.0 0.0000 0.0000 0.0000 0.0507 0.3708

2.5 0.0000 0.0000 0.0000 0.0962 0.4525

3.0 0.0000 0.0000 0.0000 0.1613 0.5544

3.5 0.0000 0.0000 0.0064 0.2475 0.6773

4.0 0.0000 0.0000 0.0312 0.3582 0.8225

4.5 0.0000 0.0000 0.0840 0.4971 0.9915

5.0 0.0000 0.0000 0.1759 0.6677 1.1861

5.5 0.0000 0.0000 0.3153 0.8737 1.4084

6.0 0.0000 0.0193 0.5074 1.1198 1.6614

6.5 0.0000 0.0986 0.7623 1.4124 1.9508

7.0 0.0000 0.2767 1.0952 1.7641 2.2881

7.5 0.0733 0.6145 1.5400 2.2064 2.7048

8.0 0.5148 1.3179 2.2894 2.9310 3.3926

8.5 0.9376 1.9268 2.8883 3.4826 3.8966

9.0 0.9998 2.0295 2.9227 3.4476 3.8037

9.5 0.9270 1.8067 2.5719 3.0052 3.2930

10.0 0.4659 1.0459 1.5970 1.9013 2.1001
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Table C.8: Material Properties for Thermal Neutrons in Water

Total Cross Section Σ 3.4522 cm−1

Scattering cross section Σs 3.45 cm−1

Table C.9: Material Properties for Thermal Neutrons in Natural Uranium

Total Cross Section Σ 0.542 cm−1

Scattering cross section Σs 0.372 cm−1
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Table C.10: Benchmark Solutions for 10 cm Heterogeneous Slab of Water and Uranium

Distance Time Time Time Time Time

cm 4.572 µs 11.43 µs 22.86 µs 34.29 µs 45.73 µs

0.0 0.0000E+00 0.0000E+00 8.2388E-02 1.9278E-01 2.9115E-01

0.5 0.0000E+00 9.2952E-03 1.6483E-01 3.3455E-01 4.8462E-01

1.0 0.0000E+00 4.9935E-02 2.8722E-01 5.1560E-01 7.1673E-01

1.5 0.0000E+00 1.4784E-01 4.7876E-01 7.7483E-01 1.0353E+00

2.0 5.5604E-02 3.4752E-01 7.8523E-01 1.1644E+00 1.4984E+00

2.5 3.8215E-01 7.9512E-01 1.3656E+00 1.8605E+00 2.2982E+00

3.0 9.7250E-01 2.1430E+00 3.6781E+00 4.9545E+00 6.0742E+00

3.5 1.0002E+00 2.4432E+00 4.5581E+00 6.3973E+00 8.0426E+00

4.0 1.0002E+00 2.4918E+00 4.8673E+00 7.0539E+00 9.0642E+00

4.5 1.0002E+00 2.4960E+00 4.9547E+00 7.3110E+00 9.5279E+00

5.0 1.0002E+00 2.4961E+00 4.9709E+00 7.3755E+00 9.6580E+00

5.5 1.0002E+00 2.4960E+00 4.9547E+00 7.3110E+00 9.5279E+00

6.0 1.0002E+00 2.4918E+00 4.8673E+00 7.0539E+00 9.0642E+00

6.5 1.0002E+00 2.4432E+00 4.5581E+00 6.3973E+00 8.0426E+00

7.0 9.7250E-01 2.1430E+00 3.6781E+00 4.9545E+00 6.0742E+00

7.5 3.8215E-01 7.9512E-01 1.3656E+00 1.8605E+00 2.2982E+00

8.0 5.5604E-02 3.4752E-01 7.8523E-01 1.1644E+00 1.4984E+00

8.5 0.0000E+00 1.4784E-01 4.7876E-01 7.7483E-01 1.0353E+00

9.0 0.0000E+00 4.9935E-02 2.8722E-01 5.1560E-01 7.1673E-01

9.5 0.0000E+00 9.2952E-03 1.6483E-01 3.3455E-01 4.8462E-01

10.0 0.0000E+00 0.0000E+00 8.2388E-02 1.9278E-01 2.9115E-01
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Appendix D

Additional Comments on Steady State results

Chapter 3 benchmarks the time-dependent methods against steady-state results produced

using steady-state integral methods. These results were given without comment. In

Appendix D, the methods and results will be discussed more in depth. For each of the

four benchmark cases presented, the steady state results are produced using the same

Romberg integration techniques as presented in Section 3.3. Convergence to a steady

state result was found once the integration from the n to the n + 1 level resulted in no

less than four significant figures. Numerically the following integral is solved in each of

the four benchmark cases:

Φn+1 (�r) =
∫ a

0
[Σs (�r

′) Φn (�r′) + So (�r
′)]K (�r, �r′) d�r′. (D.1)

Similar to the time-dependent cases, the steady state kernels are singular when �r′=�r.

Thus, the subtraction of the singularity method was used to numerically solve these

problems. Applying the subtraction of the singularity method to Equation D.1 the fol-

lowing is obtained:

Φn+1 (�r) =

+
∫ a

0
[Σs (�r

′) (Φn (�r′)− Φn (�r)) + So (�r
′)− So (�r)]K (�r, �r′) d�r′

+(Σs (�r)Φ
n (�r) + So (�r))

∫ a

0
K (�r, �r′) d�r′. (D.2)

The first term in Eqn. D.2 is handled numerically. However, the singularity at �r′=�r is

now no longer a problem because the integrand is identical to zero. The second term is

now calculated analytically and varies depending on the analytical form of the kernel.
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Figure D.1: Steady-State solution for Homogeneous Slab with Uniform source

D.1 Steady-State Uniform Source in Homogeneous Slab

A steady-state solution for a uniform source in a homogeneous slab, as described in Sec-

tion 3.3.2, was solved. The geometry of the problem is shown in Figure 3.3. Analytically

integrating the one-dimensional homogeneous kernel in Equation D.2, one arrives at the

following: ∫ a

0
E1 (Σ |x− x′|) dx′ = 2−E2 [Σx]− E2 [Σ (a− x)] . (D.3)

The numerical values for this case are given in Table D.1 and shown in Figure D.1.

D.2 Steady-State Localized Source in Homogeneous Slab

The steady-state benchmark solution for a homogeneous slab with a localized source,

as described in Section 3.3.3, was calculated. The geometry of the problem is shown in
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Figure D.2: Steady-State solution for Homogeneous Slab with Localized Source

Figure 3.7. Analytically integrating the one-dimensional homogeneous kernel one arrives

at the previously derived Equation D.3. The numerical values for this case are given in

Table D.1 and shown in Figure D.2.

D.3 Steady-State Localized Source in Homogeneous Sphere

The steady-state benchmark solution for a homogeneous sphere with a localized source

distributed in the outer 2 mfp, as described in Section 3.3.4, was obtained. The geometry

of the problem is shown in Figure 3.11. Analytically integrating the one-dimensional

homogeneous spherical kernel in Equation D.2, one arrives at the following:

∫ a

0

E1 [Σ |r − r′|]− E1 [Σ |r + r′|]
8πrr′

dr′ = (D.4)

2Σr +Σa (E2 [Σ (a+ r)]− E2 [Σ (a− r)]) + E3 [Σ (a+ r)]− E3 [Σ (a− r)] .
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Figure D.3: Steady-State solution for Sphere with Localized Source

The numerical values for this case are given in Table D.1 and shown in Figure D.3.

D.4 Steady-State Localized Source in Heterogeneous Slab

The final steady-state benchmark was calculated for the heterogeneous slab, as described

in Section 3.3.5 The geometry of the problem is shown in Figure 3.15. Analytically

integrating the one-dimensional heterogeneous kernel in Equation D.6, one arrives at the

following:

∫ a

0
E1 [τ (x, x

′)] dx′ = (D.5)

1

Σ2

[
e−τ1

(
eΣ2x1 − 1

)
− τ1Ei [−τ1] + (τ1 − Σ2x1)Ei [−τ1 +Σ2x1]

]
+

1

Σ1

[
e−τ2

(
eΣ1x − eΣ1x1

)
+ (τ2 −Σ1x)Ei [−τ2 +Σ1x] + (−τ2 +Σ1x1)Ei [−τ2 +Σ1x1]

]
+
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Figure D.4: Steady-State solution for Heterogeneous Slab with Localized source

1

Σ1

[
eτ3−Σ1x − eτ3−Σ1x2 + (−τ3 +Σ1x)Ei [τ3 − Σ1x] + (τ3 − Σ1x2)Ei [τ3 −Σ1x2]

]
+

1

Σ2

[
e−τ4

(
e−Σ2x2 − e−Σ2a

)
− (τ4 +Σ2a)Ei [−τ4 − Σ2a] + (τ4 +Σ2x2)Ei [−τ4 − Σ2x2]

]
,

where:

τ1 = Σ1 (x− x1) + Σ2x1

τ2 = Σ1x

τ3 = Σ1x

τ4 = Σ1 (x2 − x) + Σ2x2.

The numerical values for this case are given in Table D.1 and shown in Figure D.4.
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Table D.1: Benchmark Solutions for Steady-State Cases

Distance Homogeneous Homogeneous Homogeneous Heterogeneous

mfp Slab Uniform Slab Localized Sphere Localized Slab Localized

0.0 2.3865 0.5281 0.3428 0.1389

0.5 4.6020 1.0814 0.3467 0.2844

1.0 5.9124 1.6448 0.3588 0.4327

1.5 6.8572 2.3267 0.3795 0.6123

2.0 7.5562 3.2070 0.4096 0.8450

2.5 8.0742 4.5386 0.4505 1.2072

3.0 8.4535 5.8191 0.5039 1.6871

3.5 8.7230 6.5930 0.5723 1.8605

4.0 8.9028 7.0903 0.6586 1.9348

4.5 9.0057 7.3708 0.7669 1.9656

5.0 9.0392 7.4616 0.9025 1.9740

5.5 9.0057 7.3708 1.0721 1.9656

6.0 8.9028 7.0903 1.2851 1.9348

6.5 8.7230 6.5930 1.5549 1.8605

7.0 8.4535 5.8191 1.9023 1.6871

7.5 8.0742 4.5386 2.3695 1.2072

8.0 7.5562 3.2070 3.1654 0.8450

8.5 6.8572 2.3267 3.7351 0.6123

9.0 5.9124 1.6448 3.6202 0.4327

9.5 4.6020 1.0814 2.9950 0.2844

10.0 2.3865 0.5281 1.5366 0.1389
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Appendix E

Description of Input File for TBIT

The input code for TBIT is a single file “tbit.in” which is placed in the directory where

the executable tbit.exe is located. In Appendix E, a sample file will be provided and

each input line will be discussed. In this section, lines that start with the word “Input”

require that the user enter in data, while those that start with the word “Title” are just

place holding lines that are used to describe the input that follows.

E.1 Geometry and Energy Group

The first four lines in Table E.1 are fairly self explanatory. The user must input the

number of dimensions and the geometry type for the problem. Currently, TBIT only

supports Cartesian and spherical geometries; however, the method is easily expanded

into cylindrical coordinates. The input for lines 3 and 4 are not strictly needed. The

reason for this is that the code determines whether or not the problem is homogeneous

or heterogeneous based off the number of materials that are entered later in the data file.

Table E.1: Geometry and Energy Group input for TBIT

Line 1 Input: Number of Dimensions (1d, 2d, or 3d)

Line 2 Input: Geometry type (Cartesian or Spherical)

Line 3 Input: Material Type (Homogeneous or Heterogeneous)

Line 4 Input: Particle Type (Monoenergentic or Multigroup)
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Table E.2: Number of Nodes in Each Spatial Direction input for TBIT

Line 5 Title: “Number of nodes in the x/r direction”

Line 6 Input: Number of nodes in the x/r direction

Line 7 Title: “Number of nodes in the y/theta direction”

Line 8 Input: Number of nodes in the y/theta direction

Line 9 Title: “Number of nodes in the z/phi direction”

Line 10 Input: Number of nodes in the z/phi direction

Similarly, whether or not the particles in the problem are monoenergetic or multigroup

is determined based on the number of energy groups the user provides.

E.2 Number of Nodes in Each Spatial Direction

Lines 5-10 in Table E.2 are self explanatory, each input line determines the number of

nodes for their respective spatial direction. Two items of interest should be mentioned,

however. First the number of spatial nodes in the azimuthal spherical angle φ should be

1/2 the number in the polar angle θ. The polar angle only extends from 0 to π where

as the polar angle extends from 0 to 2π; therefore, in order to keep the grid spacing

uniform the number of nodes in the polar angle should be twice that of the azimuthal.

The second item of interest, is that through benchmarking of the TBIT method it was

found that the spatial step size should be less than or equal to the smallest mean free

path length of any of the materials in the problem. Thus, the number of nodes in any

given direction should be adjusted such that this constraint is met.
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Table E.3: Energy Groups input for TBIT

Line 11 Title: “Number of Energy/Frequency Groups”

Line 12 Input: Number of Energy/Frequency Groups

Line 13 Title: “Energy of Groups (E(1), ...)”

Line 14+ Input: Number of Energy Groups

E.3 Energy Group Input

The user must enter in the number of energy or frequency groups. Then each en-

ergy/frequency group must be entered on a separate line. If there are two energy groups

for neutrons one at 14.1 MeV and one at 5 MeV then the user would enter 14.1 on line

14 and 5.0 on line 15.

As line 14 in Table E.3, is the final line that is held in common for all possible

geometries and energy groups, the following tables will have the line numbers omitted;

however, the generalized lines are labeled alphabetically for each table for convenience

when referring back to a particular line in their respective table.

E.4 Total Macroscopic Cross Section Input

The user must enter the number of materials for the problem on line b. For each material

type, there must be a repeat of lines ’c’ and ’d’. In addition for each energy group, the

total macroscopic cross section Σ (E) must be inputed on a new line for each energy

group. Thus, if there are two materials with two energy groups the input must look like

Table E.5.
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Table E.4: Total Macroscopic Cross Section Input for TBIT

Line a Title: “Number of Materials in Problem (Homogeneous = 1)”

Line b Input: Number of materials in problem

Line c Title: “Material ’n’ Sigma Total”

Line d Input: Sigma Total for each energy group

Line e Input: “Material ’n’ Sigma s”

Line f Input: “Energy 1 (1→ 1, 1→ 2, 1→ 3 ....)

Line g Input: Scattering Cross sections for Material n at Energy 1

Table E.5: Total Cross Section input for TBIT

Material ’1’ Sigma Total

Σ1 (E1)

Σ1 (E2)

Material ’2’ Sigma Total

Σ2 (E1)

Σ2 (E2)
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Table E.6: Scattering Cross Section input for TBIT

Material ’1’ Sigma s

Energy 1 (1→ 1, 1→ 2, 1→ 3 ....)

ΣE1→E1

s1

ΣE1→E2

s1

Energy 2 (1→ 1, 1→ 2, 1→ 3 ....)

ΣE2→E1

s1

ΣE2→E2

s1

Material ’2’ Sigma s

Energy 1 (1→ 1, 1→ 2, 1→ 3 ....)

ΣE1→E1

s2

ΣE1→E2

s2

Energy 2 (1→ 1, 1→ 2, 1→ 3 ....)

ΣE2→E1

s2

ΣE2→E2

s2

E.5 Scattering Cross Section Input

In a similar fashion to the total macroscopic cross sections, the within group and down

scattered cross sections must be entered for each material type and energy group. Each

cross section must be entered on a new line. For example, if there are two material types

and two energy groups lines ’e’ and ’g’ in Table E.6 would be the input. Although, one

must input up-scattering cross sections they are not currently used in any calculations.

Currently the TBIT method only supports down-scattered particles. Therefore, it is
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Table E.7: Geometry and Material input for TBIT

Line a Title: “Number of Regions”

Line b Input: Number of Regions

Line c Title: “Region ’n’ (low,high,material)

Line d Input: Node number for the lower boundary of the region

Line e Input: Node number for the higher boundary of the region

Line f Input: Material Number

recommended that one enter 0.0 for any scattering cross sections that result in higher

energy groups.

As the geometry and material input for one, two and three dimensional systems differ.

Each one will be described in its own section.

E.6 1-D geometry and material input

In one-dimensional coordinates, the input for the material/geometry is relatively easy

to understand. The user enters the number of distinct material regions in the problem.

If the sphere has an inner and an outer region then the input for line b would be two.

Then for each region: the lower node number, the higher node number, and the material

number is entered for each distinct region.

For example a one-dimensional spherical problem with 50 nodes and two materials

(0 and 1) with material zero confined to the inner 25 nodes and material 1 confined to

the outer 25 would have an input file as shown in Table E.8. A picture of the sample

geometry is shown in Figure E.1.
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Table E.8: Material/Geometry Sample Input for 1-D Spherical TBIT

“Number of Regions”

2

“Region ’1’ (low,high,material)

0

50

0

“Region ’2’ (low,high,material)

51

100

1
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Material 0

Material 1

25 nodes

25 nodes

Figure E.1: Material/Geometry Sample Input for 1-D Spherical TBIT
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Table E.9: Geometry and Material input for 2-D TBIT

Line a Title: “Number of Regions”

Line b Input: Number of Regions

Line c Title: “Region ’n’ (low,high,material,start row, end row)

Line d Input: Node number for the lower ’x/r’ boundary of the region

Line e Input: Node number for the higher ’x/r’ boundary of the region

Line f Input: Material Number

Line g Input: The starting row of this particular geometry slice in ’y/theta’

Line h Input: The ending row of this particular geometry slice in ’y/theta’

E.7 2-D geometry and material input

In two-dimensions the definition of a region changes slightly from that presented in one-

dimensional coordinates. A region in two-dimensions is when a geometry slice in the x/r

direction changes from one row to another. This means that only when the geometry of

the problem changes in y or theta is there a new region.

For example a two-dimensional Cartesian problem is shown in Figure E.2. The input

file for this particular geometry would have an input similar to Table E.10.

E.8 3-D geometry and material input

In three-dimensional coordinates, a level is defined once the geometry in the x/y or

r/theta direction changes with z/phi. Only when the geometry/material changes in z or

phi is a new level defined. The definition of a region (as being in x/y or r/theta geometry)

is unchanged.
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Table E.10: Material/Geometry Sample Input for 2-D Cartesian TBIT

“Number of Regions”

2

“Region ’1’ (ylow,yhigh,xlow,xhigh,material)

0

50

0

50

0

51

100

1

“Region ’2’ (low,high,material)

51

100

0

50

1

51

100

0
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100 nodes

Material 1
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Material 0
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Figure E.2: Material/Geometry Sample Input for 2-D Cartesian TBIT
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Table E.11: Geometry and Material input for 3-D TBIT

Line a Title: “Number of Levels”

Line b Input: Number of Levels

Line c Input: “Level ’n’ (low,high)”

Line d Input: Node number for the lower ’z/phi’ level

Line e Input: Node number for the higher ’z/phi’ level

Line a Title: “Number of Regions”

Line b Input: Number of Regions

Line c Title: “Region ’n’ (low,high,material,start row, end row)

Line d Input: Node number for the lower ’x/r’ boundary of the region

Line e Input: Node number for the higher ’x/r’ boundary of the region

Line f Input: Material Number

Line g Input: The starting row of this particular geometry slice in ’y/theta’

Line h Input: The ending row of this particular geometry slice in ’y/theta’
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For example a three-dimensional Cartesian problem is shown in Figure E.3. The

input file for this particular geometry is shown in Table E.12.

E.9 Time-steps and Number of Radial and Angular Calculational Directions

The number of time-steps, as inputed in line ’b’, is based off the highest energy group.

Recall that the time step for the gth energy group is defined as: ∆t = ∆x
vg
.

The input on line ’c’ defines the number of polar angular directions to use when

calculating the integrated scalar flux. Likewise, line ’f’ defines the number of azimuthal

directions; however, this is only included in three-dimensional geometries. The azimuthal

and polar angles are distributed uniformly in Cosine of the angle and not over the angle

itself. In principle the greater the number of directions the higher the accuracy; however,

this increases the computational time.

There are two comments to be made at this point. First, as mentioned earlier for

the 3-D spherical geometry, the azimuthal angle ranges from 0 to π or one-half that of

the polar angle. Therefore the number of nodes should be one-half those inputed in line

’d’. Finally, the number of directions in the polar angle should be roughly equal to the

number of theta directions in spherical coordinates.

The number nodes in the radial direction is inputed on line ’g’. This is the number

of nodes that are distributed over one ∆x when the integration is taking place along a

specific angular direction. The number of nodes in the radial direction should be greater

than 4. Any number of nodes less than four and the TBIT method is forced to use

a Newton-Cotes type rule to integrate along the radial direction. This means that the

calculational point at (�r, t) is included in the calculation. As mentioned in Chapter 4, the

particle flux at a particular point and time can not contribute to its own scattered flux.

Therefore, one should use open or semi-open type rules that do not include the origin of
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Table E.12: Material/Geometry Sample Input for 3-D Cartesian TBIT

Column A Column B

“Number of Layers”

2

“Level1” “Level 2”

0 51

50 100

“Number of Regions” “Number of Regions”

2 2

“Region ’1’ (ylow,yhigh,xlow,xhigh,material) “Region ’1’ (ylow,yhigh,xlow,xhigh,material)

0 0

50 50

0 0

50 50

0 1

51 51

100 100

1 0

“Region ’2’ (ylow,yhigh,xlow,xhigh,material) “Region ’2’ (ylow,yhigh,xlow,xhigh,material)

51 51

100 100

0 0

50 50

1 0

51 51

100 100

0 1
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Figure E.3: Material/Geometry Sample Input for 3-D Cartesian TBIT
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Table E.13: Geometry and Energy Group input for TBIT

Line a Title: “Time Steps”

Line b Input: Number of time-steps

Line c Title: “Angular Directions”

Line d Input: Number directions in the polar angle

Line e Title: 3-D only “Phi Angular Directions”

Line f Input: 3-D only Number directions in the azimuthal angle

Line g Title: “Nodes in the radial direction”

Line h Input: Number of nodes in the radial direction

the “bubble”. The smallest number of nodes that one can use while still using an open

rule is 5 and therefore the smallest number of nodes in the radial direction should be

greater than 4.

E.10 Output Variables

Several output variables need to be read into the input file before the TBIT code is run.

The input on line ’b’ determines the number of time-steps that need to be calculated

before additional output is written. The input on line ’d’ determines the the number

spatial steps in the ’x/r’ direction before additional data is written to the output file.

The input on line ’f’ and ’h’ determines the number of spatial steps in the ’y/theta’ and

’z/phi’; however, unlike the input for line ’d’ these are only included for problems of two

and three dimensions respectfully.
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Table E.14: Geometry and Energy Group input for TBIT

Line a Title: “Output time-steps”

Line b Input: Number of time-steps before one outputs to file

Line c Title: “Output ’x/r’-Spatial Steps”

Line d Input: Number of ’x/r’-spatial steps between output

Line e Title: 2-D or 3-D only “Output ’y/theta’-Spatial Steps”

Line f Input: 2-D or 3-D only Number of ’y/theta’-spatial steps between output

Line g Title: 3-D only “Output ’z/phi’-Spatial Steps”

Line h Input: 3-D only Number of ’z/phi’-spatial steps between output

E.11 End of Input File

The input file ends with several variables that still need to be determined. Line ’b’ inputs

the maximum percent error between iterations for the scattered source. Corresponding

values for the percent error should be 10−6 or less; however, the lower the iteration error

the greater the amount of time that the code must spend in calculating the scattered

source. Typically, for every order of magnitude of the percent error, the TBIT method

requires that number of iterations in calculating the scattered flux.

The input on line ’d’ determines whether or not a balance calculation for each spatial

mesh will be calculated. An input of 1 results in a balance calculation and 0 is a negative

result. Only, the one-dimensional Cartesian coordinates have the balance calculations

subroutines included.

The final line of input on line ’f’ determines whether or not the highest energy group

defaults to a velocity of 1 cm/s. This input was included to help compare the TBIT
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Table E.15: Geometry and Energy Group input for TBIT

Line a Title: “Error”

Line b Input: Maximum percent error between iterations on each time-step

Line c Title: “Balance Calculations”

Line d Input: ’1’ to perform a balance calculation for each unit cell

zero for a negative result

Line e Title: “Unit Velocity”

Line f Input: ’1’ to default maximum particle velocity to 1cm/s

’0’ for negative result

method to the time-dependent benchmarks as described in Chapter 3.
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Appendix F

Hohlraum Illumination using “Standard” Integral Methods

The general form for time-dependent integral transport equation using the standard

integral method is:

Φ(�r, t) =
∫ t

0
dt′
∫
V ′

K(�r, �r ′; t, t′)Q(�r ′, t′) d�r ′ , (F.1)

where: K(�r, �r ′; t, t′) is the time-dependent kernel for the geometry of interest andQ(�r ′, t′)

is the time-dependent source. The integration is carried out over the volume of interest

V ′ from time zero until the time of interest t. The source term includes contributions

from both an isotropic scattering flux and an arbitrary isotropic source:

Q(�r, t) = Σs Φ(�r, t) + S(�r, t) . (F.2)

The time-dependent heterogeneous kernel in three-dimensional Cartesian coordinates was

derived in Appendix A. For three-dimensional radiation transport within a hohlraum, the

kernel takes the following form:

K(�r, �r ′; t, t′) =
exp(−τ (�r, �r′))

4π|�r − �r ′|c[t− t′]
δ

(
t− t′ − |�r − �r ′|

c

)
, (F.3)

where: |�r − �r ′| is the distance between the point at which one is calculating the scalar

flux at and the test point where one is integrating to. In Cartesian coordinates, this

distance is just:

|�r − �r ′| =
√
(x− x′)2 + (y − y′)2 + (z − z′)2. (F.4)

In principle, any type of three-dimensional, monoenergetic, neutral particle, time-

dependent problem could be determined by solving Equation. F.1. However, several

assumptions will be made which will simplify Eqn. F.1 at the cost of limiting the resulting

equation to the specific problem of solving hohlraum type calculations.
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Figure F.1: Nova Capsule Illumination

F.1 Geometry of Problem

Only a single type of geometry will be examined, that of a NOVA target, as shown in

Figure F.1. The physical dimensions of the NOVA hohlraum, laser entrance hole, and

capsule are provided in Figure F.2.

Table F.1 shows the number and dimension of the nodes for the three regions in the

NOVA target: capsule, cylinder (part of the hohlraum), and left and right rings (part of

the hohlraum).

The values were chosen to meet two different types of criteria. The spacing between

each of the nodes has to be fairly uniform. This is done to ensure that the communication

time between the nodes of the three geometry types is approximately equal. In addition,

the number of nodes are chosen such that the grid spacing is relatively fine. When the grid

spacing is refined, the calculated accuracy should increase. However, the computational

time increases as the cubed number of nodes in the z-direction on the hohlraum.

As a compromising balance between the two contradictory goals of fast run time and
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Figure F.2: Geometry and Dimensions for Nova Target

Table F.1: Number and Dimension of Nodes

Location Number of Nodes Dimensions [cm]

Z-Hohlraum (dzh) 32 0.0766

Theta-Hohlraum (dθh) 65 0.0773

Radius-Rings (drr) 3 0.0667

Theta-Rings (dθr) 65 0.0773

Polar-Angle Capsule (dθc) 22 0.0771

Azimuthal-Angle Capsule (dφc) 11 0.0771
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accurate results, the number of nodes in the z direction of the hohlraum was chosen

such that the communication time between adjacent the nodes is approximately 0.25

picoseconds. This decision then fixed the grid spacing on the other two surfaces, as

shown in Table F.1.

F.2 Simplifying Assumptions

The full fledged integral transport equation, Equation F.1, with the three dimensional

time-dependent kernel, Equation F.3, can be quite challenging to solve. However, with

several assumptions Equation F.1 can be reduced into a much simpler form. These

simplifying assumptions are:

1. The capsule is assumed to be totally black. Any X-rays incident on the capsule

will be absorbed and not remitted.

2. The filler gas within the hohlraum has zero opacity. Therefore, X-rays traveling

within the hohlraum will not scatter or be absorbed. Furthermore, only the X-ray

flux incident on the surfaces of capsule and the hohlraum will be calculated.

3. The albedo of the hohlraum is set to a constant 0.8 throughout the simulation,independent

of position, time and incident X-ray flux. X-rays on the hohlraum’s surface are

emitted isotropicically and remitted instantaneously.

4. The geometry of the hohlraum and capsule remains fixed throughout the simulation.

No provisions will be made for the deformation of the capsule or the hohlraum.

With these simplifying assumptions the time-dependent integral transport equation

for this system is:

Φ(�r, t) =
∫ t

0
dt′
∫
S

Q (�r ′, t′)

4π|�r − �r ′|2H
(
t− t′ − |�r − �r ′|

v

)
dS ′ . (F.5)
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The integration is carried out over the surface of the hohlraum, although the calculational

node for the scalar flux can occur on the surface of the capsule, because only the inside

of the hohlraum is a source for X-rays. The capsule was assumed to be completely black

and there is not any filler gas to scatter X-ray’s within the hohlraum. Therefore, the

only location which is a source for X-rays, be that an isotropic source from the lasers or

remitted, is the surface of the hohlraum itself.

Although the simplifying assumptions reduced the previous full fledge integral equa-

tion, numerically solving Equation F.5 still poses some difficulties. The Heaviside func-

tion, within the time-dependent kernel, provides causality information for a particle’s

motion. A finite amount of time must pass before a particle can affect the flux at a loca-

tion other than where it was born or scattered. From a computational standpoint, only

points for which there has been enough time for the X-rays to travel to the calculation

node need be included in the calculation.

A second difficulty arises from the fact that not every point within this hohlraum

can “see” every other point. The capsule is assumed to absorb any and all X-rays that

intersect with it. A ’view-factor’ calculation must be performed to determine whether or

not X-rays produced at the ith node can see the surface of interest.

F.3 View-Factor

For the X-rays to affect the flux at any given point on the hohlraum or the capsule, there

must be a direct line of sight from the place where the X-ray was born to the calculational

point. View-factors from the node of interest, on the capsule or on the hohlraum, are

only from the node of interest to all the nodes on the hohlraum. This is because the

capsule is assumed to be completely black and the filler gas is assumed to not scatter

any of the X-rays, Assumption 2. If the calculation node can see the test node, then the
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code assumes that the calculation node can see the complete incremental area for which

the node represents.

Therefore, two types of view-factor calculations must be performed. The first calcu-

lation is whether or not the calculational point on the hohlraum can see the test point,

regardless of the capsule. The second calculation is whether or not the capsule intersects

with the line of sight.

A unit vector is drawn from the center of the capsule to the calculation node. Simi-

larly, a unit vector is drawn from the calculation node to the test node on the surface of

the hohlraum. The angle between these two vectors is just:

θ = cos−1 (�r1 · �r2) . (F.6)

If the angle between the two vectors is greater than π
2
then the calculation node on the

capsule can not see the test node on the hohlraum.

A similar calculation is performed to determine whether or not the two nodes are

blocked by the capsule. A unit vector is drawn from the calculation node to the center

of the sphere. A second unit vector is drawn from the calculation node to the test node,

both of which reside on the hohlraum. The angle between the two unit vectors is:

θ = cos−1 (�r1 · �r2) . (F.7)

The distance of closest approach for the �r is just:

‖�k‖ = ‖�s‖ · sin (θ) . (F.8)

If the distance of closest approach is greater than the radius of the capsule then the

calculation node can see the test node. If the distance of closest approach is less than

the radius of the capsule, then the line of sight between the calculation node and the

test node passes through the capsule and the two nodes can not communicate with each

other directly.
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Table F.2: Incremental Areas

Location on Hohlraum dAi

Cylinder Rhdθhdzh

Ring ridθrdrr

F.4 Numerical Evaluation

Once the view-factor calculations are complete, the calculation can then continue and

either include or exclude the source contribution that the test node makes. If the test

node is not in the line of sight, then the code increments to the next test node and the

view factor for this ’new’ location is determined and the process described in the previous

section is repeated.

If however the test node can influence the X-ray flux at the calculation node, then

the area around the test node can influence the flux as described in Equation F.5. The

X-ray flux at a specific point is just:

Φc(x, y, z; t) =
V iewableNodes∑

t=1

Si
(
t− Dist→c

v

)
exp−ΣDist→c

4πDis2
t→c

H
(
t− Dist→c

v

)
dAi, (F.9)

where: Dist→c is the distance between the test node and the calculation node, Si
(
t− Dist→c

v

)
is the source strength at the ith test point at an earlier time corresponding to the flight

time over the distance between the two nodes, and dAi is the differential area which sur-

rounds the test node. This differential area varies depending on whether the test node

in on the cylindrical portion of the hohlraum or on one of the two ’rings’ which bound

the laser entrance hole.

After summing over the visible test points is completed and the calculation node lays

on the hohlraum, the computer code then sets the remitted source at 80% of the incoming

flux. The code assumes that the remitted x-rays are isotropic and that they are remitted
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within one time-step, 0.25 picoseconds. The capsule is assumed to be completely black

and therefore will not remit any incident x-rays. The net current across the calculated

node ’c’ is:

Jc = n̂ · �J =
∫

dΩn̂ · Ω̂ψ
(
�r, Ω̂, t

)
. (F.10)

The remitted isotropic source at the calculated node is then:

Sc = αc

n∑
t=1

St cos θt→c exp(−ΣDist→c) dAt

(Dist→c)
2 (F.11)

where: αc is the albedo at the calculated node, cos θt→c is the angle between the unit

outward normal and the unit vector between the calculated node and the test node, and

Dist→c is the distance between the calculated node and the test node.

The remitted source is a summation of the incident fluxes from the visible nodes.

Once the X-ray flux and the isotropic remitted source strength are calculated for the

current node, the code then increments to the next calculational node and the process of

finding the view-factors for this new node begins again.

F.5 Numerical Results

Two different scenarios with simulated NOVA hohlraums will be investigated. A NOVA

hohlraum is shown in Figure F.1. As already mentioned, the dimensions from the NOVA

hohlraum will be used in the numerical simulation. Further investigation of Figure F.1

shows that there are five lasers which enter into the laser entrance hole and illuminate the

hohlraum. In each of the simulations, the spacing of the X-ray sources on the hohlraum

will be modeled after the NOVA experiment, Figure F.1. For each case the calculation

was allowed to run for 25 picoseconds, at which time the capsule illumination was plotted.

Two different scenarios were investigated. The first case simulated the nominal illu-

mination of the NOVA capsule. The left side of Figure F.3 is the graphical representation

of the source distribution for the uniform illumination case.
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Figure F.3: Nominal Capsule Illumination

The capsule is symmetrically illuminated by five X-ray sources on either side of the

hohlraum. The right side of Figure F.3 is a two dimensional representation of the capsule

illumination. As shown in the figure, integral transport predicts that the capsule illumi-

nation varies by no more than 20% for any given point. As expected, the hottest portion

of the capsule is the area that faces all five sources. The coolest portion of the capsule

is the region on either side, which only has a partial line of sight to any given source.

These regions are evident from the five cool regions, which lay in a ring just outside the

central hot spot.

The second case simulated a non-uniform illumination of the NOVA capsule. As

shown on the left side of Figure F.4, the right side of the capsule is illuminated by five

sources whereas the left is illuminated only by four.

As shown in Figure F.4, the region of the capsule that has the most direct line of
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Figure F.4: Non-Uniform Capsule Illumination

sight to the source that is turned off, is the coolest. The asymmetry in the illumination

affects not only the portions of the capsule nearest to it, but the illumination over the

entire capsule. The capsule illumination for this asymmetrical case varies approximately

by a factor of two.




