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Abstract

     Accidents postulated to occur involving the chemical interaction of lithium with water and air

are analyzed for the blanket test module (BTM) in ITER using two different computer models.

The first model is a newly developed thermodynamic equilibrium computer model LINT.  The

second model uses the MELCOR systems code.  The same basic logic used in LINT is

incorporated into the MELCOR FDI package, though MELCOR allows for non-equilibrium

conditions.  This addition to MELCORÕs capability allows MELCOR to be used in reactor

systems analyses over a wide range of accident conditions; i.e., thermal-hydraulic events with

chemical interactions involving molten metals.  Pressure and temperature histories are predicted

for a control volume in thermal equilibrium (LINT) or non-thermal equilibrium (MELCOR) in

any accident scenario involving chemical interaction between lithium and water or air.  These

computational models are applied to postulated accidents for the ITER blanket test module.

     In the ITER vacuum vessel, failure is not predicted to occur for lithium leaks from the BTM

into water because of low lithium driving pressures resulting in self-limiting leaks.  However,

failure is predicted in minutes for a high pressure water leak into any amount of pre-existing

lithium provided the pressure suppression system fails to work as designed.  Assuming a 10 kg/s

initial water leak rate, calculated failure times range from a maximum of 15 minutes with no

lithium present to a minimum of less than two minutes for an initial lithium pool of 1300 kg.

For lithium leaks from the BTM into the ITER reactor vault containing pure air at

atmospheric pressure, calculations predict failure if an adiabatic system is assumed, but not if

heat loss to the surrounding cold structures is considered.  Both pool and droplet configurations

are considered for diffusional mass transfer calculations in determining chemical reaction rates,

with droplet configurations inducing faster reaction rates and pressurization.  Finally, pressure

and temperature histories are predicted in the reactor vault for air ingress rates of 1, 10, 50, and

80 vol%/day into an argon atmosphere.  Calculations show that this scenario poses no serious

threat to the integrity of the reactor vault.
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1  Introduction

The alkali metals have a long history of use in energy systems, particularly in nuclear power
reactor design.  These metals have excellent heat transfer characteristics and can be pumped
easily either with conventional or electromagnetic pumps.  For example, numerous fission
reactors have been designed and built using sodium as a coolant [14].  Fusion reactor designs
often use lithium for the dual purpose of coolant and tritium breeder.  Specifically, several test
modules using lithium or lithium-alloys will be tested in the International Thermonuclear
Experimental Reactor (ITER).  This reactor is now in the engineering analysis stage of its base
design.

The ITER reactor design has some special lithium concerns since it is primarily a water-cooled
reactor but also contains lithium coolant in some of its test modules.  One of the primary
concerns is that lithium is chemically reactive with both water and air.  Therefore, special
consideration must be given to potential lithium interactions in the ITER safety analysis for
given abnormal events.  This paper describes the various chemical interactions which lithium
undergoes when exposed to water or air within a fusion system.  The computer model LINT
developed to calculate the interactions is described, and the new capabilities incorporated into
MELCOR based on this model are discussed.  These additions to MELCOR will extend its
capabilities as a design analysis tool to fusion systems such as the ITER design. Finally, the
principal reactions are outlined for two different sets of accident scenarios in ITER, and specific
results are discussed.

1.1  Li-H2O interactions

When lithium reacts with water, two basic scenarios are possible.  First, a relatively small
amount of lithium may come in contact with an excess of water.  This type of situation is
possible if a pipe carrying liquid lithium coolant were to break, causing a stream of lithium to
leak out and fall into a pool of water.  Second, water may come in contact with an excess of
lithium.  This type of situation could occur if a high pressure water leak occurred near a lithium
pool, or if cold water leaked into a volume containing lithium.  The principal reactions are listed
below [3,4,10,15]:

Reaction in the presence of excess water:
2Li(s,l,g) + 2H2O(l,g) → 2LiOH(aq,g) + H2(g) {29 MJ/kg-Li @ 25 °C}

Reaction in the presence of excess lithium:
2Li(s,l,g) + H2O(l,g) → Li2O(s,l) + H2(g) {22 MJ/kg-Li @ 25 °C}

The hydroxide product is especially interesting because it can dissociate or reform from other
products when thermodynamic conditions are favorable.  This occurs during heating or cooling
at temperatures in excess of the boiling point of the lithium hydroxide.  Although the heats of
reaction are endothermic from these phenomena and are much less in magnitude than the
primary chemical reactions, they are important in that they take precedence over the exothermic
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reactions at elevated temperatures.  These dissociation reactions help to mitigate the
pressurization of the vacuum vessel or reactor vault.  Nevertheless, by this point temperatures are
quite high and metal structures may have lost their integrity.

Lithium-hydroxide dissociation:
2LiOH(s,l) → Li2O(s) + H2O(g) {-1.1 MJ/kg-LiOH @ 1312 °C}

Lithium-hydroxide formation:
Li2O(s,l) + H2O(g) → (LiOH)2(g) {-2.6 MJ/kg-LiOH @ 1312 °C}

1.2  Li-air interactions

In air, lithium reacts with all the major gas constituents.  Since nitrogen and oxygen compose
over 98% of the molecules in air, these two major components are the only ones considered here.
Air is assumed to consist of 79% nitrogen and 21% oxygen for analyses in this work.  The
chemical reactions between lithium, nitrogen, and oxygen are listed below.  Dissociation of
lithium nitride at high temperatures also needs to be considered in the case of chemical reactions
extensive enough to elevate temperatures above 1000 K.  In this case a similar mitigating effect
on the pressurization of the reactor vault will occur due to the endothermic nature of the
dissociation.

Nitrogen reaction:
6Li(s,l) + N2(g) → 2Li3N(s) {7.9 MJ/kg-Li @ 25 °C}

Oxygen reaction:
4Li(s,l) + O2(g) → 2Li2O(s) {43 MJ/kg-Li @ 25 °C}

Lithium nitride dissociation:
2Li3N(s) → 6Li(l) + N2(g) {-4.7 MJ/kg-Li3N @ 1088 °C}

Other lithium chemical interactions with minor gas constituents in air such as CO2 are not
considered in this paper [10].

2 Postulated ITER accident scenarios

The ITER fusion reactor safety analysis has two major accident scenarios regarding lithium.
Due to the close proximity of water and lithium coolant channels in the lithium test modules of
ITER, a postulated severe accident has the potential to release both lithium and water into the
vacuum vessel.  Similarly, in the reactor vault surrounding the lithium test module, a severe
accident could cause both air and lithium to enter the vault [12].  Both of these situations could
cause serious damage during the ensuing chemical reactions.  A simple diagram (not to scale) of
the ITER lithium test module setup is shown below in Figure 1.
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Figure 1

2.1  Li-H2O interactions

The postulated accident for a lithium-water interaction in ITER occurs in the vacuum vessel
(VV) of the reactor, which has a volume of 3800 m3.  The design of the lithium-vanadium ITER
test modules  (ITMÕs) specifies water coolant driven at around 50 bar and operating between 320
and 380 K, while the lithium coolant is driven at a relatively low 2 to 5 bar with exit
temperatures between 600 and 800 K [9].  An accident involving an in-vessel pipe break of the
ITM may lead to lithium and water coming into contact with each other [12].

Two possibilities exist in this scenario: first, a pre-existing pool of water could be present on the
floor of the vacuum vessel with a subsequent lithium leak into the pool; and second, a pre-
existing pool of lithium could be present on the floor of the vacuum vessel with a subsequent
leak of steam or liquid water.  In the first case, the reaction starts with a lithium leak into an
excess of water.  This results in the production of aqueous lithium hydroxide and hydrogen gas.
In the second case, the reaction starts with a water or steam leak into an excess of lithium.  This
results in the production of solid lithium oxide and, again, hydrogen gas.  The hydrogen gas
production is a concern because of the potential for a hydrogen explosion to occur.  Design limits
require production of no more than 10 kg of hydrogen in any one accident scenario.  Calculations
were performed to determine pressure and temperature histories in the vacuum vessel for
specified water or lithium flow rates given a driving pressure for the coolant pumping system.
Hydrogen explosions were not modeled.  Results from these calculations are discussed later in
this report.

2.2  Li-air interactions

The second type of accident scenario postulated to occur in ITER is a lithium leak into the
reactor vault outside of the lithium test module.  This type of scenario involves chemical
reactions with air.  Normally, the 2150 m3 area surrounding the vacuum vessel (the reactor vault,
or RV) is flooded with inert argon cover gas.  Since argon is heavier than air, retention of the
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cover gas is not a difficult problem.  However, if cracks are present, air ingress is possible
through the process of gaseous diffusion.  Therefore, calculations were performed for a lithium
leak into an air environment forming pools of 16.5 and 165 m2 in surface area.  Reaction rates are
then dependent on the surface area of the lithium pool.

The case of lithium-air interactions considered here is generally one of lower concern than the
lithium-water interactions for two reasons.   First, the heat of reaction for prevailing lithium-
nitrogen combination is much lower than the Li-H2O interactions.  Since nitrogen is the major
constituent in air, the relatively high heat of reaction with oxygen is offset.  This means that
temperatures are kept at more moderate levels in the Li-air case.  Second, the product species
produced from the Li-air interactions are less corrosive and do not include the potentially
explosive hydrogen gas [10].  Nevertheless, if significant quantities of lithium react with either
air or water, the resulting temperatures and pressures can be significant even for the relatively
large volumes considered here.

3 Lithium interaction models

A rather simple conceptual geometry was used for the calculations discussed in this report.  In
both water and air interaction scenarios a single control volume with lithium, water, or air mass
sources was defined.  Pools of lithium and/or water are assumed to form on the floor of the
volume in the Li-liquid H2O case, while Li-steam/air interactions could occur with lithium
droplets suspended in the atmosphere or from the surface of a pool formed on the floor.  The
different possibilities are shown in Figures 2 and 3.

Figure 2                                                        Figure 3
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The models shown here are similar to the one-cell option of the LITFIRE code as described by
D.S. Barnett [17].  The LINT model is a bit simpler than LITFIREÕs multi-node model in that the
entire control volume is considered to be in thermal equilibrium.  Conversely, MELCORÕs
capabilities include non-equilibrium conditions and arbitrary complex geometries.  Thus,
MELCOR can be used to model the two-cell or pan options in LITFIRE as well as other
situations such as can be found in the complex geometry of ITER.

3.1 LINT computer model

A computer model, LINT (Lithium INTeractions), was developed to calculate results for each of
the accident scenarios described above.  This computer model was written using the
FORTRAN90 language and run on a UNIX workstation.  This model was developed as an
outgrowth of an academic project.  The purpose of the model was to provide bounded estimates
on the MELCOR simulations of lithium air/water interactions which would follow.

The basic assumptions used in the model are as follows:
1. chemical reactions are instantaneous and stoichiometric
2. constituents in the control volume system are always in thermal equilibrium
3. gases behave as if they are ideal
4. liquids and solids are incompressible.

The assumption of instantaneous reactions means that all substances present together that can
react, will react.  This assumption is relaxed slightly for lithium interactions with air because a
solid product layer will form a crust on the surface of the lithium liquid through which air must
diffuse.  This limits, in a sense, the amount of lithium and air present ÒtogetherÓ.  All the gas
molecules from the atmosphere that do penetrate this crust, however, are instantaneously reacted.
Furthermore, the assumption that the entire lithium mass in the control volume is available for
reaction if needed may be conservative and unphysical; especially when large volumes of
substances are reacting in short times.  This restriction will be lifted with future improvements on
the model.  The system control volume here consists of either the ITER vacuum vessel (for water
interactions with lithium) or reactor vault (for air interactions with lithium).

The operation of LINT is essentially one of solving the time-dependent first law of
thermodynamics in a chemically reactive open system.  For such a system, the general form of
the energy balance is as follows [6]:

dU

dt
Q W H Hin out= − + − . (1)

This equation can be rearranged with W=0 and U=Σ(niui) as

0 = 







 + +∑ ∑d

dt
n u Q n hi i

i
j j

j

( ) ( ˙ ). (2)

Here ni is the number of moles of species i already in the control volume with internal energy ui,
and nj is the number of moles of species j leaking into the control volume with enthalpy hj.
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An initial amount of lithium, water, or air is defined to exist in the control volume and then a
leak of either lithium or water is bled into the system based on an external pressure and an area
through which the leaking fluid is allowed to flow.  The leak is modeled based on BernoulliÕs
principle, which can be written for this simple case as follows:

ṅ
A

MW

P

Kj
leak= 2ρ∆

, (3)

where A is the cross-sectional flow area, MW is the molecular weight of the substance, ρ is the
density, P is pressure, and K is the discharge coefficient for the flow.

The leak is allowed to flow into the control volume at a constant rate for the duration of a single
time step, at which point the flow rate will be readjusted for the next time step.  During each time
step, the appropriate chemical reactions are completed and a new condition of thermodynamic
equilibrium is calculated iteratively by application of the first law of thermodynamics over that
time period.  The iterative routine used was taken from Press et al. [7].  Temperature dependent
thermodynamic properties for each substance are built into the code [1,2,5,8].  Since pressure in
the control volume will not reach very large values before failure, the equation of state for water
is simplified to that at a constant pressure of one atmosphere.  At low pressures, this assumption
is reasonable.  Both adiabatic and non-adiabatic calculations are made for comparison sake.  The
non-adiabatic systems are modeled as if the control volume walls are the surface of an infinite
medium made of steel.  Thus, heat transfer to the walls of the non-adiabatic system is given by
Q=hA∆T where the overall heat transfer coefficient h is found from the natural convection and
conduction heat transfer coefficients.  The heat transfer coefficient for conduction to the surface
is found using the infinite medium approximation.

h h htot nc cond
− − −= +1 1 1 where h

k c

k dtcond
w w p

w

w=
2

πρ
. (4), (5)

LINT tracks the temperature and pressure histories for the control volume as well as the molar
amount of each substance throughout a calculation.  Lithium-air interactions are calculated on a
more complex basis than lithium-water interactions.  This is due to the formation of a product
layer crust on the lithium surface.  During the first time step in which chemical reaction occurs,
all of the lithium injected into the system reacts.  An initial product layer thickness is then
calculated from the reaction in this time step.  Subsequently, reaction products are added to the
product layer as the nitrogen and oxygen gas phase reactants diffuse through to the fresh lithium
inside.  The reactant mass diffusing through the product layer is calculated using the following
equation:

˙ ( )n K A creact tot surface atm= − 0 . (6)

where n is the molar diffusion rate, Ktot is the mass transfer coefficient, A is the product layer
surface area, and c is the nitrogen or oxygen reactant concentration in the atmosphere of the
chamber.  The mass transfer coefficient, Ktot, is found from a combination of a gas reactant
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diffusing through the atmosphere to the product layer surface and then diffusing through the
product layer crust to the fresh lithium underneath:

K K Ktot atm crust
− − −= +1 1 1 . (7)

The mass transfer coefficients are then found using formulations analogous to heat transfer with
convection through the atmosphere to the product layer surface and conduction through the solid
surface [13]:

Sh
K L

D
atm

o atm

=
,

where K
D

tcrust
crust

crust

= 0, . (8), (9)

Depending on the situation modeled, there are two possibilities for the Sherwood number:

i) pool surface mass transfer mode Sh = 0.13(GrSc)1/3      (10)
ii) stagnant droplet mass transfer mode Sh = 2.      (11)

The dimensionless groups in the above equations are the Sherwood, Grashof (for mass
diffusion), and Schmidt numbers.  These dimensionless groups are the mass transfer analogs of
the Nusselt, Grashof, and Prandtl numbers in heat transfer.  The Grashof and Schmidt numbers
are defined as follows:

Gr
L g x=

3 2

2

ρ ς
µ

∆
Sc

Do crust

= µ
ρ ,

. (12), (13)

where L is the characteristic length scale, ρ is the reactant density, ζ is a quantity relating the
reactantsÕ molecular weight and concentration relative to the atmosphere, ∆x is the difference in
reactant mole fractions between the atmosphere and the product layer interior, and µ is the
reactant viscosity.  These are all known quantities at the beginning of a time step.  Finally, the
diffusion coefficients, Do,crust  and Do,atm, must be defined in order to solve for the mass transfer
rate.  These are temperature dependent quantities defined respectively for reactants diffusing
through the product layer and through any argon/air mixture in the atmosphere:

D aeo crust

b

RT
, =

−
D

T

P
do atm

c

, = . (14), (15)

Here a, b, c, and d are constants, R is the gas constant, T the gas temperature, and P the gas
pressure.

3.2 MELCOR code modifications

MELCOR is an integrated engineering level systems code developed for use in fission reactor
safety studies.  This work is part of an ongoing effort to modify MELCOR for use in fusion
systems as well as fission systems modeling.  Previously, the liquid metals gallium, lead, and
lithium-lead were added as fusion materials by Gracyalny.  These materials were then made
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accessible by the Fuel Dispersal Interactions package (FDI) in MELCOR. Furthermore, the low
pressure melt ejection model was made a ÒstandaloneÓ model [16].

The current work includes the addition of lithium and its related compounds formed from
chemical interactions with water and air.  These materials were added to the Materials Properties
package (MP) of MELCOR.  Also, the capability to simulate lithium chemical interactions has
been added to MELCOR based on the LINT model.  These lithium chemical reactions can occur
with steam, nitrogen, or oxygen when lithium is either dispersed in the atmosphere of a control
volume or deposited on the surface of a heat structure.  Thus, the following chemical interaction
capabilities have been successfully incorporated into MELCOR:

a) Li-H2O reactions in a control volume atmosphere
b) Li-H2O reactions on the surface of a heat structure
c) Li-air reactions in a control volume atmosphere
d) Li-air reactions on the surface of a heat structure
e) Settling of lithium and its reaction products from a control volume atmosphere to a

heat structure.

Oxidation reaction rates and settling rates for fission materials are already included in MELCOR
through user-defined time constants in the input to a problem.  This model was extended to
include lithium reaction rates. In this way, a consistent method is used for all chemical
interactions currently included in MELCOR [11].  One ÒoxidationÓ reaction rate constant is
defined for the atmosphere and one for each heat structure.  A similar time constant must be
defined for settling rates from an atmosphere to any heat structure defined as a deposition
surface. It should be noted that the oxidation time constants referred to here are separate from
oxidation time constants included in modifications made at the Idaho National Engineering and
Environmental Laboratory (INEEL) for fusion applications.  INEELÕs modifications use internal
oxidation time constants for steam reactions on heat structures made of beryllium, tungsten, and
carbon.

Written in differential form, the rate of change of lithium mass in a control volume atmosphere is
determined by

dm t

dt

m t
SLi Li

so
Li

( ) ( )= − +
τ

where τ τ τso st ox
− − −= +1 1 1 . (16), (17)

Here τso, τst, and τox are the time constants for simultaneous oxidation and settling, settling, and
oxidation, respectively.  SLi is the lithium mass source term.

Similarly, the rate of change of lithium reaction product masses can be written as follows:

dm t

dt

m t
R t

m t
Si i

st
i

Li

ox
i

( ) ( )
( )

( )= − + +
τ τ

. (18)

The subscript i represents a reaction product and Ri is the mass of product i formed per unit mass
of lithium reactant.  Since lithium has several possible reaction products, careful account of
which products are being formed must be kept.  To further complicate things, Ri for each
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reaction product is a time dependent quantity.  This is because the relative abundance of the
potential reactants H2O, N2, and O2 changes as the reactions proceed.

In a single MELCOR time step, the amount of lithium available for reaction is first calculated
using the equation

dm FRC m S dt FRCLi react Li Li so
so

ox
, ( )= • + − •τ τ

τ
(19)

where FRC e
dt

so= −
−

1 τ . (20)

Next, the relative amounts of H2O, N2, and O2 allowed to react with the lithium mass determined
above are calculated using a scheme dependent on the relative molar amounts of each substance.
First, the molar ratios of water to air and of oxygen to air are determined.  The amount of lithium
allowed to react with each substance can then be found using the calculated ratios:

dm
dm R

RLi H O
Li

− = •
+2

1

11
dm dm dmLi air Li Li H O− −= −

2
(21), (22)

dm R dmLi O Li air− −= •
2 2 dm dm dmLi N Li air Li O− − −= −

2 2
(23), (24)

R
n F

n n
H O

O N
1

2

2 2

=
•

+
R

n

n n
O

O N
2

2

2 2

=
+

. (25), (26)

The factor F in the equation for R1 is a transition smoothing factor between water and air
interactions.  This factor represents the relative preference of the lithium-water reaction over
lithium-air reactions seen in experiments [10].  A value of 1000 was chosen for F so that
essentially all of the water present will react before the air reactions can begin to take over.  Any
water present in a control volume during an FDI event involving lithium is then 1000 times more
reactive than air present in the same volume.

It should be noted that the term ÒwaterÓ interaction actually refers only to water vapor in the
atmosphere of a MELCOR control volume.  Future work may include liquid water and fog
interactions with lithium.  Also, current modifications apply only to the high pressure melt
injection sequence in MELCOR.  However, the lithium interaction additions made to the code
can easily be extended to the low pressure melt injection sequence as well.

4 Results for lithium-water interactions

In the vacuum vessel, a failure is considered to occur if the pressure exceeds 5 bar.  Temperature
limits are not considered as a failure mode in this study.  Since the coolant pressures driving
liquid lithium are below 5 bar in a typical fusion reactor such as ITER, the vacuum vessel cannot
exceed the 5 bar pressure limit because the lithium leak will asymptotically be choked off as the
vacuum vessel pressure approaches that of the lithium coolant pressure.  On the other hand,
failure of the vacuum vessel can easily occur when a leak from the high-pressure water coolant
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system enters the vacuum vessel provided the pressure suppression system fails to work as
designed.  Driving pressures of 50 bar are used for the water coolant system in calculations for
this paper.  This means the vessel could fail even without any lithium interaction provided the
pressure suppression system fails to work as designed.  Such a failure would be due to water
flashing to steam and pressurizing the vessel beyond the 5 bar limit.

4.1  Lithium leak into pre-existing water

Figures 4 and 5 show pressure histories for a lithium leak into a water pool where the driving
pressures are 5 and 2 bar, respectively.  The initial, nearly linear, portions of the plots represent
the heating to boiling and subsequent vaporization of the water pool present in the control
volume at the beginning of the calculation.  The sudden jumps at about 25 and 50 seconds in the
two LINT plots are due to a modeling peculiarity.  Although water is modeled to boil over a
small finite temperature increment, the internal energy model rises suddenly at the true boiling
point in the center of the phase transition temperature range.  This is not the case for MELCOR,
where a full EOS is included and all phase transitions are continuous and smooth.  Once the
water pool is vaporized, the pressure rise tapers off as the lithium leak is choked off and lithium
flow rates into the volume are reduced eventually to zero.

Figure 4
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Figure 5

4.2  Water leak into pre-existing lithium

A parametric study of failure conditions for a varying initial lithium pool mass is shown in
Figures 6 and 7.  Figure 6 shows the minimum water mass required to cause a pressurization
failure for any given initial lithium pool mass.  This calculation assumes that the rupture disk
between the vacuum vessel and the suppression tank remains closed, thus allowing
pressurization to continue indefinitely.  At low lithium pool masses (under 240 kg), all of the
lithium reacts before the design pressure is reached.  This means that the water leak will continue
without further chemical reaction until enough water has flashed into steam in the vacuum vault
to cause a failure.  Of course, higher initial lithium pool masses allow for more extensive
exothermic reactions to occur.  This results in higher temperatures and less required water to
exceed the design pressure.  Although no limit on temperature is given as a failure criterion, it
should be noted that the temperature of the vacuum vessel atmosphere could reach 3000 K or
more.  Such extreme temperatures would almost certainly begin to melt any metal structure
containing the reaction if conditions remained unchanged.  In realistic situations, heat transfer
out of the vacuum vessel would drastically reduce these temperatures.

Several interesting features in the safety curve of Figure 6 appear as the mass of the initial
lithium pool increases.  Above 250 kg of Li, significant amounts of LiOH have formed and the
system temperature hovers around 1312 K, which is the boiling point of LiOH.  This is the
reason for the dip and subsequent plateau at 275 kg Li in the LINT results.  Following this
plateau, LINT shows a dropoff in the amount of water required to cause a failure.  This is
because vaporized LiOH contributes to the pressurization of the vacuum vessel.  MELCOR, on
the other hand, does not recognize LiOH as a vapor, resulting in lower pressures and thus more

VV Li into H2O Pressure Mitigation Curve 
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reactor water or steam in order to cause a failure.  This is also the reason why MELCOR shows a
long, slow increase in water mass up to about 1000 kg while LINT shows a gradual decrease.

Next, at just over 1000 kg Li for LINT and 900 kg Li for MELCOR, the point at which not all of
the lithium reacts before failure is reached.  This causes a change in the overall chemical makeup
of the system and a drop in the required amount of water is observed.  This drop is due to the
relative ease of heating lithium as compared to heating water due to the difference in specific
heats of the two substances.

Moving further along the curve, at about 1250 kg Li for LINT and 1000 kg Li for MELCOR, the
system temperature is near the melting point of Li2O.  Here the effects of the heat of fusion for
Li2O are felt.  Below about 1250/1000 kg Li the Li2O is all liquid, while above about 1250/1000
kg Li the amount of melted Li2O decreases and falls to zero leaving it as a solid.  When the Li2O
mass remains as a solid the energy of the reaction is spent heating the reaction product gases
rather than melting the Li2O produced.  This causes a rather large, sudden drop in the amount of
water necessary to reach failure pressures.  MELCOR displays a more precipitous drop in the
amount of water required for failure than LINT does for this section of Figure 6.  The
explanation for this behavior is twofold.  First, MELCOR is very sensitive to phase changes due
to the way its EOS is calculated near melting points.  Second, the ÒextraÓ energy available for
sensible heating of lower heat capacity liquids and solids when Li2O is not melting makes a
greater difference in MELCOR than LINT because LINT includes reaction products as vapors
while MELCOR does not.

Figure 6

VV H2O into Li Interaction Safety Curve   
V=3800m3, TH2O-in=380K, TLi-initial=298K, H2O leak=1.1cm dia. @50bar
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Finally, as more and more excess lithium is present in the system for very large initial lithium
pool masses (above 1300 kg), the required water masses for failure gradually increase.  This is
because the thermal inertia of the system begins to overpower the effect of the chemical reaction.

Figure 7 shows the time to failure for the lithium and water quantities described in Figure 6
given an initial water leak flow rate of about 10 kg/s driven by a 50 bar pressure.  Failure times
are seen to be on the order of minutes for the entire range of initial lithium pool masses
considered.  Failure times are seen to correlate almost directly with the amount of water added to
the system.  This is due to the fact that the entire system is modeled as if it were in thermal
equilibrium.  LINT is by default a thermal equilibrium model, and MELCOR calculations were
set up to approximate thermal equilibrium in order to match LINT more closely even though this
is not necessary in general.

                                                                Figure 7

VV H2O into Li Failure Time Curve             
V=3800m3, TH2O-in=380K, TLi-initial=298K, H2O leak=1.1cm dia. @50bar
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5 Results for lithium-air interactions

The ITER reactor vault has a lower pressure limit than the vacuum vessel, being set at 2 bar
instead of 5 bar.  An atmosphere at 1 bar consisting of any fraction of argon and pure air (79%
N2, 21% O2) is considered to exist in the reactor vault before lithium begins to leak in.  Leaks are
allowed to enter either into the atmosphere or onto a surface where reactions take place.  Failure
of the reactor vault will occur due to Li-air interactions unless heat loss from the vault is
considered.  In general, the current method implemented in the MELCOR computer code using
an oxidation constant predicts more severe consequences than the diffusion based model
implemented in LINT.

Calculations were run with various amounts of pool spreading on the reactor vault floor using
LINT and MELCOR, and for different diameter droplets in the atmosphere using LINT.  Pool
sizes were assumed to form on the floor with surface areas of either 16.5 or 165 m2.  These
values were derived for the surface area of a square, six sided, 2150 m3 room at full and one
tenth coverage on the floor.  In the pool case, the LINT calculations then proceed with an initial
crust formation on the pool surface and subsequent diffusion through the product layer crust.  A
parametric study was performed for different initial air fractions in the RV atmosphere and for
different lithium leak temperatures.  One may expect that a pool of large surface area contacting
a high initial air concentration will react much faster than a smaller pool area in contact with a
low atmospheric air concentration.  This is indeed borne out in the results from LINT.  With
MELCOR, surfaces of 16.5 and 165 m2 area are defined as the destinations for the lithium leak
and the oxidation rate constant for the lithium reaction is adjusted accordingly in order to match
the LINT results as closely as possible.  Two specific cases have been run to compare results.

In the case of lithium droplets dispersed in the atmosphere of the control volume, a parametric
study for a lithium leak into an adiabatic system was conducted using LINT based on droplet
size, mass diffusion rate, lithium temperature, and initial air fraction.  Failure of the reactor vault
occurred in two days or less for all cases except when the initial air fraction was at its smallest
value of 1%.  Calculations were also performed for varying air ingress rates with 35 kg of
lithium droplets dispersed in the atmosphere and heat loss to the control volume walls taken into
consideration.  Failure did not occur in any of these cases even with 80 vol% per day air leaks
and an 800 K initial lithium temperature used to represent a maximum expected temperature at
the outlet from the blanket test module.
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5.1 Lithium-air interactions, pre-existing air (LINT, MELCOR)

Table 1 shows a summary of the adiabatic results obtained from LINT for different pool and
droplet cases all using 2000 kg of lithium.  In general the spray, or droplet, mode is found to be
more temperature dependent than the pool mode.  One can see that no simple comparison
between pool and droplet mode can be made.  This is because both temperature and geometry
effects must be taken into account when calculating the mass diffusion rate for the spray mode,
while only temperature effects are important in the pool mode.  One can, on the other hand,
clearly see the effects of the lithium leak temperature.  If hot lithium is used, failure times are on
the order of a minute for any case.  This is because the thermal energy carried by 2000 kg of
lithium is enough to cause a failure even without a chemical reaction.  The effects are similar
even for a reduced total lithium mass of 350 kg.  Finally, the faster failure times observed for
lower air fractions seem counterintuitive at first.  However, one must keep in mind that the argon
cover gas used to fill the reactor vault has a smaller heat capacity than air.  This results in higher
temperatures when significant amounts of argon are present even though the rate of chemical
reaction between lithium and air is reduced.

Failure Times for 2000 kg Li Leak into Reactor Vault with Air/Argon atmosphere (s)
Air fraction in air and Ar atmosphere → 1% 10% 50% 100%

600 K Li 2,833,283 82,222 24,138 19,93316.5 m2

area 800 K Li 56 60 76 97
600 K Li 178,350 2,165 469 349

Nu∝ (GrSc)1/3

(pool) 165 m2

area 800 K Li 56 58 61 68
600 K Li 1,953,086 119,781 36,450 28,84616.5 m2

area 800 K Li 56 60 77 98
600 K Li 19,349 1,153 386 336

Nu=2
(spray) 165 m2

area 800 K Li 54 51 55 64

Table 1
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Figure 8 shows the pressure history up to failure for LINT and MELCOR (again assuming the
pressure suppression system does not operate as designed) of the reactor vault for a 2000 kg
lithium leak into pure air spreading to a pool of area 165 m2.  The steep gradient at the beginning
of the leak is due to the assumption that the entire reactor vault is in thermal equilibrium
throughout the calculation.  Since air is not very dense, a small addition of hot liquid lithium can
significantly heat the relatively small amount of air in the vault and cause the pressure to rise
accordingly. At early times, the leaking lithium solidifies as it enters the chamber because of the
thermal equilibrium restriction.  However, at 50 seconds or so, the temperature in the system
reaches the lithium melting point, and a discontinuity is observed in the pressure history due to
the heat of chemical reaction with the air being applied to melting of the lithium.  After
approximately 310 seconds, all of the lithium in the ITER test module will have leaked into the
reactor vault, so the flow stops.  This explains the slight discontinuity in the slope of the pressure
curve at that point.  One can also observe that the time to failure for this case is rather long,
taking about 350 seconds, even though this is the worst case scenario with a large pool surface
area and atmospheric air without any argon in the vault.  This sort of time scale would normally
be plenty of time for operator intervention to take place in an effort to mitigate the effects of the
accident.

Figure 8

RV Li into Air Diffusion Limited Failure Curve 
V=2150m3, Tair-initial=298K, TLi-in=600K, SA-pool=165m2
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 The next figure (Figure 9) shows that a 16.5 m2 pool does indeed take much longer to cause a
failure since the surface area across which reactants can diffuse is restricted.  All other
parameters in the calculation are equivalent to those used for Figure 8.  In Figure 8, results from
LINT and MELCOR are shown to match quite closely.  However, in Figure 9 MELCOR begins
to diverge from LINT as time progresses.  This is a numerical problem caused by the fact that
when the oxidation constant for lithium reaction is increased beyond a value of 1.3e6 in the
MELCOR calculation for this case single precision variables no longer suffice.  The very large
pool mass (~1000 kg) used in this calculation cannot be correctly tracked when sub-gram
quantities of lithium are reacting.  Thus, numerical limitations result in a maximum oxidation
time constant or, equivalently, a minimum reaction rate.  LINT is written using double precision
variables and does not suffer from numerical limitation in this case.

Figure 9

RV Li into Air Diffusion Limited Failure Curve 
V=2150m3, Tair-initial=298K, TLi-in=600K, SA-pool=16.5m2

0.1

0.12

0.14

0.16

0.18

0.2

0 100 200 300 400 500

Time (sec)

P
re

ss
u

re
 (

M
P

a)

____ LINT
- - - -  MELCOR



18

Both Figures 8 and 9 treat the reactor vault as an adiabatic chamber.  Figure 10 shows results of
the same accident scenario as Figure 9, but with heat loss through the walls of the vault to an
infinite medium.  As the figure clearly demonstrates, failure does not occur for this situation.  At
first, the pressure rises very quickly just as in Figure 6, but once the lithium leak stops at about
308 seconds, the heat loss to the walls begins to dominate.  As the product layer crust thickens,
the reaction slows and heat loss from the reactor vault to the steel lining is actually able to reduce
the temperatures inside the vault even though chemical reactions are still occurring.

Figure 10

5.2  Lithium-air interactions, air ingress (LINT)

Figures 11 and 12 show the calculated results obtained in the reactor vault for varying air ingress
rates with 35 kg of Li dispersed into the atmosphere as 2.8 mm droplets.  This droplet size gives
a total surface area equivalent to the 165 m2 pool discussed earlier.  As Figures 11 and 12 clearly
demonstrate, even a maximum air ingress rate of 80 vol% per day into the reactor vault
surrounding the lithium blanket test module poses no danger.  Temperatures and pressures
remain well within acceptable limits.

RV Li into Air Diffusion Limited w/ Heat Loss  
V=2150m3, Tair-initial=298K, TLi-in=600K, SA-pool=16.5m2
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Figure 11

Figure 12

RV Pressure vs. Time (Spray Mode)
 Air Ingress, Heat Loss, SA=165m2 (2.8 mm droplets)
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6 Conclusions

The results obtained from the LINT and MELCOR computer simulations show that the risks
from lithium-water interactions exceed those from lithium-air interactions.  Failure of the
vacuum vessel occurs within a matter of minutes if a water leak into a pre-existing lithium pool
occurs.  Although failure of the vacuum vessel due to a lithium leak is not possible since driving
pressures for lithium are low, the temperatures attained are high enough to warrant serious
concern.  Furthermore, hydrogen gas is produced in significant quantities for all lithium-water
interactions.  The limit of 10 kg of hydrogen produced can easily be exceeded if the amount of
lithium is not limited. Reactions between lithium and air can cause temperatures exceeding 1000
K, but when heat loss from the control volume is considered failure due to overpressure is not a
serious concern.  Another preferable attribute of the lithium-air interactions as opposed to
lithium-water interactions is that no hydrogen is produced in lithium chemical interactions with
air.
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NOMENCLATURE

Aleak cross-sectional area of leak
Asurface surface area of Li pool or droplets
catm reactant concentration in atmosphere
cp,w heat capacity of system wall
Do,atm diffusion coefficient in atmosphere
Do,crust diffusion coefficient in product layer
F water/air transition smoothing factor
FRC reactant fraction
Gr Grashof number
Hin total enthalpy of material added
Hout total enthalpy of material removed
hcond conduction heat transfer coefficient
hj enthalpy of leak constituent j
hnc natural convection heat transfer coefficient
htot total heat transfer coefficient
K discharge coefficient for leak
Katm atmospheric mass transfer coefficient
Kcrust product layer mass transfer coefficient
Ktot total mass transfer coefficient
kw thermal conductivity of system wall
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L mass transfer characteristic length
MW molecular weight
mi mass of substance i
mLi Li mass
mLi-H2O Li reactant mass available for H2O vapor
mLi-N2 Li reactant mass available for N2

mLi-O2 Li reactant mass available for O2

nH2O moles of H2O vapor
ni moles of constituent i
nj moles of constituent j
nN2 moles of N2

nO2 moles of O2

nreact moles of reactant
P system pressure
∆P leak pressure difference
Q heat added to system
R gas constant
R1 molar water to air ratio
R2 molar oxygen fraction in air
Ri product to Li reactant mass ratio
Sc Schmidt number
Sh Sherwood number
Si source term for substance i
SLi Li mass source term
T system temperature
t time
tcrust thickness of product layer
U total internal energy
ui internal energy of constituent i
∆x reactant mole fraction difference
W work
µ reactant viscosity
ρ density
ρw density of system wall
τox oxidation time constant
τso simultaneous oxidation and settling time constant
τst settling time constant
ζ weighted reactant concentration relative to atmosphere
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