
•

W I S C O N SI N

•

F
U

S
IO

N
•

TECHNOLOGY
• IN
S

T
IT

U
T

E

FUSION TECHNOLOGY INSTITUTE

UNIVERSITY OF WISCONSIN

MADISON WISCONSIN

ALARA: Analytic and Laplacian Adaptive
Radioactivity Analysis

Paul P.H. Wilson

April 1999

UWFDM-1098

ALARA: Analytic and Laplacian Adaptive

Radioactivity Analysis

by:

Paul Philip Hood Wilson

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Nuclear Engineering and Engineering Physics)

at the

UNIVERSITY OF WISCONSIN - MADISON

1999

i

to my father, Philip S. Wilson

with thanks for the Sunday night BASIC lessons

ii

Abstract

While many codes have been written to compute the induced activation and changes

in composition caused by neutron irradiation, most of those which are still being up-

dated are only slowly adding functionality and not improving the accuracy, speed and

usability of their existing methods. ALARA moves forward in all four of these areas,

with primary importance being placed on the accuracy and speed of solution.

By carefully analyzing the various ways to model the physical system, the meth-

ods to solve the mathematical problem and the interaction between these two issues,

ALARA chooses an optimum combination to achieve high accuracy, fast computation,

and enhanced versatility and ease of use. In addition to a set of base features, standard

to any activation code, ALARA offers a number of extensions, including arbitray hierar-

chical irradiation schedules and a form of reverse problem for calculating the detailed

activation of specific isotopes.

The physical system is modeled using advanced linear chains, which include the

contributions from straightened loops in the reaction scheme, while the truncation phi-

losophy minimizes the discrepancies between the model and the real problem. The

mathematical method is then adaptively chosen based on the characteristics of each

linear chain to use analytically exact methods when possible and an accurate expansion

technique otherwise.

ALARA has been successfully validated against established fusion activation codes

using a standard activation benchmark problem. In addition to demonstrating ALARA’s

accuracy, this validation excerise has demonstrated its speed. Furthermore, by extend-

ing the benchmark problem to validate its advanced features, ALARA’s flexibility has

been proven.

With its modern computational techniques and continuing development, it is hoped

that ALARA will become a widely used code for the activation analysis of nuclear sys-

tems.

iii

Contents

Abstract . ii

1 Introduction and Background 1

1.1 Problem Definition . 1

1.2 Historical Overview . 4

1.3 Goals . 8

1.3.1 Accuracy . 10

1.3.2 Speed . 10

1.3.3 Simplicity . 11

2 Physical Model 12

2.1 Activation Tree Modeling . 15

2.1.1 Tree Straightening and Loop Handling 16

2.1.2 Truncation of Activation Trees . 21

2.2 Irradiation History Representation . 26

2.3 Reverse Calculations . 32

2.4 ALARA Implementation Summary . 34

3 Mathematical Technique and Theory 37

3.1 The Analytical Bateman Solution . 43

iv

3.2 Laplace Inversion Method . 44

3.3 Laplace Expansion Method . 45

3.4 Adaptive Mathematical Methods . 47

3.5 ALARA Implementation Summary . 48

4 Validation and Benchmarking 51

4.1 Benchmark Specifications . 51

4.2 Steady-State Problem . 53

4.3 Pulsing Problem . 57

4.4 Advanced Features . 59

4.4.1 Complex Schedule Modeling . 60

4.4.2 Reverse Calculation . 61

4.5 Computing Resources . 61

4.6 Conclusions . 63

5 Summary and Future Development 64

5.1 Modern Implementation Features . 64

5.1.1 Software Design . 64

5.1.2 Data Handling . 65

5.1.3 User-Oriented Design . 66

5.1.4 General Program Flow . 67

5.2 Future Developments . 69

5.2.1 Sequential Charged-Particle Reactions 69

5.2.2 Sensitivity Analysis . 71

5.2.3 Relational Databases and Advanced Data Handling 73

5.3 Summary . 75

v

References 76

Acknowledgements 81

A Derivation of Recursive Derivative Definition 82

A.1 Induction Proof . 83

B Other Forms of 1/s Expansion 86

C Users’ Guide 89

C.1 Command-line Options . 89

C.2 Input File Description . 90

C.2.1 General . 91

C.2.2 geometry . 92

C.2.3 dimension . 93

C.2.4 major radius and minor radius 93

C.2.5 volumes . 94

C.2.6 mat loading . 94

C.2.7 mixture . 95

C.2.8 flux . 98

C.2.9 spatial norm . 99

C.2.10 schedule . 100

C.2.11 pulsehistory . 102

C.2.12 truncation . 102

C.2.13 output . 103

C.2.14 cooling . 104

C.2.15 material lib and element lib 105

vi

C.2.16 data library . 105

C.2.17 dump file . 106

C.3 Defining Irradiation Schedules . 106

C.4 ALARA Output File Formats . 107

C.4.1 Output File . 107

C.4.2 Tree File . 109

C.5 Binary Reaction Library Format . 111

C.6 Material and Element Library Formats 112

C.6.1 Material Library . 114

C.6.2 Element Library . 114

C.7 Error Messages . 114

C.7.1 Input Phase . 115

C.7.2 Data Library Errors . 119

C.7.3 Programming Errors . 120

vii

List of Figures

1.1 A sample activation tree showing the results of activation of isotope A. . 2

2.1 Annotated sample activation tree showing loops and cross-links. 12

2.2 Fully straightened and unlinked reaction tree. 16

2.3 Separated linear chain representation of activation tree. 18

2.4 Relative error in calculation of 28Si as part of (n, p) loop. 20

2.5 Sample pulsed irradiation history. 26

2.6 Two popular steady state approximations to pulsed irradiation histories. 28

2.7 Example pulsing schedule for experimental device. 30

2.8 Irradiation history for recycled ICF target material. 31

2.9 Sample reverse calculation tree. 32

2.10 Flowchart for truncation algorithm. 36

4.1 Relative difference between ALARA and other codes for steady state

problem at a cooling time of 1 hour. 53

4.2 Relative difference between ALARA and other codes for steady state prob-

lem at a cooling time of 1 century. 54

4.3 Relative difference between ALARA and DKR for the pulsing problem at

cooling times of 1 hour and 1 century. 58

viii

4.4 Relative difference between exact pulsed solution and steady state ap-

proximation at various cooling times. 59

5.1 The general flow of ALARA can be described as follows: 68

C.1 Output file structure. 107

C.2 The format description of an ALARA V. 2 binary library. 113

ix

List of Tables

2.1 Relative Errors when Using the Straightened Loop Method 19

2.2 Example pulsing schedule for experimental device. 30

4.1 Detailed differences in interval #242 at 1 hour. 56

4.2 Detailed differences in interval #242 at 1 century. 57

4.3 Sources of primary radioactive isotopes in stainless steel first wall layer. . 62

4.4 Runtimes for benchmark suite. 63

1

Chapter 1

Introduction and Background

Since the advent of the nuclear age nearly six decades ago, it has become necessary to

study and simulate the effect of radiation on materials. Most nuclear systems, including

existing fission power reactors, anticipated fusion power reactors, and a wide variety of

experimental facilities, produce large numbers of energetic neutrons. These neutrons

interact with the systems’ materials, inducing a variety of responses.

1.1 Problem Definition

Activation is just one of the many possible responses resulting from the neutron irra-

diation of materials. The neutrons interact with the material’s nuclei, converting them

to different isotopes. With many such reactions possible for most isotopes, each of the

original material’s isotopes can be partially converted into over 20 others after just one

generation. These isotopes, in turn, can undergo similar interactions, leading to yet

more isotopes, and so on. Furthermore, many of these isotopes may be radioactive,

and their decay products introduce even more isotopes to the physical system. If repre-

sented graphically (Figure 1.1), this process forms a tree of isotopes, where each branch

2

in the tree represents either a nuclear reaction (e.g. A → B) or a nuclear decay (e.g.

C → G). This process of converting a non-radioactive material to a radioactive one is

known as activation.

After calculating the concentra-
A

C D

F G H I J

L

B

E

Figure 1.1: A sample activation tree showing
the results of activation of isotope A.

tions of all the various isotopes cre-

ated by the activation process, other

engineering responses can be deter-

mined. Multiplying by the radioac-

tive isotopes’ decay constants (λ =

ln 2/t 1
2
) determines the material’s ra-

dioactivity. Further multiplying by the average energy of each decay, these radioactivity

values can be converted to decay heat results. By comparing the radioactivity to regu-

lated limits, the waste disposal ratings can be determined, indicating how the material

must be handled. Incorporating the gamma ray emission information for each radioac-

tive isotope gives the gamma ray source, which may be used as the source term for a

radiation transport calculation to determine a radiation dose at some spatial point.

These responses are essential when designing, operating and costing a nuclear sys-

tem. For safety considerations, it is important to know the inventory of all the ra-

dioactive isotopes which may be released and to know the decay heat transient after

the system is shutdown. Furthermore, if the radiation dose at a critical point is too

high, either for the other components of the system (e.g. fusion magnets) or for the

personnel who must work with the system, the doses must be mitigated by the addition

of shielding to the design. Amongst many other factors, the cost of a system is affected

by whether “hands-on” maintenance is possible or remote handling is required. When

the lifetime of the system has been reached, the decommissioning cost is influenced by

3

the levels of radioactivity in the various materials.

The mathematical description of the activation process is quite straightforward.

The production rate of one isotope, i, from another, j, is proportional to the concen-

tration of that other isotope, Nj. The constant of proportionality is some reaction rate,

Pj→i, based on nuclear data. For decay reaction paths, the production rate is equal

to the product of the decay rate of isotope j and the branching ratio for the reac-

tion leading to i: Pj→i = λjbj→i. For nuclear reactions, the reaction rate is the inner

product of the reaction cross-section for the reaction from j to i and the neutron flux,

Pj→i =
∫∞

0
σj→i(E)φ(E)dE. With the cross-sections represented as group constants, as

is usual, this production rate is: Pj→i =
∑G

g=1 σ
j→i
g φg. While each such term represents

a production path for isotope i, it also represents one for the destruction paths for iso-

tope j. Assuming that there are no other sources (such as mass flux into the system),

the rate of change of an isotope’s concentration is simply the sum of all the production

terms from other isotopes, j, and the destruction terms to other isotopes, k:

Ṅi(t) =

n∑
j=1

Pj→i [φ(t)]Nj(t)−
n∑
k=1

Pi→k [φ(t)]Ni(t).

By combining all the destruction rates to isotopes k into a total destruction rate for

isotope i, and writing the production rates as Pij without explicitly including the de-

pendence on the neutron flux, this ordinary differential equation [ODE] is reduced to

Ṅi(t) =

n∑
j=1

PijNj(t)− diNi(t).

With one such equation for each of the isotopes in the activation tree, and one activation

tree for each of the isotopes in the initial material, the large system of these coupled

ordinary differential equations [ODE’s] can be written in a matrix formulation as

~̇N(t) = A ~N(t), (1.1)

4

where Aii = −di and Aij = Pij. The formal solution to this equation is the matrix

exponential:

~N(t) = eAt ~N(0). (1.2)

For large problems with many initial isotopes, many fluxes at different spatial points,

and complicated irradiation histories, an activation code is required to calculate the in-

duced radioactivity levels. An activation code must perform two distinct tasks: the

physical modeling of the activation tree and the solution of the corresponding mathe-

matical problem. Starting with a list of initial isotopes, the code must first build the

activation trees, deciding how large they need to be in order to include all the impor-

tant contributions. The trees are then converted into their mathematical equivalent

and some technique is used to solve the matrix exponential problem. Although these

two tasks will be treated as distinct in this work, the way that the trees are built and

sub-divided has an important impact on the kind of mathematical method that can be

accurately implemented, and vice versa.

1.2 Historical Overview

The computational solutions to this problem have been well studied.1 Many different

approaches for modeling the physical problem have been combined with at least as

many mathematical solution techniques. Each combination has advantages and dis-

advantages, but none has arrived at an optimum mixture of accuracy, efficiency and

usability. Even ignoring the issue of usability (where this author feels many codes fail),

there are few codes which are keeping up with the demands for greater accuracy in the

physical models and mathematical solutions without becoming inconveniently slow.

The predecessors to many modern activation codes were inventory codes (also called

5

burn-up or depletion codes) designed for modeling the burn-up of nuclear fuel and

build-up of fission products in nuclear reactors. These codes use a variety of methods

for modeling the physical system and solving the mathematical problem, but have

historically been divided into three classes based on the mathematical method: time-

step based ODE solvers, matrix exponential methods, and linear chain methods.

The time-step based ODE solvers, such as used in FISPIN,2 use some algebraic

approximation of the derivative on the left hand side of equation 1.1. One simple form

of this approximation is based on the first principles definition of the derivative:

Ṅ(t) = lim
ti−ti−1→0

N(ti)−N(ti−1)

ti − ti−1

) Ṅ(t) ≈ N(ti)−N(ti−1)

ti − ti−1
.

For the activation problem, where ~Ni is the number density vector at time i, and

∆t = ti − ti−1, this can be implemented simply in the explicit form:

~Ni = ∆tA ~Ni−1 + ~Ni−1. (1.3)

More complicated differencing schemes with more accuracy can be developed based on

Taylor series expansions in one or two variables, such as the well known Runge Kutta

method.

In all cases, however, to ensure accuracy these methods must use time steps small

enough that the number density of any single isotope does not change too much during

the time step. For a problem with very short-lived isotopes, this time step must be very

short, requiring many steps to solve the entire irradiation history, and therefore these

methods can be very slow.

The original matrix methods employed in inventory codes such as ORIGEN3 calcu-

late the series expansion of the eAt exponential:

eAt = I + At+
A2t2

2!
+

A3t3

3!
+

6

In addition to being prone to round-off error, this expansion may need many terms

to converge (if it does converge), which is computationally expensive, due to the large

number of matrix multiplications. More recently, this class of methods includes matrix

decomposition methods to solve the matrix exponential (see chapter 3).

The final class of solution methods is based on a principle known as linear chains,

of which CINDER4 was one of the first implementations. While both the time-step

methods and the matrix exponential methods have traditionally attempted to solve the

entire physical problem as one large system of ODE’s, the linear chain method breaks

the activation tree into a number of chains so that each isotope has a single production

term and a single destruction term. This creates a smaller system of ODE’s in which

the transfer matrix, A, is exactly bidiagonal allowing an analytical solution commonly

known as the Bateman equations5 to be used:

Ni(t) = Nioe
−dit +

i−1∑
j=1

Njo

 i−1∑
k=j

Pk+1(e
−dkt − e−dit)
di − dk

i−1∏
l=j
l 6=k

Pl+1

dl − dk

 , (1.4)

where Pk+1 = Pk→k+1.

One of the biggest limitations of this class of methods is its inability to model loops

in the activation tree. It can be seen in the above equation that there is a singularity

when two of the destruction rates are identical. While this may happen coincidentally

in any linear chain, it is guaranteed to be the case if the same isotope occurs more than

once in the chain. This issue may be less significant for the simulation of fission reactor

problems because most of the nuclear reactions required for loops (e.g. (n,p) or (n,2n))

are threshold reactions with low or zero cross-sections in the energy domain of fission

neutrons.

Activation codes, many of which have been developed for fusion applications, also

exist in each of these three classes of solution method. Some are derived directly from

7

an inventory code while others have no such obvious ancestry. Conceptually activation

calculations and inventory calculations are one and the same, but the wide variety in

the nature of the systems being simulated in an activation problem can require more

flexibility than an inventory code may provide. For example, as suggested above, there

are some reaction channels which are not relevant to fission inventory calculations. In

systems with higher energy neutron fluxes, such as fusion reactors or accelerator-based

neutron sources, these additional channels can become important, if not dominant.

Additionally, the irradiation history for an activation calculation may be very different

from that of a fission reaction system, with, for example, many frequent pulses.

The most widely used fusion activation codes include FISPACT,6 a direct descen-

dant of the FISPIN inventory code, RACC7 (and variations8,9), REAC,10 ACAB,11 and

DKR12 (and variations1,13, 14). Each uses a different combination of physical and math-

ematical methods, enabling each to implement unique features. For example, while

FISPACT is limited to solutions at a single spatial point and cannot model pulsed

histories exactly, the newest versions support sensitivity analyses and secondary acti-

vation caused by the light ions emitted by neutron reactions. Newer versions of RACC

switched from the time-step based GEAR ODE solver to matrix decomposition meth-

ods, enabling the efficient solution of pulsing histories with loops in the activation tree.

RACC’s method for truncating the activation trees, however, is not ideal and may lead

to an inaccurate final solution. Not only was DKR the first to implement exact pulsing

solutions, it is able to efficiently solve the activation problem across many points of a

complicated geometry. Due to its reliance on linear chains and the Bateman solution,

however, DKR has long been criticized for its inability to handle loops in the activation

tree. Additionally, DKR has not implemented the ability to model the accumulation of

light ions emitted from nuclear reactions.

8

Despite the wide variety of available activation codes and their various capabilities,

there is no single code which provides a complete range of these capabilities. Further-

more, because of their original choice of physical methods, mathematical techniques

and/or computational design, few, if any are extensible to include additional capabili-

ties.

1.3 Goals

The goal of this work is to design a fast, accurate and flexible activation code with a wide

array of capabilities and features. In addition to establishing a base set of capabilities

and features, it is important to look forward to a more advanced set and ensure that

the new code will accomodate those features. ALARA is designed to implement the

following basic features:

Problem Geometry

• simultaneous solution of activation problem at arbitrary number of spatial

points

Truncation

• user-defined calculation precision

Irradiation History

• multi-level pulsed operation histories

Physical Modeling

• accurate handling of loops in the activation tree

• modeling of light ion accumulation

User Features

• user-friendly input file format

• flexible geometry definition options

• user-defined output resolution

• user-defined output responses

9

The advanced features of ALARA include:

Physical Modeling

• modeling of reverse problem for detailed studies

Irradiation History

• fully arbitrary operation schedules

Mathematical Techniques

• adaptive selection of mathematical method to optimize speed and accuracy

Prior to implementing these features, a careful analysis of the various methods for

modeling the physical system, the techniques for solving the mathematical problem,

and the way that they influence each other, must be performed. Once the best methods

and techniques have been determined, the importance of efficient and portable imple-

mentation must not be underestimated. Even the best methods can be implemented

poorly leading to inaccurate and slow solutions.

ALARA has been designed with three basic principles in mind: accuracy, speed,

and simplicity. These three qualities have been maximized in ALARA after extensive

research of the models involved in such calculations. The errors, time of execution,

and learning curve have all been made “as low as reasonably achievable”.a The meth-

ods used to model the physical system and to perform the mathematical solution are

carefully combined to preserve or enhance the accuracy while accelerating the solution.

Throughout all this, there is an underlying effort to ensure that ALARA be user-friendly

by providing a simple, well-documented input file format, checking this input for errors,

and providing a broad, flexible range of options.

aThis phrase is the origin of the term ALARA, a well known philosophy in the nuclear industry

related to the minimization of radiation exposure when working in radioactive environments.

10

1.3.1 Accuracy

Despite the list of shortcomings for existing codes, various studies15,16 have demon-

strated that most of these codes achieve a reasonable degree of accuracy, compared

to each other as well as compared to analytical solutions. It is important, therefore,

that ALARA at least maintain this level of accuracy as it expands its range of modeling

options.

The accuracy of the final solution is affected both by how realistically the physi-

cal system is modeled and by what mathematical methods are employed for the final

solution. Unfortunately, these two requirements often conflict; as the physical model

becomes more realistic the required mathematical methods become more approximate

or error prone. When modeling the physical problem, two of the most important issues

are how to deal with loops in the reaction scheme and how to truncate the theoretically

infinite isotopic composition to a finite problem. While the effect of the latter on the

mathematical method is negligible, the former has a great impact. In the past, the un-

written rule has been that realistic treatment of loops requires complicated/inefficient

mathematical methods. ALARA has broken that rule by finding a physical approxima-

tion to the loops which retains problem accuracy and allows for quite simple and efficient

mathematical methods. The keys to ALARA’s mathematical accuracy are its ability to

adaptively choose the mathematical technique and the accuracy of those techniques.

Two of the three mathematical techniques which ALARA employs are mathematically

exact!

1.3.2 Speed

The most significant factor affecting the speed is the chosen class of mathematical

method. In particular, unless a linear transformation matrix method is used, the exact

11

modeling of a pulsed history will require a long time. ALARA employs such matrix

methods, solving for the linear transformation from the initial isotopic composition to

the final composition for each pulse and inter-pulse dwell period, and then multiplying

these matrices to obtain a complete linear transformation for the entire history. In

addition to this decision, speed was considered throughout the code design process. For

example, data library formats and internal data handling have been implemented with

modern techniques to enhance versatility without sacrificing speed.

1.3.3 Simplicity

While accuracy and speed have long been issues in the creation of engineering codes,

their simplicity is of increasing importance. In this context, simplicity is an issue for

both modification/maintenance and use of the code. Since ALARA is written in C++,

it benefits from some of the philosophies of object-oriented code design. This allows

the code itself to be more readable to future programmers and facilitates enhanced

modularity. This modularity means that if new functionality is added to the code, it

can be optimized internally with minimal detrimental effect on the existing code.

ALARA has been designed with the user in mind. Even though improved methods

have existed for years, many codes have continued to use input formats which are rem-

iniscent of punch card input entry. Furthermore, most tools in this field have been de-

signed for the solution at a single spatial point, requiring many subsequent and slightly

altered runs to get any kind of spatial information. ALARA allows the user to find the

solution to an activation problem in a variety of different multi-dimensional geometries,

using a flexible system to define the material properties and allowing a complicated

pulsed/intermittent irradiation history and a variety of after-shutdown solution times.

Furthermore, the input file can be fully commented, preventing the common difficulty

of creating a long list of seemingly disconnected numbers for code input.

12

Chapter 2

Physical Model

Section 1.1 describes the basic activation process and shows a sample activation tree in

figure 1.1. Figure 2.1 shows the same tree with annotations to define the nomenclature

to be used in this chapter and others.

A tree is constructed of nodes, each
A

C D

F G H I J

L

B

E

dA

PABPAC ADP

Cross-linkLoop

Figure 2.1: Annotated sample activation tree
showing loops and cross-links.

representing a single isotope, and

branches, each representing a reac-

tion path between the parent isotope

and daughter isotope for that reac-

tion. The top isotope in the tree will

be called the root and each succeed-

ing generation of reaction products

will be referred to as a rank, giving a measure of the depth of the tree. Each isotope

has a production rate, Pij (the root has no production rate), dependent on the reaction

path by which it was produced, and a unique total destruction rate, di. For decay reac-

tions, this production rate is dependent only on the parent’s nuclear data (specifically,

the half-life) and not on the neutron flux. For transmutation reactions, it is a function

13

of the parent’s nuclear data and the spectral distribution of the flux. The destruction

rate may be made of a combination of transmutation data, and thus the neutron flux,

and decay data, depending on the parent isotope. The raw data used to form these

production rates are read from large data libraries, either as decay rate/branching ra-

tio data from decay libraries or as transmutation cross-sections from transmutation

libraries. While the methods used to measure, evaluate and compile such data18,19 will

not be discussed here, it is important to note that seemingly small changes in these

data can lead to observable differences in the results of an activation calculation.

It is possible for one nucleus to undergo a series of reactions, being converted from

one isotope to another and so on and eventually back to the original isotope. Loops such

as this are of specific importance when modeling this physical problem. The nature of

such loops is somewhat random; they can begin at any rank in the tree and can undergo

any number of reactions before closing the loop. If the order of a loop is defined here as

the number of isotopes between two occurrences of the same isotope in a loop, then the

order can range from 1 to greater than 10. Loops are only physically possible during

irradiation. During periods of pure decay, loops are physically disallowed for the simple

reason that nuclear decay is a transition to a lower energy state. This can only be

reversed by the introduction of an energy source, provided by the bombarding neutrons

during irradiation. One example of a loop is

28Si
(n,p)−→ 28Al

β−−→ 28Si,

in which 28Si is transmuted by a neutron reaction with the emission of a proton to 28Al.

28Al, in turn, decays back to 28Si through the emission of a β− particle. There are many

other variations of loops, involving different nuclear reactions and with more than two

isotopes involved in the loop.

14

A related but less important phenomenon is that of cross-linking of subtrees. This

is caused when two different isotopes, which could each be at any rank, both undergo

reactions to the same isotope. Between loops and cross-links, the tree can become quite

tangled, departing from the classical tree structure known and studied in computer

science.

Since most isotopes will undergo nuclear reactions, as soon as they are created by

either transmutation or decay, there is a finite chance of them being transmuted to

other isotopes. As a result, an activation tree can, in theory, grow to become a large

connected graph including all the isotopes for which data exists, with many cross-links

and loops of various orders. If many reactions are required to reach a certain isotope

from the root isotope, however, their production levels will be insignificant. For the

purpose of a practical numerical solution, therefore, it is necessary to truncate the tree

based on some reasonable criteria.

The methods for modeling activation trees, including loop handling and tree trunca-

tion, can have a significant impact both on the type of mathematical technique employed

to generate a solution, and on the accuracy of the results. Section 2.1 addresses these

issues and others in the creation of activation trees.

Current designs for fusion power reactors of all types often include the necessity for

pulses, from the short frequent pulses of an inertial confinement system to the long infre-

quent pulses of a magnetic confinement system. Other neutron-producing systems, such

as experimental fusion reactors or accelerator-based neutron sources, may have more

complicated irradiation histories, with varying pulsing frequencies, pulsing hierarchies,

maintenance periods, etc. Furthermore, with changing conditions the flux spectrum

and/or magnitude may differ from one part of the history to another. This pulsing cre-

ates an important effect21–23 since between each pulse, the radioactive isotopes which

15

have been created are able to decay while the stable isotopes remain unchanged. This

changes the distribution of isotopes, having important implications on the reactions

during the subsequent pulses. Section 2.2 will describe the approximations and as-

sumptions used in modeling this aspect of the physical model.

Although activation calculations have traditionally been used to find all the activa-

tion products of a given material composition exposed to a given neutron flux history,

this mode is not suited to the task of determining the concentrations of specific trace

activation products. If certain isotopes are produced in very small quantities, the accu-

rate determination of their concentration requires that the activation trees be allowed

to grow to large sizes, and much computational effort will be wasted calculating the

concentrations of uninteresting isotopes. Using many of the same modeling methods

described in this chapter, small modifications can lead to a reverse activation calcu-

lation mode, whereby the concentrations of certain target isotopes can be calculated

from the initial mixtures without calculating the concentrations of too many non-target

isotopes. Section 2.3 describes the adaptations necessary for such a reverse calculation.

The last section of this chapter addresses some of the software design and implemen-

tation issues related to the various modeling methods discussed for the physical problem,

including data structures, computational efficiency and optimum memory usage.

2.1 Activation Tree Modeling

As mentioned above, the theoretical activation tree can become a large connected graph

including every isotope for which data exists. This could, in principle, be converted into

a large matrix of production and destruction rates, and solved directly for all the initial

isotopes at a given point in space. This is not practical, however, both due to the size

of the matrix and the mathematical methods available for solving such a matrix. For

16

a typical fusion activation library, the matrix would be roughly 2000× 2000, sparsely

filled (only about 1 or 2%) and would exhibit little pattern (i.e. banded or triangular

matrices). By introducing a variety of concepts, this problem can be reduced to a finite

number of tractable sub-problems.

There are two primary issues related to the modeling of activation trees: loop han-

dling and tree truncation.

2.1.1 Tree Straightening and Loop Handling

One alternative for loop handling isA

B

C D

E

F G H I J

L

B

B

E

B

E

B

D

H I J

1

2

3

4

5

K

D K

Figure 2.2: Fully straightened and unlinked re-
action tree.

to explicitly model them in the math-

ematical representation of the phys-

ical problem. In the rate equation

for node i, there is a production term

from some node j > i and in the ma-

trix formulation shown in equation

1.1, the transfer matrix, A, has terms

above the diagonal. While time-step

based ODE solvers can be used with this method,6 the non-triangular nature of this

matrix limits the matrix methods requiring some form of matrix exponential method,8

which can be computationally complex and/or prone to numerical error. The philos-

ophy behind the use of these exact physical modeling methods is that loops may be

significant in some cases, and thus should be included.

The alternative is to introduce a method of tree straightening, converting the con-

nected graph into a traditional n-ary tree. Figure 2.2 shows a straightened tree repre-

sentation of the same tree shown in figure 1.1. Tree straightening is accomplished by the

17

introduction of what will here be called partial-contribution nodes, or simply pc-nodes.

While the basic physical model described above only allows for one occurrence of each

isotope in a tree, a pc-node represents an isotope which may occur elsewhere in the

tree, and thus the production of this node gives only a partial contribution to the total

production of the isotope which it represents. By introducing pc-nodes, a somewhat

larger system is created, but its solution is more simply achieved. After the full solution

of the problem, the results at each pc-node are collapsed into unique isotopes, with the

contribution from each being accounted for appropriately.

After all the loops and cross-links have been removed, each tree is traversed in a

depth-first searcha, creating a number of independent linear chains (see Figure 2.3).

Although the term linear chain traditionally refers to models that do not include any

loops, it will be used here to refer to physical models which have implemented tree

straightening. The conversion to linear chains results in many sub-problems, each with

a matrix size equal to the chain’s rank, rather than a single sub-problem with a matrix

size equal to the number of nodes in the tree.

In the mathematical representation of this alternative, the rate equation for any

node i will only have a production term from the preceding node i− 1. In the matrix

formulation, therefore, A is always (lower) bidiagonal. However, because loops cause

more than one node to represent the same isotope, there are guaranteed to be at least

two equations with the same diagonal element. Since the diagonal elements of a bidi-

agonal matrix are the eigenvalues, A is guaranteed to be defective. Thus, even though

the bidiagonal nature permits simpler matrix methods than with non-triangular matri-

ces, the defective nature of the matrix still prevents the use of the traditional analytic

methods based on the Bateman equations.

aA depth-first search is an algorithm which moves deeper into a tree as far as it can go before

backtracking and moving down a different path.

18

In the past, some methods12–14 have simply ignored all but the simplest of loops, 1st

order loops at rank 1, and analytically handled these simple loops as special cases.

Thus, for the majority of the problem, only bidiagonal non-defective transfer matrices

are solved, permitting the implementation of purely analytical methods based on the

Bateman equations. The decision to ignore most loops is based on the philosophy

that in most problems, only the first few generations contribute significantly to the

total solution, and thus higher order loops and/or loops occurring deeper in the tree

contribute little to the solution.

A compromise is to include a fi-
A

D

H

B

E

B

A

B

E

B

E

B

A

C

G

A

C

F

L

A

D

I

A

D

J

D

H

A

D

J

D

I

A

D

J

D

J

D

A

D

J

D

J

K

A

D

J

K

1

2

3

4

5

1 1 1 1 1 1 1

2 2 2 2

1 1 1 1 1

2 2

3 1

2

1

2

1

2

1

2 3

Figure 2.3: Separated linear chain representa-
tion of activation tree.

nite number of loop iterations. As

with any approximation based on suc-

cessive corrections, the solution ap-

proaches the exact result at the limit

of an infinite number of corrections,

where each of the loop iterations is

considered as a correction to the so-

lution without loops,

A conservative analysis of the er-

ror associated with this approach,17 including the impact of ignoring loops altogether (0

corrections), is made possible by comparing the approximate solution to the analytical

solution for a 1st order, rank 1 loop, using an increasing number of corrections. Since

production rates are always finite, it is intuitive that higher order loops contribute less

than lower order loops originating at the same rank. Choosing a rank 1 loop is simply a

matter of convenience in calculating the exact solution, but the error can be considered

as the relative error associated with ignoring a 1st order loop at any rank in the tree.

19

Table 2.1: Relative Errors when Using the Straightened Loop Method

(n, p) Reaction # of corrections

0 1 2 3 4

13C(n, p)13B 4.06e-05 8.23e-10 1.10e-14 1.12e-16 1.12e-16

16O(n, p)16N 0.000351 6.15e-08 7.20e-12 5.62e-16 1.12e-16

28Si(n, p)28Al 0.00243 2.95e-06 2.38e-09 1.45e-12 1.02e-15

49Ti(n, p)49V 0.000247 3.05e-08 2.51e-12 0 1.21e-16

56Fe(n, p)56Mn 0.00103 5.35e-07 1.85e-10 4.77e-14 0

To ensure that the results are physically significant, a variety of 1st order loops were

found in the existing nuclear data.20 In particular, since decay tends to lead to higher

production rates than transmutation, loops of the form

A
(n,p)−→ B

β−−→ A,

were chosen (instead of loops with two nuclear reactions, for example). Table 2.1 shows

a summary of the errors for 5 different loops after 1010s ≈ 317y and up to 4 corrections,

and figure 2.4 shows how this error is a function of the steady state irradiation time

used in this analysis for the worst case,

28Si
(n,p)−→ 28Al

β−−→ 28Si.

While it is clear from both table 2.1 and figure 2.4 that ignoring loops completely

can introduce observable error to the solution, they also show that a finite number

of corrections can reduce the error to acceptable levels. With only two corrections,

the error is significantly reduced to be less than the accuracy of most calculations,

while 4 corrections brings the error to within the precision of an IEEE double precision

calculation. It is important to recognize the importance of this measure being a relative

20

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

re
la

tiv
e

er
ro

r

time(s)

Relative Error in Loop Analysis

Si-28(n,p)Al-28

No Corrections
1 Correction

2 Corrections
3 Corrections

Figure 2.4: Relative error in calculation of 28Si as part of (n, p) loop.

error. It has no effect on the precision of the results (discussed further in the next

section), but only on the accuracy of the results.

To determine the number of corrections needed in any particular problem, it is

sufficient to treat the straightened loops like any other part of the activation tree and

invoke the same truncation criteria as are used elsewhere. When implemented in this

way, the precision of the loop solutions is the same as the precision of the solutions to

the rest of the problem.

Relative to other methods, tree and loop straightening can allow faster and more

accurate mathematical methods without jeopardizing accuracy in the physical model.

21

2.1.2 Truncation of Activation Trees

On the surface, the concept of truncating the large trees created by modeling the physi-

cal system for these calculations is a simple one: truncate the tree once the contribution

from the nodes is negligible compared to the total result. In practice, however, this is

a delicate process which deserves some discussion.

As with loop handling, a variety of alternatives have been used to accomplish the

truncation of activation trees in previous applications. The simplest method defines a

maximum allowable rank for the tree, truncating the tree as soon as this rank is reached.

Since radioactivity is often the most important result and nuclear decay branches tend

to create more significant sub-trees than nuclear reaction branches, this method can

be improved somewhat by limiting only the number of transmutation generations, and

allowing decay branches to continue until they reach a stable isotope.7 This method

tends to be inconsistent in its estimation of the importance of the contributions of the

various nodes. Some sub-trees included by such a system would contribute negligibly,

if at all, to the final result, while other more significant sub-trees would be truncated

too early.

A more consistent method is based on an estimate or calculation of the actual

contribution of a given node in the tree to the final solution. If the contribution is too

low, the tree is truncated here, otherwise the tree continues to grow. This raises two

primary issues to be considered:

• how can the production of the isotopes at a certain rank in the chain be calculated

or estimated without solving the whole problem, and,

• how can the importance of that production be measured.

When using time-step based ODE solvers, the first issue is moot. During the course

of the solution, equations can be added to and dropped from the system as new isotopes

22

are produced and the concentrations of isotopes become insignificant, respectively.6

For matrix methods, the actual contribution of a node can only be calculated by

completing a full solution of the chain leading to that node, requiring the solution of

the entire irradiation history each time the tree grows. As the variations in the neutron

flux spectra will affect the production rates giving each point in space a different real

activation tree, such a calculation should, in theory, be carried out for each point in

space. This would drastically slow down the calculation.

As a first enhancement, this calculation, refered to here as a reference calculation, is

performed only once each time the tree grows, using a flux which is somehow represen-

tative of all the spatial points which contain the initial isotope (see section 2.4). If every

point in space has a unique set of initial isotopes, this offers no savings, but as most

problems have many spatial points with identical sets of initial isotopes, the savings

can be significant. Furthermore, if the flux is chosen properly, this approximation will

be conservative, and would tend to produce chains which are too long rather than too

short.

What is the best flux to represent all the spatial points which share an initial isotope?

Since higher fluxes will tend to maximize the amount of transmutation from one isotope

to another, the obvious choice is some flux which is a maximum bound for the problem.

Since the flux is group-wise and it is possible that one spatial point will have the highest

fast flux while another point has the highest slow neutron flux, the best choice for a

bounding flux should be the group-wise maximum flux of all the points which share an

initial isotope. This reference flux can then be used to solve the problem for a particular

chain as it is being created.

In order to decide what result this reference calculation should provide and how this

should be interpreted, it is first necessary to understand the nature of the approximation

23

introduced by truncating the activation trees. In the real system, there will always be

at least as many atoms as in the initial isotope, with the possibility of increasing that

number through the accumulation of light ions emitted by nuclear reactions. In the

modeled system, however, when an activation tree is truncated the destruction rate of

the last node in the tree represents a pathway for atoms to pass out of and be lost

from the model. The goal of any truncation concept should therefore be to minimize

the relative atom loss from the system. This approach has the natural consequence

of limiting the error in the production of any one isotope. If the relative atom loss is

limited to t atoms per initial atom, and there are n truncation points in the tree, n · t

atoms per initial atom are lost from the model. In the worst (and entirely unphysical)

case that all the lost atoms are transmuted to the same isotope in the real activation

tree, the production of this isotope will have an error of n · t atoms per initial atom.

Previous implementations of this type of truncation concept have calculated the

relative inventory of the node in question, rather than the relative atom loss through

that node.12 This can result in severely premature truncation if that node has a very

high destruction rate (such as a short decay half-life). The relative inventory of that

node may be very low because the majority of atoms produced at this node have been

further converted by transmutation or decay out of the model.

A better implementation calculates the relative inventory of the entire sub-tree

rooted in the node in question. Fortunately, this is quite easily implemented. Since

all atoms that pass into a node will end up either as part of that node’s inventory or

as part of the inventory of that node’s sub-tree, it is only necessary to calculate how

many atoms are passed into the node over the course of the irradiation history. This

calculation is identical to the normal activation calculation, but temporarily preventing

that node from being destroyed (di = 0). This value can then be compared to a user

24

specified tolerance, interpreted as the maximum atom loss allowed in any single chain.

Although both transmutation and decay are mechanisms of atom loss, the former is

only possible when there is a neutron flux present while the latter occurs throughout

the operation lifetime as well as after the shutdown of the device. This difference is

important since the after-shutdown lifetimes (or cooling times) can be much longer

than the operation lifetimes and it is during these times that the activity is often most

important. It is therefore necessary to compare the relative atom loss both at shutdown

and at each after-shutdown time. If the relative atom loss is less than the tolerance

at shutdown, but greater than the tolerance at any of the after shutdown times, it

is a potentially important atom loss path during shutdown. It is here that we can

distinguish between atom loss mechanisms. Since the only atom loss mechanism after

shutdown is decay, only subsequent decay branches are important, even if the relative

atom loss is greater than the tolerance.

Combining all these concepts into a single truncation philosophy gives the following

algorithm. First, any relative atom loss which exceeds the tolerance at shutdown will

result in a continuation of the chain. Second, if the relative atom loss is less than the

tolerance both at shutdown and at all after-shutdown times, then the chain should be

completely truncated at this point. Finally, if the relative atom loss is less than the

tolerance at shutdown and greater at some after-shutdown time, then all transmutation

branches in that sub-tree should be truncated but decay branches followed.

While faster approximations could be made to conservatively estimate the relative

atom loss, the conservatisms which seem appropriate for the physical modeling can lead

to the physical model being too large. Although time may have been saved during the

physical modeling, the full solution must still be carried out on an unnecessarily large

system. Since many problems must solve each chain at many spatial points, the savings

25

made on a single truncation calculation are more than compensated by the losses during

the multiple solutions of that chain at different neutron flux levels.

This truncation approach affords some rudimentary error estimates for the results.

Using an analogy to experiment, the user specified tolerance provides a measure for

the precision of the calculation. The smallest possible correction and hence the largest

possible error for the results for any one isotope is this truncation tolerance. This

will also be the dominant source of physical modeling error in the result. Since these

same truncation rules are used indiscriminately for truncating straightened loops, the

error from truncation will always be greater than the error caused by not using more

corrections to the loop. Thus, following the analogy to experiment, the accuracy of

loop solutions is affected by the number of corrections, while the precision is affected

by truncation tolerance. Since the number of corrections is determined indirectly by

the truncation tolerance, this methodology provides the most consistency across the

entire problem. It should also be noted that this measure of the truncation error in the

physical model is an upper bound since a group-wise maximum flux is being used for

the calculations. In many spatial regions, the actual production in the final solution

may be many orders of magnitude less than that of the truncation calculation.

The full implementation of this philosophy does have detrimental effects on the speed

of the solution. The most significant drag is caused by the full pulsing solution of the

chain for each truncation calculation. An alternative which has been implemented in

the past is to combine the reference flux concept with that of a reference time, a repre-

sentative steady-state simulation time to use only for truncation calculations returning

to the exact pulsing solution when performing the final solution. When using this alter-

nate method, it is important to understand the full implications. In particular, even if

the chosen reference time approximates the operation history well, the reference calcu-

26

lation includes no after-shutdown history, a period in which many isotopic compositions

may change.

Another source of drag is the calculation of completely negligible results at the

truncation point. Considering the precision and extent of the available data, it is

possible that the atom loss at one node clearly indicates that the chain should be

continued, while the atom loss at one of its daughters is many orders of magnitude

below the truncation limit. While it is obvious that the chain should be truncated,

the full solution of this pc-node will probably lead to a negligible contribution, but

at a significant computational cost. A second user defined tolerance, known as an

ignore tolerance, can be used to determine when a truncation point should be ignored

completely and the chain creation procedure should continue without performing the

complete solution of this pc-node. To ignore all truncation points, an ignore tolerance

of 1 could be used and to ignore none, an ignore tolerance of 0.

2.2 Irradiation History Representation

φp

t t
t

p d

l

1 2 3 n-2 n-1 n

Figure 2.5: Sample pulsed irradiation history.

Although continuously varying neutron flux spectra and levels are not expected,

27

many systems modeled in activation calculations will have intermittent and/or pulsed

operation. At the very least, the systems will have to be shutdown at regular intervals

for maintenance. Additionally, many kinds of fusion power systems are expected to

have pulsed operation, whether it be an intrinsic part of the concept (such as in inertial

fusion energy systems) or part of the technical requirements for the system (such as

in magnetic fusion energy systems). The method used to model this intermittent and

pulsed operation has important implications on the generic accuracy of the solution and

the type of mathematical method to use.

Physically, the pulsed nature results in build up of transmutation products during

the operation pulses and decay of those isotopes during the “dwell” periods between

pulses (see figure 2.5). For isotopes of certain half-lives relative to the ratio of dwell

time to operation time, the pulsing representation can have a profound impact on the

final calculated number density. The most accurate solutions will result from methods

which allow for this transient behavior during the dwell times to correctly assess the

radioactivity.

Again, there are a variety of methods historically implemented to model this pulsing.

The simplest methods use a steady-state approximation, either averaging the flux over

the full lifetime (figure 2.6(a)) or squeezing the pulses together and removing the dwell

times (figure 2.6(b)).

Although one approximation is more valid than the other in certain cases, Sisolak

et al.21 showed that both pure steady state approximations above will incorrectly cal-

culate the activity for certain domains of short- and medium-lived isotopes by orders

of magnitude. The first approximation, often used for the analysis of magnetic confine-

ment systems, is reasonable for long-lived isotopes that would not decay appreciably

during the dwell times in the real system. Their final density is, therefore, the result of

28

()t
t + t

p

p d
φp

tl

(a) Average flux approximation.

φ p

tpn

(b) Collapsed pulses approximation.

Figure 2.6: Two popular steady state approximations to pulsed irradiation histories.

a virtually monotonic build-up throughout the operation times. On the other hand, for

short-lived isotopes that would reach secular equilibrium within each pulse and decay

completely during the dwell time, the exact result is equal to this secular equilibrium

value. This value is proportional to the flux magnitude, which, for this approximation

has been scaled to conserve the total fluence throughout the lifetime. Using the second

approximation, this equilibrium value is the same as in the true pulsing problem for

short-lived isotopes. On the other hand, for medium-lived isotopes, particularly those

29

with half-lives greater than the dwell time between pulses but less than the total system

lifetime, the unmodeled incomplete build-up and decay in the real system during the

pulses and dwell times, respectively, result in significant over-calculation of the activity.

These approximate approaches are favored by codes that use time-step based ODE

solvers, since the pulses impose additional restrictions on the length of the time step

which may be used. In many cases, the first approximation can be successfully improved

by modeling the majority of the pulses as a single steady state period, with a scaled

flux, and then modeling the last few pulses exactly. This ensures the correct flux level

for the determination of the secular equilibrium level of the short-lived isotopes.

Alternatively, if matrix methods are used, equation 1.1 can be solved for each pulse

and dwell time, and then appropriately multiplied and raised to a power to represent

the entire history (see section 3.5). Thus, the intermittent and/or pulsed operation is

modeled exactly with no approximation.22,23

These exact methods become even more valuable when the operating history has

more variation than simple repeated pulses. The first type of variation is in the dwell

time between pulses, such as might occur when the pulsing schedule of an experimental

facility follows the standard working hours of the staff. Figure 2.7 shows such a history

with parameters give in table 2.2. When using matrix methods and exact history

modeling, the activation equation is solved once for the pulse and for each dwell period.

These matrices are then multiplied in the correct sequence to generate a transfer matrix

solution for the entire history.

Changes in the flux spectra or irradiation times, due perhaps to a modification in

the system’s configuration or performance, can further complicate the history. In this

case, the history may consist of two or more schedules, as described in table 2.2, where

the flux and/or the characteristic times are different in each of the successive schedules.

30

16 pulses per day

16 h 20 m
(overnight)

5 days per week

64 h 20 m
(weekend)

49 weeks per year

3 weeks
64h 20 m

(maintainance)

20 min delay
between pulses

20 years of operation

Figure 2.7: Example pulsing schedule for experimental device.

Table 2.2: Example pulsing schedule for experimental device.

Description Time # of Pulses

Pulse length 10 min

Operation dwell 20 min 16 (half-hour segments)

Nightly dwell 16 h 20 min 5 (work days)

Weekend dwell 64 h 20 min 49 (weeks without maintenance)

Annual Maintenance 3 weeks 64 h 20 min 5 (years)

31

Finally, it may be desirable to have a number of different schedules which, as a

set, are repeated at regular intervals. For example, when modeling material that is

exposed to different neutron fluxes in a repeating sequence, such as the high-Z material

of an inertial confinement fusion target being recycled.24 The first time this material

is introduced to the system is as part of a target, and thus receives a very large flux.

Due to the explosion of this target during this initial reaction, the material is deposited

on the facility’s walls. It will be subjected to a number of pulses with lower flux (and

different flux spectrum) before it is removed from the system, spends some time being

reprocessed into a new target, and goes through the cycle again. Figure 2.8 shows

such a history, which can be modeled efficiently and exactly with matrix methods. The

activation equation is solved once for the primary pulse, once for the secondary pulse,

once for the dwell between pulses, and once for the reprocessing dwell time. These

matrices can then be multiplied and raised to a power as appropriate to model the

entire history.

material in ICF
target capsule

material elsewhere in
ICF reactor chamber

material being
reprocessed

Figure 2.8: Irradiation history for recycled ICF target material.

It is important to note, that the more complicated the irradiation history becomes,

the slower the solution will be because of the necessity to solve more individual versions

of the activation equation. In fact, in the limit of a continuously changing flux, this

exact representation becomes physically identical to a time-step based method with the

time-step size dictated by the characteristic time of the flux history, but will likely be

32

computationally slower because of the mathematical method being employed at each

time step.

2.3 Reverse Calculations

An activation calculation may be performed to determine the relative production of

trace quantities of specific isotopes. If the production pathways for these few isotopes

are very long, the tree will become very large, and the majority of the results will not

be relevant to the specific target isotopes.

One solution is to build the acti-

A

CD

FGHIJ

L

B

E

Figure 2.9: Sample reverse calculation tree.

vation tree in reverse, starting with

the target isotope and adding parent

isotopes, as shown in figure 2.9. For

the most part, if the forward calcula-

tion is wisely implemented, the phys-

ical modeling of the problem requires

only a few enhancements, and the mathematical methods are identical.

The easiest way to perform a reverse calculation is to use a reversed nuclear data

library. Where a normal data library is indexed by the parent isotope, giving a table

of reaction paths and cross-sections for each one, a reversed library is indexed by the

daughter isotope, giving a table of production paths and associated cross-sections. Once

a library is reversed, extracting data for each reverse pc-node is similar to extracting

data from a normal library for each pc-node of a forward calculation.

Perhaps the most significant difference, however, is the necessity to reinterpret the

truncation algorithm. First, instead of maximizing the accuracy of the solution across

all isotopes by minimizing the relative atom loss from the modeled system, the goal of

33

the reverse truncation algorithm is to maximize the accuracy of the production of the

target isotope. Therefore, it is more appropriate to use a relative production calculation

than a relative atom loss calculation.

Second, and more important, the interpretation of the relative production result in

comparison to the truncation and ignore tolerances must be reassessed. As with the

forward calculation, if the relative production is larger than the tolerance at shutdown, it

is clear that the chain must continue to grow. Also similar to the forward calculation, if

the relative production is less than the truncation tolerance both at shutdown and at all

the cooling times, the chain should be truncated. However, when the relative production

is less than the truncation tolerance at shutdown and greater at some after-shutdown

time, it is no longer appropriate to truncate all the transmutation branches. This result

indicates that the parent of one of the decay branches in the chain accumulates during

the irradiation history, after which a significant fraction decays during the cooling time.

The decay branch at which this occurs may not be related to the isotope being tested

at the root of the chain. (Of course, when this isotope is at the root of the chain,

this will be the outcome of the truncation comparison.) It is therefore necessary to

simply continue the chain in this case, since the next parent may still lead to sufficient

accumulation of the relevant decay parent that the relative production of the target

isotope is greater than the truncation tolerance at a certain cooling time.

The last difference is the interpretation of the final matrix solution. In a forward

calculation, the first column of the solution matrix represents the relative production

of each isotope from the root isotope, and these results are used to sum the total

production of each isotope from each root. In a reverse calculation, the last row of the

matrix is used, as it represents the relative production of the target isotope from each

of the isotopes in the chain.

34

2.4 ALARA Implementation Summary

This section will discuss the details of the exact implementation of the physical modeling

methods in ALARA.

After reading the input information, ALARA’s first task is to process all the mixture

definitions and create a list of unique initial isotopes, cross-referenced with the mixtures

in which they exist, and sorted by increasing atomic number. The activation problem

is then solved completely for each root isotope in turn.

When calculating the induced activation of a whole system, the material composition

and neutron flux spectrum will vary from location to location in the device. A structural

region of a problem may contain some variety of steel while a coolant region might have

water and a breeding region would contain lithium. The initial isotopes, and thus the

reaction trees, will therefore be very different for each region. Further, for each point of

interest, the spectral distribution and magnitude of the fluxes will be different. Thus,

even for identical trees from the same material composition, the production rates for

each isotope will vary from point to point.

A reference flux is found by determining the group-wise maximum flux across all

the spatial points which include this root isotope. Beginning with this root isotope

and using the reference flux, the activation tree is modeled as linear chains created by

a depth-first search of the straightened activation tree. Using this technique, ALARA

must never store information about more than one chain at any time. As each chain is

truncated, it is immediately solved for each spatial point, now using that point’s flux,

in which the root isotope exists. Various parameters of the chain are used to sum only

the contributions from the pc-nodes which will not be part of the next chain in the

depth-first search. This ensures that no pc-node is included more than once and also

allows the chain to be completely discarded, making that memory available, as it will

35

no longer be needed in the calculation.

Unlike many other activation codes, ALARA does not use a fixed table of nuclear

reaction codes to determine the reaction type and daughter product. Rather, it expects

all this information to be included in the nuclear data library. ALARA is not limited

to any conventional set of nuclear reactions. This has already proved important when

being used to simulate the activation in a system with intermediate neutron energies

(up to 55 MeV)25 and many more reaction channels per parent (. 120) than most

standard libraries (≈ 35) and most standard reaction tables (. 100).

The relative atom loss truncation method outlined above, including an ignore tol-

erance, is implemented in ALARA using the reference flux established for each root

isotope. The relative atom loss calculation is performed for the exact irradiation his-

tory, including the various after-shutdown cooling times. As each pc-node is added to

the chain during the depth first search, it is tested according to the flowchart shown in

figure 2.10. It is worth noting that, contrary to some other implementations,13,14 this

truncation method allows a chain to be fully truncated on a radioactive isotope, but

only if it has been determined that the relative atom loss through that isotope is less

than the truncation tolerance at shutdown and all after-shutdown cooling times. It is,

in fact, possible to ignore a radioactive isotope, if its relative atom loss is below the

ignore tolerance at all times of interest.

The modeling of the irradiation history in ALARA allows for a very versatile hierarchy

of schedules and sub-schedules limited only by the computer resources (both system

memory and calculation time). Each schedule can have a list of sub-schedules, where

each sub-schedule can be either a simple pulse, with an associated flux definition, or

another schedule. Each sub-schedule, regardless of which type, is subjected to a pulsing

hierarchy such as described in table 2.2 and separated from the next sub-schedule by

36

state == CONTINUE?

N < trunc

state = IGNORE

state = IGNORE

o

N < ignore

and N < ignore?

o

i

N < ignore

and N < ignore?

o

i

or reaction paths == 0
or N < trunc?i

state = CONTINUE

state = TRUNCATE

state =
TRUNCATE_STABLE

remove all reaction paths
with no decay rate

y

y

y

y

y

n

n

n

n

n

Figure 2.10: Flowchart for truncation algorithm.

a dwell time. When ALARA solves the problem, the schedule hierarchy, analogous to

an n-ary tree, is traversed in a depth-first search. Thus, each schedule’s list of sub-

schedules is solved, and the product of all the sub-schedule solution matrices and dwell

time matrices is taken as the solution matrix of the schedule.

37

Chapter 3

Mathematical Technique and

Theory

The mathematical problem resulting from the physical system described in Chapter 2

is, at first glance, a very simple one. However, the calculation of matrix exponentials,

such as the solution to the activation equation

~N(t) = eAt ~No, (1.2)

are known to be difficult in general. An extensive study of nineteen different methods

found them all to be “dubious”, saying that “some of the methods are preferable to

others, but that none are completely satisfactory.”26

If the original activation tree (without removing cross-links and straightening loops –

Figure 2.1) is converted directly to its mathematical equivalent, the result is a compact

38

but potentially stiff system of linear first order ordinary differential equations [ODE’s],

~̇N(t) = A ~N(t)

=



−d1 P2→1 P3→1 · · · · · · Pl→1

P1→2 −d2 P3→2 · · · · · · Pl→2

P1→3 P2→3 −d3 · · · · · · Pl→3

...
...

...
. . .

...

...
...

... −dl−1 Pl→l−1

P1→l P2→l P3→l · · · Pl−1→l −dl


·



N1

N2

N3

...

...

Nl


,

(3.1)

where:

~N ≡ number densities, Ni, of all isotopes

di ≡ destruction rate of isotope i

Pi→j ≡ production rate of isotope j from isotope i.

After loop straightening and cross-link removal is performed (see figure 2.2), the

result is a somewhat larger, simpler set of ODE’s:

~̇N(t) = B ~N(t)

=



−d1 0 0 · · · · · · 0

P1→2 −d2 0 · · · · · · 0

P1→3 P2→3 d3 · · · · · · 0

...
...

...
. . .

...

...
...

... −dm−1 0

P1→m P2→m P3→m · · · Pm−1→m −dm


·



N1

N2

N3

...

...

Nm


.

(3.2)

This lower triangular matrix is quite sparse with a maximum of two entries in each row

since each pc-node has only one production path and one total destruction rate.

39

Finally, if this physical model is further broken into the previously described lin-

ear chains (figure 2.3), many small sets of ODE’s are created with special simplifying

characteristics,

~̇N(t) = C ~N(t)

=



−d1 0 0 · · · · · · 0

P1→2 −d2 0 · · · · · · 0

0 P2→3 −d3 · · · · · · 0

0 0 P3→4 −d4
...

...
...

...
. . . 0

0 0 0 · · · Pk−1→k −dk


·



N1

N2

N3

...

...

Nk


.

(3.3)

The bidiagonal nature of these matrices is an important factor in subsequent derivations

and calculations.

In all cases, the generic solution takes the form

~N(t) = T ~No(t), (3.4)

where T is the exponential of the matrices A, B, or C, depending on which method is

used (e.g. T = eAt).

It is interesting to compare the sizes of these three matrices as it gives some initial

insight into the efficiency of the solution. To compare the size of the original tree, l, with

that of the straightened tree, m, is not easy. Since the physical conversion is to convert

cross-links and loops into pc-nodes, it is clear that m > l; however, the severity of this

inequality is difficult to determine. Nevertheless, an approximate comparison between

k and m can be made. Since B represents a true tree structure, it can be analyzed by

assuming that it is a balanced n-ary tree, that is, assuming that every pc-node in the

tree has exactly n branches. Since k is the depth of such a tree, there will be nk−1 chains

40

representing the m = nk−1
n−1
≈ O(nk−1) nodes of the tree. The computational complexity

of the mathematical operations performed on these matrices are generally at least of the

order of the square of the matrix dimension, and often the cube. Thus, for matrix B,

the mathematical costs will be at least O(n2k−2) and possibly O(n3k−3) or higher. On

the other hand, for the nk−1 matrices C, the mathematical costs will be O(k2nk−1) or

O(k3nk−1). This very rough analysis shows that for mathematical operations of order

x, as long as n1− 1
x > k

1
k−1 , the linear chain method will be more efficient. While it may

be difficult to visualize this relationship, it can be used to define some limits.

If the mathematical operations have second order computational complexity, the

linear chain method is always more efficient if n ≥ 4 (there are at least 4 branches per

pc-node). If this complexity increases to third order, the physical model only requires

n ≥ 3 for linear chains to be more efficient. From another perspective, if the number

of branches per pc-node is fixed at n = 2, and chain depth, k = 3, operations with 5th

order complexity are required for the linear chains to be more efficient. This requirement

decreases very quickly for longer chains, with only third order complexity required at

k = 4. Finally, as with most real problems, n ≥ 4 and the linear chain method is more

efficient for all orders of complexity in the mathematical operations.

It is important to note that not only is this analysis not rigorous, but the order of

the mathematical solution is itself dependent on the method which is used. Thus, the

analysis gives a first glance into the comparison of efficiency, but is hardly complete.

Historically, a wide range of matrix methods, non-matrix time-step based solvers

and matrix/time-step hybrid solvers have been used.

For the non-matrix methods, the time history of the problem is divided into time

steps and the equations are solved using some variation of a standard differencing tech-

nique, including Runge-Kutta, Euler, or GEAR methods. By choosing small enough

41

time steps, the numerical error of such methods can be reduced to make them sufficiently

accurate. The consequence of using small enough time steps, however, is increased com-

putational time.

Hybrid methods are variations on “scaling and squaring” where some small time

step is chosen, either based on the time constants of the problem, or by taking sufficient

square roots of the total time of interest. The scaled matrix exponential is solved with

a rapidly converging series solution and then raised to some power, or successively

squared, to reach the full operation time. These methods are both computationally

inefficient, and in the general case, can be prone to round-off error.

It is also possible to use matrix decomposition methods to solve this formulation.

The matrix exponential can be decomposed as, A = SDS−1, giving the solution

eAt = SeDtS−1,. The goal of this class of methods is to find a decomposition such

that the exponential eDt is easily calculated. Some matrix decomposition methods

which have been explored for this application include eigenvector decomposition,27 gen-

eralized eigenvector decomposition28 or Schur decomposition.8 For some special forms

of the transfer matrix, A, these decomposition methods are accurate. However, when

formulated for the general case, the decompositions can be prone to round-off error.

Within the class of matrix methods, however, implementations designed to take

advantage of the special nature of the linear chain matrix C, can be promising. The

individual ODE’s are solved with the assistance of Laplace transforms, filling the resul-

tant matrix exponential one element at a time. These methods are versions of matrix

decomposition methods which have been reformulated to minimize round-off errors and

handle defective matrices, so much so that they are hardly recognizable as matrix de-

composition methods. Previous applications have used a formulation of the analytic

Bateman12–14 solution for linear chains, but this is only applicable when no loops occur.

42

A new method, developed in this work, is able to replace the Bateman solution, in the

event that a loop occurs in the linear chain.

One primary advantage of matrix methods is their ability to quickly solve problems

with irradiation histories based on repetition, whether it be simple hierarchies of pulsing,

or complex hierarchies of schedules and sub-schedules. A single matrix must be solved

for each relevant flux level and/or characteristic time, and these matrices are multiplied

appropriately to build the response matrix for the entire history. Time-step methods

are unable to do this as they never generate a transfer matrix, but work directly with

the isotopic number density vector. Since it is impossible to determine a unique transfer

matrix given the initial and final vector, time-step methods are forced to simply step

through the entire history, applying the whole array of calculations at each time step

and modeling each pulse individually.

By transferring this system to the Laplace domain and considering each equation

individually, it is possible to write the solution in a more compact form (N.B. Pi implies

Pi−1→i):

Ñi =
Ni0

s+ di
+ Pi

Ñi−1

s+ di
(3.5)

=
Ni0

s+ di
+

Ni−10

s+ di−1

Pi
s+ di

+
Ni−20

s+ di−2

Pi−1Pi
(s+ di−1)(s+ di)

+ · · ·

+
N2o

s+ d2

i∏
j=3

Pj
s+ dj

+
N1o

s+ d1

i∏
j=2

Pj
s+ dj

,

(3.6)

which can be written as

Ñi =

i∑
j=1

Ñij

=
i∑

j=1

Njo

i∏
k=j+1

Pk

i∏
l=j

1

s+ dl

=
i∑

j=1

NjoF̃ij(s)
i∏

k=j+1

Pk.

(3.7)

43

In this representation, the matrix T is filled by setting

Tij = Nij/Njo

= L−1
[
F̃ij(s)

] i∏
k=j+1

Pk,
(3.8)

and it becomes an exercise of solving for the inverse transform of the term

F̃ij(s) =
i∏
l=j

1

s+ dl
. (3.9)

Normally, two such matrices, T and D, are required to represent the pulse and dwell

times, respectively. In the first case, all the destruction and production rates include

the terms for neutron transmutation which are dependent on the flux spectrum and

therefore it is only during this period in which loops can occur in the isotope tree. In

the dwell period, the destruction and production rates are only those of decay, and

therefore, many of the values will be zero.

3.1 The Analytical Bateman Solution

If all the destruction rates, di, are distinct, Equation 3.9 can be easily inverted,

fij(t) =

i∑
l=j

e−dlt
i∏

m=j
m6=l

1

dm − dl
. (3.10)

This leads to a compact representation of the solution to the Bateman equations:

Ni(t) = Nioe
−dit +

i−1∑
j=1

Njo

 i−1∑
k=j

Pk+1(e
−dkt − e−dit)
di − dk

i−1∏
l=j
l 6=k

Pl+1

dl − dk

 . (3.11)

Finally, we can write the transfer matrix elements as:

Tii = e−dit

T ij
i6=j

=
i−1∑
k=j

Pk+1(e
−dkt − e−dit)
di − dk

i−1∏
l=j
l 6=k

Pl+1

dl − dk
.

(3.12)

44

It can be shown that the mathematical operations performed in this method are es-

sentially the same operations that would be carried out if an eigenvector decomposition

was used to solve the matrix.

3.2 Laplace Inversion Method

When the destruction rates (eigenvalues) are not distinct, other methods of solving

equation 3.9 are required. In general, however, because of the bidiagonal nature of the

matrix representation (that is, because of the linear chain physical representation), this

is a simple problem which, for a small system, can easily be solved on paper by hand.

In particular, this Laplace space representation can be directly inverted to the time

representation.

For repeated poles, one uses the residue theorem to determine the coefficients for

each term in a partial fractions expansion. Each of those terms would result in an

exponential, perhaps multiplied by a polynomial in time, t, when converted back to the

time domain. Those residues are calculated using one of two simple rules.

If the pole is not repeated, then the residue, Rk, for the pole, −dk, is calculated as

Rk = lim
s→−dk

(s+ dk)F̃ij(s) (3.13)

which becomes Rke
−dkt in the time domain. If all poles have a singular multiplicity,

the solution reduces exactly to the Bateman solution, and can be represented in many

ways. This is obviously the solution with no loops.

If the pole is repeated m times, under a partial fraction expansion, this becomes m

terms in that expansion:

Rkm

(s+ dk)m
+

Rkm−1

(s+ dk)m−1
+ · · ·+ Rk1

(s+ dk)
(3.14)

45

which becomes

e−dkt
(
Rkm

tm−1

(m− 1)!
+Rk,m−1

tm−2

(m− 2)!
+ · · ·+Rk2

t

1!
+Rk1

)
(3.15)

in the time domain. In this case, the residues are found using:

Rkn =
1

(m− n)!
lim

s→−dk

dm−n

dsm−n

[
(s+ dk)

mF̃ij(s)
]
. (3.16)

This latter rule requires the ability to evaluate derivatives of a generic function:

G̃k
ij(s) = (s+ dk)

mF̃i,j(s) (3.17)

at values of s = −dk for all i. By examining the successive derivatives of G̃(s) it can be

shown (see Appendix A) that these derivatives can be recursively defined as:

[
G̃k
ij(s)

](n)

=
n∑
j=1

(−1)j
(n− 1)!

(n− j)!
[
G̃k
ij(s)

](n−j) I∑
i=1

1

(s+ di)j
(3.18)

and this, in turn, can be converted to a computational numerical algorithm, allowing

the entire problem to be solved.

We will call this method the Laplace Inversion Method.

3.3 Laplace Expansion Method

Both of the above analytical solutions can be prone to round-off error when the absolute

difference between two poles is small, either because the poles are nearly identical or

because both poles are very small. Each term in the sum will be very large due to

division by small numbers, and successive terms will differ only in the least significant

digits. For these cases, an expansion in 1/s may be preferred.

It is apparent from equation 3.12, however, that such divisions can be eliminated

by writing the solution as a difference of exponentials, using the series expansions for

46

the exponentials, factoring out the offending term from the numerator and canceling.

While this seems like a monumental task to perform on an arbitrary problem, thanks to

the bidiagonal nature of the system, it is again quite simple to implement. If we start

again with our function:

F̃ij(s) =

i∏
l=j

1

s+ dl
(3.19)

and making no assumptions about the multiplicity of the poles, we expand this as a

series in 1/s, the result is:

F̃ij(s) =
1

si−j+1

i∏
l=j

1

1 + dl
s

=
1

si−j+1

i∏
l=j

(
1− dl

s
+
d2
l

s2
− d3

l

s3
+ · · ·

)

=
1

si−j+1

[
1−

∑i
l=j dl

s
+

∑i
l=j dl

∑i
k=l dk

s2
−
∑i

l=j dl
∑i

k=l dk
∑i

m=k dm

s3
+ · · ·

]
.

(3.20)

If n = i− j, in the time domain, this becomes:

fij(t) = tn

[
1

n!
− t

(n+ 1)!

i∑
l=j

dl +
t2

(n+ 2)!

i∑
l=j

dl

i∑
k=l

dk

− t3

(n + 3)!

i∑
l=j

dl

i∑
k=l

dk

i∑
m=k

dm + · · ·
] (3.21)

and thus:

Tii = e−dit

T ij
i6=j

= fij(t)
i−1∏
k=j

Pk .
(3.22)

It is clear that this solution will only be computationally viable when the product,

max{di}·t is small. For arbitrary problems, this is only guaranteed when there are short

47

operating times, but can easily be tested for a particular problem. Other representations

can be formed, each providing different insight into the method (see Appendix B).

We will call this method the Laplace Expansion Method.

3.4 Adaptive Mathematical Methods

Upon examining available methods to solve such lower bidiagonal systems, there are

certain easily determined matrix characteristics which can be used to adaptively choose

a method for each matrix element which will optimize the speed and accuracy of the

solution.

The primary criterion for choosing amongst the solution methods is the presence

of degenerate eigenvalues. The eigenvalues of these matrices are simply the diagonal

elements, which in turn are the destruction rates of each isotope in the linear chain

being modeled. True degeneracies in these values will occur only when the chain being

modeled by this matrix has straightened loops and a simple test can determine whether

this is the case. Each matrix element, Ti,j represents the transfer within a segment of

the chain between nodes j and i. Even if loops exist elsewhere in the chain, if no loops

occur in this chain segment, the analytical Bateman solution can be selected.

If a loop does exist within this sub-chain, the laplace expansion technique is imme-

diately implemented. When, during the course of the expansion solution, it does not

converge quickly enough, the laplace inversion technique is invoked.

For the dwell periods between pulses, the Bateman solution can always be used

because the absence of transmutation reactions makes loops physically impossible.

Because the mathematical method is chosen independently and adaptively for each

matrix element, the efficiency and accuracy of the entire solution is optimized. If a small

loop occurs in one small portion of an activation tree, it is not necessary to perform

48

the relatively computationally intensive Laplace Expansion and/or Inversion solution

on the entire problem. On the other hand, the solution is not limited by the non-loop

Bateman solution when loops do exist.

3.5 ALARA Implementation Summary

As with the physical modeling, the implementation of the mathematical solution re-

quires some special implementation to enhance its efficiency.

The first such enhancement is to store the solution matrices from one chain to

another. The value of this implementation can be seen when considering the solution

of many subsequent chains of large rank, n. Without saving the previously generated

matrices, all the n(n − 1)/2 elements of the lower-triangular transfer matrices would

have to be completely recalculated (n2/2 calculations) for each of these subsequent

chains, even if they only differ in the last rank. When the transfer matrix solution for

each interval is stored after its use in the solution of one chain, only the last row (n

calculations) is necessary. This savings carries to all situations throughout the activation

tree. Since the chains are formed by a depth-first search, it is likely that for each

chain, a significant portion of the data has already been determined for a previous

calculation. Since the physical model allows a complex hierarchy of irradiation schedules

and sub-schedules, the storage for these transfer matrices must mimic this hierarchy.

Furthermore, as the reaction rates are a function of the neutron flux, one of these storage

hierarchies is required for each interval.

This is also true for the decay matrices between pulses and after shutdown, however

in this case, the matrices are not only saved from one chain to the next, but across all the

intervals being solved for the same chain. Since the decay matrices are independent of

flux, they need only be calculated once for each chain and then used in all the intervals

49

for that chain. This has potentially large savings since there may be many intervals

sharing the decay matrices, each recalculation of which costing n calculations even with

the already implemented savings. Furthermore, since the decay matrices are likely to be

much sparser than the pulse transfer matrices, a special implementation of the Bateman

solution routine to intelligently fill these matrices has been implemented. If any single

production rate is equal to zero in the chain segment relevant to a particular matrix

element, that matrix element will be zero, and there is no point in performing the full

Bateman solution.

These mathematical methods are implemented during a depth-first search of the

irradiation history hierarchy. A storage block is allocated for each item in each schedule

in the hierarchy, consisting of the item’s operation block transfer matrix and the total

transfer matrix, including the effect of the operation block, the pulsing hierarchy and

the dwell time between this block and the next. For a simple pulse the operation block

matrix is the transfer matrix for the pulse itself while the total transfer matrix includes

the effect of the pulsing hierarchy and the inter-item dwell period. For a complex sub-

schedule, the operation block is calculated each time the depth-first search retracts back

up the schedule hierarchy as the product of total transfer matrices of that sub-schedule’s

items. The total transfer matrix again combines the effects of the operation block, the

pulsing hierarchy and the inter-item dwell period.

The solution of a particular pulsing hierarchy deserves a little more attention. Given

the transfer matrix of the operation block, say T0, and a single dwell matrix for the

dwell time of the first level of pulsing, D1. The product of these, D1T0, is then raised to

a power representing one less than the number of pulses in that level, n1. Multiplying

by the operation block matrix one more time becomes the transfer matrix for the next

level of pulsing, T1 = T0(D1T0)
n1. This is repeated with the single dwell matrix for

50

the dwell time of the second level, D2, and so on, using the general formula23

Ti = Ti−1(DiTi−1)
ni. (3.23)

It is important to use an efficient algorithm29 for this matrix exponentiation process

since it will be performed so often during the operation of the code. For N levels of

pulsing, the matrix, TN , is the transfer matrix for the entire pulsing hierarchy up to

the dwell time after that item.

Using figure 2.7 as an example, T0 represents the activation solution for one 10

minute pulse and D1 represents the solution for one 20 minute dwell period. Therefore,

T1 = T0(D1T0)
15 represents the solution for one work-day’s worth of pulsing. If D2

represents the solution for one dwell period of 16 hours and 20 minutes, then T2 =

T1(D2T1)
4 is the solution for a full 5 day week of experiments. This continues until

the last level where T4 = T3(D4T3)
19 represents the solution for 20 years of operation.

51

Chapter 4

Validation and Benchmarking

For all new computer programs, an important step in the development process is the

program’s validation against other computational tools. In the field of fusion activation

calculations, there are many such tools. Both FISPACT-976 (time-step based ODE

solver) and DKR12 (no-loop Bateman solution to linear chains) have been shown in

the past to agree well with analytical solutions to multi-step activation pathways.15,16

ALARA offers improvement over DKR because it is able to accurately model loops in

the activation trees and calculate the gas production. In comparison to FISPACT-97,

ALARA has many advantages, including the ability to exactly model pulsed irradiation

histories and simultaneously calculate the solution at many spatial points. In compar-

ison to both codes, ALARA uses modern programming practices and data handling to

increase the flexibility of operation and reduce memory requirements (see section 5.1).

4.1 Benchmark Specifications

To validate ALARA the International Atomic Energy Agency [IAEA] Fusion Evaluated

Nuclear Data Library [FENDL] Calculational Activation Benchmark30 problem was

52

chosen. This problem is based on the reference steel/water shielding blanket design

in the International Thermonuclear Experimental Reactor [ITER] outline design. This

design includes:

• a copper first wall with beryllium coating

• shielding blanket with alternating layers of stainless steel (316 SS) and water

• a double wall Inconel 625 vacuum vessel with a water-cooled steel pebble bed and

a back shield made of lead and boron carbide

• an inboard magnet, including conductors and insulators.

With such a wide range of materials, the design offers an extensive test of the activation

code’s capabilities.

The neutron fluxes have been provided by the benchmark in the VITAMIN-J 175

group energy structure for each of the 468 fine mesh intervals. These fluxes were cal-

culated using the ONEDANT31 deterministic neutron transport code with a 14.1 MeV

isotropic neutron source normalized to inboard and outboard neutron wall loadings of

1 and 1.5 MW/m2, respectively.

IAEA Fusion Evaluated Nuclear Data Library (ver. 2.0) for Activation (FENDL/A

2.0) and for Decay (FENDL/D 2.0) were used for all calculations, ensuring that dif-

ference in the results were due to the activation codes themselves and not the nuclear

data.

The first activation calculations were performed with a steady state operation time

of 3 years and cooling times of 1 hour, 1 day, 1 week, 30 days, 1 year and 100 years.

A pulsed activation calculation was also performed using 94500 pulses of 1000 s with a

dwell time of 1200 s between pulses.

53

4.2 Steady-State Problem

In ALARA this calculation built 109 reaction trees with a total of 32023 nodes and

a longest chain of length 14, producing 603 different isotopes in the steel-containing

intervals, of which 402 were radioactive. The truncation tolerance was 10−4 and the

ignore tolerance, 10−6.

The results have been compared by calculating the relative difference between ALARA

and the other codes:

Relative Difference =
ALARA

X
− 1,

where X is either FISPACT-97 or DKR.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
Zone Number

−2.00%

−1.50%

−1.00%

−0.50%

0.00%

0.50%

1.00%

R
el

at
iv

e
D

iff
er

en
ce

FISPACT−97
DKR−Pulsar

P
la

sm
a

Figure 4.1: Relative difference between ALARA and other codes for steady state
problem at a cooling time of 1 hour.

Figures 4.1 and 4.2 show the relative difference between the steady state problem’s

results from ALARA and FISPACT-97 and between ALARA and DKR at a cooling time

of 1 hour and 1 century, respectively.

At a cooling time of 1 hour, the ALARA results are within 1.8% of the FISPACT-97

results throughout the entire geometry, with most zones having a difference of less than

54

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
Zone Number

−3.00%

−2.00%

−1.00%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

R
el

at
iv

e
D

iff
er

en
ce

FISPACT−97
DKR−Pulsar

P
la

sm
a

Figure 4.2: Relative difference between ALARA and other codes for steady state prob-
lem at a cooling time of 1 century.

0.4%. The largest differences occur in the blanket’s 14 water-filled zones, increasing in

directions away from the plasma as flux becomes lower and softer.

At a cooling time of 1 century, the differences between ALARA and FISPACT-97

are as high as 2.5%, with the largest differences still occurring in the water-filled zones

where, after more than 8 tritium half-lives, the dominant isotope is now 14C. The

differences in the other zones remain below 0.4%.

The results from these comparisons immediately demonstrate the impact of the

various activation codes different methods. In most zones, the ALARA results are within

a fraction of a percent of the FISPACT-97 values. In the water-filled zones, alternating

with the steel in the inboard and outboard blanket, the total activity was greatly

underestimated. Further investigation shows that the activity is dominated by tritium

and 14C, and that their relative production levels are as low as 5× 10−12 and 3× 10−9,

respectively. It is clear that this level of accuracy is not sufficient for these zones. On the

other hand, increasing the accuracy for the whole problem would dramatically increase

the activation tree size in all the other zones. While this demonstrates the limitations of

a problem-wide truncation tolerance, it requires little effort to perform a second ALARA

55

calculation. A second calculation was performed for this problem using 10−10 for both

the truncation and ignore tolerances. Figures 4.1 and 4.2 are based on these values in

the odd numbered zones between 11 and 23 and between 33 and 45, inclusively.

DKR had an even more drastic problem with zones where the specific activity was

dominated by tritium. Since the methods implemented in this version of DKR were

not designed to compute the accumulation of light ions (1H, 2H, 3H, 3He, and 4He)

emitted by nuclear reactions, the major source of tritium, its total activity for all zones

with dominant tritium inventories is much too small. Since these differences were up

to a few orders of magnitude, the relative difference between ALARA and DKR in these

zones has not been shown in figure 4.1 in order to compare the differences in the other

zones. The magnitude of these differences can be inferred, however, from figure 4.2,

where it must be noted that 1 century is over 8 tritium half-lives. The undercalculation

of tritium in these zones is so great that even after more than 99.6% of the tritium has

decayed, the error is still a few percent.

In those zones with insignificant tritium inventories, the differences between ALARA

and DKR are less than 0.2% throughout the geometry at a cooling time of 1 hour. After

1 century, even though the relative contribution of tritium has increased in some of those

same zones, the relative differences are still less than 1%. DKR’s inability to account for

the light ion production results in tritium inventories as much as 6 orders of magnitude

too low in the first wall’s Be coating, and up to 3 times too low in the blanket’s water

cooled zones. Even after more than 8 tritium half-lives (1 century), when tritium is

responsible for less than 10% of the total activity, the difference between ALARA and

DKR in the water can be as high as 7% (zone #33). This discrepancy demonstrates

why the modeling of light ion accumulation is a base features for any new activation

code.

56

A single fine mesh interval was chosen in which to compare the activity of various

nuclides in detail. The 1 mm thick stainless steel (SS316) inboard first wall back plate

is modeled as a single interval (#242) in zone #24. The large number of initial isotopes

in steel and the high flux due to its proximity to the plasma make this a good choice

for comparison.

Table 4.1 shows the seven most dominant isotopes at a cooling time of 1 hour,

together accounting for over 95% of the total activity. Table 4.2 shows the five most

dominant isotopes at a cooling time of 1 century, accounting for more than 99.7% of

the total activity.

Table 4.1: Detailed differences in interval #242 at 1 hour.

Isotope ALARA Relative Difference [%]

[1016Bq/m3] FISPACT-97 DKR-Pulsar 2.0

56Mn 114.6 -0.051 0.15

55Fe 85.5 0.24 -0.10

51Cr 75.7 0.019 -0.041

57Co 24.4 -0.081 3.0

54Mn 20.0 0.97 0.15

58mCo 10.3 -0.053 0.30

58Co 8.32 -0.048 -13.74

The agreement between ALARA and FISPACT-97 is seen to be within 1% in all cases.

DKR, on the other hand, has relative differences of up to 16%. These discrepancies are

most probably caused by the inability of DKR to model certain kinds of loops in the

decay chains and the influence this has on the decay chain creation calculations.

57

Table 4.2: Detailed differences in interval #242 at 1 century.

Isotope ALARA Relative Difference [%]

[1013Bq/m3] FISPACT-97 DKR-Pulsar 2.0

63Ni 27.8 -0.17 0.40

59Ni 3.80 -0.18 -1.2

91Nb 3.37 -0.21 1.3

14C 0.86 -0.22 -0.19

93Mo 0.69 -0.21 16

4.3 Pulsing Problem

The results of ALARA and DKR for the pulsing problem are compared in Figure 4.3 for

both 1 hour and 1 century. There are no results for FISPACT-97 as it was unable to

solve the exact pulsing problem in a reasonable amount of time. Based on the time (14

minutes) required to solve the first 100 pulses at a single spatial point, FISPACT-97 was

determined to be unsuited to such pulsed operation calculations. Assuming that the

total computation time scales linearly with the number of pulses, the full problem would

require more than 220 days for each of the 317 spatial points – a total computation time

of over 190 years!

Once again, tritium plays an important role in the discrepancies which are nearly

identical to the discrepancies between ALARA and DKR for the steady state problem.

In TF coil’s glass insulator (zone #3), the discrepancy in the pulsing problem is twice

as high as in the steady state problem at 1 hour, but the same at 1 century. This

demonstrates the true physical effect of pulsing on the tritium inventory’s importance at

relatively short cooling times, even though the tritium inventory itself is not significantly

affected by the pulsed history.

58

The pulsed operation will tend to reduce the inventory of isotopes with half-lives of

the same order of magnitude as the dwell time between pulses: very long-lived isotopes

will decay little between pulses and slowly reach their saturation level while very short-

lived isotopes will decay completely between pulses, but can reach their saturation level

in a single pulse.21 The dominant isotopes in the glass at 1 hour are 64Cu and 24Na, both

with half-lives slightly longer than half a day. Their inventories in the pulsed problem

are 50% less than in the steady state problem, while the tritium inventory is reduced by

less than 10%. Thus, the fraction of the total activity from tritium is increased, even

though the tritium inventory itself goes down.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
Zone Number

−3.0%

−2.0%

−1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

R
el

at
iv

e
D

iff
er

en
ce

1 hour
1 century

P
la

sm
a

Figure 4.3: Relative difference between ALARA and DKR for the pulsing problem at
cooling times of 1 hour and 1 century.

One method of modeling a pulsed problem as a steady state problem is to preserve

both the total fluence and the total operating time.21,32, 33 Using ALARA, the results of

such an approximate calculation with a flux scaling factor of 1/2.2 and total operation

time of 2.079 × 108 are compared to the exact solution in Figure 4.4, represented as

Relative Difference =
Pulsing

Steady State
− 1.

59

In this case, due to the nature of the pulsing history, the effect can only be seen at

short cooling times. As discussed above, the pulses’ effect is greatest for isotopes with

half-lives of roughly the same order of magnitude as the dwell time between pulses.

Thus the effect decays away within a few “dwell times” of shutdown.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
Zone Number

0%

5%

10%

15%

20%

25%

R
el

at
iv

e
D

iff
er

en
ce 5 min

15 min
1 hour
1 day

P
la

sm
a

Figure 4.4: Relative difference between exact pulsed solution and steady state approx-
imation at various cooling times.

The two materials with largest discrepancies are the glass insulator (zone #3) and

the first wall heat sink (Cu-Be-Ni in zones #25 and #31). In the former, the activity

of 28Al (t1/2 = 2.25 m), responsible for over 25% of the activity at a cooling time of

1 minute, is under-calculated in the steady-state approximation by 50%. The same is

true of 66Cu (t1/2 = 5.10 m), responsible for just under 10% of the activity in the first

wall.

4.4 Advanced Features

It is not possible to validate ALARA’s complex schedule modeling or reverse calculation

mode through comparison to other codes because these features are unique to ALARA.

60

It is possible to reformulate these benchmark problems into test problems for ALARA’s

advanced features, comparing the results to those for the standard benchmark problem.

4.4.1 Complex Schedule Modeling

With the standard single pulsing history capabilities validated against DKR in section

4.3, it is possible to construct a number of complex pulsing schedules, each reducible to

the same pulsing schedule as the IAEA Benchmark problem. Four such reformulations,

with increasing complexities, have been tested and compared to the normal pulsing

problem’s results.

The first formulation splits the 94500 pulses into two groups of 47250 pulses, and

a delay of 1200 s after the first group of pulses. The next formulation uses four

groups of pulses of 23625 pulses with 1200 s delay after each of the first 3 groups.

The third formulation increases the number of levels in the schedule hierarchy. The

top level schedule has two sub-schedules. Each sub-schedule is repeated 100 times,

with 1200 s delay after the first sub-schedule. The first sub-schedule has two pulsing

groups, each with 250 pulses and separated by a 1200 s delay. The second sub-schedule

has two groups of pulses with 225 and 220 pulses respectively. The total number

of pulses is again [100× (250 + 250) + 100× (225 + 220)] = 94500. The last formu-

lation is the most complicated. The top level schedule again has two sub-schedules.

The first sub-schedule is repeated 10 times and consists of a block of 2500 pulses

followed by a 1200 s delay and then another sub-schedule, consisting, in turn, of

two blocks of 125 pulses, and is repeated 10 times. The second sub-schedule is re-

peated 100 times and has one block of 445 pulses. Summing the entire schedule gives

[10× (2500 + 10× (125 + 125)) + 100× 445] = 94500 pulses.

After the complete solution of all four problems, the only difference amongst the

61

results was the length of time taken to calculate them (using the unix program ’diff’ on

both the output files and tree files showed no difference). This is logical since increasing

the schedule complexity increases both the number of matrices created and the number

of matrix calculations required to combine their effects into the whole schedule.

4.4.2 Reverse Calculation

In order to test the reverse calculation mode, it is sufficient to formulate a problem

targeting isotopes known to be created by the forward calculation. Since steel is the

most prevalent material in the IAEA Benchmark, the 4 most significant (in terms of

specific activity) isotopes were chosen as targets in the steel mixtures: 51Cr, 54Mn, 55Fe,

and 57Co. With the goal being to determine the production of these isotopes from steel,

all zones without stainless steel 316 were changed to “void” to reduce the computational

time.

The shutdown inventories for these four isotopes were identical to those of the for-

ward calculation and table 4.3 shows the source of each target isotope.

4.5 Computing Resources

For the steady-state and pulsing code comparison, all three codes were used on the same

IBM RS/6000 Model 595 P2SC workstation. The full steady-state problem was solved

by ALARA in 3425 s (57m5s) and by DKR in 5253 s (1h27m33s). The same problem

required 20715 s (5h36m25s) for a previously developed shell-script system sequentially

running FISPACT-97 for each of the intervals. The pulsed problem was solved by

ALARA in 5736 s (1h35m36s), with 44591 nodes and a longest chain of 14. DKR needed

10855 s (3h0m55s). FISPACT-97 was unable to solve the pulsed problem.

62

Source Target isotopes

isotope 51Cr 54Mn 55Fe 57Co

51V 1.9 appm – – –

50Cr 69% – – –

52Cr 29% – – –

53Cr 221 appm – – –

54Cr – 101 appm – –

55Mn – 31% 830 appm –

54Fe 2.6% 68% 24% –

56Fe – 0.65% 72% –

58Ni – 238 appm 3.9% 100%

Table 4.3: Sources of primary radioactive isotopes in stainless steel first wall layer.

For the steady state problem, ALARA requires a maximum of 35 MB of RAM and,

other than the binary library of just over 11 MB, uses no hard drive space. DKR

required as much as 107 MB of RAM and up to 250 MB of temporary hard drive space

in addition to its 10 MB text library. Other than the 38 MB data libraries, FISPACT-

97 uses negligible quantities of RAM and hard drive space since it solves each interval

sequentially.

For the advanced feature validation, a complete set of problems was run on the

development platform, an Intel P166MMX based machine running the Linux 2.0.30

operating systme. Table 4.4 shows the time required for each problem.

63

steady state 17.5 m

basic pulsing 24.7 m

complex pulsing 1 40.3 m

complex pulsing 2 68.8 m

complex pulsing 3 70.2 m

complex pulsing 4 74.1 m

reverse problem 1.7 m

Table 4.4: Runtimes for benchmark suite.

4.6 Conclusions

The ALARA activation code has been validated for use in calculating the activation of

fusion power systems. The results for a steady state activation problem have been com-

pared to the results from two standard codes whose accuracy has been well documented:

FISPACT-97 and DKR. Discrepancies between the total activities calculated by ALARA

and the other codes are always less than 2.5%, except where DKR is unable to calculate

the tritium production from emitted light ions. The results of a pulsing problem have

been compared to DKR (FISPACT-97 was unable to perform such a calculation in a

reasonable time). The discrepancies in this case are once again primarily due to the

lack of tritium production in DKR, and are otherwise less than 1%.

Based on this validation and its faster and less memory-intensive operation, ALARA

is recommended for the solution of fusion activation problems.

64

Chapter 5

Summary and Future Development

5.1 Modern Implementation Features

One advantage to writing an absolutely new activation code is the ability to implement

modern computing techniques, including algorithms and data structures, data handling,

software design and user-oriented features. This section will describe some of those

implementations in ALARA.

5.1.1 Software Design

ALARA’s source code, written in C++, takes advantage of object-oriented programming

techniques. This offers the primary benefit of improved extensibility and maintain-

ability of the code. Strictly designed classes with appropriate inheritance, information

hiding and well-documented interfaces minimize the unpredictable effects of isolated

modifications and extensions. The code is also made more readable by using short

functions with specific purposes and overloaded operators to perform standard opera-

tions on complex classes (such as matrix operations: A = B * C). See the class header

65

files (distributed with the source code) for the documentation and definition of the data

classes and their interfaces.

Many of these classes are implemented as linked lists, permitting the problem’s

computational representation to grow freely as required. During the input processing,

this permits the user to add an arbitrary number of each input element, such as mixture

descriptions, schedule definitions or flux declarations. During the next phase, the linked

lists for each input element is then conveniently cross-referenced to accelerate future

searches and linking in the problem. The linked list structures are also important for

accumulating the solution. Each interval has a linked list of solution vectors where each

item in the list represents an isotope generated in the tree.

5.1.2 Data Handling

Due to the size of the individual activation tree and the number of initial isotopes,

ALARA must frequently access the nuclear data library. Past codes have developed

various mechanisms to optimize this access to sequentially read data files, but many

methods are based on the usage of magnetic tapes. For example, DKR performs a

breadth-first search algorithm for chain creation, sorting the isotopes at each generation

before reading their nuclear data. This requires it to simultaneously store all the chains

for a whole activation tree. In order to minimize the required computational resources

for physical modeling in ALARA, the data library access is not restricted to optimized

sequential access. Instead, an indexed binary data file format has been designed to

permit frequent random access. Built into ALARA is the ability to convert other popular

non-binary library formats to the proprietary ALARA format. If a library formated to

the European Activation File18 conventions, for example, is offered as the data library,

it is automatically converted to an ALARA binary library for the immediate problem

66

and then saved under a default name for future problems.

Similarly, to minimize memory usage throughout the problem, ALARA makes use of

a binary file to log the solution of each root isotope in each interval. In essence, this

so-called dump file records the concentration of all the isotopes resulting from a single

root isotope. This data is loaded again during post-processing after the calculation to

be summed and processed into the type of output requested by the user. This dump file

could also serve as the interface to a graphical post-processor, should one be developed.

Since all the engineering responses based on an activation calculation are generated

from the scaling and summing of these individual interval results, the input file and

dump file can be used to reconstruct the solution to the problem.

5.1.3 User-Oriented Design

When choosing new software, one primary factor considered by users is the ease of use.

Two aspects of this factor are the input file’s simplicity and readability and the code’s

flexibility to a variety of applications.

The first of these has been addressed by creating a freely-formatted input file format

based on natural language (rather than a seemingly random array of numbers and

parameters). The various sections of the input can be given in any order and are

cross-referenced using symbolic names defined by the user. Input file sections can be

included from other files, permitting frequently re-used segments to be archived in a

kind of library. Finally, the input file permits comments and blank lines to improve

its readability. Once read, the input is tested extensively for completeness and self-

consistency, with a long list of error and/or warning messages when it is found to be

incomplete of inconsistent.

The flexibility of ALARA for different problems has already been demonstrated. One

67

main sources of flexibility is ALARA’s reliance on its data library to provide all the in-

formation needed for each nuclear reaction. ALARA has already been implemented to

study a nuclear system with intermediate energy fluxes (up to 55 MeV),25 where no

other major activation code was able to solve the problem. Furthermore, this applica-

tion demonstrated the importance of the spectrum’s higher energy tail to the activation

results compared to previous approximations using other activation codes. It is theoret-

ically possible to analyze systems with fissile material if the fission product production

terms were included as a type of “transmutation” cross-section. Finally, ALARA is not

limited to neutron activation problems, but since it is library driven, can solve activation

problems with any kind of incident particle (e.g. proton activation).

The reverse calculation mode also enhances the flexibility, allowing ALARA to be

used in completely new ways and applications. For example, assuming that small

changes in the material composition have little impact on the neutron transport solution,

the reverse calculation can be used to tailor a material to minimize its activation levels

in a particular system. Similarly, a reverse calculation could be used to determine the

best composition to irradiate in order to produce a desired radioactive isotope such as

those used in medical applications.

5.1.4 General Program Flow

The program flow of ALARA can be divided into three main phases, as shown in figure

5.1. The most important of these phases is the solution phase, in which all the phys-

ical modeling methods and mathematical techniques described in earlier chapters are

implemented.

68

read input
check input for consistency and completeness
cross-reference input objects for faster look-up

for each initial (target) isotope

while recursive chain builder has a new chain

for each interval containing this initial (target) isotope

solve current chain over full irradiation schedule

for each interval containing this initial (target) isotope

dump full solution list for this isotope to binary file

for each initial (target) isotope

for each interval containing this initial (target) isotope

read full solution list for this isotope from binary file

tally solution list for this isotope to the
list for each component in this interval which
contains this isotope

for each interval in the whole problem

sum the total contribution from all components

tally the final solution by component and total to the
mixture and zone which are cross-referenced to this interval

for each output definition

for each (interval | zone | mixture) in problem

write a table for each component and a total

IN
PU

T
SO

L
U

T
IO

N
PO

ST
-P

R
O

C
E

SS
IN

G

Figure 5.1: The general flow of ALARA can be described as follows:

69

5.2 Future Developments

A variety of extensions and features have already been considered for implementation

in ALARA. This section will describe just a few possible extensions for future versions

in ALARA’s continuing development.

5.2.1 Sequential Charged-Particle Reactions

The physical model as described in Chapter 2 only allows for the production of different

isotopes from the original ones by the neutron flux experienced in the system. However,

many of these neutron reactions result in emitted light ions, which are themselves able

to induce transmutation reactions. Recent work by Cierjacks, et al,34 has identified the

importance of such reactions and developed a data library for the inclusion of these

reactions within an activation code.

Some development of this method will be necessary for inclusion in ALARA because

the original library was designed for use with the 0-D code FISPACT. As such, the

equations used to determine the effective cross-sections for these reactions require full

knowledge of the neutron flux and isotopic composition at a point in space. To use

the equations directly in ALARA would require either greatly reduced speed or greatly

increased internal storage. Instead, it is possible to modify the equations into a matrix

format, creating a transformation from neutron flux to charged particle flux, dependent

only on the initial isotopic composition. Then, for each interval having that mixture

definition, the charged particle fluxes can be determined and stored for later use in

calculating production/destruction rates. A group-wise maximum charged particle flux

will also be used in truncation calculations.

Beginning with the equation for charged particle flux from Cierjacks, generalized to

70

an N group neutron spectrum,

Φxk =
∑
A

N∑
i=1

Φniσ
A
nx(Eni)NA∆Eni

×
24∑
j=k

fAnx(Eni, Exj)∆Exj∆Rxk ,

(Eqn (4) in Ref. 34)

where

Φxk ≡ Charged particle flux of type x and energy group k,

Φni ≡ Neutron flux of energy group i,

σAnx(Eni) ≡ Group cross-section for production of charged particle x from

bombardment of isotope A by neutrons of energy group i,

NA ≡ Initial atom density of isotope A,

fAnx(Eni, Exj) ≡ Energy distribution of charged particle x caused by reactions

between isotope A and neutrons of energy i given in discrete

bins of charged particle energy j,

∆Rxk ≡ Incremental range of charged particle x of energy group k in

material.

To convert this to a transformation matrix between the neutron flux and the charged

particle flux, it is first necessary to recognize that the energy increment, ∆Eni is usually

included in the group-wise flux,

σnx(Eni) =

∫ Eni+
Eni−

σnx(En)φn(En)dEn∫ Eni+
Eni−

φn(En)dEn

Φni = Φni∆Eni =

∫ Eni+

Eni−

φn(En)dEn

(5.1)

and thus, this term will be dropped from the following calculations.

If the above equation from Cierjacks34 is rewritten as:

Φxk =

N∑
i=1

Φni

24∑
j=k

∆Rxk

∑
A

NAσ
A
nx(Eni)f

A
nx(Eni , Exj)∆Exj , (5.2)

71

and the summations are considered as matrix multiplications, the following substitu-

tions can be made:

fA where fAji = fAnx(Eni , Exj)∆Exj

σA where σAij = σAnx(Eni)δij

R where Rij = ∆Rxi, ∀ i ≤ j

T = R
∑
A

NAf
AσA,

(5.3)

and the final formula to calculate the charged particle flux from the neutron flux would

be

~Φx = T~Φn. (5.4)

It should be noted that this method will only calculate the charged particle fluxes

originating from interactions with the initial isotopes in the mixture, and not with those

induced by neutron interactions. In most cases this is very reasonable since only a small

fraction of the initial isotopes is actually converted to something else.

The implementation of this feature will require the creation, indexing and inclusion

of another set of libraries to contain the various data required for this operation, in par-

ticular, the incremental ranges, ∆R, and the charged particle production distributions,

fAnx(Eni, Exj).

5.2.2 Sensitivity Analysis

By performing a sensitivity analysis, it is possible to determine how an activation prob-

lem’s solution depends on the transmutation and decay data used in the problem.35

This analysis can be used in a number of ways including pathway analysis (see Ref.

35), data evaluation, and error estimates of solutions. By understanding how the solu-

tion depends on the input data, evaluators can determine which cross-sections and decay

72

constants need to have the most accurate determination. For example, if the solution

depends more strongly on the decay constant for tritium than on the transmutation

rate of deuterium to tritium, more effort should be spent on improving the evaluation

of that decay constant that on refining the D(n, γ)T cross-section. Furthermore, the

sensitivity coefficients obtained by this method define how the data uncertainties should

be weighted when they are summed to find the uncertainty in the final solution.

The method developed by Khursheed35 and based on work by James36 is particularly

suited to a code based on a time-step ODE solver. To find the sensitivity to a particular

datum, x, one differentiates the initial equation:

∂ ~̇N (t)

∂x
=
∂A

∂x
~N(t) + A

∂ ~N(t)

∂x
.

Assuming that the derivatives can be exchanged and rewriting with N ′ = ∂ ~N(t)
∂x

:

Ṅ ′ = AN ′ +
∂A

∂x
~N(t) (5.5)

having almost the same form as the original equation. In this case, if using a time-step

based ODE solver, this solution can be easily calculated concurrently with the main

solution.

Also, given the solution,

~N(t) = T ~No(t) = eAt ~No(t), (3.4)

it is possible to directly define,

∂ ~N (t)

∂x
=
∂T

∂x
~No(t) + T

∂ ~No(t)

∂x
=
∂T

∂x
~No(t) =

∂
[
eAt

]
∂x

~No(t), (5.6)

since the initial composition is completely independent of the data.

However, the partial derivative of T = eAt is very difficult to find. Instead, begin-

ning with the form of solution used to fill each matrix position,

T̃ij(s) = F̃ij(s)
i∏

k=j+1

Pk, (5.7)

73

the partial differential can be directly computed,

L
[
∂Tij
∂x

]
=

i∏
k=j+1

Pk

i∑
l=j

−F̃ij
s+ dl

∂dl
∂x

+ F̃ij

i∏
k=j+1

Pk

i∑
l=j+1

1

Pl

∂Pl
∂x

= Ñij

[
i∑

l=j+1

1

Pl

∂Pl
∂x
−

i∑
l=j

1

s+ dl

∂dl
∂x

]

=

i∏
k=j+1

Pk

[
i∑

l=j+1

1

Pl

∂Pl
∂x
−

i∑
l=j

1

s+ dl

∂dl
∂x

]
F̃ij(s).

(5.8)

Of all the Pk and dl, at most two may depend on any given input data value, so

this equation can be used to fill the matrix, ∂T
∂x

, with at most one extra calculation to

invert 1
s+dl

F̃ij (since the inversion of F̃ij is performed for the main solution anyway) due

to its similar form to F̃ij. This inversion would have to be performed using the Laplace

methods because there is a guaranteed multiplicity of pole dl.

On the other hand, it is important to note that in a 3-D problem, there will be a

distinct set of data, x, for each spatial point, and thus, a full sensitivity analysis would

require many more computations even though each part of the analysis does not itself

involve a significant number of extra calculations.

5.2.3 Relational Databases and Advanced Data Handling

Given the large volumes of nuclear data used by an activation calculation there may

be some benefit in using a relational database engine for data lookup. While the im-

plications of database implementation on the code’s performance would have to be

considered, it would avoid the use of proprietary binary formats for nuclear data, such

as that used by ALARA to maximize its performance. Furthermore it would allow for

the more straightforward selection of nuclear data to be used in a problem. A variety

of different indexes could be used to describe a piece of nuclear data, such as its source,

the number of energy groups in the cross-section data, its energy range, its date of eval-

74

uation, and so on. The user could then provide a set of criteria by which data would

be chosen to solve a problem. These criteria would ensure that the user has access to

the best data, possible mixing data from different sources and different distributions.

Similarly, relational databases could be used to store the data created by an acti-

vation problem. The current version of ALARA creates a hierarchical binary dump file

with one block per initial isotope and one record per block for each interval contain-

ing that root isotope. This is another proprietary data format requiring special tools

to access it for more advanced post-processing. If this data were to be stored in a

standardized database, standard tools could be used to extract and combine in various

arrangements required by the user. It may also provide the possibility to increase the

archived data’s resolution, storing the exact solution of every pc-node in an activation

tree for each interval. This volume of data would be of the order of 300 MB for a

problem similar to the benchmark problems in chapter 4. While creating and storing

a file of such size may not be a problem, randomly accessing individual records to be

summed into a single response may be inefficient.

All of these advanced data handling techniques suggest the development of a post-

processor. By upgrading the ALARA dump file with an index, a graphical tool could

be built to randomly access the file as requested by the user, calculating a wider range

of responses than built in to ALARA itself and with more flexibility. For example, the

specific activity could be averaged across a user-defined set of zones in order to lower

the bulk activity to some acceptable level. A graphical application could be created

to allow tailoring of materials, with “slides” and “dials” being used to adjust impurity

concentrations in order to lower the material’s activation.

75

5.3 Summary

The ALARA activation code has been developed and validated for the solution of ac-

tivation problems. The set of basic features has been implemented and a selection of

advanced features are also operational.

A physical modeling method has been developed to permit the use of modified linear

chains without truncating loop in the activation trees. When combined with a carefully

designed truncation algorithm, this permits the use of transfer matrix mathematical

techniques. Such techniques are particular important for ensuring efficient solutions

when modeling arbitrary hierarchical irradiation schedules exactly. Another new feature

of ALARA is the ability to perform so-called reverse calculations.

In order to permit the solution of the straightened linear chains, new mathematical

methods have been implemented. The best method is adaptively chosen based on the

sub-problem’s characteristics at the time of the solution. This ensures an optimum

balance of accuracy and speed throughout the problem.

ALARA has been validated against the performance of other activation codes known

to perform accurately. The validation benchmarks demonstrated that ALARA’s ac-

curacy equals that of the state-of-the-art activation codes, with significantly shorter

runtimes. Once the basic features had been validated, ALARA was also able to validate

its advanced features by comparing the solutions to a suite of benchmark problems.

With its modern computational techniques and continuing development, it is hoped

that ALARA will become a widely used code for the activation analysis of nuclear sys-

tems. With its library driven handling of transmutation reactions, it can be used for

the analysis of a wide variety of systems, based on energy domain, particle type and

possible reaction channels.

76

References

[1] White, A., “Transmutation and Activation Analysis of Fusion Power Plants,”

Doctoral Thesis, University of Wisconsin-Madison, (May 1985).

[2] Barstall, R.F., “FISPIN - A Computer Code for Nuclide Inventory Calculations,”

ND-R-328(R), (October 1979).

[3] Bell, M., “ORIGEN–The ORNL Isotope Generation and Depletion Code,” Oak

Ridge National Laboratory report ORNL-4628, (May 1973).

[4] England, T.R., “CINDER - A One-Point Depletion and Fission Product Pro-

gram,” Bettis Atomic Power Laboratory report WAPD-TM-334(Rev), (1964).

[5] Bateman, H., Proc. Cambridge Phil. Soc. 15 423 (1910).

[6] Forrest, R.A., and J-Ch. Sublet, “FISPACT3 - User Manual,” AEA/FUS 227,

(April 1993).

[7] Jung, J., “RACC: Theory and Use of the Radioactivity Code RACC,” Argonne

National Laboratory report ANL/FPP/TM-122, (May 1979).

[8] Attaya, H., “Input Instructions for RACC-P,” Argonne National Laboratory re-

port ANL/FPP/TM-270, (September 1994).

77

[9] Wang, Q., and D.L. Henderson, “Summary Report for ITER Design Task D10:

Updating the Activation Code RACC for ITER Design Analysis,” University of

Wisconsin Fusion Technology Institute report UWFDM-977, (1995).

[10] Mann, F.M., “REAC*2: Users Manual and Code Description,” Westinghouse

Hanford Company report WHC-EP-0282, (December 1989).

[11] Sanz, J., et al, “ACAB, Activation Code for Fusion Applications: User’s Man-

ual V 2.0,” Lawrence Livermore National Laboratory report UCRL-MA-122002,

(September 1995).

[12] Sung, T.Y., and W.F. Vogelsang, “DKR: A Radioactivity Calculation Code for

Fusion Reactors,” University of Wisconsin Fusion Technology Institute report

UWFDM-170, (September 1976).

[13] Henderson, D.L., and O. Yasar, “DKRICF: A Radioactivity and Dose Rate Cal-

culation Code Package: Vols. I & II,” University of Wisconsin Fusion Technology

Institute report UWFDM-714, (November 1986). This code package is available

from the Radiation Shielding Information Center (RSIC) at Oak Ridge National

Laboratory as Computer Code Collection entry CCC-323-DKR.

[14] DKR-PULSAR is a new version of the DKR-ICF code which implements methods

from Reference 21 for the exact treatment of pulsed history irradiation. It is being

developed by D.L. Henderson and H. Khater at the University of Wisconsin–

Madison.

[15] Taylor, N., et al., “Experimental validation of calculations of decay heat induced

by 14 MeV neutron activation of ITER materials”, Fus. Eng. and Design, 45,

(March 1999).

78

[16] Cheng, E.T., R.A. Forrest, and A.B. Pashchenko, “Report on the Second In-

ternational Activation Calculation Benchmark Comparison Study,” International

Atomic Energy Agency report INDC(NDS)-300, (February 1994).

[17] Wilson, P.P.H., and D.L. Henderson, “Expanding Towards Excellence: Ironing

out DKR’s Wrinkles,” University of Wisconsin Fusion Technology Institute report

UWFDM-995, (1995).

[18] Sublet, J.-Ch., J. Kopecky and R.A. Forrest, “The European Activation File,

EAF-97 - Cross section library,” United Kingdom Atomic Energy Agency Fusion

report UKAEA-FUS-351, (June 1997).

[19] Pashchenko, A.B., et al., “FENDL/A-2.0 Neutron activation cross section data

library for fusion applications,” International Atomic Energy Agency report

IAEA(NDS)-173 (October 1998). Data library retrieved online from the IAEA

Nuclear Data Section.

[20] Mann, F.M., and D.E. Lessor, “REAC*3 Nuclear Data Libraries,”

Proceedings of an International Conference on Nuclear Data entitled:

Nuclear Data for Science and Technology, held at the Forschungszentrum

Juelich, Fed. Rep. of Germany, 13-17 May 1991.

[21] Sisolak, J.E., S.E. Spangler, and D.L. Henderson, “Pulsed/Intermittent Activa-

tion in Fusion Energy Reactor Systems,” Fusion Tech. 21, 2145 (1992).

[22] Spangler, S.E., “A Numerical Method for Calculating Nuclide Densities in Pulsed

Activation Studies,” Master of Science Thesis, University of Wisconsin-Madison,

(August 1991).

79

[23] Spangler, S.E., J.E. Sisolak, and D.L. Henderson, “Calculational Models for the

Treatment of Pulsed/Intermittent Activation Within Fusion Energy Devices” Fus.

Eng. and Design, 22, 349 (July 1993).

[24] de Hoon, M.L.J., E. Greenspan and M.D. Lowenthal, “A Model for Pulsed Ac-

tivation Accounting for Circulation, Extraction and Makeup,” Abstracts of the

Thirteenth American Nuclear Society Topical Meeting on the Technology of Fu-

sion Energy, Nashville, TN, (June 1998).

[25] Wilson, P.P.H., “Neutronics of the IFMIF Neutron Source: Development and

Analysis,” Forschungszentrum Karlsruhe report FZKA-6218 (1999).

[26] Moler, C. and C. Van Loan, “Nineteen Dubious Ways to Compute the Exponential

of a Matrix,” SIAM Review, 20, 801 (Oct. 1978).

[27] Fukumoto, H., “New Approach to Neutron-Induced Transmutation, Radioactivity

and Afterheat Calculations and Its Application to Fusion Reactors,” Nuc. Sci. and

Tech., 23, 97, (February 1986).

[28] Wilson, P.P.H., J.E. Sisolak, and D.L. Henderson, “GERAPH: A Novel Approach

to the General Solution of Pulsed History Activation Problems,” Fusion Tech. 26,

1092 (November 1994).

[29] Lee, E.S., “Computer Engineering: Computer Algorithms, Data Structures, and

Languages,” Prepared Notes, University of Toronto, (1989).

[30] Sawan, M.E., “FENDL Activation Benchmark: Specifications for the Calcu-

lational Activation Benchmark,” International Atomic Energy Agency report

INDC(NDS)-318, (October 1994).

80

[31] O’Dell, R.D., et al., “User’s Manual for ONEDANT - A Code Package for One-

Dimensional, Diffusion-Accelerated, Neutral-Particle Transport,” Los Alamos Na-

tional Laboratory report LA-9184-M, Rev., (February 1989).

[32] Attaya, H., “Radioactivity Computation of Steady State and Pulsed Fusion Re-

actor Operation,” Fusion Eng. and Design, 28 571 (1995).

[33] Wang, Q., and D.L. Henderson, “Pulsed Activation Analyses of the ITER Blanket

Design Options Considered in the Blanket Trade-off Study,” Fusion Eng. and

Design, 28 579 (1995).

[34] Cierjacks, S.W., et al, “Development of a Novel Algorithm and Production of

New Nuclear Data Libraries for the Treatment of Sequential (x, n) Reactions in

Fusion Material Activation Calculations,” Fus. Tech., 24, 277 (November 1993)

[35] Khursheed, A., “Neutron-Induced Activation of Materials for the First Wall of

Conceptual Fusion Reactors,” Doctoral Thesis, Imperial College of Science and

Technology, London, England, (1989).

[36] James, M.F., “The Calculation of Sensitivities of Nuclide Inventories and Decay

Power,” Proceedings of the NEA Specialist Meeting on Data for Decay Heat

Predictions, Studsvik, Sweden, 7-10 September 1987.

81

Acknowledgements
At this point I would like to thank all those people who have supported me profes-

sionally, technically and morally throughout the development of this research. While

I cannot list them all here, certain groups and individuals are deserving of special ac-

knowledgement.

This work was carried out in the Fusion Technology Institute [FTI] of the University

of Wisconsin-Madison’s Engineering Physics [EP] Department, with partial support

from the United States Department of Energy. I gratefully acknowledge the support

and feedback of all my FTI and EP colleagues.

Despite the short opportunity I had to know him, the late Prof. Emeritus Charles

Maynard provided much inspiration for this work. He always insisted that loops were

usually not important, and when they were, the solution could be easily found. I am

happy to have proven him correct.

Special thanks are due to Professor Douglass Henderson for presiding over this

research. We have both learned much more about the nature of this problem through

many hours of debate and discussion over the last six years. ALARA would never have

been completed without his guidance.

In addition, Jim Sisolak, Jeff Crowell and Prof. Jake Blanchard have all, at times,

been good listeners to help me focus my ideas and develop my methods.

Finally, a very special thanks and recognition for my wife, Laurie Nagus for putting

up with the long hours, for listening to my complaining, and most of all, for always

believing that I could do it.

82

Appendix A

Derivation of Recursive Derivative

Definition

G(s) =

N∏
i=1

1

s+ di
(A.1)

G′(s) =

N∑
j=1

−1

s+ dj

N∏
i=1

1

s+ di

= −G(s)
N∑
j=1

1

s+ dj

(A.2)

G′′(s) = −G′(s)
N∑
j=1

1

s + dj
+G(s)

N∑
j=1

(s+ dj)
−2 (A.3)

G′′′(s) = −G′′(s)
N∑
j=1

1

s+ dj
+G′(s)

N∑
j=1

(s+ dj)
−2

+G′(s)
N∑
j=1

(s+ dj)
−2 − 2G(s)

N∑
j=1

(s+ dj)
−3

= −G′′(s)
N∑
j=1

1

s+ dj
+ 2G′(s)

N∑
j=1

(s+ dj)
−2

− 2G(s)

N∑
j=1

(s+ dj)
−3

(A.4)

83

G′′′′(s) = −G′′′(s)
N∑
j=1

1

s+ dj
+G′′(s)

N∑
j=1

(s+ dj)
−2

+ 2G′′(s)
N∑
j=1

(s+ dj)
−2 − 4G′(s)

N∑
j=1

(s+ dj)
−3

− 2G′(s)
N∑
j=1

(s+ dj)
−3 + 6G(s)

N∑
j=1

(s+ dj)
−4

= −G′′′(s)
N∑
j=1

1

s+ dj
+ 3G′′(s)

N∑
j=1

(s+ dj)
−2

− 6G′(s)

N∑
j=1

(s+ dj)
−3 + 6G(s)

N∑
j=1

(s+ dj)
−4

(A.5)

Thus, for n=4,

G(n)(s) = −(n− 1)!

(n− 1)!
G(n−1)(s)

N∑
j=1

1

s + dj

+
(n− 1)!

(n− 2)!
G(n−2)(s)

N∑
j=1

(s+ dj)
−2

− (n− 1)!

(n− 3)!
G(n−3)(s)

N∑
j=1

(s + dj)
−3

+
(n− 1)!

(n− 4)!
G(n−4)(s)

N∑
j=1

(s+ dj)
−4

=
∑
i=1

n(−1)i
(n− 1)!

(n− i)!G
(n−i)(s)

N∑
j=1

(s+ dj)
−i

(A.6)

A.1 Induction Proof

G(n)(s) =
n∑
i=1

(−1)i
(n− 1)!

(n− i)!G
(n−i)(s)

N∑
j=1

(s+ dj)
−i (A.7)

given

G(0)(s) = G(s) =

N∏
j=1

(s+ dj)
−1 (A.8)

84

First, we solve for n=1:

G′(s) = (−1)
0!

0!
G(s)

N∑
j=1

(s+ dj)
−1

= −G(s)

N∑
j=1

(s+ dj)
−1

(A.9)

which matches Equation A.2.

Now, we solve for n=2:

G′′(s) = (−1)
1!

1!
G′(s)

N∑
j=1

(s+ dj)
−1 +

1!

0!
G(s)

N∑
j=1

(s+ dj)
−2

= −G′(s)
N∑
j=1

(s+ dj)
−1 +G(s)

N∑
j=1

(s+ dj)
−2

(A.10)

which matches Equation A.3.

Now, given G(k)(s), we take the derivative, G(k+1)(s), and see if it matches the correct

form:

G(k+1)(s) =

k∑
i=1

(−1)i
(k − 1)!

(k − i)!

[
G(k−i+1)

N∑
j=1

(s+ dj)
−i − iG(k−i)

N∑
j=1

(s+ dj)
−(i+1)

]

(A.11)

letting l = k + 1:

G(l)(s) =

l−1∑
i=1

(−1)i
(l − 2)!

(l − i− 1)!
G(l−i)

N∑
j=1

(s+ dj)
−i

−
l−1∑
i=1

(−1)i
(l − 2)!

(l − i− 1)!
iG(l−i−1)

N∑
j=1

(s+ dj)
−(i+1)

(A.12)

85

Now, letting m = i+ 1 in the second sum:

G(l)(s) =

l−1∑
i=1

(−1)i
(l − 2)!

(l − i− 1)!
G(l−i)

N∑
j=1

(s+ dj)
−i

+

l∑
m=2

(−1)m
(l − 2)!

(l −m)!
(m− 1)G(l−m)

N∑
j=1

(s+ dj)
−m

(A.13)

and recombining the sums:

G(l)(s) = −(l − 2)!

(l − 2)!
G(l−1)(s)

N∑
j=1

(s+ dj)

+

l−1∑
i=2

(−1)i
[

(l − 2)!

(l − i− 1)!
+ (i− 1)

(l − 2)!

(l − i)!

]
G(l−i)

N∑
j=1

(s+ dj)
−i

+ (−1)l(l − 2)!(l − 1)G(s)

N∑
j=1

(s+ dj)
−l

(A.14)

= −G(l−1)(s)
N∑
j=1

(s+ dj)
−1

+
l−1∑
i=2

(−1)i
[
(l − i) (l − 2)!

(l − i− 1)!(l − i) + (i− 1)
(l − 2)!

(l − i)!

]
G(l−i)

N∑
j=1

(s+ dj)
−i

+ (−1)l(l − 1)!G(s)
N∑
j=1

(s+ dj)
−l

(A.15)

= −G(l−1)(s)

N∑
j=1

(s+ dj)
−1

+

l−1∑
i=2

(−1)i
(l − 1)!

(l − i)!G
(l−i)

N∑
j=1

(s+ dj)
−i

+ (−1)l(l − 1)!G(s)
N∑
j=1

(s+ dj)
−l

(A.16)

=
l∑
i=1

(−1)i
(l − 1)!

(l − i)!G
(l−i)

N∑
j=1

(s+ dj)
−i (A.17)

QED.

86

Appendix B

Other Forms of 1/s Expansion

The 1/s expansion from section 3.3 can take on many slightly different forms providing

different methods for determining the coefficients. First, it is instructive to relate the

expansion as shown in equation 3.21 to a simple difference of exponentials. Starting

with the Bateman solution (equation 3.12) for a single matrix element,

T31 =
P2(e

−d1t − e−d3t)

d3 − d1

P3

d2 − d1

+
P3(e

−d2t − e−d3t)

d3 − d2

P2

d1 − d2

(3.12)

87

and using the standard expansion for the exponential, we get

= P2P3

[
1− d1t+ (d1t)2

2
− (d1t)3

6
− 1 + d3t− (d3t)2

2
+ (d3t)3

6
+ . . .

(d3 − d1)(d2 − d1)

+
1− d2t+ (d2t)2

2
− (d2t)3

6
− 1 + d3t− (d3t)2

2
+ (d3t)3

6
+ . . .

(d3 − d2)(d1 − d2)

]

= P2P3

[
(d3 − d1)[t− (d3 + d1)

t2

2
+ (d2

3 + d3d1 + d2
1)
t3

6
+ . . .]

(d3 − d1)(d2 − d1)

+
(d3 − d2)[t− (d3 + d2)

t2

2
+ (d2

3 + d3d2 + d2
2)
t3

6
+ . . .]

(d3 − d2)(d1 − d2)

]

= P2P3

[
(d2 − d1)

t2

2
+ [d3(d1 − d2) + (d2

1 − d2
2)]

t3

6
+ . . .

d2 − d1

]

= P2P3

[
t2

2
− (d3 + d2 + d1)

t3

6
+ . . .

]
= P2P3 t

2

[
1

2
− (d3 + d2 + d1)

t

6
+ . . .

]

(B.1)

which has the form of Equation 3.21.

Whether in the Laplace transform domain or the time domain, there is a necessity

to calculate coefficients of the form:

{ci} =

{
N∑
j=1

dj ,
N∑
j=1

dj

N∑
k=j

dk ,
N∑
j=1

dj

N∑
k=j

dk

N∑
l=k

dl , . . .

}
. (B.2)

A different form for these coefficients becomes apparent when N = 2 or N = 3. The

coefficients, {ci}, are:

{ci} =
{
d1 + d2 , d1(d1 + d2) + d2

2 , d1

[
d1(d1 + d2) + d2

2

]
+ d3

2 , . . .
}

(B.3)

or

{ci} =
{
d1 + d2 + d3, d1(d1 + d2 + d3) + d2(d2 + d3) + d2

3,

d1

[
d1(d1 + d2 + d3) + d2(d2 + d3) + d2

3

]
+ d2

[
d2(d2 + d3) + d2

3

]
+ d3

3 , . . .
}
.

(B.4)

88

This shows the following pattern, assuming {λ0,j} = 1; j = [1, N]:

λij =
N∑
k=j

dkλi−1,k (B.5)

ci = λi1. (B.6)

This last form leads to an efficient way to calculate these coefficients using matrix

multiplications. If we form a matrix, M , with elements mij = dj; j ≥ i:

M =



d1 d2 d3 . . . dN

0 d2 d3 . . . dN

0 0 d3 . . . dN
...

. . .
...

0 0 0 . . . dN


, (B.7)

it is clear that λ1 = [M ·~1] and that λi = [Mi ·~1]. Therefore,

ci = λi1 =
[
M i ·~1

]
1
. (B.8)

Since the direct calculation of

N∑
j1=1

dj1

N∑
j2=j1

dj2

N∑
j3=j2

dj3 · · ·
N∑

jn−1=jn−2

djn−1

N∑
jn=jn−1

djn =

1∏
l=n

N∑
jl=jl−1

djl (B.9)

tends to require O(Nn) calculations, the matrix method above will be highly advanta-

geous since it requires only O(nN3) calculations.

Once these coefficients have been calculated, they are then used to calculate the

time response using Equation 3.21:

f(t) = tn

[
1

n!
− t

(n+ 1)!

i∑
l=j

dl +
t2

(n+ 2)!

i∑
l=j

dl

i∑
k=l

dk

− t3

(n + 3)!

i∑
l=j

dl

i∑
k=l

dk

i∑
m=k

dm + · · ·
]
.

(3.21)

89

Appendix C

Users’ Guide

The usage of ALARA is fairly straightforward, requiring little knowledge of the code’s

inner workings. Of course, to ensure that ALARA is well-suited to the problems that

you are trying to solve, you are encouraged to read chapters 2 and 3 and understand

the physical and mathematical modeling characteristics of ALARA.

This chapter will describe the command-line options of ALARA and then describe

the basic support files necessary to run ALARA.

C.1 Command-line Options

alara [-t tree output filename] [-h] [-v [n]] input filename

ALARA currently supports 4 command-line options:

-h Help

This option will print a short help message describing the command-line options

and their usage.

-t tree output filename Tree File

This option allows you to define the file name for the tree file containing tree

90

creation and truncation information. This information can later be used for basic

pathway analysis. The default is to create no tree file. The format of this file is

described in section C.4.2.

-v [n] Verbose

This option alters the output verbosity. Without this option, only the final results

will be displayed. By using this option, details of the calculation are included in

the output. The level of detail is controlled by the optional value, n, having a

value between 1 (least detail) and 7 (most detail). If no value is given, it defaults

to 1.

input filename Input File

This option allows you to define the input filename to be used by ALARA. If no

name is specified, the input will be read from stdin.

Output from ALARA is written to the stdout stream. To capture the output in a

file, simply use the standard method of your operating system.

C.2 Input File Description

The input file for ALARA has been designed to ensure that the input information is

easy to understand, edit and comment. This is possible by using a very free format

permitting comments, blank lines, inclusion of other files, and arbitrary ordering of

the input information. After reading the full input file, ALARA performs various cross-

checks and cross-references to ensure that the input data is self-consistent. It then goes

on to pre-process the data for the calculation. Every attempt has been made to give

useful error messages when the data is not consistent.

91

C.2.1 General

There are 19 possible input block types. These blocks can appear in any order and

many blocks can occur more than once, if needed. One block type, convert lib, is

only used to convert data library formats, and will cause ALARA to halt if used in an

input file. The other 18 input blocks are:

1. geometry

2. dimension

3. major radius

4. minor radius

5. volumes

6. mat loading

7. mixture

8. flux

9. spatial norm

10. schedule

11. pulsehistory

12. truncation

13. output

14. cooling

15. material lib

16. element lib

17. data library

18. dump file

Not all input blocks are required, with some having default values and others being

unnecessary for certain problems. There are also some input blocks which are incom-

patible with each other. While superfluous input blocks may go unnoticed (there are

occasional warnings), incompatible input blocks will create an error.

Most input blocks allow the user to define their own symbolic names for cross-

referencing the various input data. Any string of characters can be used as long as

its does not contain any whitespace (spaces, tabs, new-lines, etc.). It is considered

dangerous, however, to use a keyword as a symbolic name. If the input file is correct,

it will function properly, but if there are errors in the input file, the usage of keywords

as symbolic names may make the error message irrelevant. The keywords include those

listed in the above list and the keyword “end”. While many input blocks of fixed length

require nothing to indicate the end of the block, some blocks have a variable length and

require the keyword “end” to terminate the block.

Some input elements represent times and can be defined in a number of different

92

units. When this is the case, the floating point time value should be followed by a single

character representing the following units:
[s]econd [m]inute = 60 seconds [h]our = 60 minutes
[d]ay = 24 hours [w]eek = 7 days [y]ear = 52 weeks

[c]entury = 100 years
One input file can be included in another with the #include directive, similar to the

C programming language. Any number of files can be included, and included files can

also contain directives to include other files. The only restriction is that the inclusion

must not occur within an input block!

All other lines in which the first non-space character is the pound sign (or number

sign) (#) are considered as comments. Comments can also be used after any single

word input (an input value with no whitespace) by using the same comment character

(#). Such comments extend to the end of the current line. Blank lines are permitted

anywhere in the input file.

When length units are implied in the input for sizes and dimensions, it is only

important that all implied units be consistent but not what unit is implied.

C.2.2 geometry

This input block is only necessary when defining a geometry using the dimension input

block, but may always be included. It should only occur once. This input block takes

a single argument which must be one of the following:

point | rectangular | cylindrical | spherical | torus

This input block should not be terminated.
problem geometry

geometry spherical

If using the dimension input block to define the geometry and the type is torus,

the major radius input block is required and the minor radius block may also be

required.

93

C.2.3 dimension

This input block is used to define the geometry layout, and should be included once for

each dimension needed in the problem. The dimension block’s first element indicates

which dimension is being defined and should be one of the following:

x | y | z | r | theta | phi

ALARA will check to ensure that only dimensions relevant to the defined geometry are

included. For example, defining the ’x’ dimension in a spherical problem will generate

an error.

The dimension block’s next element is the first zone’s lower boundary, expressed as

a floating point number. This is followed by a list of pairs, one pair for each zone: an

integer specifying the number of intervals in this zone in this dimension and a floating

point number indicating the zone’s upper boundary. This list is terminated with the

end keyword.

sample dimension for spherical problem

dimension r 1.0 # inside radius

10 2.0 # 10 intervals in the first zone (1.0,2.0)

15 3.0 # 15 intervals in the next zone (2.0,3.0)

end

Since this method of defining the geometry calculates the the fine mesh intervals’

zone membership and volume from the dimension data, it is incompatible with the

volumes input block. Including both will generate an error message.

C.2.4 major radius and minor radius

These two input blocks are used to define the major and minor radii of toroidal ge-

ometries. They are only needed if defining a toroidal geometry with dimension input

94

blocks, and each should only be included once. Furthermore, if the minor radius dimen-

sion is defined with a dimension block, the minor radius input block is not required.

In both cases, these input blocks have a fixed size, with a single argument specifying

the radius as a floating point number.

major and minor radii of torus

major_radius 2.0

minor_radius 0.5

C.2.5 volumes

This input block is used to define the fine mesh intervals’ volumes and zone membership.

This block can be used instead of the dimension method of defining the geometry.

If both are used, an error will result. This block should only occur once. Multiple

occurrences will result in undefined behavior.

This input block should be a list of pairs, one pair for each interval. Each pair

consists of a floating point value for the volume of that interval and the symbolic name

of the zone containing that interval. These symbolic names should correspond with the

symbolic names given to the zones in the mat loading input block (see section C.2.6).

This list must be terminated with the keyword end.

list of fine mesh intervals

volumes

0.5 vacuum_vessel

1.5 shield_zone

2.34 blanket_zone

1.92 first_wall

end

C.2.6 mat loading

This input block is used to indicate which mixtures are contained in each zone. This

block is a list with one pair of entries for every zone. Each pair consists of a symbolic

95

name for the zone and a symbolic name for the mixture contained in that zone. This

list is terminated by the keyword end. This block should only occur once. Multiple

occurrences will result in undefined behaviour.

If the geometry is defined using the dimension input blocks, there number of zones

defined here must match the number of zones defined in the dimension blocks exactly;

if not, an error results. If the volumes method is used to define the geometry, this block

uniquely determines the number of zones. The symbolic name for the mixture must

match one of the mixture definitions exactly, or be the keyword ’void’, indicating that

this zone is empty of material.

material loadings for all zones

mat_loading

vacuum_vessel VV_materials

shield_zone shield_mixture

blanket_zone breeding_blanket

first_wall liquid_FW

scrapeoff void

end

C.2.7 mixture

This kind of block is used to define the composition of a mixture. This block can occur

as many times as necessary to define all the mixture compositions in the problem. Any

mixtures that are defined, but not used in the problem will generate a warning and be

removed from the list of mixtures.

The first element of a mixture block is the symbolic name used to refer to this

mixture elsewhere in the input file. Following this is a list of triplets with one triplet

for each mixture component. The list must be terminated with the keyword ’end’. The

first element of each triplet describes the type of that component and should be one of:

material | element | isotope | like | target

96

The remaining elements in each triplet are interpreted as follows, based on this first

element:

material The second element in this triplet is the symbolic name of a material defi-

nition existing in the material library (see section C.6.1). The final element is a

floating point value representing the relative density of this material. This value,

usually between 0 and 1, will be multiplied by the density found in the material

library to define the density of this component. It can also be interpreted as the

volume fraction of this material in this mixture.

element The second element in this triplet is the element’s chemical symbol. This

element will be expanded into a list of isotopes using the natural isotopic abun-

dances found in the element library (see section C.6.2). The final element is a

floating point value representing the relative density of this material. This value,

usually between 0 and 1, will be multiplied by the standard theoretical density

found in the element library to define the density of this component. It can also

be interpreted as the volume fraction of this element in this mixture.

isotope The second element in this triplet is a symbolic name for the isotope in the

format ZZ-AAA, where ZZ is the chemical symbol and AAA is the mass number,

for example, i-127, ca-40 or pb-207. The final element of this triplet is the

number density of this isotope in the mixture.

like This type of entry is provided as a convenience and indicates that this component

is like another user-defined mixture, with a potentially different density. The

second element of this triplet is the symbolic name of another mixture definition.

If the other mixture definition is not found, an error will result. The triplet’s

final element is a relative density, used to normalize the density as defined in that

mixture’s own definition. This might be used when a user-defined mixture makes

97

up part of another mixture. [Hint: it is permissible to define a mixture that is

not used in any zones, but only used as part of another mixture.]

target This type of entry is used to initiate a reverse calculation (see section 2.3)

and define the target isotopes for the reverse calculation. The user can define an

arbitrary number of target isotopes. The second element of this triplet is one of

the keywords element or isotope, indicating what kind of target this is. The

final element is the symbolic name of either the element or isotope, as defined

in the corresponding entries in this list above. There is no density in this type

of entry. If a target is of type element, the element will be expanded using the

element library to create a list of isotopes.

definition of vacuum vessel

mixture VV_materials

material SS316-L 1.0

end

definition of fusion shield

mixture shield_mixture

like vacuum_vessel 0.6

element he 0.4

end

definition of fusion breeding blanket

mixture breeding_blanket

element li 0.95

isotope li-6 6.02e23

target isotope h-3

end

Note that even if a target is defined in only one mixture, it will cause the whole

problem to be run as a reverse problem. There is therefore little purpose in having

mixture definitions without targets (such as in this example).

98

C.2.8 flux

This input block defines a set of flux spectra. Since different parts of the irradiation

history can have different flux spectra, this block may occur as many times as necessary

to represent all the different necessary flux definitions. The first element of this block

is a symbolic name, used to refer to this flux spectra definition. The other elements of

this block are a filename, a floating point scalar normalization, an integer skip value

(see below), and flux type indicator string, respectively.

The flux filename should indicate which file contains this flux information, including

path information appropriate to find the file from the directory in which ALARA will

be run.

The scalar normalization permits uniform flux scaling at all spatial points (as op-

posed to the spatial norm information in the next section). All groups of all fluxes in

this definition will be multiplied by this value.

The skip value indicates how many N-group flux entries to skip in this file before

reading the first flux. This permits the user to have one file with many different flux

spectra. For example, if the schedule requires two different flux spectra for N different

fine mesh points, the data for the first one may be at the beginning of the file, with a

skip of 0, while the data for the second flux definition would be after these first fluxes,

with a skip of N.

The last element is a character string indicating the flux file’s format. Currently

the only supported format is default. The default flux file format consists of one list

of group fluxes per spatial point. There are no other entries and this can be freely

formatted, although comments are not permitted.

99

flux for first part of irradiation schedule

flux high_yield_flux ../n.transport/machine.flux 1.0 0 default

flux for second part of irradiation schedule

flux low_yield_flux ../n.transport/machine.flux 1.0 432 default

flux for final part of irradiation schedule

flux attenuated_high_yield ../n.transport/machine.flux 0.5 0 default

[Hint: Different flux definitions might use exactly the same flux values (same flux

file and skip value) but a different scaling value.]

C.2.9 spatial norm

This input block allows the user to specify a scalar flux normalization for each fine

mesh interval, such as might be required to re-normalize the results of a transport

calculation on an approximated geometry. The number of normalizations must be at

least as many as the number of defined intervals, regardless of how the intervals are

defined (dimension vs. volumes). If there are too few, an error will result; if there are

too many, a warning will result.

This block consists of a list of floating point normalization values, one value for each

interval, and requires the end keyword to terminate the list.

normalizations to convert cylindrical model

to toroidal equivalent

spatial_norm

0.8

0.85

0.9

1.0

1.03

1.08

1.1

end

100

[Hint: if these values are purely a function of problem geometry, and not mixture

composition, it is possible that many problems have the same spatial normalization.

Put this data in a separate file and #include it when you need it.]

C.2.10 schedule

This kind of block is used to define a single schedule in the full irradiation history

hierarchy. Since the hierarchy may be composed of many schedules, this block might

occur many times. The first element in this input block is a symbolic name by which this

schedule can be referred to. Following this is a list of items occurring in this schedule.

There are two possible types for each item, and their may be an arbitrary list of items

in a schedule. This list must be terminated with the keyword ’end’. See section C.3 for

more information about defining schedules.

The first type of item is a simple pulse and the entries for this kind of item are a

floating point operating time, a single character defining the units of that operating

time, a symbolic flux name, a symbolic pulsing definition name, a floating point post-

item delay time, and a single character defining the units of that delay time.

The second type of item is a sub-schedule and the entries for this kind of item are

a symbolic name for the sub-schedule, a symbolic pulsing definition name, a floating

point post-item delay time, and a single character defining the units of that delay time.

In both cases, if the symbolically named items (flux, pulsing definition, or schedule)

are not found during cross-referencing, an error results.

101

top level schedule

schedule top

a schedule of operation defined by ’phase_1_sched’

repeated with a cycle defined by ’phase_1_cycle’

after which there is a 10 week delay

phase_1_sched phase_1_cycle 10 w

a schedule of operation defined by ’phase_2_sched’

repeated with a cycle defined by ’phase_2_cycle’

after which there is a 5 week delay

phase_2_sched phase_2_cycle 5 w

end

phase 1 schedule

schedule phase_1_sched

a pulsing regimen with 1800 s pulses at flux ’high_yield_flux’

pulsed with ’5_week_plan_short’ followed by a 1 week delay

1800 s high_yield_flux 5_week_plan_short 1 w

a special schedule for cleaning the facility, ’cleaning_sched’

with a pulsing history ’cleaning_cycle’ followed by no delay

cleaning_sched cleaning_cycle 0 s

end

cleaning sched

schedule cleaning_sched

two consecutive pulsing regimen, each with one day pulses and

pulsing history ’daily_week_long’ followed by a 1 day delay

the first uses ’low_yield_flux’ and the other ’low_energy_flux’

1 d low_yield_flux daily_week_long 1 d

1 d low_energy_flux daily_week_long 1 d

end

phase 2 schedule

schedule phase_2_sched

a pulsing regimen with 1 hour pulses at flux

’high_yield_flux’ pulsed with ’5_week_plan_long’ after which

there is a 1 week delay

1 h high_yield_flux 5_week_plan_long 1 w

same cleaning phase as in phase 1 schedule

cleaning_sched cleaning_cycle 0 s

end

102

C.2.11 pulsehistory

This kind of input block defines the multi-level pulsing histories referenced in the

schedule definitions. See section C.3 for more information about defining schedules and

histories. Since many different pulsing histories may be used throughout the hierarchy

of schedules, this block may occur many times.

The first element of each block is a symbolic name for referring to this pulsing

schedule. Following this is a list of pulsing level definition triplets, each consisting of

an integer number of pulses, a floating point delay time between pulses, and a single

character defining the units of that delay time. Since an arbitrary number of pulsing

levels is allowed, this list must be terminated with the keyword ’end’.

define 5 weeks of the short pulses (1800 s = 1/2 hour)

pulsehistory 5_week_plan_short

4 90 m # 4 pulses each day with one every 2 hours

5 17.5 h # 5 days with 16 hours + 90 minutes delay (overnight)

5 2.73 d # 5 weeks with 2 days + 17.5 hours delay (weekends)

end

define 5 weeks of the long pulses (1 h)

pulsehistory 5_week_plan_long

4 1 h # 4 pulses each day with one every 2 hours

5 17 h # 5 days with 16 hours + 1 h delay (overnight)

5 2.71 d # 5 weeks with 2 days + 17 hours delay (weekends)

end

C.2.12 truncation

This fixed sized input block defines the parameters used in truncating the activation

trees. See section 2.1.2 for a detailed discussion of the tree truncation issue. The first

element of this block is the truncation tolerance and the second is an ignore tolerance.

When testing the relative atom loss (or relative production in reverse calculations), any

value higher than the truncation tolerance will result in continuing the tree while lower

103

values will result in truncation. If the value is also lower than the ignore tolerance, that

node is completely ignored.

defined a 1/10000 tolerance, ignoring 1e-10

truncation 1e-4 1e-10

C.2.13 output

This kind of input block allows the user to define the output’s resolution and format.

The first element of an output format block indicates the resolution and should be one

of:

interval | zone | mixture

This is followed by a list of output types and modifiers described in the following table:

keyword function

component component breakdown in addition to total response
number density number density result of all produced isotopes
specific activity specific activity of all radioactive isotopes

total heat total decay heat
alpha heat total alpha heating
beta heat total beta heating

gamma heat total gamma heating

104

output only total zone number densities (no component breakdown)

output zone

number_density

end

now output activities and decay heats for zones

with component breakdown

output zone

component

specific_activity

total_heat

end

now output total activities for mixtures

output mixture

specific_activity

end

See section C.4 for information on interpreting the output files generated by ALARA.

C.2.14 cooling

This input block is used to define the after-shutdown cooling times at which the problem

will be solved. Multiple occurrences will result in undefined behavior. This block is

simply a list of times, where each time consists of a floating point time followed by a

single character defining the time’s units. Since an arbitrary number of cooling times

can be solved, this list must be terminated with the keyword ’end’.

a wide array of cooling times

cooling

1 m

1 d

1 w

0.5 y

1 y

10 y

1 c

end

105

C.2.15 material lib and element lib

These two input blocks are used to specify the libraries to be used for looking up the

definitions of materials and elements when they are given as mixture components (see

section C.2.7). Each block has a single element consisting of the filename to be used in

each case, including appropriate path information to find that file from the directory

where ALARA is being run. For more information on the format of these libraries, see

section C.6.

material_lib /alara/data/matlib/magnetic_fusion

element_lib /alara/data/std.elelib

C.2.16 data library

This input block is used to define the type and location of the nuclear data library.

The first element of this block is character string defining the type of library. The

subsequent elements indicate the file’s location. Currently accepted library types are:

alaralib Standard ALARA v.2 binary library. This library type requires a single file-

name indicating the library’s location.

adjlib Standard ALARA v.2 reverse library This library type requires a single filename

indicating the library’s location.

eaflib Data library following EAF conventions (ENDF/B). This library type requires

two filenames, the transmutation library and the decay library, respectively. These

libraries will be read and processed, creating an ALARA v.2 binary library with

the name ’alarabin’ for use in subsequent calculations. Alternatively, this library

could be converted to an ALARA v.2 binary library as a separate process using

the convert lib function.

106

For both types of ALARA v.2 library, the extension “.lib” will be added to the file-

name indicated in this input block. Otherwise, all filenames should include appropriate

path information to find the file from the directory in which ALARA will be run.

convert and use an EAF formated FENDL2 library

data_library eaflib /alara/data.src/FENDL2/fendlg-2.0

/alara/data.src/FENDL2/fendld-2.0

C.2.17 dump file

This input block defines the filename to use for the binary data dump produced during

a run of ALARA. This is currently used to store the intermediate results during the

calculation, and will be extended in the future to allow sophisticated post-processing of

the data. This filename should be a valid name for a new file, including path information

appropriate for the directory where ALARA will be run. Note that if the dump file

already exists, it will be overwritten with no warning. If this input block is omitted,

the default name ’alara.dump’ will be used.

define a dump file name

dump_file testing/test_problem.dump

C.3 Defining Irradiation Schedules

With the added flexibility in irradiation schedule definition comes added complication.

All attempts have been made for this to be a straightforward process, and this section

should help make it clearer.

Since the hierarchical systems of schedules are based on repetition, the simplest way

to develop the input representing any given irradiation schedule is to identify repeated

blocks within the schedule (or some portion). Each of these blocks is then given the

107

same treatment, with looking for repetition within each block and so on, until the last

stage, where the repeated element is a single pulse.

C.4 ALARA Output File Formats

C.4.1 Output File

As described in section C.1 on command-line arguments, various levels of output are

available during the calculation. The part of the output file will contain this verbose

output, including confirmation of the input data and details of the cross-referencing

and preprocessing of the input.

The second part of the output file shows details on the tree building process, ranging

from a simple list of the root isotopes being solved and statistics on the size and speed

of the solution, to details on the chain growth and truncation calculations (depending

on the verbosity specified on the command-line).

for each output description (point = interval | zone | mixture)

for each point

if component break-down requested

table (type 1) for each component in this point’s mixture

table (type 1) of total results for this point

table (type 2) of total results for all points

SO
L

U
T

IO
N

information on point: volume, zone name, mixture name

Figure C.1: Output file structure.

The final part of the output file are the results, as requested by the user in the

input file. This output will include one section for each output format description given

by the user. Each of these sections will be divided into blocks as shown in figure C.1.

108

There are two types of tables. The first type has a row for each isotope produced in

the problem that has a non-zero response. For example, the specific activity in a water

filled zone of the benchmark problem of chapter 4 might be:

isotope shutdown 1 h 1 d 30 d 1 y

==

h-3 1.9419e+08 1.9419e+08 1.9416e+08 1.9330e+08 1.8361e+08

c-14 1.3073e+08 1.3073e+08 1.3073e+08 1.3073e+08 1.3072e+08

c-15 3.9876e+10 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

n-16 7.9376e+13 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

n-17 2.3761e+10 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

n-18 1.5607e+09 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

o-19 1.7727e+09 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

==

total 7.9443e+13 3.2492e+08 3.2490e+08 3.2403e+08 3.1433e+08

The second type of table has a row for each point in the requested resolution, giving

the total response at that point. The specific activity in all the benchmark problem’s

zones might be:

109

Totals for all zones.

zone shutdown 1 h 1 y

==

1 central_zone (void)

2 1.8628e+09 1.3445e+09 5.3928e+07 magnet_coil (TF_Coil)

3 6.7569e+08 2.1433e+08 2.1405e+06 magnet_ins (Insulator)

4 gap1 (void)

5 2.8115e+09 1.4657e+08 4.2568e+07 i_VV_shield1 (Pb_B4C)

6 3.7343e+10 3.3576e+10 3.5317e+09 i_VV_wall1 (Inconel)

.

.

.

25 2.0427e+16 1.4648e+16 1.0754e+14 i_fw_cube (Cu-Be-Ni)

26 5.8139e+15 9.3164e+13 8.8089e+13 i_fw_Be (Be)

27 i_Scrape (void)

28 plasma (void)

29 o_scrape (void)

30 7.6731e+15 1.2204e+14 1.1539e+14 o_fw_Be (Be)

31 2.3041e+16 1.6188e+16 1.4785e+14 o_fw_cube (Cu-Be-Ni)

.

.

.

45 2.3003e+11 2.8462e+06 2.7750e+06 o_b_water1 (water)

46 9.6034e+12 8.1892e+12 1.2897e+12 o_b_steel1 (steel)

47 gap3 (void)

48 6.5203e+12 5.7575e+12 6.0297e+11 o_VV_wall2 (Inconel)

49 4.3277e+11 3.6355e+11 4.6945e+10 o_VV_shield2 (Steel_Water)

50 5.3731e+09 4.8643e+09 5.1452e+08 o_VV_wall1 (Inconel)

51 4.1986e+08 2.0902e+07 6.2052e+06 o_VV_shield1 (Pb_B4C)

==

If this is a reverse calculation, the entire structure defined above will be repeated

for each target isotope.

C.4.2 Tree File

ALARA also produces a so-called tree file to allow some rudimentary pathway analysis

(see Section C.1). The tree file contains much information about the creation and

truncation of the trees and chains used to calculate the transmutation and activation

110

in the problem.

One tree will be created for each initial isotope. All the information given for this

isotope is based on the flux chosen for the truncation calculations of this isotope, namely,

the group-wise maximum flux across all the intervals in which the initial isotope exists.

An entry for an isotope in the tree will look like this:

-(na)->h-3 - (0.00306937)

The level of indentation indicates the rank of this isotope in the tree. This can be

best seen by viewing the whole file and noting the line’s relative indentation. The

information given in such an entry is as follows:

reaction type: (na) This indicates the reaction type(s). If multiple reactions lead

to this product, the reactions will be separated by commas. The information

indicates the emitted particles only. Therefore, in this example, the reaction is an

(n,na) reaction. Generally, standard symbols are used, such as ‘n’ for neutrons, ‘a’

for alpha particles, ‘p’,‘d’,‘t’ for the three isotopes of hydrogen, respectively, and

‘h’ for helium-3. For all neutron reactions, an additional ‘*’ is used to indicate

that the product is in an excited isomeric state. Finally, for decay reactions the

symbol ‘*D’ is used.

product nuclide: h-3 The product isotope’s chemical symbol and atomic number. In

cases where the product is in an isomeric state, this will be followed by a letter

(m,n,...) indicating which isomeric state.

truncation mode: - This single character indicates the result of the truncation cal-

culation at this node. There are five possible results as follows (see Chapter 2):

- This code indicates that the chain continues normally because this isotope

passed all the tests.

111

* This code indicates that only the radioactive decays of the chain will be followed

after this node. This arises when the production does not pass the truncation

tolerance test, but ensures that the result includes all the radioactive prod-

ucts. Stable products which are descendants of this node may be calculated

if they themselves pass the ignore tolerance test.

/ This code indicates that the chain will be fully truncated at this node, and the

result will include this node. This arises when the node is a stable isotope

and does not pass the truncation tolerance test, but does pass the ignore

tolerance test.

< This code indicates that the chain will be fully truncated at this node and will

not be included in the result. This arises when the production of this nuclide

does not pass either the truncation or the ignore tolerance test.

truncation production: (0.00306937) This indicates the relative production at

the end of operation of this nuclide from the initial isotope during the trunca-

tion calculation. As explained in Chapter 2, this represents the total production

of this nuclide during the whole problem, assuming that none of it is transmuted

or decays further. If this production is not calculated, for example, because the

chain is only being followed on radioactive reactions and this nuclide is stable,

then this entry will be ‘ - ’.

C.5 Binary Reaction Library Format

Because the reaction schemes/chains are created by a depth first search using the data

from the transmutation and decay libraries, these libraries need to be accessed exten-

sively and randomly. In the past, such random access was not possible due to limits

112

on mass storage devices. Currently, in a text format, such random access would still

be very tedious. To ensure that this random access does not create a drag on ALARA,

it is necessary to either store the entire library in memory or use a binary file format.

Because the libraries are often quite large (many MB) a simple binary format was de-

signed. This section will describe the formats for the binary files and their indexes,

generated in a text format and then appended in binary format to the end of the binary

library.

Note that all cross-sections have one more group than the number of neutron groups

in the library. This last “group” is used to store the decay rate for this reaction: the

product of the total decay rate and the branching ratio (zero for many cases).

The binary file format is described in figure C.2 by listing, in order, the data written

to the file using the format: (data type)Description[size].

The library used for a reverse problem is identical in format, but for the addition of

one entry. Immediately following the average decay energy data for the parent isotope

is an entry for the parent isotope’s total destruction rate:

(float) Total destruction cross-section [G+1]

C.6 Material and Element Library Formats

For the user convenience, ALARA uses both a material and element library. The ele-

ment library simply contains the natural isotopic breakdown of all the elements. The

material library contains the elemental breakdown (using natural elemental composi-

tions) of well-known materials.

113

For each reaction path, r = [1,R]:
File position of this parent’s data = Pn(long) [1]
Number of reaction paths, R(int) [1]
Parent isotope KZA identifier(int) [1]

File position for this reaction’s data = Pr(long) [G+1]

Length of string describing reaction types, L(int) [1]
Comma separated list of reaction types(char) [L]

Daughter isotope KZA identifier(int) [1]

File position of neutron flux weight data = P2(long) [1]
Special KZA code for neutron flux weight data = 0(int) [1]
File position of neutron group data = P1(long) [1]
Special KZA code for neutron group data = -1(int) [1]
Number of neutron energy groups, G(int) [1]
Number of parent isotopes, N(int) [1]

For each parent isotope, n = [1,N]:

P3 Library type code(int) [1]

Average decay energies for decay(float) [3]α, β, γ
Half-life of isotopes(float) [1]

Number of reaction paths, R(int) [1]

For each reaction path, r = [1,R]:

Pn Parent isotope KZA identifier(int) [1]

Cross-section and decay data(float) [G+1]

Comma separated list of reaction types(char) [L]

Length of string describing reaction types, L(int) [1]

Pr Daughter isotope KZA identifier(int) [1]

For each parent isotope, n = [1,N]:

Neutron flux weights(float) [G]if above flag

Number of neutron energy groups, G(int) [1]

Number of parent isotopes, N(int) [1]

Files position of index = P5(long) [1]

if above flagNeutron group boundary information(float) [G +1]

P1 Flag indicating existence of neutron group boundaries(int) [1]

P2 Flag indicating existence of neutron flux weights(int) [1]

B
IN

A
R

Y
 D

A
T

A
B

IN
A

R
Y

 I
N

D
E

X

Figure C.2: The format description of an ALARA V. 2 binary library.

114

C.6.1 Material Library

Number of elements in material, E(int)

Nominal density of material [g/cm](float)

For each element, e = [1,E]:

Name of material [no white space allowed](char)

Atomic number of element(int)

Weight fraction of element in material [%](float)

Chemical symbol of element(char)

For each material in library, m = [1,M]:

3

C.6.2 Element Library

Atomic number(int)

Nominal molar mass [g/mol](float)

For each element, e = [1,E]:

Chemical symbol of element(char)

For each element in library, e = [1,E]:

3Nominal atomic density [g/cm](float)

Number of naturally occuring isotopes, I(int)

Mass number of isotope(int)

Natural abundance of isotope in element [%](float)

C.7 Error Messages

-1: Memory allocation error: <string>

An error in the runtime allocation of memory occured. “<string>” reports the

function and variable where the error occurred.

0: Option <string> is not implemented yet.

An unsupported command-line option was specified: string.

1: Only one input filename can be specified: <string>.

There appears to be more than one input filename on the command-line. This

may be caused by an error in the other command line options, or a missing option.

115

C.7.1 Input Phase

Note that all error messages which occur during the input phase may not report the

accurate cause of the error. If there is an error in the input file, ALARA may not

immediately recognize the error and then report an error during some later input block.

This is particularly true during the first step, reading the input file itself.

Read Input File

100: Invalid token in input file: <string>

There is an error in the input file causing it to read an invalid keyword.

101: Unable to open included file: ’<string>’.

The file string included in one of the input files can not be openned.

110: Unable to open material library: <string>

The file string specified in the material lib input block cannot be openned.

111: Unable to open element library: <string>

The file string specified in the element lib input block cannot be openned.

120: Invalid units in cooling time: %10g %c

The specified cooling time does not have one of the supported time units.

121: No after-shutdown/cooling times were defined.

The cooling input block contains no information before the end keyword.

130: Invalid dimension type: <string>

The type of dimension, string, declared in the dimension block is not supported.

131: Dimension has no boundaries

The dimension block has no zone boundary information before the end keyword.

140: Invalid flux type: <string>

The flux type, string, specified in the flux block in not supported.

150: Invalid geometry type: <string>

The geometry type, string, specified in the geometry block is not supported.

160: History <string> is empty

The history input block, string, contains no information before the end keyword.

170: Material Loading is empty.

The mat loading input block contains no information before the end keyword.

116

180: Target materials for reverse calculations can only be elements or iso-

topes and not ’<string>’

The component type, string, given for this target material is not supported. It

must be either “element” or “isostope”.

181: Invalid material constituent: <string>

The component type, string, specified for this mixture component is not sup-

ported.

182: Mixture <string> has no components

The mixture input block, string, contains no information before the end keyword.

190: Invalid units in pulse level: %10g %c

The specified pulse level decay time does not have one of the supported time units.

200: Schedule <string> is empty

The schedule input block, string, contains no information before the end key-

word.

210: Invalid units in schedule item delay time: %10g %c

The specified inter-schedule delay time does not have one of the supported time

units.

211: Invalid units in single pulse time: %10g %c

The specified pulse length does not have one of the supported time units.

230: Output type ’<string>’ is not currently supported.

The output type, string, specified for this output format is not supported.

240: Unable to open dump file <string>

The output “dump” file could not be openned.

Input Checking

300: Cannot define both zone dimensions and interval volumes.

ALARA does not permit the geometry to be defined with both the dimension

input block and the volumes input block. This would result in redundant and

possibly inconsistent input.

301: A material loading is given for more zones (%d) than are defined by

the zone dimensions (%d). Those extra zones are being ignored.

The number of zones as defined by the mat loading input block does is larger

than the number defined by the dimension blocks. This is permissible, but may

lead to dubious results. The extra zones from the mat loading block will be

ignored.

117

302: Number of zones defined by zone dimensions (%d) matches number of

material loadings defined.(%d)”

The number of zones as defined by the mat loading input block does is smaller

than the number defined by the dimension blocks. This is NOT permissible as it

would leave some zones unfilled.

303: Must define either zone dimensions or interval volumes for multi-point

problems.

ALARA requires a definition of the geomery using either the dimension input

block or the volumes input block for problems in more than 0 dimensions.

310: Could not find element <string> in element library.

The element string was not found in the element library. This could be due to an

error in the material library, incorrect user input, or an omission in the element

library.

311: Could not find material <string> in material library.

The material string was not found in the material library. This could be due to

incorrect user input or an omission in the element library.

330: Duplicate dimensions of type <string>.

The dimension string was defined more that once in the input file.

331: <string1> geometries don’t have dimensions of type <string2>.

The dimension type string2 was defined for geometry type string1, which does

not allow this kind of dimension.

340: Unable to open flux file <string1> for flux <string2>.

In the flux definition string2 the given flux file string1 cannot be openned.

350: Toroidal problems with zone dimensions require a major radius.

All problems defined as having toroidal geometries must define a major radius

with the major radius input block.

351: Toroidal problems with zone dimensions require either a minor radius

or a radius dimension.

All problems defined as having toroidal geometries must define a minor radius

with either a dimension block or the minor radius input block.

370: Zone <string1> is loaded with a non-existent mixture: <string2>

The mixture string2 specified to fill zone string1 in the mat loading block is not

defined in the input file. Either add a new mixture definition or change the name

of the mixture to be used for this zone.

118

380: Component type ’l’ of mixture < string1> references a non-existent

mixture: <string2>

The mixture string2 specified in the “similar” component of mixture string1 is

not defined in the input file. Either add a new mixture definition or change the

name of the mixture to be used for this definition.

400: Unable to find top level schedule. A top level schedule must not used

as a sub-schedule.

All of the defined schedules are referenced as sub-schedules of other schedules.

This means that there is no top to the hierarchical schedule system, as required.

410: Flux <string1> for simple pulse item of schedule <string2> does not

exist.

The flux string1 required to calculate the simple pulsing schedule item of schedule

string2 is not defined.

411: Bad flux file for flux <string> for simple pulse item of schedule <string>.

The file for flux string1 required to calculate the simple pulsing schedule item of

schedule string2 cannot be openned.

412: Schedule recursion: <string>.

There is a loop in the schedule hierarchy. This implies an infinitely long and in-

finitely complex total irradiation history, which is unphysical. Check the definition

of the schedules.

413: Schedule <string1> for subschedule item of schedule <string2> does not

exist.

The sub-schedule string1 defined as a schedule item of schedule string2 has not

been defined.

414: Pulse history <string1> for item of schedule <string2> does not exist.

The pulsing history string1 required to calculate a schedule item of schedule

string2 has not been defined.

420: Zone <string> specified in interval volumes was not found in the ma-

terial loading.

The zone string specified to contain one of the volumes in the volumes input

block does not exist.

440: ALARA now requires a binary dump file. Openning the default file

’alara.dmp’.

ALARA uses a binary file to store intermediate results. You can set the name of

this file using the dump file input block. Otherwise, the default is used.

119

441: Unable to open dump file ’alara.dmp’.

The default output dump file could not be openned.

Input Cross-referencing

580: Removing mixture <string> not used in any zones.

Mixture string was defined in the input file, but is not used in any zones. It’s

definition is being removed.

620: You have specified too few normalizations. If you specifiy any normal-

izations, you must specify one for each interval.

The spatial norm input block must contain an entry for each of the fine mesh

intervals. It is not permissible to have too few.

621: You have specified too many normalizations. Extra normalizations will

be ignored.

It permissible to define too many spatial normalizations, but the results may by

dubious. The extra normalizations will be ignored.

622: Flux file <string> does not contain enough data.

The flux file string does not contain enough data to provide a flux for each of the

fine mesh intervals.

C.7.2 Data Library Errors

1000: Data library type <string> (%d) is not yet supported.

The specified library type string is not supported.

1001: Conversion from <string1> (%d) to <string2> (%d) is not yet sup-

ported.

Conversion between the specified library types string1 and string2 is not sup-

ported.

1001: Conversion from <string> (%d) to (%d) is not yet supported.

Conversion between the specified library types string1 and %d is not supported.

1100: You have specified library type ’alaralib’ but given the filename of an

’adjlib’ library.

The type of library specified in the input block must match the internally recorded

library type.

1101: You have specified library type ’alaralib’ but given the filename of an

unidentified library.

120

The type of library specified in the input block must match the internally recorded

library type.

1102: You have specified library type ’adjlib’ but given the filename of an

’alaralib’ library.

The type of library specified in the input block must match the internally recorded

library type.

1103: You have specified library type ’adjlib’ but given the filename of an

unidentified library.

The type of library specified in the input block must match the internally recorded

library type.

C.7.3 Programming Errors

In some places, if ALARA reaches that point in the program, it implies an error in the

logic of the code. Please report such errors to the code author.

9000: Programming Error:...

