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Abstract

While many codes have been written to compute the induced activation and changes
in composition caused by neutron irradiation, most of those which are still being up-
dated are only slowly adding functionality and not improving the accuracy, speed and
usability of their existing methods. ALARA moves forward in all four of these areas,
with primary importance being placed on the accuracy and speed of solution.

By carefully analyzing the various ways to model the physical system, the meth-
ods to solve the mathematical problem and the interaction between these two issues,
ALARA chooses an optimum combination to achieve high accuracy, fast computation,
and enhanced versatility and ease of use. In addition to a set of base features, standard
to any activation code, ALARA offers a number of extensions, including arbitray hierar-
chical irradiation schedules and a form of reverse problem for calculating the detailed
activation of specific isotopes.

The physical system is modeled using advanced linear chains, which include the
contributions from straightened loops in the reaction scheme, while the truncation phi-
losophy minimizes the discrepancies between the model and the real problem. The
mathematical method is then adaptively chosen based on the characteristics of each
linear chain to use analytically exact methods when possible and an accurate expansion
technique otherwise.

ALARA has been successfully validated against established fusion activation codes
using a standard activation benchmark problem. In addition to demonstrating ALARA’s
accuracy, this validation excerise has demonstrated its speed. Furthermore, by extend-
ing the benchmark problem to validate its advanced features, ALARA’s flexibility has
been proven.

With its modern computational techniques and continuing development, it is hoped
that ALARA will become a widely used code for the activation analysis of nuclear sys-

tems.
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Chapter 1

Introduction and Background

Since the advent of the nuclear age nearly six decades ago, it has become necessary to
study and simulate the effect of radiation on materials. Most nuclear systems, including
existing fission power reactors, anticipated fusion power reactors, and a wide variety of
experimental facilities, produce large numbers of energetic neutrons. These neutrons

interact with the systems’ materials, inducing a variety of responses.

1.1 Problem Definition

Activation is just one of the many possible responses resulting from the neutron irra-
diation of materials. The neutrons interact with the material’s nuclei, converting them
to different isotopes. With many such reactions possible for most isotopes, each of the
original material’s isotopes can be partially converted into over 20 others after just one
generation. These isotopes, in turn, can undergo similar interactions, leading to yet
more isotopes, and so on. Furthermore, many of these isotopes may be radioactive,
and their decay products introduce even more isotopes to the physical system. If repre-

sented graphically (Figure 1.1), this process forms a tree of isotopes, where each branch



in the tree represents either a nuclear reaction (e.g. A — B) or a nuclear decay (e.g.
C — G). This process of converting a non-radioactive material to a radioactive one is
known as activation.

After calculating the concentra-

tions of all the various isotopes cre- !

C B
ated by the activation process, other $—|—¢ |i l
E

engineering responses can be deter-

mined. Multiplying by the radioac-

tive isotopes’ decay constants (A = Figure 1.1: A sample activation tree showing

In2/ t§> determines the material’s ra- the results of activation of isotope A.

dioactivity. Further multiplying by the average energy of each decay, these radioactivity
values can be converted to decay heat results. By comparing the radioactivity to regu-
lated limits, the waste disposal ratings can be determined, indicating how the material
must be handled. Incorporating the gamma ray emission information for each radioac-
tive isotope gives the gamma ray source, which may be used as the source term for a
radiation transport calculation to determine a radiation dose at some spatial point.
These responses are essential when designing, operating and costing a nuclear sys-
tem. For safety considerations, it is important to know the inventory of all the ra-
dioactive isotopes which may be released and to know the decay heat transient after
the system is shutdown. Furthermore, if the radiation dose at a critical point is too
high, either for the other components of the system (e.g. fusion magnets) or for the
personnel who must work with the system, the doses must be mitigated by the addition
of shielding to the design. Amongst many other factors, the cost of a system is affected
by whether “hands-on” maintenance is possible or remote handling is required. When

the lifetime of the system has been reached, the decommissioning cost is influenced by



the levels of radioactivity in the various materials.

The mathematical description of the activation process is quite straightforward.
The production rate of one isotope, 7, from another, j, is proportional to the concen-
tration of that other isotope, N;. The constant of proportionality is some reaction rate,
P;_,;, based on nuclear data. For decay reaction paths, the production rate is equal
to the product of the decay rate of isotope j and the branching ratio for the reac-
tion leading to i: P;_; = A;b;_,;. For nuclear reactions, the reaction rate is the inner
product of the reaction cross-section for the reaction from j to ¢ and the neutron flux,
Pii= [ 0?7 (E)$(E)dE. With the cross-sections represented as group constants, as

is usual, this production rate is: P;_,; = Zle ag_”d)g. While each such term represents
a production path for isotope i, it also represents one for the destruction paths for iso-
tope j. Assuming that there are no other sources (such as mass flux into the system),

the rate of change of an isotope’s concentration is simply the sum of all the production

terms from other isotopes, j, and the destruction terms to other isotopes, k:
Ni(t) = 32 P D) Ny (1) — S7 P [6(0)] Nilo).
j=1 k=1

By combining all the destruction rates to isotopes k into a total destruction rate for
isotope 7, and writing the production rates as F;; without explicitly including the de-

pendence on the neutron flux, this ordinary differential equation [ODE] is reduced to
Ni(t) =Y PylN;(t) — diNi(1).
j=1

With one such equation for each of the isotopes in the activation tree, and one activation
tree for each of the isotopes in the initial material, the large system of these coupled

ordinary differential equations [ODE’s| can be written in a matrix formulation as

N(t) = AN(2), (1.1)



where A;; = —d; and A;; = P;;. The formal solution to this equation is the matrix

exponential:
N(t) = eAN(0). (1.2)

For large problems with many initial isotopes, many fluxes at different spatial points,
and complicated irradiation histories, an activation code is required to calculate the in-
duced radioactivity levels. An activation code must perform two distinct tasks: the
physical modeling of the activation tree and the solution of the corresponding mathe-
matical problem. Starting with a list of initial isotopes, the code must first build the
activation trees, deciding how large they need to be in order to include all the impor-
tant contributions. The trees are then converted into their mathematical equivalent
and some technique is used to solve the matrix exponential problem. Although these
two tasks will be treated as distinct in this work, the way that the trees are built and
sub-divided has an important impact on the kind of mathematical method that can be

accurately implemented, and vice versa.

1.2 Historical Overview

The computational solutions to this problem have been well studied.! Many different
approaches for modeling the physical problem have been combined with at least as
many mathematical solution techniques. Each combination has advantages and dis-
advantages, but none has arrived at an optimum mixture of accuracy, efficiency and
usability. Even ignoring the issue of usability (where this author feels many codes fail),
there are few codes which are keeping up with the demands for greater accuracy in the
physical models and mathematical solutions without becoming inconveniently slow.

The predecessors to many modern activation codes were inventory codes (also called



burn-up or depletion codes) designed for modeling the burn-up of nuclear fuel and
build-up of fission products in nuclear reactors. These codes use a variety of methods
for modeling the physical system and solving the mathematical problem, but have
historically been divided into three classes based on the mathematical method: time-
step based ODE solvers, matrix exponential methods, and linear chain methods.

The time-step based ODE solvers, such as used in FISPIN,? use some algebraic
approximation of the derivative on the left hand side of equation 1.1. One simple form

of this approximation is based on the first principles definition of the derivative:
N(t;) — N(ti—1)

N(t) - ti—t;—1—0 t; —ti1
. N(t;) — N(t;—
" N(t) =~ (t:) ( 1).
i —tia

For the activation problem, where ]\7Z is the number density vector at time ¢, and

At =t; — t;_1, this can be implemented simply in the explicit form:
N, = AtAN, | + N;_,. (1.3)

More complicated differencing schemes with more accuracy can be developed based on
Taylor series expansions in one or two variables, such as the well known Runge Kutta
method.

In all cases, however, to ensure accuracy these methods must use time steps small
enough that the number density of any single isotope does not change too much during
the time step. For a problem with very short-lived isotopes, this time step must be very
short, requiring many steps to solve the entire irradiation history, and therefore these
methods can be very slow.

The original matrix methods employed in inventory codes such as ORIGEN? calcu-

A

late the series expansion of the e**" exponential:

2t2 A3t3

+

A
2 3!

=T+ At +




In addition to being prone to round-off error, this expansion may need many terms
to converge (if it does converge), which is computationally expensive, due to the large
number of matrix multiplications. More recently, this class of methods includes matrix
decomposition methods to solve the matrix exponential (see chapter 3).

The final class of solution methods is based on a principle known as linear chains,
of which CINDER* was one of the first implementations. While both the time-step
methods and the matrix exponential methods have traditionally attempted to solve the
entire physical problem as one large system of ODE’s, the linear chain method breaks
the activation tree into a number of chains so that each isotope has a single production
term and a single destruction term. This creates a smaller system of ODE’s in which
the transfer matrix, A, is exactly bidiagonal allowing an analytical solution commonly

known as the Bateman equations® to be used:

i—1 i—1 i—1
p (e—dkt _ e—dﬂf) P
_ —d;t ' k+1 1+1
Ni(t) = N, e + E N;, E - | | A , (1.4)
j=1 k—j i k l;j ! k
£k

where Pry1 = Prpi1-

One of the biggest limitations of this class of methods is its inability to model loops
in the activation tree. It can be seen in the above equation that there is a singularity
when two of the destruction rates are identical. While this may happen coincidentally
in any linear chain, it is guaranteed to be the case if the same isotope occurs more than
once in the chain. This issue may be less significant for the simulation of fission reactor
problems because most of the nuclear reactions required for loops (e.g. (n,p) or (n,2n))
are threshold reactions with low or zero cross-sections in the energy domain of fission
neutrons.

Activation codes, many of which have been developed for fusion applications, also

exist in each of these three classes of solution method. Some are derived directly from



an inventory code while others have no such obvious ancestry. Conceptually activation
calculations and inventory calculations are one and the same, but the wide variety in
the nature of the systems being simulated in an activation problem can require more
flexibility than an inventory code may provide. For example, as suggested above, there
are some reaction channels which are not relevant to fission inventory calculations. In
systems with higher energy neutron fluxes, such as fusion reactors or accelerator-based
neutron sources, these additional channels can become important, if not dominant.
Additionally, the irradiation history for an activation calculation may be very different
from that of a fission reaction system, with, for example, many frequent pulses.

The most widely used fusion activation codes include FISPACT,® a direct descen-
dant of the FISPIN inventory code, RACC” (and variations®?), REAC,'® ACAB,! and
DKR! (and variations™'®!). Each uses a different combination of physical and math-
ematical methods, enabling each to implement unique features. For example, while
FISPACT is limited to solutions at a single spatial point and cannot model pulsed
histories exactly, the newest versions support sensitivity analyses and secondary acti-
vation caused by the light ions emitted by neutron reactions. Newer versions of RACC
switched from the time-step based GEAR ODE solver to matrix decomposition meth-
ods, enabling the efficient solution of pulsing histories with loops in the activation tree.
RACC’s method for truncating the activation trees, however, is not ideal and may lead
to an inaccurate final solution. Not only was DKR the first to implement exact pulsing
solutions, it is able to efficiently solve the activation problem across many points of a
complicated geometry. Due to its reliance on linear chains and the Bateman solution,
however, DKR has long been criticized for its inability to handle loops in the activation
tree. Additionally, DKR has not implemented the ability to model the accumulation of

light ions emitted from nuclear reactions.



Despite the wide variety of available activation codes and their various capabilities,
there is no single code which provides a complete range of these capabilities. Further-
more, because of their original choice of physical methods, mathematical techniques
and/or computational design, few, if any are extensible to include additional capabili-

ties.

1.3 Goals

The goal of this work is to design a fast, accurate and flexible activation code with a wide
array of capabilities and features. In addition to establishing a base set of capabilities
and features, it is important to look forward to a more advanced set and ensure that
the new code will accomodate those features. ALARA is designed to implement the

following basic features:

Problem Geometry
e simultaneous solution of activation problem at arbitrary number of spatial

points

Truncation
e user-defined calculation precision

Irradiation History
e multi-level pulsed operation histories

Physical Modeling
e accurate handling of loops in the activation tree
e modeling of light ion accumulation
User Features
e user-friendly input file format
e flexible geometry definition options
e user-defined output resolution

e user-defined output responses



The advanced features of ALARA include:
Physical Modeling

e modeling of reverse problem for detailed studies

Irradiation History

e fully arbitrary operation schedules

Mathematical Techniques

e adaptive selection of mathematical method to optimize speed and accuracy

Prior to implementing these features, a careful analysis of the various methods for
modeling the physical system, the techniques for solving the mathematical problem,
and the way that they influence each other, must be performed. Once the best methods
and techniques have been determined, the importance of efficient and portable imple-
mentation must not be underestimated. Even the best methods can be implemented
poorly leading to inaccurate and slow solutions.

ALARA has been designed with three basic principles in mind: accuracy, speed,
and simplicity. These three qualities have been maximized in ALARA after extensive
research of the models involved in such calculations. The errors, time of execution,
and learning curve have all been made “as low as reasonably achievable”.* The meth-
ods used to model the physical system and to perform the mathematical solution are
carefully combined to preserve or enhance the accuracy while accelerating the solution.
Throughout all this, there is an underlying effort to ensure that ALARA be user-friendly
by providing a simple, well-documented input file format, checking this input for errors,

and providing a broad, flexible range of options.

aThis phrase is the origin of the term ALARA, a well known philosophy in the nuclear industry

related to the minimization of radiation exposure when working in radioactive environments.
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1.3.1 Accuracy

Despite the list of shortcomings for existing codes, various studies!® !¢ have demon-
strated that most of these codes achieve a reasonable degree of accuracy, compared
to each other as well as compared to analytical solutions. It is important, therefore,
that ALARA at least maintain this level of accuracy as it expands its range of modeling
options.

The accuracy of the final solution is affected both by how realistically the physi-
cal system is modeled and by what mathematical methods are employed for the final
solution. Unfortunately, these two requirements often conflict; as the physical model
becomes more realistic the required mathematical methods become more approximate
or error prone. When modeling the physical problem, two of the most important issues
are how to deal with loops in the reaction scheme and how to truncate the theoretically
infinite isotopic composition to a finite problem. While the effect of the latter on the
mathematical method is negligible, the former has a great impact. In the past, the un-
written rule has been that realistic treatment of loops requires complicated/inefficient
mathematical methods. ALARA has broken that rule by finding a physical approxima-
tion to the loops which retains problem accuracy and allows for quite simple and efficient
mathematical methods. The keys to ALARA’s mathematical accuracy are its ability to
adaptively choose the mathematical technique and the accuracy of those techniques.
Two of the three mathematical techniques which ALARA employs are mathematically

exact!

1.3.2 Speed

The most significant factor affecting the speed is the chosen class of mathematical

method. In particular, unless a linear transformation matrix method is used, the exact
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modeling of a pulsed history will require a long time. ALARA employs such matrix
methods, solving for the linear transformation from the initial isotopic composition to
the final composition for each pulse and inter-pulse dwell period, and then multiplying
these matrices to obtain a complete linear transformation for the entire history. In
addition to this decision, speed was considered throughout the code design process. For
example, data library formats and internal data handling have been implemented with

modern techniques to enhance versatility without sacrificing speed.

1.3.3 Simplicity

While accuracy and speed have long been issues in the creation of engineering codes,
their simplicity is of increasing importance. In this context, simplicity is an issue for
both modification/maintenance and use of the code. Since ALARA is written in C+,
it benefits from some of the philosophies of object-oriented code design. This allows
the code itself to be more readable to future programmers and facilitates enhanced
modularity. This modularity means that if new functionality is added to the code, it
can be optimized internally with minimal detrimental effect on the existing code.
ALARA has been designed with the user in mind. Even though improved methods
have existed for years, many codes have continued to use input formats which are rem-
iniscent of punch card input entry. Furthermore, most tools in this field have been de-
signed for the solution at a single spatial point, requiring many subsequent and slightly
altered runs to get any kind of spatial information. ALARA allows the user to find the
solution to an activation problem in a variety of different multi-dimensional geometries,
using a flexible system to define the material properties and allowing a complicated
pulsed /intermittent irradiation history and a variety of after-shutdown solution times.
Furthermore, the input file can be fully commented, preventing the common difficulty

of creating a long list of seemingly disconnected numbers for code input.
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Chapter 2

Physical Model

Section 1.1 describes the basic activation process and shows a sample activation tree in
figure 1.1. Figure 2.1 shows the same tree with annotations to define the nomenclature
to be used in this chapter and others.

A tree is constructed of nodes, each

| da representing a single isotope, and

-— branches, each representing a reac-

Yhe Yo VB

C B D
! v |i l ¥ ! ] tion path between the parent isotope
F G E R
| *

and daughter isotope for that reac-

L Lo'op Crosslink . ) . .
tion. The top isotope in the tree will

Figure 2.1: Annotated sample activation tree pe called the root and each succeed-

showing loops and cross-links.
ing generation of reaction products

will be referred to as a rank, giving a measure of the depth of the tree. Each isotope
has a production rate, FP;; (the root has no production rate), dependent on the reaction
path by which it was produced, and a unique total destruction rate, d;. For decay reac-
tions, this production rate is dependent only on the parent’s nuclear data (specifically,

the half-life) and not on the neutron flux. For transmutation reactions, it is a function
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of the parent’s nuclear data and the spectral distribution of the flux. The destruction
rate may be made of a combination of transmutation data, and thus the neutron flux,
and decay data, depending on the parent isotope. The raw data used to form these
production rates are read from large data libraries, either as decay rate/branching ra-
tio data from decay libraries or as transmutation cross-sections from transmutation
libraries. While the methods used to measure, evaluate and compile such data'® ! will
not be discussed here, it is important to note that seemingly small changes in these
data can lead to observable differences in the results of an activation calculation.

It is possible for one nucleus to undergo a series of reactions, being converted from
one isotope to another and so on and eventually back to the original isotope. Loops such
as this are of specific importance when modeling this physical problem. The nature of
such loops is somewhat random; they can begin at any rank in the tree and can undergo
any number of reactions before closing the loop. If the order of a loop is defined here as
the number of isotopes between two occurrences of the same isotope in a loop, then the
order can range from 1 to greater than 10. Loops are only physically possible during
irradiation. During periods of pure decay, loops are physically disallowed for the simple
reason that nuclear decay is a transition to a lower energy state. This can only be

reversed by the introduction of an energy source, provided by the bombarding neutrons

during irradiation. One example of a loop is
28g; W) 2s gy P, asgy

in which 28Si is transmuted by a neutron reaction with the emission of a proton to 2%Al.
Al in turn, decays back to 28Si through the emission of a 3~ particle. There are many
other variations of loops, involving different nuclear reactions and with more than two

isotopes involved in the loop.
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A related but less important phenomenon is that of cross-linking of subtrees. This
is caused when two different isotopes, which could each be at any rank, both undergo
reactions to the same isotope. Between loops and cross-links, the tree can become quite
tangled, departing from the classical tree structure known and studied in computer
science.

Since most isotopes will undergo nuclear reactions, as soon as they are created by
either transmutation or decay, there is a finite chance of them being transmuted to
other isotopes. As a result, an activation tree can, in theory, grow to become a large
connected graph including all the isotopes for which data exists, with many cross-links
and loops of various orders. If many reactions are required to reach a certain isotope
from the root isotope, however, their production levels will be insignificant. For the
purpose of a practical numerical solution, therefore, it is necessary to truncate the tree
based on some reasonable criteria.

The methods for modeling activation trees, including loop handling and tree trunca-
tion, can have a significant impact both on the type of mathematical technique employed
to generate a solution, and on the accuracy of the results. Section 2.1 addresses these
issues and others in the creation of activation trees.

Current designs for fusion power reactors of all types often include the necessity for
pulses, from the short frequent pulses of an inertial confinement system to the long infre-
quent pulses of a magnetic confinement system. Other neutron-producing systems, such
as experimental fusion reactors or accelerator-based neutron sources, may have more
complicated irradiation histories, with varying pulsing frequencies, pulsing hierarchies,
maintenance periods, etc. Furthermore, with changing conditions the flux spectrum
and/or magnitude may differ from one part of the history to another. This pulsing cre-

ates an important effect?' 2® since between each pulse, the radioactive isotopes which
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have been created are able to decay while the stable isotopes remain unchanged. This
changes the distribution of isotopes, having important implications on the reactions
during the subsequent pulses. Section 2.2 will describe the approximations and as-
sumptions used in modeling this aspect of the physical model.

Although activation calculations have traditionally been used to find all the activa-
tion products of a given material composition exposed to a given neutron flux history,
this mode is not suited to the task of determining the concentrations of specific trace
activation products. If certain isotopes are produced in very small quantities, the accu-
rate determination of their concentration requires that the activation trees be allowed
to grow to large sizes, and much computational effort will be wasted calculating the
concentrations of uninteresting isotopes. Using many of the same modeling methods
described in this chapter, small modifications can lead to a reverse activation calcu-
lation mode, whereby the concentrations of certain target isotopes can be calculated
from the initial mixtures without calculating the concentrations of too many non-target
isotopes. Section 2.3 describes the adaptations necessary for such a reverse calculation.

The last section of this chapter addresses some of the software design and implemen-
tation issues related to the various modeling methods discussed for the physical problem,

including data structures, computational efficiency and optimum memory usage.

2.1 Activation Tree Modeling

As mentioned above, the theoretical activation tree can become a large connected graph
including every isotope for which data exists. This could, in principle, be converted into
a large matrix of production and destruction rates, and solved directly for all the initial
isotopes at a given point in space. This is not practical, however, both due to the size

of the matrix and the mathematical methods available for solving such a matrix. For
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a typical fusion activation library, the matrix would be roughly 2000 x 2000, sparsely
filled (only about 1 or 2%) and would exhibit little pattern (i.e. banded or triangular
matrices). By introducing a variety of concepts, this problem can be reduced to a finite
number of tractable sub-problems.

There are two primary issues related to the modeling of activation trees: loop han-

dling and tree truncation.

2.1.1 Tree Straightening and Loop Handling

One alternative for loop handling is

>
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. 1.1, the transfer matrix, A, has terms
action tree.

above the diagonal. While time-step
based ODE solvers can be used with this method,® the non-triangular nature of this
matrix limits the matrix methods requiring some form of matrix exponential method,®
which can be computationally complex and/or prone to numerical error. The philos-
ophy behind the use of these exact physical modeling methods is that loops may be
significant in some cases, and thus should be included.
The alternative is to introduce a method of tree straightening, converting the con-
nected graph into a traditional n-ary tree. Figure 2.2 shows a straightened tree repre-

sentation of the same tree shown in figure 1.1. Tree straightening is accomplished by the
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introduction of what will here be called partial-contribution nodes, or simply pc-nodes.
While the basic physical model described above only allows for one occurrence of each
isotope in a tree, a pc-node represents an isotope which may occur elsewhere in the
tree, and thus the production of this node gives only a partial contribution to the total
production of the isotope which it represents. By introducing pc-nodes, a somewhat
larger system is created, but its solution is more simply achieved. After the full solution
of the problem, the results at each pc-node are collapsed into unique isotopes, with the
contribution from each being accounted for appropriately.

After all the loops and cross-links have been removed, each tree is traversed in a
depth-first search®, creating a number of independent linear chains (see Figure 2.3).
Although the term linear chain traditionally refers to models that do not include any
loops, it will be used here to refer to physical models which have implemented tree
straightening. The conversion to linear chains results in many sub-problems, each with
a matrix size equal to the chain’s rank, rather than a single sub-problem with a matrix
size equal to the number of nodes in the tree.

In the mathematical representation of this alternative, the rate equation for any
node ¢ will only have a production term from the preceding node ¢ — 1. In the matrix
formulation, therefore, A is always (lower) bidiagonal. However, because loops cause
more than one node to represent the same isotope, there are guaranteed to be at least
two equations with the same diagonal element. Since the diagonal elements of a bidi-
agonal matrix are the eigenvalues, A is guaranteed to be defective. Thus, even though
the bidiagonal nature permits simpler matrix methods than with non-triangular matri-
ces, the defective nature of the matrix still prevents the use of the traditional analytic

methods based on the Bateman equations.

aA depth-first search is an algorithm which moves deeper into a tree as far as it can go before

backtracking and moving down a different path.
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In the past, some methods'? 4 have simply ignored all but the simplest of loops, 1%
order loops at rank 1, and analytically handled these simple loops as special cases.
Thus, for the majority of the problem, only bidiagonal non-defective transfer matrices
are solved, permitting the implementation of purely analytical methods based on the
Bateman equations. The decision to ignore most loops is based on the philosophy
that in most problems, only the first few generations contribute significantly to the
total solution, and thus higher order loops and/or loops occurring deeper in the tree
contribute little to the solution.

A compromise is to include a fi-
nite number of loop iterations. As

with any approximation based on suc-
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lution without loops, Figure 2.3: Separated linear chain representa-
A conservative analysis of the er- tion of activation tree.

ror associated with this approach,'” including the impact of ignoring loops altogether (0

corrections), is made possible by comparing the approximate solution to the analytical

solution for a 1% order, rank 1 loop, using an increasing number of corrections. Since

production rates are always finite, it is intuitive that higher order loops contribute less

than lower order loops originating at the same rank. Choosing a rank 1 loop is simply a

matter of convenience in calculating the exact solution, but the error can be considered

as the relative error associated with ignoring a 1% order loop at any rank in the tree.



Table 2.1: Relative Errors when Using the Straightened Loop Method
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(n,p) Reaction # of corrections

0 1 2 3 4
BC(n,p)®B | 4.06e-05 | 8.23e-10 | 1.10e-14 | 1.12e-16 | 1.12¢-16
160(n, p)'N | 0.000351 | 6.15¢-08 | 7.20e-12 | 5.62e-16 | 1.12¢-16
2Si(n, p)®Al | 0.00243 | 2.95¢-06 | 2.38¢-09 | 1.45e-12 | 1.02e-15
Y Ti(n,p)V | 0.000247 | 3.05e-08 | 2.51e-12 0 1.21e-16
5Fe(n, p)®Mn | 0.00103 | 5.35e-07 | 1.85e-10 | 4.77e-14 0

To ensure that the results are physically significant, a variety of 1%¢ order loops were
found in the existing nuclear data.?’ In particular, since decay tends to lead to higher

production rates than transmutation, loops of the form

AT g P g

Y

were chosen (instead of loops with two nuclear reactions, for example). Table 2.1 shows
a summary of the errors for 5 different loops after 10'%s ~ 317y and up to 4 corrections,
and figure 2.4 shows how this error is a function of the steady state irradiation time

used in this analysis for the worst case,
28g 17) 2871 O, 28y

While it is clear from both table 2.1 and figure 2.4 that ignoring loops completely
can introduce observable error to the solution, they also show that a finite number
of corrections can reduce the error to acceptable levels. With only two corrections,
the error is significantly reduced to be less than the accuracy of most calculations,
while 4 corrections brings the error to within the precision of an IEEE double precision

calculation. It is important to recognize the importance of this measure being a relative
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Relative Error in Loop Analysis
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Figure 2.4: Relative error in calculation of 2®Si as part of (n,p) loop.

error. It has no effect on the precision of the results (discussed further in the next
section), but only on the accuracy of the results.

To determine the number of corrections needed in any particular problem, it is
sufficient to treat the straightened loops like any other part of the activation tree and
invoke the same truncation criteria as are used elsewhere. When implemented in this
way, the precision of the loop solutions is the same as the precision of the solutions to
the rest of the problem.

Relative to other methods, tree and loop straightening can allow faster and more

accurate mathematical methods without jeopardizing accuracy in the physical model.
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2.1.2 Truncation of Activation Trees

On the surface, the concept of truncating the large trees created by modeling the physi-
cal system for these calculations is a simple one: truncate the tree once the contribution
from the nodes is negligible compared to the total result. In practice, however, this is
a delicate process which deserves some discussion.

As with loop handling, a variety of alternatives have been used to accomplish the
truncation of activation trees in previous applications. The simplest method defines a
maximum allowable rank for the tree, truncating the tree as soon as this rank is reached.
Since radioactivity is often the most important result and nuclear decay branches tend
to create more significant sub-trees than nuclear reaction branches, this method can
be improved somewhat by limiting only the number of transmutation generations, and
allowing decay branches to continue until they reach a stable isotope.” This method
tends to be inconsistent in its estimation of the importance of the contributions of the
various nodes. Some sub-trees included by such a system would contribute negligibly,
if at all, to the final result, while other more significant sub-trees would be truncated
too early.

A more consistent method is based on an estimate or calculation of the actual
contribution of a given node in the tree to the final solution. If the contribution is too
low, the tree is truncated here, otherwise the tree continues to grow. This raises two

primary issues to be considered:
e how can the production of the isotopes at a certain rank in the chain be calculated
or estimated without solving the whole problem, and,
e how can the importance of that production be measured.

When using time-step based ODE solvers, the first issue is moot. During the course

of the solution, equations can be added to and dropped from the system as new isotopes
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are produced and the concentrations of isotopes become insignificant, respectively.%

For matrix methods, the actual contribution of a node can only be calculated by
completing a full solution of the chain leading to that node, requiring the solution of
the entire irradiation history each time the tree grows. As the variations in the neutron
flux spectra will affect the production rates giving each point in space a different real
activation tree, such a calculation should, in theory, be carried out for each point in
space. This would drastically slow down the calculation.

As a first enhancement, this calculation, refered to here as a reference calculation, is
performed only once each time the tree grows, using a flux which is somehow represen-
tative of all the spatial points which contain the initial isotope (see section 2.4). If every
point in space has a unique set of initial isotopes, this offers no savings, but as most
problems have many spatial points with identical sets of initial isotopes, the savings
can be significant. Furthermore, if the flux is chosen properly, this approximation will
be conservative, and would tend to produce chains which are too long rather than too
short.

What is the best flux to represent all the spatial points which share an initial isotope?
Since higher fluxes will tend to maximize the amount of transmutation from one isotope
to another, the obvious choice is some flux which is a maximum bound for the problem.
Since the flux is group-wise and it is possible that one spatial point will have the highest
fast flux while another point has the highest slow neutron flux, the best choice for a
bounding flux should be the group-wise maximum flux of all the points which share an
initial isotope. This reference flux can then be used to solve the problem for a particular
chain as it is being created.

In order to decide what result this reference calculation should provide and how this

should be interpreted, it is first necessary to understand the nature of the approximation
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introduced by truncating the activation trees. In the real system, there will always be
at least as many atoms as in the initial isotope, with the possibility of increasing that
number through the accumulation of light ions emitted by nuclear reactions. In the
modeled system, however, when an activation tree is truncated the destruction rate of
the last node in the tree represents a pathway for atoms to pass out of and be lost
from the model. The goal of any truncation concept should therefore be to minimize
the relative atom loss from the system. This approach has the natural consequence
of limiting the error in the production of any one isotope. If the relative atom loss is
limited to ¢ atoms per initial atom, and there are n truncation points in the tree, n - ¢
atoms per initial atom are lost from the model. In the worst (and entirely unphysical)
case that all the lost atoms are transmuted to the same isotope in the real activation
tree, the production of this isotope will have an error of n - t atoms per initial atom.

Previous implementations of this type of truncation concept have calculated the
relative inventory of the node in question, rather than the relative atom loss through
that node.'? This can result in severely premature truncation if that node has a very
high destruction rate (such as a short decay half-life). The relative inventory of that
node may be very low because the majority of atoms produced at this node have been
further converted by transmutation or decay out of the model.

A better implementation calculates the relative inventory of the entire sub-tree
rooted in the node in question. Fortunately, this is quite easily implemented. Since
all atoms that pass into a node will end up either as part of that node’s inventory or
as part of the inventory of that node’s sub-tree, it is only necessary to calculate how
many atoms are passed into the node over the course of the irradiation history. This
calculation is identical to the normal activation calculation, but temporarily preventing

that node from being destroyed (d; = 0). This value can then be compared to a user
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specified tolerance, interpreted as the maximum atom loss allowed in any single chain.

Although both transmutation and decay are mechanisms of atom loss, the former is
only possible when there is a neutron flux present while the latter occurs throughout
the operation lifetime as well as after the shutdown of the device. This difference is
important since the after-shutdown lifetimes (or cooling times) can be much longer
than the operation lifetimes and it is during these times that the activity is often most
important. It is therefore necessary to compare the relative atom loss both at shutdown
and at each after-shutdown time. If the relative atom loss is less than the tolerance
at shutdown, but greater than the tolerance at any of the after shutdown times, it
is a potentially important atom loss path during shutdown. It is here that we can
distinguish between atom loss mechanisms. Since the only atom loss mechanism after
shutdown is decay, only subsequent decay branches are important, even if the relative
atom loss is greater than the tolerance.

Combining all these concepts into a single truncation philosophy gives the following
algorithm. First, any relative atom loss which exceeds the tolerance at shutdown will
result in a continuation of the chain. Second, if the relative atom loss is less than the
tolerance both at shutdown and at all after-shutdown times, then the chain should be
completely truncated at this point. Finally, if the relative atom loss is less than the
tolerance at shutdown and greater at some after-shutdown time, then all transmutation
branches in that sub-tree should be truncated but decay branches followed.

While faster approximations could be made to conservatively estimate the relative
atom loss, the conservatisms which seem appropriate for the physical modeling can lead
to the physical model being too large. Although time may have been saved during the
physical modeling, the full solution must still be carried out on an unnecessarily large

system. Since many problems must solve each chain at many spatial points, the savings
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made on a single truncation calculation are more than compensated by the losses during
the multiple solutions of that chain at different neutron flux levels.

This truncation approach affords some rudimentary error estimates for the results.
Using an analogy to experiment, the user specified tolerance provides a measure for
the precision of the calculation. The smallest possible correction and hence the largest
possible error for the results for any one isotope is this truncation tolerance. This
will also be the dominant source of physical modeling error in the result. Since these
same truncation rules are used indiscriminately for truncating straightened loops, the
error from truncation will always be greater than the error caused by not using more
corrections to the loop. Thus, following the analogy to experiment, the accuracy of
loop solutions is affected by the number of corrections, while the precision is affected
by truncation tolerance. Since the number of corrections is determined indirectly by
the truncation tolerance, this methodology provides the most consistency across the
entire problem. It should also be noted that this measure of the truncation error in the
physical model is an upper bound since a group-wise maximum flux is being used for
the calculations. In many spatial regions, the actual production in the final solution
may be many orders of magnitude less than that of the truncation calculation.

The full implementation of this philosophy does have detrimental effects on the speed
of the solution. The most significant drag is caused by the full pulsing solution of the
chain for each truncation calculation. An alternative which has been implemented in
the past is to combine the reference flux concept with that of a reference time, a repre-
sentative steady-state simulation time to use only for truncation calculations returning
to the exact pulsing solution when performing the final solution. When using this alter-
nate method, it is important to understand the full implications. In particular, even if

the chosen reference time approximates the operation history well, the reference calcu-



26

lation includes no after-shutdown history, a period in which many isotopic compositions
may change.

Another source of drag is the calculation of completely negligible results at the
truncation point. Considering the precision and extent of the available data, it is
possible that the atom loss at one node clearly indicates that the chain should be
continued, while the atom loss at one of its daughters is many orders of magnitude
below the truncation limit. While it is obvious that the chain should be truncated,
the full solution of this pc-node will probably lead to a negligible contribution, but
at a significant computational cost. A second user defined tolerance, known as an
ignore tolerance, can be used to determine when a truncation point should be ignored
completely and the chain creation procedure should continue without performing the
complete solution of this pc-node. To ignore all truncation points, an ignore tolerance

of 1 could be used and to ignore none, an ignore tolerance of 0.

2.2 Irradiation History Representation

kg

- t .

Figure 2.5: Sample pulsed irradiation history.

Although continuously varying neutron flux spectra and levels are not expected,
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many systems modeled in activation calculations will have intermittent and/or pulsed
operation. At the very least, the systems will have to be shutdown at regular intervals
for maintenance. Additionally, many kinds of fusion power systems are expected to
have pulsed operation, whether it be an intrinsic part of the concept (such as in inertial
fusion energy systems) or part of the technical requirements for the system (such as
in magnetic fusion energy systems). The method used to model this intermittent and
pulsed operation has important implications on the generic accuracy of the solution and
the type of mathematical method to use.

Physically, the pulsed nature results in build up of transmutation products during
the operation pulses and decay of those isotopes during the “dwell” periods between
pulses (see figure 2.5). For isotopes of certain half-lives relative to the ratio of dwell
time to operation time, the pulsing representation can have a profound impact on the
final calculated number density. The most accurate solutions will result from methods
which allow for this transient behavior during the dwell times to correctly assess the
radioactivity.

Again, there are a variety of methods historically implemented to model this pulsing.
The simplest methods use a steady-state approximation, either averaging the flux over
the full lifetime (figure 2.6(a)) or squeezing the pulses together and removing the dwell
times (figure 2.6(b)).

Although one approximation is more valid than the other in certain cases, Sisolak

12! showed that both pure steady state approximations above will incorrectly cal-

et a
culate the activity for certain domains of short- and medium-lived isotopes by orders
of magnitude. The first approximation, often used for the analysis of magnetic confine-

ment systems, is reasonable for long-lived isotopes that would not decay appreciably

during the dwell times in the real system. Their final density is, therefore, the result of
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(a) Average flux approximation.
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(b) Collapsed pulses approximation.

Figure 2.6: Two popular steady state approximations to pulsed irradiation histories.

a virtually monotonic build-up throughout the operation times. On the other hand, for
short-lived isotopes that would reach secular equilibrium within each pulse and decay
completely during the dwell time, the exact result is equal to this secular equilibrium
value. This value is proportional to the flux magnitude, which, for this approximation
has been scaled to conserve the total fluence throughout the lifetime. Using the second
approximation, this equilibrium value is the same as in the true pulsing problem for

short-lived isotopes. On the other hand, for medium-lived isotopes, particularly those
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with half-lives greater than the dwell time between pulses but less than the total system
lifetime, the unmodeled incomplete build-up and decay in the real system during the
pulses and dwell times, respectively, result in significant over-calculation of the activity.

These approximate approaches are favored by codes that use time-step based ODE
solvers, since the pulses impose additional restrictions on the length of the time step
which may be used. In many cases, the first approximation can be successfully improved
by modeling the majority of the pulses as a single steady state period, with a scaled
flux, and then modeling the last few pulses exactly. This ensures the correct flux level
for the determination of the secular equilibrium level of the short-lived isotopes.

Alternatively, if matrix methods are used, equation 1.1 can be solved for each pulse
and dwell time, and then appropriately multiplied and raised to a power to represent
the entire history (see section 3.5). Thus, the intermittent and/or pulsed operation is
modeled exactly with no approximation.??23

These exact methods become even more valuable when the operating history has
more variation than simple repeated pulses. The first type of variation is in the dwell
time between pulses, such as might occur when the pulsing schedule of an experimental
facility follows the standard working hours of the staff. Figure 2.7 shows such a history
with parameters give in table 2.2. When using matrix methods and exact history
modeling, the activation equation is solved once for the pulse and for each dwell period.
These matrices are then multiplied in the correct sequence to generate a transfer matrix
solution for the entire history.

Changes in the flux spectra or irradiation times, due perhaps to a modification in
the system’s configuration or performance, can further complicate the history. In this
case, the history may consist of two or more schedules, as described in table 2.2, where

the flux and/or the characteristic times are different in each of the successive schedules.
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20 min delay
between pulses
16 pulses per day 4"
16h20m
(overnight)
64h20m
(weekend)
3 weeks
o000 64h 20 m
(maintainance)
\ o 20 years of operation
o000

Figure 2.7: Example pulsing schedule for experimental device.

Table 2.2: Example pulsing schedule for experimental device.

Description Time # of Pulses

Pulse length 10 min

Operation dwell 20 min 16 (half-hour segments)

Nightly dwell 16 h 20 min 5 (work days)

Weekend dwell 64 h 20 min 49 (weeks without maintenance)
Annual Maintenance | 3 weeks 64 h 20 min | 5 (years)
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Finally, it may be desirable to have a number of different schedules which, as a
set, are repeated at regular intervals. For example, when modeling material that is
exposed to different neutron fluxes in a repeating sequence, such as the high-7Z material
of an inertial confinement fusion target being recycled.?* The first time this material
is introduced to the system is as part of a target, and thus receives a very large flux.
Due to the explosion of this target during this initial reaction, the material is deposited
on the facility’s walls. It will be subjected to a number of pulses with lower flux (and
different flux spectrum) before it is removed from the system, spends some time being
reprocessed into a new target, and goes through the cycle again. Figure 2.8 shows
such a history, which can be modeled efficiently and exactly with matrix methods. The
activation equation is solved once for the primary pulse, once for the secondary pulse,
once for the dwell between pulses, and once for the reprocessing dwell time. These
matrices can then be multiplied and raised to a power as appropriate to model the

entire history.

material in ICF

target capsule \ material elsewherein
| CF reactor chamber
material being / \ \
reprocessed

Figure 2.8: Irradiation history for recycled ICF target material.

((
1)

It is important to note, that the more complicated the irradiation history becomes,
the slower the solution will be because of the necessity to solve more individual versions
of the activation equation. In fact, in the limit of a continuously changing flux, this
exact representation becomes physically identical to a time-step based method with the

time-step size dictated by the characteristic time of the flux history, but will likely be
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computationally slower because of the mathematical method being employed at each

time step.

2.3 Reverse Calculations

An activation calculation may be performed to determine the relative production of
trace quantities of specific isotopes. If the production pathways for these few isotopes
are very long, the tree will become very large, and the majority of the results will not
be relevant to the specific target isotopes.

One solution is to build the acti-

L
| vation tree in reverse, starting with
) $ the target isotope and adding parent
D B c isotopes, as shown in figure 2.9. For
l 7 L l the most part, if the forward calcula-
A

tion is wisely implemented, the phys-
Figure 2.9: Sample reverse calculation tree. ical modeling of the problem requires
only a few enhancements, and the mathematical methods are identical.

The easiest way to perform a reverse calculation is to use a reversed nuclear data
library. Where a normal data library is indexed by the parent isotope, giving a table
of reaction paths and cross-sections for each one, a reversed library is indexed by the
daughter isotope, giving a table of production paths and associated cross-sections. Once
a library is reversed, extracting data for each reverse pc-node is similar to extracting
data from a normal library for each pc-node of a forward calculation.

Perhaps the most significant difference, however, is the necessity to reinterpret the

truncation algorithm. First, instead of maximizing the accuracy of the solution across

all isotopes by minimizing the relative atom loss from the modeled system, the goal of
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the reverse truncation algorithm is to maximize the accuracy of the production of the
target isotope. Therefore, it is more appropriate to use a relative production calculation
than a relative atom loss calculation.

Second, and more important, the interpretation of the relative production result in
comparison to the truncation and ignore tolerances must be reassessed. As with the
forward calculation, if the relative production is larger than the tolerance at shutdown, it
is clear that the chain must continue to grow. Also similar to the forward calculation, if
the relative production is less than the truncation tolerance both at shutdown and at all
the cooling times, the chain should be truncated. However, when the relative production
is less than the truncation tolerance at shutdown and greater at some after-shutdown
time, it is no longer appropriate to truncate all the transmutation branches. This result
indicates that the parent of one of the decay branches in the chain accumulates during
the irradiation history, after which a significant fraction decays during the cooling time.
The decay branch at which this occurs may not be related to the isotope being tested
at the root of the chain. (Of course, when this isotope is at the root of the chain,
this will be the outcome of the truncation comparison.) It is therefore necessary to
simply continue the chain in this case, since the next parent may still lead to sufficient
accumulation of the relevant decay parent that the relative production of the target
isotope is greater than the truncation tolerance at a certain cooling time.

The last difference is the interpretation of the final matrix solution. In a forward
calculation, the first column of the solution matrix represents the relative production
of each isotope from the root isotope, and these results are used to sum the total
production of each isotope from each root. In a reverse calculation, the last row of the
matrix is used, as it represents the relative production of the target isotope from each

of the isotopes in the chain.
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2.4 ALARA Implementation Summary

This section will discuss the details of the exact implementation of the physical modeling
methods in ALARA.

After reading the input information, ALARA’s first task is to process all the mixture
definitions and create a list of unique initial isotopes, cross-referenced with the mixtures
in which they exist, and sorted by increasing atomic number. The activation problem
is then solved completely for each root isotope in turn.

When calculating the induced activation of a whole system, the material composition
and neutron flux spectrum will vary from location to location in the device. A structural
region of a problem may contain some variety of steel while a coolant region might have
water and a breeding region would contain lithium. The initial isotopes, and thus the
reaction trees, will therefore be very different for each region. Further, for each point of
interest, the spectral distribution and magnitude of the fluxes will be different. Thus,
even for identical trees from the same material composition, the production rates for
each isotope will vary from point to point.

A reference flux is found by determining the group-wise maximum flux across all
the spatial points which include this root isotope. Beginning with this root isotope
and using the reference flux, the activation tree is modeled as linear chains created by
a depth-first search of the straightened activation tree. Using this technique, ALARA
must never store information about more than one chain at any time. As each chain is
truncated, it is immediately solved for each spatial point, now using that point’s flux,
in which the root isotope exists. Various parameters of the chain are used to sum only
the contributions from the pc-nodes which will not be part of the next chain in the
depth-first search. This ensures that no pc-node is included more than once and also

allows the chain to be completely discarded, making that memory available, as it will
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no longer be needed in the calculation.

Unlike many other activation codes, ALARA does not use a fixed table of nuclear
reaction codes to determine the reaction type and daughter product. Rather, it expects
all this information to be included in the nuclear data library. ALARA is not limited
to any conventional set of nuclear reactions. This has already proved important when
being used to simulate the activation in a system with intermediate neutron energies
(up to 55 MeV)? and many more reaction channels per parent (< 120) than most
standard libraries (= 35) and most standard reaction tables (< 100).

The relative atom loss truncation method outlined above, including an ignore tol-
erance, is implemented in ALARA using the reference flux established for each root
isotope. The relative atom loss calculation is performed for the exact irradiation his-
tory, including the various after-shutdown cooling times. As each pc-node is added to
the chain during the depth first search, it is tested according to the flowchart shown in
figure 2.10. It is worth noting that, contrary to some other implementations,'® ! this
truncation method allows a chain to be fully truncated on a radioactive isotope, but
only if it has been determined that the relative atom loss through that isotope is less
than the truncation tolerance at shutdown and all after-shutdown cooling times. It is,
in fact, possible to ignore a radioactive isotope, if its relative atom loss is below the
ignore tolerance at all times of interest.

The modeling of the irradiation history in ALARA allows for a very versatile hierarchy
of schedules and sub-schedules limited only by the computer resources (both system
memory and calculation time). Each schedule can have a list of sub-schedules, where
each sub-schedule can be either a simple pulse, with an associated flux definition, or
another schedule. Each sub-schedule, regardless of which type, is subjected to a pulsing

hierarchy such as described in table 2.2 and separated from the next sub-schedule by
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state =

N, <ignore
TRUNCATE_STABLE

state == CONTINUE?

and N; <ignore?

state = IGNORE

# or reaction paths == 0
or N; <trunc?

N, <ignore

state= TRUNCATE

and N; <ignore?
remove all reaction paths

state = IGNORE with no decay rate
state = CONTINUE

Figure 2.10: Flowchart for truncation algorithm.

a dwell time. When ALARA solves the problem, the schedule hierarchy, analogous to
an n-ary tree, is traversed in a depth-first search. Thus, each schedule’s list of sub-
schedules is solved, and the product of all the sub-schedule solution matrices and dwell

time matrices is taken as the solution matrix of the schedule.



37

Chapter 3

Mathematical Technique and

Theory

The mathematical problem resulting from the physical system described in Chapter 2
is, at first glance, a very simple one. However, the calculation of matrix exponentials,

such as the solution to the activation equation
N(t) = eMN,, (1.2)

are known to be difficult in general. An extensive study of nineteen different methods
found them all to be “dubious”, saying that “some of the methods are preferable to
others, but that none are completely satisfactory.”26

If the original activation tree (without removing cross-links and straightening loops —

Figure 2.1) is converted directly to its mathematical equivalent, the result is a compact
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but potentially stiff system of linear first order ordinary differential equations [ODE’s],

—d; Py Psy P Ny

PlHQ _d2 P3~>2 pl~>2 NQ

Pis Prg —ds -+ -+ Py N3 (3.1)
_dl—l -Pl—>l—1

P1—>l P2—>l P3—>l e -Pl—1—>l _dl Nl

where:

N = number densities, V;, of all isotopes
d; = destruction rate of isotope %

P,;_,; = production rate of isotope j from isotope ¢.

After loop straightening and cross-link removal is performed (see figure 2.2), the

result is a somewhat larger, simpler set of ODE’s:

N(t) = BN(1)

_dl 0 0 e e 0 N1
P1—>2 _d2 0 ce Ce 0 N2
Pi_5 Py ds e R 0 N3 (3‘2)
—dpp—1 0
pl%m pQHm P3~>m e pmflﬂm _dm Nm

This lower triangular matrix is quite sparse with a maximum of two entries in each row

since each pc-node has only one production path and one total destruction rate.
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Finally, if this physical model is further broken into the previously described lin-
ear chains (figure 2.3), many small sets of ODE’s are created with special simplifying
characteristics,

N(t) = CN(1)

—d, 0 0 . . 0 N,
Py —ds 0 . . 0 N,
0 Py —dg - . 0 N (3.3)

0 0 P3—>4 _d4
0
0 0 0 - Py —dy Ny,

The bidiagonal nature of these matrices is an important factor in subsequent derivations
and calculations.

In all cases, the generic solution takes the form
N(t) = TN, (1), (3.4)

where T is the exponential of the matrices A, B, or C, depending on which method is
used (e.g. T = eAt).

It is interesting to compare the sizes of these three matrices as it gives some initial
insight into the efficiency of the solution. To compare the size of the original tree, [, with
that of the straightened tree, m, is not easy. Since the physical conversion is to convert
cross-links and loops into pc-nodes, it is clear that m > [; however, the severity of this
inequality is difficult to determine. Nevertheless, an approximate comparison between
k and m can be made. Since B represents a true tree structure, it can be analyzed by

assuming that it is a balanced n-ary tree, that is, assuming that every pc-node in the

tree has exactly n branches. Since k is the depth of such a tree, there will be n*~! chains
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representing the m = ij__ll ~ O(n*~1) nodes of the tree. The computational complexity

of the mathematical operations performed on these matrices are generally at least of the

order of the square of the matrix dimension, and often the cube. Thus, for matrix B,

2]{72) 3k73)

the mathematical costs will be at least O(n and possibly O(n or higher. On
the other hand, for the n*~! matrices C, the mathematical costs will be O(k?n*~!) or
O(k3n*=1). This very rough analysis shows that for mathematical operations of order
x, as long as n'=z > k‘ﬁ, the linear chain method will be more efficient. While it may
be difficult to visualize this relationship, it can be used to define some limits.

If the mathematical operations have second order computational complexity, the
linear chain method is always more efficient if n > 4 (there are at least 4 branches per
pc-node). If this complexity increases to third order, the physical model only requires
n > 3 for linear chains to be more efficient. From another perspective, if the number
of branches per pc-node is fixed at n = 2, and chain depth, k = 3, operations with 5
order complexity are required for the linear chains to be more efficient. This requirement
decreases very quickly for longer chains, with only third order complexity required at
k = 4. Finally, as with most real problems, n > 4 and the linear chain method is more
efficient for all orders of complexity in the mathematical operations.

It is important to note that not only is this analysis not rigorous, but the order of
the mathematical solution is itself dependent on the method which is used. Thus, the
analysis gives a first glance into the comparison of efficiency, but is hardly complete.

Historically, a wide range of matrix methods, non-matrix time-step based solvers
and matrix/time-step hybrid solvers have been used.

For the non-matrix methods, the time history of the problem is divided into time

steps and the equations are solved using some variation of a standard differencing tech-

nique, including Runge-Kutta, Euler, or GEAR methods. By choosing small enough
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time steps, the numerical error of such methods can be reduced to make them sufficiently
accurate. The consequence of using small enough time steps, however, is increased com-
putational time.

Hybrid methods are variations on “scaling and squaring” where some small time
step is chosen, either based on the time constants of the problem, or by taking sufficient
square roots of the total time of interest. The scaled matrix exponential is solved with
a rapidly converging series solution and then raised to some power, or successively
squared, to reach the full operation time. These methods are both computationally
inefficient, and in the general case, can be prone to round-off error.

It is also possible to use matrix decomposition methods to solve this formulation.
The matrix exponential can be decomposed as, A = SDS™!  giving the solution

At = SeDtS_l,. The goal of this class of methods is to find a decomposition such

Dt i easily calculated. Some matrix decomposition methods

that the exponential e
which have been explored for this application include eigenvector decomposition,?” gen-
eralized eigenvector decomposition® or Schur decomposition.® For some special forms
of the transfer matrix, A, these decomposition methods are accurate. However, when
formulated for the general case, the decompositions can be prone to round-off error.
Within the class of matrix methods, however, implementations designed to take
advantage of the special nature of the linear chain matrix C, can be promising. The
individual ODFE’s are solved with the assistance of Laplace transforms, filling the resul-
tant matrix exponential one element at a time. These methods are versions of matrix
decomposition methods which have been reformulated to minimize round-off errors and
handle defective matrices, so much so that they are hardly recognizable as matrix de-
composition methods. Previous applications have used a formulation of the analytic

12-14

Bateman solution for linear chains, but this is only applicable when no loops occur.
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A new method, developed in this work, is able to replace the Bateman solution, in the
event that a loop occurs in the linear chain.

One primary advantage of matrix methods is their ability to quickly solve problems
with irradiation histories based on repetitio