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ABSTRACT

Two unconstrained optimél multistage sequential Monte-Carlo schemes, and a
constrained one, are exposed. The exposed method ié a product of synthesis of
multistage sequential Monte-Carlo, and of regression two-stage Monte-Carlo. The
result is a combination of the advantages of the two methods with the elimination
of the necessity to evaluate complicated functions or integrals, or matrix multi-
plications,in multistage sequential Monte-Carlo, and a faster convergence.

The method lends itself to efficient practical application whenever a high

correlation exists between the used estimators.,
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1, Introduction

~In this paper, a multistage regression sequential method is suggested, The

procedure can be considered as a synthesis of the multistage sequential correlated

sampling method as introduced by Halton(1’2’3’4’6)

(7)

, generalizing the two-stage

sequential scheme of Marshall
(5,6,7,8)

(8)

, and of two-stage Regression Monte-Carlo
Methods
Halperin , was the first to suggest almost linearly-optimal combination of
estimators for minimal variance, His idea for the case of two-estimators was
further considered by Spanier and Gelbard(s), Spanierclo), and Macmillan(g), in

relation to applications in transport theory. Hammersley and Handscomb(6), also

considered it with antithetic variates estimators. However in all these attempts

(5,6,8,9,10) the analysis appears to have been for a two-stage process, and a

(1,2’3:4’6) has not been tried. The

multistage process similar to that of Halton
suggestion of a multistage sequential optimal Monte-Carlo scheme is our aim in
this paper.

2., Multistage Sequential Monte-Carlo:

(2)

Following an analysis similar to that of Halton =, suppose we need to
evaluate by Monte-Carlo the definite integral:

1

U= J f(x)dx (2.1)
0

we use the primary estimates:
F(8,), £(8,0- - » - -f(5 ), on {0,1}

to yield the secondary estimate:

n ~mz

T O£(s))
o210 (2.2)
- .



which is an unbiased estimate for Hu.
The variance would be:

1
var = f{f(x) - u}zdx (2.3)
0

For variance reduction we rather sample a sequence of functions:

fl(nl), fz(nz)' .o 'fn(nn)

where

f(y)
f = e + 2.4
n(Y) n(Y) gn(y) (2.4)
For the case of correlated sampling (third sequential scheme in Halton's work(z)),

we put gn(y) = 1, and write:

e(y) = u - £(y) + h(y) (2.5)

that is, en(y) is to be an approximation e(y) to a constant minus f(y), (h(y) small),

Thus:
£,00) = e(y) + £(y) = v + h(y) . (2.6)
and:
1
mean (e + f) = f {e(y) + £f()} dy = v (2.7)
0
and:
' 1
var (e + f) = J( {h(y)}%dy (2.8)
0
also:
1 1

.
J e(y)dy = f h(y)dy = 0 (2.9)
0 0
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>If h(y) is small, so is var(e + f), and the correlation coefficient of e and

f is nearly (-1), as appears from (2.5).

It looks as if it is possible to have zero variance estimators; however such
a case implies a knowledge of W, the'answer we are seeking. But, if we take suc-
cessive samples to improve our estimation, better subsequent estimates can be
obtained.

At stage n of the'process, values of f(ni) at (n - 1) points: Nys Nos oo
N,1 can be used to construct a function Gn(y), suc? that Gn(ni) approximates to
f(ni) fori=1, 2, « « « «(n - 1), and such thatof Gn(y)dy is known.

Then using the estimator function:

1
£(5) = £5) +e (5) = £(5) + Of 6 (dy - G () =w+h ()  (2.10)

(here we used equation (2.5)), we get:

mean (fn) = U
and 1 1

2 2
var (f ) = ( {h_(y)} dy 1J {f(y) - G_(y)} dy
n OJ n 0 n

Thus if:

Sup [f(y) - Gn(y)|+ 0 as n » =, the process is convergent,

0 <y <1

Halton(1’2’3’4) has studied the application of the above idea to the solution

of linear systems of equations. For the system of N algebraic equations:

.’AVE=B' (2.11)
whereﬁtis symmetric and positive definite (if not,}tcan be premultiplied by its

transpose;y), let:

H = -cA,anda=c¢cb (2.12)
s
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where/IVis the identity matrix, and c is chosen such that all eigenvalues of/I:i,

are of modulus less than unity. (If eigenvalues of A are a;> 0 and if &-_>__ max o,

1
we take ¢ = 2/—&-.)
Substituting in (2.11) we get:
X =’Iix + a (2.13)

The solution of (2.13) can then be considered as the convergent Neumann Series:

_— —1—— 2 ..Q.—
x—(/L-’Ii) a—(,IV+H+/P\{/+ ) a (2.14)

~\

After a fair amount of work, one should have a rough estimate X for x. Then if

we use the correction:

y=X-X (2.15)
and:
d=a+HX-X (2.16)
-~
Then equation (2.13) is transformed into another, of similar form:
y=Hy+d (2.17)

where the elements of d are considerably smaller than those of a,

This process was applied using the Von-Neumann Ulam estimator (actually the

(1n

Wasow process ), by taking an arbitrary initial estimate Z  , and subsequently,

for each stage of the process (stage is equivalent to complete history), taking:

T oganz D 76D (2.18)
A~
and
— — 1 —_ S —
7 () o7 G- v0) ;7 (r) (2.19)
r=1
(s) . . . (s-1)
where Yi , are at each stage unbiased estimates of the correction {xi - Zi },

and Zi(s) is an unbiased estimator for X . The score at each stage is:



O I S e TH O (2.20)
ni =0 y=1 p(s) im ‘

i s 1

r-1 T

here Pr s denotes the probability of transition from index r to index s over the
. 3

random walk,

Thus:

mean (Ygs)) =X - Zi(s'l) (2.21)

and:

mean (Z£S)) (Xi)’ (2.22)

the answer we are seeking to equation (2.13).

3. Regression Monte-~Carlo:

As reported by Hammersley and Handscomb(6),

ps Moo * 0 Up and a set of estimators tl, t2- . o 'tn (n> p) such that:

E{ti} SR IPLIIRE YOS SRR xipup (i =1, 2o « = n) (3.1)

The minimum variance unbiased linear estimator of . = {ul,u2,~ L) -up} will be:
-1 -1 -1 —
t* = (,).(,' ,Y, ,39 N' yv t (3.2)

where X is the n x p matrix (xij), and‘}Lis the n x n variance-covariance matrix
Pad . -

1 a T = « e s o
of the t.'s, nd where t {tl,tz, tn}.

If V:»V is a reasonable approximation to V, then t *:
g~ ~ o

-1 -1 -1 —
RIS R (3.3
~ ) ~s

will have a very nearly minimum variance, particularly since first-order deviations

in x in the neighborhood of a minimum of a function F(x) only cause second order

variations in F(x). Thus if V is unknown, we may replace it by an estimate/XQ.

The sampling variance-covariance matrix of t; is:

if we have several unknown estimates -
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-1 -1
* = '
var t0 Qﬁ/ Vo X) (3.4)
7~

In practice, a two-stage process is used. In the first stage, N independent sets
of estimates ty, ty, * - ° *, t, denoted by: tixs tops * 0 0 s ok (k =1, 2,

-N) are calculated from which v, are estimated by:

N )
ijo =kil(tik - <ti.>) (tjk - <tj>)/(N - 1) (3'5)
where: .
N
<t.> = (I t..)/N (3.6)
i k=1 ik’

and: < > denotes an average value.
In the second stage, the estimator tz, from Equation (3.3), is now used for
another sample to get an estimate of . Hammersley and Handscomb(G), consider

the case of the antithetic variates estimators:

HE(8) + Hf(1-5) (3.7)

ot
1

ty = WE(SS) + WECs - 48) + %ECs + 45) + NE(L - %8) (3.8)

for the estimation of a single quantity:

1

8 = [ f(x)dx, where f(x) = E -~ -
0 e -1

X
(3.9)

and report a ''remarkable" gain in precision from the comparatively small extra

labor by using the estimator:

. t; =1.3411 t, - 0.3411 t

2 1 (3.10)
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4. Optimal Multistage Sequential Monte-Carlo:

4.1 Introduction:

Advantages of regression Monte-Carlo are that: firstly little, if any,
bias is introduced to the answer, and secondly, if correlation exists in a given
situation, considerable error reduction can be obtained; but if this correlation
does not exist, nothing is lost in applying them (save some extra labor). The
main advantage of the sequential Monte-Carlo method, is that successive samples
are used to improve our knowledge of the situation, and we should be able to
reduce the variances of subsequent estimates by adjusting our estimator functions,
However, here arises a majof disadvantage, namely difficulties in th? construc-
tion of the function Gn(y), as well as evaluation of the integral OJ G, (y)dy in
equation (2.10). Even in the case of linear systems, the main advantage of the
method is shadowed by the necessity of numerous matrix multiplications, as
appears from equation (2.18).

A still unpublished trial to evaluate the term/ﬂlf'(sﬁl) in equation (2.18)

(11)

by statistical means was done » to avoid matrix multiplication. It appears
possible to achieve a hybridization, and deduce an optimal multistage sequential
Monte-Carlo scheme in which advantages from each of the above-mentioned methods
are combined. A multistage sequential process using sample values could improve
the estimates of Vo from stage to stage, leading, hopefully, to a faster conver-
gent process, and a smaller variance answer.

Though a generalization is an easy matter, for ease of demonstration and for

simpler mathematical manipulation let us consider the particular case of equation

(3.1) with p=1, n =2, X

]

{1,1}. Consequently:

_ Vi Vo T Py

Xxvlx
21 11 ~8

<<
Q
"
<
<
<
1
I
<
<

V1122 V12
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the optimal variance is:

2
v Vv -V
ver t* - x -1 vo-1 P-l . 11v22 12 (4.1.1)

~2 Vit Vpom2Vy,

and the optimal estimator will be:

2
_ _ _ (v, v - Vv:') t
ts = (X'Vol Sk X'V;I t= v11+32 2v12 ‘ 1 7 (VppVip  Vi17Vi2) '
[ NS - -
11722 12 (vllv22 V12) t2
Vo, = v )t + (v, - v, )t
or: th o 22 12771 211 12772 4.1.2)
° Vit T Vo2 T V2
for all: v, _v - v2 £ 0
11 22 12
or, in another notation:
2 2 2 2 O2 . 2
o 9, # f19 01 ) s l.e. p #£1 (4.1.3)
where P12 is the linear correlation coefficient, and 02 is the variance.
The condition (4.1.3) must not give us much worry, since in practical compu-
tations,-pi2 # 1, unless tl and t2 are just identical,
Defining:
vV, -V
a = 2222 (4.1.4)
Vi1 * Vo2 ¢ “Vp2
one can write equation (4.1.2) in the form:
* - -
1:0 = a t1 + (1 a)t2 (4.1,5)

which can just be identified as the minimal variance estimator considered by both

(11) (%)

Spanier and Macmillan We adopt equation (4.1.5) for subsequent analysis

of our suggested multistage sequential optimal process,

It is clear that: mean t; = U (4.1.6)

1

and that its variance is an optimal one.
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4.2 First Optimal Sequential Scheme:

As an initialization, use is made of the two unbiased estimators tl’ t2.

After a fair amount of work, use equation (4.14) to get an initial estimate for a:

a® e(t;, t,) | | (4.2.1)

2
where the ¢ here means: '"estimated by  use of",

Use is made now of this value of a° to obtain an improved optimal estimator
ti* by using equation (4,1,5), and also to estimate an improved value for a, al.

The multistage optimal scheme would look as follows:

t

initialization: tl, 5

0
s a e(tl, t2)
1 o] o]

* = -
to at1+(la)t2

1 1
, a E(to*f t2)

t2* = alti*+ (l-al)t2

, aze(tz*, t2)
tg* = a2t§*+ (l-az)t2 (4.2.2)
: s ass(tg*, t2)

R A S IR

n-2_. (n-2),
a E(to s t2)

t(n-l)* - a(n-Z)tén-Z)*+(1_a(n-2))t2

n-1 (n-1),
a e(to s tz)

M o a(n-l) t(En-l)*+(1_a(n—1))t2

Clearly at any stage, we have an optimally linear estimator, and at the nth stage

it can be easily proven that the stage optimal estimator obtained is an unbiased

estimate** for the quantity of interest, so that it can be stopped after some

**Actually as pointed out by Hammersley and Handscomb(6), a very slight bias might
be introduced by using sample values for V,, rather than the exact values; but
this does not 1limit the applicability of Regression methods.
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error criterion is reached; the method thus lends itself easily to automatic

computation. As an example at the 3rd stage:

2.3, 2
E{a tr (1-a )tz}

3
E[to*]

E{az[alti* + (l-al)tZ] + (l—az)tz}

E(a’[a'{a%t; + (1-a%)t,) + (1-a)t,] + (L-a))tyi=

(4.2.3)
and obviously, at each stage we are using a minimal variance estimator,

A disadvantage of that scheme is that after the initial stage, correlation
between estimators is lost. Using the latest two best optimal estimators and
combining them in an optimal matter would preserve correlation and speed conver-
gence since our scheme here can be considered a case of correlated sampling.

4,3, Second Optimal Sequential Scheme:

(n-1)

Instead of using the best estimate from the last stage to

n-2 . . . . . n
té )*, and combine it with t,, to get the optimal estimator to*, for the next

* to replace

stage, one could use the latest two (or more, for a generalized case) best
values of t;, to estimate the next stage optimal estimator, as in the following
scheme:

initialization: t t

1’ 72
o
a s(tl,tz)
1, _ .o 0
t = a tl + (1-a )t2
1 1,
a e(to ,t2)
2, _ 1.1, 1- 1 4.3.1
tg a to + (l-a )t2 (4.3.1)
2 3, .1,
a e(to ’to )
t3* = aztz* + (1-az)t1*
o o o
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3.3, .2,
a e(to ’to )
t4* = a3t3* + (l—as)tz*
o 0 o
4 4 3
*
ae(t e (4.3.1)
an-2€(t(n 2)*’t(n—3)*)
o o

tgn-l)* - a(n—Z)tgn-Z)* . (1_a(n-2))t§n-3)* |
an-le(tgn-l)*’t(n—Z)*)

tg* - a(n-l)tén—l)* + (l_a(n-l))tg-Z*

As for the last process; E(tg*) = g which can be easily shown for the case n = 3;

E(tg*) E[aztg* + (l—az)té*] = E{az[alté* + (i-al)tz] + (1—32)[aot1 + (1—ao)t2]}

E{az[al{aot1+(1—ao)t2}+ (l»al)tzl + (l-az)[aot1+(1—ao)t2]} = u, (4.3.2)

1
and clearly, at each stage, improved optimal estimators are used. In that scheme,

* -
tn and t(n D

* can be expected to be highly correlated.
To avoid a possible loss in correlation on the first two stages, an alternate
version of that scheme would be set up by using three originally highly correlated

unbiased estimators for the same quantity Hy and following the scheme:

t t

initialization: t
izati 10 8t

[0} (o)
a e(tl,tz), b e(tl,tS)

1, _ .o _40
tor=a‘t + (1-a )t2
2% = p%, + (1-b%)t
o) 1 3
1.1, .2,
a e(to >t )
. 2
t3* - alto* . (l—al)ti* (4.3.3)
2 2.3
* *
a e(to >ty )
tg* = azts* + (1-az)t2*
. - -1 -
L an Zs(t(n )*,t(n 2)*)
o o

n, _ 02 (-1, g (0-2)) (-2),
o) (o] (o}

t



-12-

4.4 Third Optimal Sequential Scheme:

In the first and second schemes tl and t2 are assumed to be both unbiased

estimators for the quantity of, interest Hye Noting that a better variance

reduction is obtained if the estimators t1 and t2 are highly correlated, one can

consider the idea of considering t, as a highly correlated biased estimator for

2
Hys and imposing a constraint that the expectation of the optimal estimator
should be equal to Hye

Considering the estimator:

* = 4,4,1
t a+ bt + ct, ( )
Let us impose first the constraint that:
E(t*) = ul (4.4.2)
which leads to the equation:
a + bul + CHy = 1y (4.4.3)
where the E(tz) is equal to the biased value My for My
Now:
‘ 2
V(t*) = variance(t*) = E[t* - E(t*)]" = E[a+bt1+ct2-u1]
= E[ + + b + ]2
= E b(tl—ul) + C(tz-U2) a - Ul Ul CUZ
22 22 2
=b % + C 9, + 2bc cov(1,2) + (a-u1+bu1+cu2)
= bzoi + czcg + 2bc cov(1,2) (4.4.4)
by use of the constraint (4.4.3).
For a calculus relative minimum for the variance:
%% =0 boi + ¢ cov(l,2) =0 Oi cov(1l,2) b =0
or (4.4.5)
v 2 2
rriha 0 b cov(1l,2) + ¢ o, = 0 cov(1,2) 02' c
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For a non-trivial solution:

2 2 2
01 05 - [cov(1,2)]" =0

or:
o2 62 = 025242 0., 0,#0
1% 7 %1%P1,2 0 9 9
l1.e.
Py, = 1 (4.4.6)

Since, in practice, such a condition can not be met, we can not use equation

(4.4.5), so we must content ourselves by using only the equation:

%Pi =0 e = :ﬁLi!%;LLLZl. . b0 (4.4.7)
C g 5

i.e, by solving for ¢ in terms of b.
Substituting from (4.4.7) into (4.4.4), we get an expression for the mini-

mum variance:

_ 122 4 2
Vmin =Db 01 (1 pl’z) (4.4.8)

which, may be compared to equation (4.1.1), rewritten as:

2 2,20 _ o2 |
Vi1V22 T V12 9198 7 Py o
var(t*) = = (4.4.9)
07 V11¥V557%V1, 2 6t - 2. 0.0
91 7 %9 7 Py 2999

2 . .
and one can relate* b~ in the constrained case to the factor:

2
2

72 g
1% 9 - 20 299

0]

in the unconstrained case.
g

Clearly better variance reduction will be obtained for higher correlation

between ty and t2.

*Just ""relate', they are not identical.
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From equations (4.4.3) and (4.4.7), we get:

o
1
a= My + b(pl’2 a—z- My - ul) : (4.4,10)

Thus our optimal constrained estimator would be:

g
1 .
* = - - —_— -
t uy t b{(t1 ul) 01,2 5 (t2 “2)} (4.4.11)

Clearly: E(t*) = My s and its variance is a minimum,

Let us notice that t, is only required to yield a high correlation coefficient
pl,2 with tl’ and contrary tb the first two optimal sequential schemes, should
not obligatorily be an unbiased estimator for Hys so that one can use a biased
estimator t2 for My such as a perturbed system (E(tz) = pz), and still get an
unbiased estimate for tl.

Like before, the use of the optimal estimator t* implies an a priori know-

ledge of the first two moments for t. and t_; a sequential scheme can override

1 2’
this diffulty.
For the constant b>0, a choice of unity was found to be satisfactory. For

that particular case:

e = zcov(1,2) 01 El' , (b= 1) (4.4.12)
O 2
a = -cH,
' t* = tl - Cu, * ct2 = t1 + c(tz-uz) (4.4,13)
var(t*) = oi(l - pi,z) - (4.4.14)

Notice the hidden resemblance between equations (4.4.13) and (2,10) or

(2.18), however one does not need here to evaluate complicated integrals or
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perform matrix multiplications, thus our schemes here improve over Halton's sequen-
tial -Monte-Carlo method. However a basic difference can be noticed between equations
(4.4.13) and (4.1.5), in the constrained and uncdnstrained cases.
An optimal sequencial schéme using the estimator (4.4.13) could be as follows

(using the same procedure as the first sequencial scheme):

initialization tl’ t2

coe(tl, t2) s uge(tz)

tcl)* =t; + O, - n)
cle(ti*,tz) s u;s(tz on stages 0,1)

* *

ti =t o+ cl(t2 - u;)
cze(tg*,tz) s ugE(tz on stages 0,1,2)

£ =12 e - ug) (4.4.15)
cse(tg*,tz) . uge(tz on stages 0,1,2,3)

tgn-l)*= t(n—2)*+ cn—Z(t2 - uz(n—Z))

cn'le(tgn-l)*,tz) , uén_l)e(tz on stages

0,1,2 . . . (n-1))

n* _ . (n-1)* n-1 _ -1
to to te (t2 2 )

The value of My at each stage may be computed over all previous stages. Again, at

*
any stage, we have an optimally linear estimator, and: E(tg ) = Hys €-8. for the

3rd stage:
340 L pre3t L L2 297 - 1, _1 2., .2
E[t7 ] = E[t7 + c7(t, - uz)] = E[t + c7(t, -u;) +c (t, - ¥3)]
- or, _ 0 1 S SO - 14y = 4.16
= E[t1 +C (t2 u2) + C (t2 “2) £ (t2 uz)] My (4.4.16)

If t2 (the possibly biased estimator) is also an unbiased estimator for p one

]’
can similarly apply the second sequential optimal scheme in- its two versions to the

*
to constrained estimator.
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5. Computational Formulae:

Recursive formulae adaptable to automatic computation are easily deducible,
For the first sequential scheme, where at each stage the previous stage optimal

estimator is combined in an optimal manner with t, one obtains:

3* 21 2 1o
Forn =3 ’toI = aa ao cty ¢ (1 - a"a"a )tz (5.1)
and for the nth stage:
- n-1 S n-1 s
tog = {( a’) ¢t} o+ {(1 - a’) " ty} =
$=0 s=0
R R TIE  CRE Ll Sl D EPIE SRS (5.2)

so that one needs only to adjust the coefficients of t,, t, at zach stage.

12 72

For the third sequential scheme (constrained case) one.gets:

For t = 3, tizl = t1 +(co + c1 + c2)t2 - (coug + clué + czug) (5.3)
and for the nth stage:
tTIIII =Y +(:§(1) )t - rslgi(cs Fuy) =
(5.4)
- t1 . (Cn—l . en—2) . tz _ [(cn—lug-l) . (en-Zug-Z)] , n22
where: am = ng'as: and e" =§ ¢’
3=

=0 . s=0
A more elaborate recursive formula can be similarly deduced for the second

miltistage sequential optimal scheme,

6. Sample Problem:

(6)

We consider the example outlined by Hammersley and Handscomb , in relation
to a two-stage regression Monte-Carlo process, and solve it by our suggested multi-
stage sequential Monte-Carlo method. The problem is summarized in Eqns. (3.6), (3.7),
(3.8) and(3.9), and use is made of the first multistage optimal sequential scheme,
Some results are shown in Table (I). The data show that by a three stage process,

corresponding to 150 histories by the optimal multistage sequential method, one can
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obtain better variance than that obtained by 400 or 1200 histories for the two-stage
regression method, which could mean that the extra labor involved in the computation
is counterbalanced by the variance reduction. These results are for the first scheme,
where high correlation between éhe estimators is not preserved after the first few

stages, however in the second sequential scheme this correlation might be preserved,

and better results are likely to occur., There appears to be an optimal number of
stages after which sampling should be stopped. These points are the subject of cur-

rent research. A computer routine for that sample problem is listed in Appendix (I).

7. Conclusions:

The optimal multistage sequential Monte-Carlo method in its three versions
combines the advantages of multistage sequential Monte-Carlo and of two-stage re-
gression Monte Carlo: the need to evaluate difficult functions and integrals or to
perform costly matrix multiplications is eliminated, with use of the information from
successive samples to improve our estimation. A drastic decrease in the variance
may be obtained whenever a high correlation exists between the used estimators.

Much work on the theory and on the practical applications of the approach
remains to be done, especially for the derivation of highly correlated estimators.
However, the present work was intended only for presentation and establishment of

the idea of optimal multistage sequential Monte-Carlo.
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Appendix (I): Computer Routine Listing for Sample Problem

FIRST MULTISTAGE OPTIMAL SEQUENTJAL SCHEME

TH(X, Cl)'Cl‘(EXP(X)*EXP(lcU X)‘ZOO)

TZ(X,C212C2*(EXP{0+5ex)*EXP(095=04 S'X)*EXP(OoS*OOSOX)*EXP(lvO 0.50
XXV=440) e e e
TOSTR(X,C1,C2, A)’(A'CIO(EXP(X)*EXP(l.D X)-Z-O))‘((l OaA)'CZ'(EXP {

XUZE9X FEXP(O+5v0:5¢ X +EXP (0 50,5 XT4EXP ([ ¢0w05°X1*9401)
ST1=0,0
ST2=20,0

SYO5TR=04+0
SSQ1=0.0
S5Q220,0

99

SQRTO0=0,0
SR012=040
READ | yNyNN NST

XN=N
XNN=NN
XNST=aNST

XXNST=XNSTw]e0
D=SQRT ( XN)
DD=SQRT (XNN)

CONST=]¢0/{EXP(1e0)»=},01}
Cl20456CONST
C2a0,4258CONST

K=}
PRINT 14K
DO 70 1=],N

R=RANUN{RRR)
FlsTi(R,Cl)
F2=T2(R.+C2)

STI=S5T|+F]
ST23S5T72+F2
SSQI=SSQl+F|eF ]

- 70

S5Q2=55Q2+F2eF 2
SRO|2=SRO12+F|2F2
CONTINUE

AVI=ST[/XN
AV2=ST2/XN ,
SI=((SSQI/XN)w{AV]ieAV]]))

S2=((SSQ2/XN)e{AV2eAV2))
SGl= SQRT(S11/D
SG2= SQRT(S2)/D

COV12a(SROI2/XNIw{AV|aAV2)
A®(S2~CcOV]2)/(S1+S2+»2,0eC0OV12]
RO12=(CcOV]2/(SG1l¢SG2))/XN

PRINT 2,N,AV]1,AV2,5G],5G62,5],52,C0VI2,R012,A
STZ.OQO
STOSTR=0.0
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S5QZ=0,0
SQT0=0,0
SRO12=0.+0

BAT=0,0
BSQ=0,0
DO 50 K=2,NST

PRINT 1,K
DO 60 U=} NN
R=RANUN(RRR)

F3=TOSTR(RyC1,C2,A)
F2=T2{(RyC2)
STOSTRsSTOSTReF2

ST2=ST2+¢F2
SQTO=SQTO+F3eF3
SS5Q2=SSQ2+F2sF2

60

SRO12=SRN]24F2eF3
CONTINUE
AV2=ST2/XNN

AV3=STOSTR/XNN :
S2%( (SSQ2/XNN)m(AY20ay2))
S3=((SQTO/XNNjw({AV3say3))

SG2=SQRT(S2})/0D
SG3=SQRT(S3)/0D
COV|2=(SRO12/XNN)»(AV3eAV2)

SO=(S2eS3wCOVI2%COV1IZ2)/§52%53~2:08C0V}2)
SON=SQRT(SO/XNN) .
AAx (S22COV]2)/(53+S2m2+00C0V]2)

A=AsAA
RO12=({COVI2/(SG3#SG2))/XNN _ . i -
PRINY 2,NNyAV3,AV2,5G3,5G2:5S3952,COVI2,RO1244,501SON

BAT=BAT+AV3
BSQ*BSGeAVIsaAY]
ST2=0,0

STOSTR=0,0
55Q2=0,0
SQT0=0,0

S0

SROl2=0.0
CONTINUE
ST1=040

5SQ1=0.0
AVBATaBAT/XXNST ' . - -,
SIGB=SQRT(((BSQ/XXNST)e {AVBAT®AVBAT) )/ (XXNST=14,01))

PRINT 4,AVBAT,S]GB
GO 70 99
FORMAT(2315)

L L N e

FORMAT(15/2E149¢8/12E19487/,5E 19489 10X,2E1948777)
FORMAT(15,3E14.8///7) .. S
FORMAT (10X | 6HBATCH STATISTICS )2(5XsELH498)//7)

END





