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1. Introduction

The purpose of this report is to summarize work performed at the University of

Wisconsin for Los Alamos National Laboratories during the period from Oct. 1, 1996

through Sept. 30, 1997. The primary objective of this work has been to develop a time-

dependent 3-D view factor code for the purpose of simulating asymmetric radiation fields

incident onto a capsule in indirect-drive inertial confinement fusion (ICF) experiments.

The capabilities of the code include: utilizing time-dependent albedos for the hohlraum

wall based on 1-D radiation-hydrodynamics simulations [1] and multifrequency UTA

(unresolved transition array) opacities [2,3]; and modeling the time-dependent laser

powers of the NOVA, OMEGA, and NIF beams. Examples of experiments for which

the code will be applied include: radiation symmetry studies for tetrahedral hohlraums,

beam phasing, and azimuthal asymmetries in cylindrical hohlraums. The statement of

work for the first year of this effort is shown in Table 1.1.

In developing the view factor code, we have chosen to focus on accuracy. Radiosity

(i.e., view factor) methods have been developed in the field of computer graphics [4-9]

which emphasize speed, but at a cost of reduced accuracy. Since we are in particular

interested in computing asymmetries on an ICF capsule with numerical errors of less

than 1%, we have developed and benchmarked methods for evaluating configuration

factors (or view factors) with a high degree of accuracy.

The view factor code we have developed is called SYMRAD. In this report, we will

describe the attributes of the following models and algorithms in the code:

• Grid generation

• Evaluation of configuration factor integrals

• Self-occultation (or “horizon effects”)

• Occultation by other objects/surfaces

• Solution to the radiosity equation

• Laser deposition ray-trace algorithm

• Graphics

Each of the above items is described individually in Sections 2 through 8. In Section

9 we describe several idealized benchmark calculations to test the accuracy of the code.

Finally, in Section 10 initial calculations relevant to ICF radiation symmetry experiments

utilizing cylindrical and tetrahedral hohlraums are presented.
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Table 1.1. Tasks for October 1996–September 1997

Develop a three-dimensional computer code that uses vacuum transport between sur-
faces to model the flow of radiation inside a hohlraum. The code will calculate the
view factors between all of the surfaces. One-dimensional radiation-hydrodynamics sim-

ulations with U. Wisconsin opacities calculated with the UTA method will be used to
calculate the emissivities and albedos of all surfaces. The code will model the radiation
flow in a time-dependent manner, where the emissivities and albedos are calculated as

functions of time. An arbitrary source term for all surfaces will be included.

1. Develop and document a 3-D radiation transport code in vacuum which
incorporates:

a. Time-dependent albedos for all surfaces;

b. Energy sourcing as a function of time on all surfaces;

c. An input form that conveniently allows users to construct surfaces, sources,
and initial conditions;

d. Output of the time-dependent radiant flux on user-defined surfaces.

2. Demonstrate code performance at U. Wisconsin by calculating test problems
mutually agreed to by UW and LANL scientists.

3. Deliver and assist in the installation of the 3-D code at LANL.
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2. Grid Generation

At present, the SYMRAD code can generate grids for the following “objects”:

• spheres

• cylinders

• disks (or annular rings)

• planes

• tetrahedral spheres

(i.e., spheres with 4 circular openings at the apexes of a tetrahedron)

Each object is divided into a number of planar surface elements. These surfaces are

either triangles or quadrilaterals. The user specifies, through namelist input files, the

type of object and the grid resolution. Obviously, greater accuracy is usually achieved

by using a finer mesh with a larger number of surfaces. To date, calculations have been

performed with up to 1200 surfaces on an HP workstation with 80 MB of RAM. The

CPU time required for a stand-alone calculation (i.e., without utilizing the radiation-

hydrodynamics option) is approximately 15 CPU minutes on a HP 735 workstation.

Using the above objects, it is possible to investigate the symmetry of the incident

radiation field on capsules in both cylindrical hohlraums with 2 laser entrance holes

(LEH) and tetrahedral hohlraums with 4 LEH. Figures 2.1 and 2.2 show sample grids

for cylindrical and tetrahedral hohlraums, respectively.
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Figure 2.1. Grid generated for a cylindrical hohlraum. Top left: view through LEH.
Top right: view from side. Lower left: off-axis view. A spherical capsule

(red) is located at the center of the hohlraum.
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Figure 2.2. Grid generated for tetrahedral hohlraum. The 4 LEH are shown in red,
green, yellow, and dark blue. The capsule is the small sphere at the center.
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3. Evaluation of Configuration Factor Integrals

The configuration factor, or view factor, for two finite areas can be written as [10]:

Fij =
1

2πAi

∫
Ai

∫
Aj

cos θi cos θj
πS2

dAidAj (3.1)

where Ai and Aj are the areas of surfaces i and j, respectively, S is the distance between

differential elements dAi and dAj, and θi (θj) is the angle between the surface normal

vector of element dAi (dAj). Physically, Fij is the fraction of energy leaving surface i

that arrives at surface j. Equation (2.1) assumes Lambertian (or diffuse) surfaces, so

that the angular dependence of the emissive power is proportional to cos θ (as does a

blackbody surface).

The reciprocity relation for configuration factors is:

Ai Fij = Aj Fji . (3.2)

In our view factor code, we take advatnage of the reciprocity relation by computing view

factors as follows:

• Fij (i < j) are evaluated numerically

• Fij (i = j) = 0

• Fij (i > j) = (Aj/Ai)Fji .

In this section, we describe four methods for evaluating Eq. (3.1). Each of these is

contained in SYMRAD. These methods have been benchmarked against each other and

known analytic solutions to assess trade-offs in accuracy and computational efficiency.

These benchmark calculations are described in Section 9. For three of these methods,

we apply Stokes’ theorem [10] to replace the quadruple intergral (two areal integrals) in

Eq. (3.1) with a double contour integral, which can be written as:

Fij =
1

2πAi

∮
Ci

∮
Cj

(lnS dxjdxi + lnS dyjdyi + lnS dzjdzi) . (3.3)

Thus, the integral over two areas is replaced by integrals over the boundaries about the

two surfaces (see Figure 3.1). This allows for a considerable savings in computer time

[4].

In the illustration shown in Figure 3.1, the double contour integral represents

the sum of 16 segment-to-segment combinations (the boundary of each quadrilateral
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is composed for 4 segements.) Thus, to evaluate configuration factors for the many

triangular and quadrilateral surface elements which make up the hohlraum and capsule

in our simulation, we desire an accurate, but efficient method for computing each of the

segment-to-segment combinations contained in Eq. (3.3).

3.1. Evaluation of Individual Segment-to-Segment Combinations

Let us define:

γαβ =
∫ Bα

Aα

∫ Bβ

Aβ

lnS (dxα dxβ + dyα dyβ + dzα dzβ) , (3.4)

where Aα and Bα define the end points of segment σα which has length Lα, and Aβ and

Bβ define the end points of segment σβ which has length Lβ . In Eq. (3.4), the distance

between points on the segments, S, varies as we move along each segment. Note that

the total configuration factor is:

Fij =
1

2πAi

∑
α

∑
β

γαβ . (3.5)

We next do a coordinate transformation to locate one of the segments along the z-axis

and place one of its end points at the origin (see Figure 3.2(b)). Then Eq. (3.4) becomes:

γαβ =
∫ Lα

0
dzα

∫ Z1
β

Z0
β

dzβ lnS . (3.6)

Note that the first two terms of Eq. (3.4) can be dropped because segment σα is parallel

to the z-axis. We write the integrand as:

lnS =
1

2
ln[x2

β + y2
β + (zβ − zα)

2] . (3.7)

Next, we define tα = zα/Lα and tβ = (zβ − zβ0)/∆zβ , where ∆zβ = zβ1 − zβ0 (see

Figure 3.2). We then have:

γαβ =
Lα∆zβ

2

∫ 1

0
dtβ

∫ 1

0
dtα ln[S(tα, tβ)

2] . (3.8)

Note that tα and tβ represent the fractional distance moved along segments α and β,

respectively. At this point, γαβ can be evaluated numerically by performing the double

integration:
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A1

n1
^

A2

n2
^

Figure 3.1. Two surface elements illustrating contour integration technique.

Bα = [0,0,Lα]

Aα = [0, 0, 0]

 [0, 0, zα]

Aβ = [xβ0, yβ0, zβ0]

[xβ, yβ, zβ]

S

(b)(a)

Aβ

Aα

Bα

Bβ

S

dlβ

dlα

Bβ = [xβ1, yβ1, zβ1]

Figure 3.2. Illustrations showing segment-to-segment couplings for contour integration
solution of configuration factor integrals. (a) Original coordinate system.
(b) Same segments in transformed coordinate system.
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γαβ =
Lα∆zβ

2

Nα∑
k

wk

Nβ∑
j

wj ln[S(tj, tk)
2] , (3.9)

where wk and wj are integration weights. This method, which is often used in view

factor codes [4,9], is easily performed by breaking segments α and β into Nα and Nβ

sub-segments. This evaluation technique will be referred to as Method 1 in our discussion

of configuration factor benchmark calculations (see Section 9).

Significant additional accuracy – as well as computational efficiency in some cases

– can be obtained by performing an analytic integration of the inside integral in Eq.

(3.8). To do this, we define:

I1(tβ) =
∫ 1

0
dtα ln[S(tα, tβ)

2] . (3.10)

Noting that:

S2 = x2
β + y2

β + (zβ − zα)
2 = a + b tα + c t2

α , (3.11)

where:

a = [xβ(tβ)]2 + [yβ(tβ)]2 + [zβ(tβ)]2

b = − 2Lαzβ(tβ)

c = L2
α ,

and

xβ = xβ0 + tβ ∆xβ; ∆xβ = xβ1 − xβ0

yβ = yβ0 + tβ ∆yβ; ∆yβ = yβ1 − yβ0

zβ = zβ0 + tβ ∆zβ; ∆zβ = zβ1 − zβ0 ,

we have:

I1(tβ) = (1 +
b

2c
) ln[a + b + c]− b

2c
ln[a] − 2

+
q

c

[
tan−1

(
2c + b

q

)
− tan−1

(
b

q

)]
(3.12)

where a and b, as indicated above, are functions of tβ, and q = (4ac− b2)
1
2 .
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[The above solution is valid for cases when (4ac− b2) = (x2
β + y2

β) > 0; that is, when the

points of segment β are not on the segment α axis — such as in the case of co-aligned

segments, or identical segments. The latter cases are readily treated analytically.]

Eq. (3.8) then becomes:

γαβ =
Lα∆zβ

2

Nβ∑
k

wk I1 (tk) . (3.13)

This evaluation technique will be referred to as Method 2 in Section 9. Solutions using

this technique can be significantly more accurate than using Eq. (3.9) because the inner

integral is evaluated analytically. In addition, it often requires less computer time

because only segment β is broken up into subsegments. (For example, if Nα = Nβ = 10,

ln[S2] in Eq. (3.9) must be evaluated 100 times, whereas I1(tβ) must be evaluated only

10 times in Eq. (3.13).)

Additional accuracy can be achieved in most cases by evaluating the remaining

integral analytically for the first three terms of I(tβ) in Eq. (3.12). Integrating over the

first three terms in Eq. (3.12), and reorganizing the last two (tan−1) terms, we obtain:

γαβ =
Lα∆zβ

2
I2 + ∆zβ

∫ 1

0
dtβ rβ (σ + θ) (3.14)

where

I2 = −2− 2ρ + η(1− 2h)

+ ln
(
ΩL2

β + (1 + 2h)L2
β

)
[ρ (1 + h)− η(1 + Ω− 2h2)]

+ ln(ΩL2
β) [ρh − η(1 + Ω− 2h2)]

+ε(ρ + 2ηh)
[
tan−1

(
2(1+h)

ε

)
− tan−1

(
2h
ε

)]
,

and

ρ = 1− (zβ/Lα)

η = ∆zβ/2Lα

h = 1
L2
β
[xβ0∆xβ + yβ0∆yβ + (zβ0 − 2Lα)∆zβ]

Ω = 1
L2
β

[x2
β0 + y2

β0 + (zβ0 − Lα)2]

ε = 2(Ω− h2)
1
2

θ = tan−1(zβ/rβ)

10



σ = tan−1((Lα − zβ)/rβ)

zβ = zβ0 + tβ(zβ1 − zβ0)

and

rβ = [(xβ0 + tβ∆xβ)2 + (yβ0 + tβ∆yβ)2]
1
2 .

Evaluation of configuration factors using Eq. (3.14) will be referred to as Method 3 in

Section 9. It was found that in most test problems that this method provided both the

best accuracy and least CPU solution times. Using this method in our concentric sphere

benchmark calculations, we found the errors in computing the configuration factors were

much less than the errors introduced by representing the sphere by a finite number of

polygons (see Section 9). In SYMRAD, this solution method is used by default, while

the use of other methods remains optional.

Finally, a fourth technique in SYMRAD for computing configuration factors is given

by:

Fij =
1

2π Ai

2AiAj

S4
(n̂i · ~r) (−n̂j · ~r) (3.15)

where ~r is the vector from the centroid of surface i to the centroid of surface j, S = |~r|,
n̂i (n̂j) are the unit normal vectors of surfaces i (j), and Ai (Aj) are the areas of surfaces

i (j).

Solutions using this method, called Method 4 in Section 9, improve in accuracy

as the separation between surfaces i and j becomes larger. Sometimes referred to as

the “five times rule” [8,9], an accuracy <
∼ 2.5% can be expected when the surfaces are

separated by at least 5 surface element diameters. Results showing the dependence of the

error on separation distance are shown in Table 9.3 for one of our benchmark problems.

To obtain an accuracy of <
∼ 0.1% the separation distance should be >

∼ 20 diameters.

Normalization

For a closed environment, the sum of the configuration factors for a given element

i sums to unity:

∑
j

Fij = 1 . (3.16)

This simply states that when Fij – i.e., the fraction of energy leaving surface element i

that arrives at surface element j – is summed over all surfaces, the total must equal unity.

11



However, when the individual configuration factor integrals are numerically calculated,

Eq. (3.16) is not satisfied exactly. For example, deviations of ∼ 10−3 − 10−2 (i.e., 0.1 –

1%) can be common. Therefore, in calculations involving enclosed surfaces, the user has

the option of renormalizing the configuration fractions such that Eq. (3.16) is satisfied.

12



4. Self-Occultation Effects

When evaluating the configuration factors defined by Eq. (3.1), the integration is

restricted to the cases when θi and θj are ≥ 0. This is because each surface element has

a “preferred” side from which radiation is emitted, which is in the direction of the unit

normal vector. Before evaluating the configuration factor, Fij, for a given i-j pair, we

first check for blocking due to either “horizon effects” or intervening surface elements.

Horizon effects refers to the occultation of radiation traveling between surfaces i and j

by either surface i or j. Figure 4.1 shows an example of a case in which portions of

surface j lie below the horizon of surface i.

D

C

A

B

i
j

ri,jA
→

ni
^

Figure 4.1. Schematic illustration showing blocking of radiation due to “horizon
effects”.

If ~ri,jA is the vector going from a point on surface i to vertex A of surface j, then

vertex Aj is below the horizon of surface i if:

n̂i · ~ri,jA < 0,

where n̂i is the unit normal vector of surface i. If all vertices of surface j are below surface

i (or vice versa), then Fij = 0, in which case the segment-to-segment configuration factor

integrations are not performed. If all vertices of i are above the horizon of surface j,

13



ni
^

D

C

A

j

B

i

F

E

Figure 4.2. Schematic illustration showing how surface element boundaries are redefined
in cases where blocking due to horizon effects occurs.

and all vertices of j are above the horizon of surface i, then there is no reduction of the

configuration factor due to self-occultation effects.

Figure 4.2 shows a situation in which some vertices of surface j lie above the horizon

of surface i, but at least one of the vertices lies below the horizon (in this case, point

D). To evaluate the configuration factor in these situations, we redefine the original

ABCDA boundary of surface j to a boundary defined by segments ABCEFA. Then

the Fij are accurately computed utilizing segment-to-segment contributions from the

redefined boundary. In cases where Eq. (3.15) is used (Method 4), a new centroid

position is calculated for the redefined polygon. As an example, Figure 4.3 shows

all the surfaces (some with redefined boundaries) of a cylindrical hohlraum above the

horizon of a surface element located on the capsule. The four plots represent different

viewing angles, including along the hohlraum axis (upper left), and from a point near

the (extended) plane of the surface element on the capsule (lower left). Surfaces and

vertices which are shown lie above, or in the plane of, the horizon of the capsule surface

element.

14



Figure 4.3. Surfaces and vertices which lie above, or in the plane of, a surface element

located on the capsule (in red). Surfaces below the “horizon” of the capsule
surface element are not shown.
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5. Blocking By Intervening Surfaces

To determine the reduction in the configuration factor, Fij, by “blocking” (or

occultation) by a surface element lying between surfaces i and j, we use a ray-casting

approach to test lines-of-sight (see, e.g., [11]). Let ri and rj define points lying on

surfaces i and j, respectively (see Figure 5.1). Then, the equation of the line connecting

these points can be written as:

r(t) = ri + t ∆rij , (5.1)

where

∆rij = rj − ri .

Note that when 0 ≤ t ≤ 1, r(t) lies between surfaces i and j. To determine if ∆rij

intersects surface k, we first determine the intersection point of the line defined by ∆rij

and the plane defined by surface k. The latter is given by:

nxx + nyy + nzz = d , (5.2)

where n̂ = [nx, ny, nz] is the unit normal vector for surface k. Solving for t gives:

t =
d− n̂ · ri
n̂ ·∆rij

. (5.3)

If t < 0 or t > 1, the extended plane defined by surface k does not intersect the portion

of the line between ri and rj. Similarly, if n̂ ·∆rij = 0, the line and plane are parallel

and there is no intersection.

If 0 < t < 1, we must check to see where the intersection point lies on surface k,

which in Figure 5.1 is bounded by vertices ABCD. Letting P define the intersection

point, we can write:

~AP = α · ~AB + β · ~AC . (5.4)

Then P is inside of the triangle defined by vertices ABC if and only if (see, e.g., [11]):

α ≥ 0

β ≥ 0

and

16



nk
^

P

A

B

C

Dri
→

rj
→

Figure 5.1. Schematic illustration of ray-casting approach for testing whether an
intervening surface interrupts the line-of-sight between two other surface

elements.

Figure 5.2. Illustration showing multiple line-of-sight tests for evaluating “blocking” of
radiation by intervening surface.
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α + β ≤ 1.

In cases where surface k is a quadrilateral, a second test is made to see if the intersection

point is inside triangle ACD.

The above procedure allows us to efficiently determine whether a single line segment

between points lying on two surfaces is intersected by a third polygon. In SYMRAD, one

has the option of using a single line-of-sight test between surfaces, or testing multiple

lines-of-sight. In the latter case, we utilize test points which are located near the polygon

vertices (see Figure 5.2). Thus, in addition to the centroid-to-centroid test, (near-)

vertex-to-vertex line-of-sight pairs are also checked. The resultant configuration factor

is then reduced by the fractional number of lines-of-sight which are not intersected by

an intervening surface. That is:

Fij =
NU

NLOS
F 0
ij , (5.5)

where F 0
ij is the unocculted value of the configuration factor, NU is the number of

unblocked lines-of-sight, and NLOS is the number of line-of-sight tests performed. When

NU = 0, the transmission fraction is zero and the configuration integrals for Fij are not

evaluated.

To save computational time, an option has been added so that the user can specify

which objects can block radiation emitted by other objects. As an example, we know

that the radiation emitted by the capsule is not blocked by any other object (e.g.,

hohlraum cylinder, end caps) in a typical ICF experiment. Thus, one can potentially

realize a considerable savings in CPU time by not performing line-of-sight tests for all

surface elements of the hohlraum wall. This option has been added to SYMRAD. By

default, all surfaces will be checked as potential blockers.

18



6. Solution of the Radiosity Equation

The “radiosity equation” describes the relationship between the surface emission,

absorption, and source terms. It simply balances the radiative power emitted by a surface

with the power absorbed by that surface and the power input from other non-radiative

sources (e.g., laser beams). It can be written as:

Bi − αi
∑
j

Fij Bj = Ei , (6.1)

where Bi is the “radiosity” of surface i, αi is the reflectivity, or albedo, of surface i, Ei

is the source term, and Fij is the occultation-corrected configuration factor. Physically,

Bi is the energy radiated per unit area per unit time from surface i. It can be thought

of as Bi = σT 4
e,i, where Te,i is the “electron temperature”, or “emission temperature”.

The total radiative flux going onto surface i due to radiation from all other surfaces is:

qini =
∑
j

Fij Bj .

This can also be used to define a “radiation temperature” at surface i:

qini = σT 4
R,i .

Calculation of the source terms is described in Section 7.

The configuration factors in Eq. (6.1) depend only on the geometry of the individual

surfaces. The source terms are generally computed using the laser ray-trace model (or

simpler models if desired), and the albedos can be either defined by the user through

namelist input or be calculated from radiation-hydrodynamics simulations. Thus, given

Ei, αi, and Fij, the radiosity equation is simply a matrix equation which can be inverted

to provide Bi for all surfaces. In SYMRAD this matrix inversion can be performed by

calling LAPACK routines [12].

Alternatively, one can solve Eq. (6.1) using an iterative procedure. This can be

useful in cases where the total number of surfaces is very large. In this case, an initial

estimate is made for Bi. Then on each successive iteration the Bi are updated using:

B(k+1)
i = Ei + αi

∑
j

Fij B
(k)
i ,

where the superscript k refers to the iteration cycle. An option to use successive over-

relaxation has also been included to improve convergence.
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7. Laser Deposition Ray-Trace Algorithm

Laser energy deposition into the hohlraum is modeled using a 3-D ray-trace

algorithm. In this approach, each laser beam is divided into a specified number (∼ 102)

of beamlets. At present, each beamlet in a given beam is assumed to have the same

power: PL(t)/NBL, where PL(t) is the time-dependent power of the beam and NBL is the

number of beamlets in a given beam. Each beamlet is treated as a ray, which originates

from a beam port on the target chamber. The laser power incident on a given surface

element of a hohlraum is determined by the number and power of beamlet rays which

hit the surface element.

Figure 7.1 shows how the beamlets are distributed within a given beam. The

direction of the beam ( ~DL) is determined by the position of the laser port in the target

chamber wall and the focal point (F ). The position of the focal point is generally

specified in a coordinate system defined by a laser entrance hole (LEH). (This is discussed

in greater detail below.) Vectors specifying the direction of the beamlet propagation are

defined by 2 points: the focal point, F , and a point on an imaginary plane which is

normal to ~DL. The intersection of the conical laser beam and the imaginary plane

is represented by the two circles shown in Figure 7.1, where the pattern of beamlet

intersection points is represented by the dots. Note that in both dimensions of the

plane, the spacing between adjacent beamlets is identical. Thus, in a situation where a

laser beam irradiates a surface which is normal to the incident beam, the incident power

density (TW/cm2) is uniform. The angles θmin and θmax define the opening angle of the

beam. When θmin > 0, the laser is represented as a hollow cone.

In laser hohlraum simulations, the position of the focal point can be defined relative

to the center of laser entrance holes. By default, F for each laser beam is specified as the

center of the LEH which is closest to the target chamber laser port of that beam. Offsets

to this default position can be specified in a coordinate system in which the origin is at

the center of the LEH, and the z-axis runs through the origin of the target coordinate

system and the LEH center point (see Figure 7.2). Thus, one can, for example, readily

specify that F is located a given distance at a point just outside the LEH. It is also

possible the specify F to be off of the LEH z-axis a distance ∆r and rotation angle

∆φ. It may also be advantageous in the future to add a user-friendly graphically-based

interface for repositioning the laser focal points.

Figure 7.3 shows an example of the intersection of the NOVA laser beams with a

cylindrical hohlraum. The top image shows the view as seen from the location of the

capsule, while the lower image is a view from outside of the hohlraum. The focal point F
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Figure 7.1. (Left) Illustration of conical laser beam passing through an imaginary plane
which is perpendicular to the direction of propagation ( ~DL) for the overall
beam. (Right) Illustration of the intersections of beamlet rays of a conical

hollow beam with imaginary plane.
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to target coordinate
system origin

z

F
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LEH

Figure 7.2. (Top) Illustration of a laser beam passing through one of the LEH in

a tetrahedral hohlraum. The conical beam is modeled as a group of
“beamlet” rays that fill the cone. The pointing of the beam is defined by
its laser port on the target chamber wall and the focal point (F ). (Bottom)

Illustration showing how the position of the focal point (F ) is prescribed in
the coordinate system of the LEH.

22



is this case is assumed to be at the center of the LEH. The individual lines represent the

beamlets used to model each of the beams, and the yellow dots represent the intersection

points of the beamlet rays and the surface elements.

The intersection of laser beamlet rays with surface elements is accomplished using

a procedure similar to that in testing intervening surface occultation effects (see Section

5). In this case, we need to identify the intersecting surface which is closest to the laser

focal point. This is done by tracking the values of t in Eq. (5.3) in which a beamlet

intersects a surface element. The lowest value of t indicates the nearest intersecting

surface element.

The total incident laser power density on surface element i is:

PDi =
NL∑
j=1

Mji

NBL,j
PL,j(t) (1− fscat) , (7.1)

where the sum is over all NL laser beams, PL,j(t) is the power of laser beam j at time

t, fscat represents the fraction of laser beam energy which is scattered back out of the

hohlraum, and Mji represents the number of beamlets of beam j striking surface element

i. This power density goes into the source term in Eq. (6.1).
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Figure 7.3. Example of NOVA laser beams entering a cylindrical hohlraum. The
intersections of the individual beamlets and the hohlraum surface elements
are represented by the yellow dots. The colored patches represent surfaces
which are heated by the laser beams. (Top) View from the location of the

capsule. (Bottom) View from outside the hohlraum.
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8. Graphics

At present, SYMRAD uses the OPENGL [13] 3-D graphics library. Originally

developed for Silicon Graphics workstations, OPENGL is available for a variety of

platforms, including Windows-based PC’s and, for a cost, HP workstations. An

OPENGL clone, called MESA [14], is also available at no cost. MESA has been

developed to run on a variety of Unix-based workstations. We have chosen to utilize

OPENGL/MESA graphics libraries both because they are easy to use and because they

should readily allow SYMRAD to be run on a variety of platforms.

Examples of the graphical output from SYMRAD are shown in Figures 2.1, 2.2,

4.3, and 7.3. These 3-D graphics libraries are also interactive; that is, the user can

conveniently rotate objects, as well as “walk through” the objects in the problem

geometry. To date, the graphics algorithms in SYMRAD have been used primarily

as an instrument for debugging. More sophisticated “presentation quality” graphics

algorithms should be implemented in future versions of SYMRAD.
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9. Benchmark Calculations

9.1. Evaluation of Different Configuration Factor Integration Methods

To assess the accuracy and computational efficiency of the different integration

methods for evaluating surface-to-surface configuration factors, we performed benchmark

calculations for three problems which have analytic solutions. The three benchmark

problems are illustrated in Figure 9.1. They are: (1) two parallel plates of finite

extension; (2) two perpendicular plates of finite extension with a common edge; and (3)

two infinitely long plates with a common edge at angle α. All three surface geometries

have analytic solutions which are given in Appendix C of Ref.[10].

b

a

c

l

h

w
w

w

α

90ο

Figure 9.1. Illustration of benchmark calculation surface geometries used in testing
configuration factor integration methods.

Table 9.1 shows results for two sets of calculations for two parallel plates with

parameters a = 5, b = 3, c = 0.01 and a = 5, b = 3, c = 5. In the former case, the

distance separating the plates is small compared to the plate areas. This provides a

more rigorous test for the configuration factor integration algorithms. (Note that in

these three benchmark calculations the plates are not subdivided into smaller surface

elements.) Methods 1 through 4 are defined in Section 3. For Methods 1, 2, and 3,

the percent errors decrease as the number of subsegments (i.e., integration points along
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each segment bounding a surface) increases. Methods 2 and 3 provide the best accuracy.

Method 4 is least accurate, and as pointed out previously [8], should only be used when

the separation between the surface is large compared to the size of each surface. Note

that for Methods 2 and 3, the accuracy is better than 1% when the number of integration

points is ≥ 2 for c = 5 and ≥ 5 for c = 0.01.

Timing studies were also done for this problem to assess the relative computational

efficiencies of these methods. Results are shown in Table 9.2 for cases with 3 integration

points and 10 integration points per segment. Clearly the fastest method is Method 4.

However, this method is not accurate when surfaces are close together. Table 9.3 shows

the accuracy of Method 4 as a function of plate separation. Note that 1% accuracy

is not achieved until c >
∼ 40; that is, c/

√
ba >

∼ 0.1. Method 1, because it performs

a numerical integration for both portions of the configuration factor double integral,

exhibits a significant increase in CPU time as the number of integration points increases.

Thus, this method can often be both less accurate and less efficient than Methods 2 and

3. This is interesting because Method 1 is often used in view factor codes.

Tables 9.4 and 9.5 show results from benchmark simulations corresponding to

Figures 9.1(b) and 9.1(c). Again, we find Methods 2 and 3 provide much better accuracy

than Methods 1 and 4. Table 9.5 results also show Method 3 is significantly more

accurate than Method 2 for this class of problems. In most of the test results shown,

Method 3 provided an accuracy of better than 1% when >
∼ 10 integration points per

segment were utilized. The sole exception to this is in Table 9.5 for the α = 170◦ case.

However, it is important to note that in this particular case, the magnitude of Fij is

much smaller. Thus, its contribution to the overall radiation field is very small.

Based on the above calculations, we conclude that Method 3, which solves the

configuration factor double integral analytically to the maximum extent possible,

provides the overall best accuracy for evaluating configuration factors, and does so with

relatively good computational efficiency.

9.2. Concentric Sphere Benchmark Calculations

A series of concentric sphere benchmark calculations was also performed to assess

the accuracy of the SYMRAD code. In these problems, the goal is to compute the

flux distribution incident on the inner sphere due to radiation emitted from the inner

surface of the outer sphere. The radiative flux emitted by the outer sphere is azimuthally

symmetric, but has a prescribed polar asymmetry.
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Table 9.1. Results from Parallel Plate Benchmark Calculation

Case A: a = 5, b = 3, c = 0.01

Number of Percent Error in F12

Subsegments Method 1 Method 2 Method 3 Method 4

1 400 10.3 4.5 5e6

2 140 3.7 0.99 5e6
3 80 1.9 0.42 5e6
5 40 0.81 0.15 5e6

10 15 0.24 0.035 5e6
100 0.21 0.003 -0.0001 5e6

Case B: a = 5, b = 3, c = 5

Number of
Subsegments Method 1 Method 2 Method 3 Method 4

1 8.4 3.6 -4.9 40

2 1.7 0.81 -1.0 40
3 0.71 0.35 -0.43 40
5 0.25 0.13 -0.15 40
10 0.063 0.031 -0.038 40

100 0.0006 0.0003 -0.0004 40

Table 9.2. Results of CPU Time Studies

CPU Times* per 105 Fij Calculations (seconds)

Number of
Subsegments Method 1 Method 2 Method 3 Method 4

3 32 44 42 9

10 168 78 65 9

*Calculations performed on a HP 735 Workstation.
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Table 9.3. Accuracy of Method 4 Model (a = 5, b = 3)

c % Error

.01 5e6
.1 5e4
1 680
3 100

5 40
10 11
30 1.3
50 0.45

100 0.11

Table 9.4. Results from Perpendicular Plate Benchmark Calculation

` = 8, w = 4, h = 2

Number of Percent Error in F12

Subsegments Method 1 Method 2 Method 3 Method 4

2 -18 -6.5 4.6 144
3 -6.3 -2.8 2.0 144

5 -2.0 -1.0 0.65 144
10 -0.48 -0.24 0.16 144
100 -0.0048 -0.0024 0.0016 144

29



Table 9.5. Results from Benchmark Calculation with Two Plates Adjoining
at Angle α

w = 0.5, L = 100 (L/w →∞)

Number of Percent Error in F12 2π A1 F12

Subsegments α Method 1 Method 2 Method 3 Method 4 (exact)

3 10◦ -1e3 -110 1.1 9e5 286.8

10 10◦ 84 -13 0.66 9e5 286.8
100 10◦ 27 -0.16 0.024 9e5 286.8

3 90◦ -1e4 -340 0.18 2e4 92.02

10 90◦ -2e3 -42 0.18 2e4 92.02
100 90◦ -9.6 -0.72 -0.83 2e4 92.02

3 170◦ -9e4 -3e4 -150 1e4 1.196

10 170◦ -2e5 -3e3 -57 1e4 1.196
100 170◦ -810 -43 8.3 1e4 1.196

In the first set of concentric sphere calculations, we compare our results with those

previously obtained [15] using a LANL view factor code [16]. In this case, the source

distribution, qs(θ), at the outer sphere is given by:

qs(θ) = q∗s (1 + β2 P2(cos θ)) , (9.1)

where θ is the polar angle, q∗s is a constant, P2(cos θ) is the second Legendre polynomial

(P2(x) = 3
2
x2− 1

2
), and β2 is a constant. Note that the ratio of the minimum to maximum

flux is given by:

ε4
0 =

1− 1
2
β2

1 + β2

.

In the calculations discussed below, we assume β2 = 0.950, so that ε0 = 0.720.

We first considered the case where both spheres are perfect absorbers; that is, both

the albedo of the inner sphere (αi) and outer sphere (α0) are zero. In this case, it is

possible to readily evaluate the incident flux at a point on the inner sphere by direct

numerical integration:

=(θi) =
∫ 2π

0
dα

∫ 1

0
dµ µ B0 (1 + β2 P2 (µ) ) , (9.2)
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where µ = cos(γ), γ is the polar angle of a point on the outer (emitting) sphere relative

to the point on the inner sphere at polar angle θi (see Figure 9.2), α is the azimuthal

angle in the coordinate system defined by the point on the inner sphere, and B0 is a

constant (∼ σ T 4).

Results for the flux distribution on the inner sphere are shown in Figure 9.3 as a

function of polar angle for cases of η (= Rinner/Router) = 0.5 and η→ 0. The SYMRAD

results (squares) are seen to compare favorably with the direct numerical integration

results (solid curve).

As an additional check, we compared the total “sphere-to-sphere” configuration

factors with analytic solutions. For two concentric spheres, the fraction of radiation

emitted by the outer sphere that arrives at the inner sphere is:

Foi = (Rinner/Router)
2 , (9.3)

while the remaining fraction that arrives at other points on the outer sphere is:

Foo = 1− (Rinner/Router)
2 , (9.4)

where the R’s represent the radii of each sphere. Table 9.6 compares the SYMRAD

results using a total of 1040 surface elements with exact solutions. The SYMRAD

results are seen to be in good agreement with the exact values, with typical errors being

a fraction of 1%.

A series of concentric sphere calculations were performed to compare with previous

solutions calculated using a LANL code [15,16]. Figure 9.4 shows SYMRAD results for

a variety of inner sphere and outer sphere albedos as a function of the ratio of the sphere

radii (Ri/Ro). Also shown are LANL code results (solid and dashed curves), which are

based on curve fits to the results of numerical view factor calculations [15], and for the

case of αi = αo = 0, results from direct numerical integration of the flux equation (Eq.

(9.2)) (represented by the lower open squares). Results for the αi = αo = 0 case are also

listed in Table 9.7.

We find that discrepancies between the SYMRAD and LANL results range up to

∼ 20%, with the LANL results predicting a larger ratio of Fmin/Fmax in most cases. On

the other hand, for the αi = α0 = 0 cases (lower curve and points in Figure 9.4), the

SYMRAD results compare favorably with the flux ratio computed by direct numerical

integration. In these calculations, the agreement is good to within 1 – 2 %.
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Figure 9.2. Concentric sphere coordinate geometry.
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Figure 9.3. Comparison of incident flux distributions calculated using SYMRAD and
from direct numerical integration of Eq. (9.2). η is the ratio of the inner
sphere radius to the outer sphere radius.

33



Table 9.6. Total Object Configuration Factors from Concentric Spheres

Benchmark Calculations

Ri/R0 Foi (calc.) Foi (exact) F00 (calc.) F00 (exact)

0.01 1.002× 10−4 1.00× 10−4 0.9999 0.9999
0.5 0.2514 0.2500 0.7486 0.7500
0.8 0.6415 0.6400 0.3585 0.3600

Table 9.7. Concentric Sphere Benchmark Results for αi = α0 = 0

Flux (min) / Flux (max)

Ri/R0 SYMRAD LANL Numerial Analytic
Integration

0 - 0.708 0.712 0.712

0.01 0.708 0.703 0.705 -
0.3 0.517 0.576 0.513 -
0.5 0.415 0.488 0.410 -
0.8 0.308 0.357 0.302 -
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Figure 9.4. Comparison of SYMRAD (symbols) and LANL (solid and dashed curves)

results from concentric sphere benchmark calculations. Results are shown
for several values of αi and αo. Also shown are results from the direct
numerical integration of Eq. (9.2).
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As an additional series of tests, we compared the results from SYMRAD concentric

sphere calculations with those obtained using the Legendre polynomial expansion

method of Haan [17]. In these simulations, the spheres have zero albedos, and the

flux (emission source) distribution on the outer sphere is represented in a more general

form as:

= = =0

∞∑
`=0

t`P`(cos θ0)P`(cos θ) , (9.5)

where =0 is a constant, t` is a user-specified constant, and θ0 is the angle between the

axis of symmetry and a point on the inner sphere (p1 in Figure 9.2). Following the

approach of Haan, we note the following relationships:

cos θ =
1 + η2 − z

2η
, (9.6)

µ = cos γ =
1− η2 − z

2η
√

z
, (9.7)

and

2µdµ = dz
1

4η2

[
1− (1− η2)2

z2

]
, (9.8)

where η = Ri/R0 and z = (r/R0)2. Solving for the flux at p1 gives:

=(p1) = =0

∞∑
`=0

t`P`(cos θ0)f`(η) , (9.9)

where

f`(η) =
1

4η2

∫ (1−η2)

(1−η)2
dz

[
(1− η2)2

z2
− 1

]
Pl

(
1 + η2 − z

2η

)
. (9.10)

In SYMRAD, we have added subroutines to compute f`(η) numerically, as well as the

flux at an arbitrary point on the inner sphere. Results of f`(η) were compared with Table

1 in Haan [17], and in all instances we found complete agreement to the 5 significant

figures shown in his table.

Results for several assumed temperature distributions are shown in Figures 9.5

through 9.9. Unless otherwise noted, the parameters in these calculations were as
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follows: Ri/R0 = 0.7; the number of azimuthal grid points, Nφ, was 14 for each sphere;

the number of polar grid points, Nθ, was 27 for each sphere (for this Nφ and Nθ, the

total number of surfaces was 782); the number of subsegments used in the numerical

integration portion of the configuration factor integral was 10. A relatively large value

of Ri/R0 was used to enhance the angular dependence of the results.

Figure 9.5 shows results for t` = 0.5 (t 6̀=1 = 0). (Note that in all cases t0 = 1.) The

flux on the inner sphere calculated using SYMRAD and Haan’s formula is shown in the

top plot. The percent error, defined as

∆(%) = 100 ·
[
F luxSYMRAD − F luxHaan

F luxHaan

]
, (9.11)

is shown in the bottom plot. For this P1 asymmetry, our view factor results are accurate

to ≤ 0.4%.

Figure 9.6 shows results for a P3 temperature distribution (t3 = 1, t 6̀=3 = 0). In

this case, the maximum error is 1.3 %. Results for a P4 are shown in Figure 9.7. In

the bottom plot, the solid curve shows results for the “baseline” case with Nφ = 14 and

Nθ = 27. In this case the maximum error is seen to be 1.1%. Also shown are results

for Nθ = 43 and Nθ = 13 (with Nφ = 14) and Nφ = 23 (with Nθ = 27). Decreasing

the number of polar angle grid points to Nθ = 13 results in significantly larger errors

(up to 3.6%). Increasing Nθ to 43 points reduced the maximum error to 0.78%. Finally,

increasing Nφ to 23 points leads to a maximum error of 0.88%. Note that the errors

are small compared to the total change in flux across the inner sphere, which is slightly

more than a factor of 2.

It is also interesting to examine a case where the magnitude of the asymmetry is

small. An example of this is shown in Figure 9.8, where Ri/R0 is 0.3 and t4 = 0.2. In

this case, the ratio of the maximum to minimum flux is 1.016; that is, about 1.6% of

the total flux. By comparison, the errors are typically ≤ 0.1%.

Finally, Figure 9.9 shows results for a P2 asymmetry (t2 = 0.95, t 6̀=2 = 0) with Ri/R0

= 0.3. These parameters are more typical for ICF experiments. In the baseline case

(solid curve), the maximum error is seen to be 0.8%. However, by increasing Nφ from

14 points to 21 points, the maximum error drops to 0.4%. We note that by increasing

the number of subsegments from 10 to 30 had no noticeable effect. That is, the errors in

computing the view factors (i.e., the configuration factor integrals) are small compared

to those introduced by modeling the spheres as a finite number (∼ 102−103) of polygons.
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Figure 9.5. Comparison of incident flux distributions on inner sphere calculated using
SYMRAD and from Haan’s method for a P1 source distribution.
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Figure 9.6. Comparison of incident flux distributions on inner sphere calculated using
SYMRAD and from Haan’s method for a P3 source distribution.
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Nθ = 27
Nθ = 43
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Nϕ = 23

Figure 9.7. Comparison of incident flux distributions on inner sphere calculated using
SYMRAD and from Haan’s method for a P4 source distribution. Results
showing the dependence on the number of surface elements is also shown.
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Figure 9.8. Comparison of incident flux distributions on inner sphere calculated using
SYMRAD and from Haan’s method for a P4 source distribution.
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Figure 9.9. Comparison of incident flux distributions on inner sphere calculated using
SYMRAD and from Haan’s method for a P2 source distribution.
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In all cases, the differences between the SYMRAD and Haan results were <
∼ 1%,

so long as the number of azimuthal points was ≥ 14 and the number of polar points

was ≥ 27. The primary source of the errors stems from modeling the spheres as a finite

number of polygons, while the errors arising from the configuration factor integration

algorithms are relataively small.

9.3. Summary of Benchmark Simulations

The results presented in this section indicate that SYMRAD provides accurate

solutions both to surface element-to-surface element configuration factor integrals and

to concentric sphere flux asymmetry problems. In cases where analytic or “accurate

numerical solutions” were available, SYMRAD was found to be in very good agreement.

In addition, by comparing several different configuration factor integration techniques,

we have been able to demonstrate that the algorithms used in SYMRAD are both

accurate and computationally efficient.

43



10. Simulations of NOVA and OMEGA Radiation Symmetry
Experiments

10.1. Simulation of NOVA Radiation Symmetry Experiments

To assess SYMRAD’s ability to simulate radiation asymmetries in ICF experiments,

we performed simulations of cylindrical hohlraums with parameters relevant to

experiments described in Suter et al. [18] and Hauer et al. [19]. In these experiments,

implosion symmetry was studied through the use of imploded core images. The

dependence of the distortion in the imploded core images was studied as a function of the

cylindrical hohlraum length. Figure 10.1 (top) shows an illustration of the experimental

geometry. As the hohlraum length increases the points at which the laser beams hit the

hohlraum move further from the cylinder midplane, and the ratio of incident radiation

on the capsule equator to that of the poles decreases. This leads to a greater distortion

(see Figure 10.1 (bottom)), or “pancaking”, of the imploded core. Note that the data

point with best symmetry in Figure 10.1 corresponds to a cylinder length of 2400 µm (or

“pointing” = L/2 = 1200 µm). This value corresponds to experiments using pulse shape

22 (ps22). In a series of experiments using 1 ns flattop laser pulses, the best symmetry

occurred for L/2 = 1320 ± 50 µm [18]. The differences have been attributed, at least in

part, to spot motion (i.e., the movement of positions at which laser energy is deposited

due to wall blowoff).

To simulate these experiments, we performed a series of time-independent SYMRAD

calculations with the following parameters:

•Rcapsule = 275 µm

•Rhohlraum = 800 µm

•RLEH = 600 µm

•αhohlraum = 0.8

•αcapsule = 0.1

•2000 µm ≤ Lhohlraum ≤ 3000 µm.

In each calculation, a total of 980 surface elements were used. The location of each laser

spot on the cylinder wall was determined by the vector from the laser port in the target

chamber to the center of the LEH through which the beam passes. The size of the laser

spot on the wall is governed by the opening angle of the conical laser beam, which was

assumed to be 10 degrees.

44



  L

"Pointing" = L/2

Figure 10.1. (Top) Illustration of experimental geometry in NOVA radiation symmetry
experiments. (Bottom) Experimentally measured distortion as a function
of “pointing”, or L/2 (from Suter et al. [18]).
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Figure 10.2 shows results for the calculated distribution of incident flux onto the

capsule as a function of polar angle (θ = 00 and 1800 correspond to points below the

LEH). The lower plot in Figure 10.2 displays the same results, but as the percent

deviation from the mean flux onto the capsule. At each polar angle, there is a distribution

of points (as opposed to a single point). This occurs because there is also an azimuthal

dependence for the flux onto the capsule.

These time-independent SYMRAD simulations predict that the best symmetry

occurs when the hohlraum half-length is L/2 ≈ 1300 µm. This is consistent with the

experimentally determined values of 1200 ± 50 µm for a ps22 pulse and 1320 ± 50 µm

for a 1 ns flat-top pulse. Thus, the SYMRAD predictions appear to be in very good

agreement with NOVA experimental symmetry data.

10.2. Simulation of OMEGA Tetrahedral Hohlraums

A series of calculations were also performed for tetrahedral hohlraums using

parameters relevant to experiments which took place at the University of Rochester

OMEGA facility in 1997. In these simulations, the energy source term was modeled by

assuming the inside surface of the tetrahedral hohlraum — a sphere with 4 LEH located

at angles corresponding to a tetrahedron — was uniform (i.e., Ei in Eq. (6.1) was the

same for all hohlraum surface elements). The nominal parameters in these simulations

were:

•Rhohlraum = 1150 µm

•RLEH = 450 µm

•Rcapsule = 275 µm

•αhohlraum = 0.8

•αcapsule = 0.1 .

The radii were varied to study the sensitivity of the radiation asymmetry on the capsule

to RLEH, Rcap, and RH. A total of 1200 surface elements was used in each calculation.

Figure 10.3 shows plots of the deviation from the mean incident radiation field on

the capsule as a function of polar angle and azimuthal angle. In all cases, the color

scale is the same. The top plot corresponds to results using LEH radii of 450 µm. In

this case, deviations exceeding ± 5% are seen. The regions of purple indicate relatively

low incident fluxes and correspond to points on the capsule which lie below each of the

LEH. The lower two images in Figure 10.3 show that as the LEH radii decrease, the
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Figure 10.2. Calculated distributions of incident flux onto the capsule for parameters

relevant to NOVA radiation symmetry experiments. The data in the
bottom plot are the same as the top, but presented as the percent deviation
from the mean incident flux.
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uniformity of flux onto the capsule improves. For the case in which the LEH radii is 250

µm, the peak deviations from the mean incident flux are approximately ± 3%. For the

case when RLEH = 50 µm, the peak deviation is less than 1%.

Figure 10.4 shows three series of calculations in which the LEH radii were varied

(top), the hohlraum radius was varied (middle), and the capsule radius was varied

(bottom). The results show, as expected, that the RMS variation decreases as the case-

to-capsule ratio increases. For the nominal parameters of RLEH = 450 µm, Rcap = 275

µm, and RH = 1150 µm, the RMS variation in the incident flux on the capsule is between

5 and 6 percent. Increasing the hohlraum radius to 1400 µm results in a drop in the

RMS variation to about 3 percent.

Figure 10.5 shows the azimuthal dependence of the incident flux on the capsule for

points located along the capsule “equator;” that is, as viewed looking down one of the

LEH in the tetrahedral hohlraum. Results are shown for hohlraum radii of 900, 1150, and

1400 µm. The three valleys correspond to points on the capsule which lie approximately

below one of the three remaining LEH. For RLEH = 900 µm, the variation of incident

flux about the equatorial belt is about ± 13%, while for RLEH = 1150 µm, the variation

is approximately ± 6%.

The above simulations represent a first step in the analysis of radiation symmetry

data from OMEGA tetrahedral hohlraum experiments. It is anticipated that future

simulations will include the actual laser beam pointings, as well as time-dependent laser

powers and albedos.
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Figure 10.3. Images showing the dependence of the incident radiation flux onto a capsule
in tetrahedral hohlraum targets as a function of the radii of the LEH:
(top) RLEH = 450 µm, (middle) RLEH = 250 µm, (bottom) RLEH = 50
µm. The images show the fractional deviation from the mean incident flux

as a function of azimuthal angle (“Phi”) and polar angle. In each case,
Rhohlraum = 1150 µm and Rcapsule = 275 µm.
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