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1. Multi-Dimensional Radiation-Hydrodynamics Code Devel-
opment

The effort to develop a multi-dimensional radiation hydrodynamics computer code
with realistic equations of state and opacities has consisted of several activities:

e evaluate candidate programs,

e select one code for development,

implement multiple materials,

include multigroup frequency dependence, and

add table lookup of detailed opacities and equations of state.

Starting with a survey of available hydrodynamics codes, both with and without
radiation, we selected three for a more extensive evaluation: CTH, MACH2, and ZEUS-
2D. These were run with some simple hydrodynamics test cases and, for MACH2 and
ZEUS-2D, which have a rudimentary radiation hydrodynamics (RHD) capability, some
simple RHD test cases. Based on several considerations, the ZEUS-2D code was chosen
as the foundation of our 2-D radiation hydrodynamics code development effort.

2. Candidate Radiation Hydrodynamics Code Evaluation

The key considerations used in evaluating the three main candidate codes for our
purposes are briefly summarized in Table 1.

The ZEUS-2D code was chosen for our development purposes because:

e ZEUS-2D already contained a simple (single frequency) radiation hydrodynamics
capability, the extension of the algorithms to multiple frequencies is straightforward,
and a ZEUS-3D version exists for both vector and parallel computers that we
anticipate would expedite developing a 3-D RHD capability.

e CTH can be used for multiple materials and shock waves impacting structures,
but it will be difficult to add radiation transport because it is coded with
explicit numerical sweeps in alternating directions, while the radiation transport
intrinsically requires an implicit solution.

e MACH2 contains rudimentary radiation diffusion and multi-material zones, but we
judged it to be difficult to modify, and Lagrangian mesh tangling will be a serious
issue for the types of 2-D calculations we need to run.



Table 1.

Key Considerations for the Main Codes Evaluated for Development

into a Two-Dimensional Radiation Hydrodynamics Code

Cylindrical (2-D)
Spherical (1-D)

Cylindrical (2-D)

CTH MACH2 ZEUS-2D & 3D
Main Projectiles; Compact Astrophysics
applications explosives toroid MHD
Originator Sandia Phillips NCSA
Laboratory (NSF)
Restrictions Proprietary Proprietary Public
Domain
Language Fortran 77 Fortran 77 Fortran 77
and C and C and C
Radiation No Yes (cooling or Yes (2-D)
diffusion optically thick)
Multi- Yes Yes, in No
material distinct regions
Magnetic field No Yes Yes
Eulerian or Eulerian Arbitrary Eulerian
Lagrangian (Lagrangian Lagrangian
step and remap) Eulerian
(ALE)
Numerical Explicit Implicit Explicit hydro
method (SOR) and transport;
Implicit radiation
diffusion (ICCG)
Mesh 1 block Multiple Ragged
blocks boundary
Geometry Rectangular (3-D) | Rectangular (2-D) | Rectangular (3-D)

Cylindrical (2-D)
Spherical (2-D)




2.1. Testing the Unmodified ZEUS-2D Radiation Hydrodynamics Code
Development Status

Having selected a code, some simple but relevant ZEUS-2D test cases were run at
high energy density. These cases were:

1. Spherical and cylindrical explosions at high energy density,
2. Radiation impinging on a gold slab, and

3. Spherical and cylindrical explosions within hohlraums.

Our earliest attempts at running hohlraum cases experienced difficulty due to the time
step dropping to very small values (1073° ). This appeared to be due to the coupling of
the target explosion with the wall, so we investigated the simpler problems of an isolated
target explosion and of the slab-geometry interaction of radiation with a gold wall. By
varying the zoning, profiles, initial conditions, and background conditions, each of these
problems was successfully attacked. The problems were explored up to hohlraum-relevant
energy densities. That is,

e High-energy-density cases were run for cylindrical and spherical target explosions
in rectangular (x,y), cylindrical (r,z), and spherical (r,§) geometry with
— radiation energy density S 10% erg/cm?, and

— plasma energy density S 2.5 x 106 erg/cm®.
o Blackbody radiation diffusing through a gold slab was run with

— radiation energy density S 2 x 10! erg/cm?, and

— plasma energy density < 4 x 10 erg/cm®.

Attacking these problems separately allowed us to develop the experience and
techniques necessary to run the combined problem of the hohlraum. Hohlraum cases
were run, and results reported at the American Physical Society—Division of Plasma
Physics meeting in Louisville, Kentucky, November 6-11, 1995. Based on these results,
we began implementing various capabilities of the UW 1-D radiation hydrodynamics
code, BUCKY, in ZEUS-2D.

3. ZEUS 2-D Radiation Hydrodynamics Code

The ZEUS-2D radiation-magnetohydrodynamics code [1, 2, 3] is being augmented
to add the key capabilities of the University of Wisconsin’s 1-D BUCKY code, including;:

e Multiple materials,



o Multigroup frequency dependence,

¢ Table lookup of detailed opacities and equations of state.

ZEUS-2D is a two-dimensional, Eulerian-mesh code, written in covariant
orthogonal coordinates and solved by finite differences with operator splitting into
implicit source and explicit transport steps. The fundamental hydrodynamic equations
can be solved alone or with magnetohydrodynamics, radiation, or both. The finite-
difference mesh can be modified dynamically, although ZEUS-2D is not an adaptive-mesh
code, and the mesh spacing can be varied independently in both dimensions.

The unmodified ZEUS-2D code has been tested on simple radiation diffusion,
microexplosion, and hohlraum test problems, and it appears to be a suitable code upon
which to base the desired modifications. Multiple materials have been implemented
by including the solution of a separate equation of continuity for each species.
The modifications to the difference equations required to add multigroup frequency
dependence have been developed and tested in a small auxiliary code, and added to
ZEUS-2D. The table lookup subroutines from the BUCKY code for equations of state
and opacities have been merged with the ZEUS-2D code.

Testing of ZEUS-2D has proceeded in four independent areas:

1. multimaterial model
2. equation of state and opacity table lookup
3. multigroup radiation diffusion

4. hydrodynamics.

ZEUS has a recently added model that tracks the flow of different materials. The
flow of different materials in ZEUS-2D is modeled by solving the advection problem
separately for each material. The partial pressure in each zone for each material is
calculated from the density of that material and the temperature in the zone. The total
pressure is the sum of all the partial pressures in each zone. This is tested by running a
standard problem in two ways. The problem, shown in Figures 1 and 2, is a shock driven
by a mass density step. In one case, the mass is all a single material. In the other, a
second material with identical properties replaces the first material in a region traversed
by the shock. In the figures, the short dashed lines are the second material, the long
dashes are the first material. The final total mass density profiles are compared, and the
relative differences between the two calculations are found to be very small.

The use of realistic equations of state has been added to ZEUS-2D. This has been
tested with a problem where temperature boundary conditions are applied to 2 planes
bounding a slab and the temperature and densities are allowed to seek equilibrium. The
ideal gas model in ZEUS-2D for one run, and the lookup of the same values in a table
are used for the other. The results were essentially identical.
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Figure 1. Initial condition of multimaterial test problem. The top figure is the mass
density profile for a single material. The second figure shows the mass density
split between two materials.
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the two calculations.
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The radiation transport via multigroup diffusion has been added to ZEUS-2D. It
has been tested with a simple 1-D slab problem, with radiation energy density boundary
conditions applied at two surfaces. The energy radiation density relaxes over time to a
linear profile as it should.

The hydrodynamics of ZEUS-2D have been used in many astrophysical contexts.
We have also tested the use of the code on pure hydrodynamic problems. We have gotten
the expected results for hydrodynamic stability problems, where a shock is driven through
a rippled high density curtain and becomes Richtmyer-Meshkov unstable. The results of
such a simulation are shown in Figure 3. We have plans to perform simulations of shock
tube experiments, with the multimaterial model and the table lookup of equations of
state.

It has taken us much more effort to reach this stage than we originally thought,
so we have just now started testing the code with integrated benchmarking. We have
not been able to obtain results from the MULTI-2D code in Europe that are suitable for
benchmarks. We have decided that it makes more sense to compare with experiments
when they are available. Gold burnthrough experiments reported below have been used
to benchmark the BUCKY code, so we are trying the same for ZEUS-2D. This will test
hydrodynamics, radiation transport, and opacity lookups in an integrated way. At the
time of this report, we have a bug in these calculations that is yet unresolved. We will
report on these tests at a later date.

In summary, the status of the modifications to ZEUS-2D as of the writing of
this report is that (1) multiple materials have been implemented and are working; (2)
table lookup has been implemented, the data is properly being read by ZEUS-2D, and
the interpolation routines are working; and (3) a relatively simple multigroup frequency
algorithm has been implemented and is working with ideal equations of state. The
main difficulty at present is that running the multigroup frequency version of ZEUS-
2D with table lookup of the equations of state and opacities does not give results that
benchmark with the well-tested BUCKY 1-D radiation hydrodynamics code. Present
efforts are focused on resolving this difficulty and benchmarking the modified ZEUS-2D
code against both BUCKY and experiments.
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ABSTRACT

BUCKY and ZEUS-2D are two radiation hydro-
dynamics codes under development at the Univer-
sity of Wisconsin for the simulation of the behavior
of high energy density plasmas found in ICF targets
and target chambers. The ZEUS-2D code was orig-
inally developed at the National Center for Super-
computer Applications. BUCKY is a 1-D Lagrangian
code which models many physical phenomena. Veri-
fication of these models in BUCKY with experiments
is in progress. ZEUS-2D is a 2-D Eulerian radiation
magnetohydrodynamics code written for astrophysi-
cal applications. It contains relatively simple radi-
ation physics models which are being enhanced by
implementing models from the BUCKY code.

1. INTRODUCTION

This paper describes the present state of ICF ra-
diation hydrodynamics code development at the Uni-
versity of Wisconsin. Computer codes for the study
of ICF plasma physics and radiation transport have
been under development at the University of Wiscon-
sin for about twenty years. Presently, two radiation
hydrodynamic computer codes and an atomic physics
code are being used, maintained and improved upon.
BUCKY! is a 1-D radiation-hydrodynamics computer
code. ZEUS-2D, written at NCSA, is a 2-D radiation
MHD code.?34 EOSOPA?® is an atomic physics com-
puter code for calculation of equations-of-state and
opacities for BUCKY and ZEUS-2D.

BUCKY! is a 1-D Lagrangian radiation-hydro-
dynamics computer code in slab, spherical, and
cylindrical geometry. BUCKY uses table lookups
for detailed equations-of-state and opacities from

EOSOPA® or SESAME.® Radiation transport is
calculated several possible ways, including multigroup
diffusion and CRE line transport. Thermonuclear
burn, neutron and fusion product transport, laser,
thermal radiation, and ion source deposition are mod-
eled. BUCKY calculates the response of a solid sur-
face to x-rays and ions including vaporization and
melting.

ZEUS-2D is a two-dimensional, Eulerian-mesh
radiation-magnetohydrodynamics code.? The funda-
mental hydrodynamic equations can be solved sep-
arately or augmented with magnetohydrodynamics,
radiation, or both. In its published condition, ZEUS-
2D had single group radiation transport, ideal gas
equations-of-state and minimal energy source physics.
ZEUS-2D is being modified to include the physics ca-
pabilities of BUCKY.

BUCKY has been used in the simulation of high
and moderate energy density plasma phenomena.
BUCKY has been used to model ICF target implo-
sions and explosions. It has been useful in the study
of ion beam driven physics experiments on PBFA-II
at Sandia National Laboratories? and on KALIF at
Forschungszentrum Karlsruhe.® Laser driven physics
experiments on Nova at Lawrence Livermore National
Laboratory have also been studied with BUCKY.
Moderate energy density applications of BUCKY in-
clude fireballs in gases, and vaporization and melt-
ing of solids by x rays and ions. These applications
are often related to an ICF target chamber, such as
in power plant concepts and in the National Ignition
Facility.®

Recently, there has been significant development
of the BUCKY 1-D radiation-hydrodynamics code.
The ZEUS 2-D radiation-magnetohydrodynamics



code is still in development and has not vet been used
for problems of interest to ICF. BUCKY results have
been compared with experiments at high and mod-
erate energy densities, that are relevant to ICF tar-
gets and target chambers. These are discussed in this
paper.

II. BUCKY 1-D CODE

A. Radiation Transport and Hydrodynamics

The BUCKY code has been compared with ra-
diation burnthrough experiments performed on the
Nova laser at LLNL.!? In these experiments, x rays
produced in a gold Hohlraum with the Nova laser
beams are allowed to burn through a thin gold foil.
The Hohlraums are cylinders 0.16 ¢cm in diameter and
0.275 cm long with walls 25 um thick. Gold foils and
observation holes are placed in the Hohlraum walls
near the center. Ten laser beams enter the Hohlraums
through holes at each end of the cylinder and shine
on the inside of the walls. The laser pulse shape is
assumed to be trapezoidal, with a 0.8 ns flat top.
The x rays create a Marshak wave in the gold, whose
speed is a function of the opacity and equation of
state of the gold. The transit time of the Marshak
wave is measured for foil thicknesses from 1 to 3 um
by observing the history of the x-ray emissions from
the back of the foils with a Streaked X-ray Imager
(SXI). Simultaneously, the drive radiation inside the
Hohlraum is measured with the DANTE x-ray diode
array. DANTE observes the x-ray power emitted by
a given area on the inside of the Hohlraum wall in
several energy channels. This can be converted into
an effective wall temperature that is reported as a
function of time.1°

These experiments have been modeled with the
BUCKY code in 1-D. The Nova Hohlraum is modeled
as two slabs of solid gold separated by 0.15 cm of low
density gold vapor. BUCKY models the deposition of
the laser in the vapor and on the inside edge of one
of the walls, assuming that the beams are incident at
45°. By simulating the laser deposition, the radiation
burning into the gold is in a spectrum calculated by
the code and is not assumed to be Planckian. Ra-
diation transport is modeled with 100 energy group
flux-limited diffusion. Equations-of-state come from
SESAME tables, and opacities from tables generated
with the EOSOPA code, where the Unresolved Tran-
sitions Array method is used to calculate high atomic
number opacities.

The proper intensity of the laser is uncertain, be-
cause in a Hohlraum the lasers are focused in distinct
spots which is a 3-D problem. The intensity has been
varied until the code predicts the wall temperature
measured by DANTE. The wall temperature is calcu-
lated as the blackbody temperature that would cre-
ate the emitted flux predicted by the BUCKY sim-
ulations. The simulations used flux limited diffu-
sion for the radiation transport, which only provides
the net flux across the wall surface, so the emitted
flux is calculated as the difference between the net
flux and the flux from the center of the Hohlraum,
0T (center). The radiation temperature in the cen-
ter of the Hohlraum or drive temperature, the cal-
culated wall temperature, and the DANTE measured
wall temperature are plotted in Fig. 1 for a laser in-
tensity of 150 TW/cm2. One can see that this inten-
sity is close to agreeing with the DANTE measure-
ments. The effect of losses on the holes is accounted
for through the adjustment of the laser power. A 1-D
model like this is only useful when it is tied to a mea-
surement of the wall temperature. The advantage of
modeling the laser, as it has been in these calcula-
tions, over modeling the drive radiation as a black-
body spectrum is the inclusion of non-Planckian fea-
tures. Because the calculated wall temperatures are
forced to agree with the measure values, the drive
fluxes on the sample foil are correct, and the spec-
trum is closer to correct than a Planckian would be.

Wall Temperature at Drive Surface

Gold Foil Driven by X Rays Produced by 150 TW/cm’ Laser
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Fig. 1. Wall and drive temperatures in Nova
Hohlraums. Drive and wall temperatures calculated
by BUCKY for 150 TW/cm? laser. Wall tempera-
tures are measured with DANTE.



Using 150 TW/cm? as a laser intensity, the burn-
through of various thicknesses of the gold foils has
been simulated with BUCKY. The burnthrough time
is defined as the time between when the drive flux
reaches 10% of its maximum and when the flux at
the back of the foil reaches 50% of its peak. The
SXI measures the flux in channels between 210 and
240 eV and 430 and 570 eV. BUCKY group struc-
ture allows channels between 208 and 236 eV and
451 and 547 eV. The comparisons of the burnthrough
times for radiation in these channels are shown in
Fig. 2, plotted against foil thickness. One can see that
the BUCKY simulations show excellent agreement
with the experimental results. This is a confirma-
tion of the radiation diffusion method in BUCKY and
the opacities calculated by EOSOPA for use in the
simulation of radiation transport in dense high atomic
number plasmas.

B. Ion Stopping, Vaporization and Melting

The calculation of the deposition of ions in solids
by the BUCKY code has been improved. The code di-
vides material into two parts: hydrodynamic regions
where the material is allowed to move and solid or lig-
uid regions, where hydrodynamic motion does not oc-
cur. Heat transfer is calculated in both parts, though
radiation transport is not calculated in solids. Pho-
tons reaching the interface between vapor and solid
are deposited in the first solid zone. The ion deposi-
tion is calculated in the solid material as a function
of distance using the Bethe model at high particle
velocity and the Lindhard model at low velocities,
with a transition region that smoothly transfers be-
tween the two models. BUCKY uses a model which
is an improvement over Mehlhorn’s!! model by im-
proving the smoothness of the transition region. Also,
BUCKY calculates the charge state of the ions during
their transit. The ion stopping in BUCKY has been
compared favorably with experiments in hot stopping
media.

The ion stopping in BUCKY has been compared
with the TRIM code'? for cold stopping media, rel-
evant in target chamber walls. The TRIM code uses
fits to measured cold stopping results to obtain range
as a function of energy, while BUCKY is an ab initio
calculation. TRIM does a 3-D Monte Carlo calcu-
lation of ion trajectories, including direction change
scattering, while BUCKY assumes 1-D normal inci-
dence ion trajectories and does a deterministic calcu-
lation. Therefore, TRIM can include the straggling
effect while BUCKY cannot.

Nova Experiments versus BUCKY Simuiations
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Fig. 2. X-Ray burnthrough times in gold versus thick-
ness. Radiation flux is measured with the SXI and
calculated with BUCKY at the back of a gold foil in
two photon energy bands.

Vaporization is calculated in BUCKY by deter-
mining the rate that atoms leave the surface, as a
function of surface temperature and lattice separa-
tion energy. This is offset by the rate that vapor
atoms near the surface are condensed, as determined
by the properties of the vapor when enough mass has
been converted to vapor, additional vapor Lagrangian
zones are created. The ability of BUCKY to model
the vaporization of materials by ions has been tested
by comparing a simulation with an experiment per-
formed at Sandia National Laboratories. Tim Renk
of SNL has irradiated a pure aluminum sample with
4 J/em? of mixed carbon ions and protons and has
measured the melt depth. The experiment was per-
formed with a light ion diode focusing a beam onto a
sample across a distance of 25 cm. This produces a
beam of mixed protons and carbon ions, each with a
maximum energy of 500 keV. The carbon ions carry
most of the energy (3.40 J/cm?). The carbon ions ar-
rive after the protons because they are moving more
slowly. The experiment yields a 5 um thick melt layer.

The results of a BUCKY simulation of this experi-
ment show that the peak surface temperature is about
2800 K and is reached at 160 ns after the start of the
protons reaching the sample. The temperature profile
at 60 ns is due to the protons, which have a range of a
few pm in aluminum. The profile has a temperature
peak of 770 K about 2.1 um into the material. The
melting temperature of aluminum is 933 K, so the



protons do no melting. The profile at 100 ns is dom-
inated by carbon ions. The peak in temperature is
at the surface because the range of carbon is so much
shorter. The melt depth is estimated by just con-
sidering all material above the melting temperature
to be melted. This ignores the effect of latent heat
in melting. Latent heat is included in vaporization.
The results are summarized in Fig. 3, where the tem-
perature profiles in the material are plotted against
position at various times. The melt depth at 100 ns is
about 3 yum. The maximum temperature is reached at
160 ns and the melt depth at this time is about 5 um.
At 400 ns, the maximum melt depth of about 7 um is
released. The density of beam ions in the aluminum
builds throughout the shot due to deposition. The
carbons are much closer to the surface. This is com-
pared with the TRIM code densities where 500 keV
protons and carbons (monoenergetic) are deposited in
aluminum. TRIM calculations include the effects of
straggling, which are seen to be important for 500 keV
carbon. The maximum ranges predicted by BUCKY
and TRIM are quite close.

The BUCKY calculations agree reasonably well
with the TRIM calculations and with the SNL exper-
iments. BUCKY predicts 0.05 gm of vaporization.
This has not been detected in the SNL experiments.

C. X-ray Vaporization

X-ray vaporization is predicted by the BUCKY
code. The time-dependent deposition of a multigroup
spectrum of x rays is calculated in the solid and vapor
materials, using cross sections from fits to experimen-
tal values.!3 Heat transfer in the materials is simulta-
neously performed. Vaporization is modeled by con-
verting zones of solid into zones of vapor. The zones
of vapor are Lagrangian and exhibit hydrodynamic
motion; the solid zones do not move. A zone makes
this conversion either when the zones have sufficient
internal energy to overcome the sensible heat and la-
tent heat of vaporization, or when the surface vapor
pressure has been high enough for a long enough time
that the zone has evaporated. This model assumes
that mass is lost as individual atoms or molecules,
not as large chunks.

The x-ray vaporization in BUCKY has been com-
pared with experiments done on the Helen laser. In
these experiments, a laser strikes a foil, creating x rays
with approximately a 160 eV blackbody spectrum. At
this photon energy, most of the x-ray attenuation of
Al;O3 is due to the Al'3 so BUCKY uses the x-ray
stopping power of Al at 3.9 g/cm3. The x rays are
assumed to be emitted in a Gaussian pulse 1 ns wide.

4.06 J/cmz over 400 ns
3000 T
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Fig. 3. Temperature profiles in aluminum plotted
against depth at various times. SNL experimental
conditions are assumed.

The fluence on a sample material is adjusted by vary-
ing the position of the sample relative to the x ray
producing foil. The material loss is then measured.
For Al;03, BUCKY calculations were performed and
compared with the Helen experimental results. The
actual uncertainty in the results is not known, but
near the vaporization threshold the uncertainty must
be at least 0.05 um. The Helen data points at about
0.6 and 0.8 J/cm? are shown to have zero depth re-
moved, but to have some surface damage. This may
mean a small depth removed that could not be mea-
sured. The Helen results show a threshold for vapor-
ization of between 0.25 and 0.6 J/cm?. The BUCKY
simulations predict a vaporization threshold of 0.25
J/em?. At about 1.1 J/cm?, Helen had a removal
of 0.1 um and BUCKY predicted 0.12 um. So the
agreement between BUCKY and Helen experiments
was within experimental uncertainty.

III. ZEUS 2-D CODE

The ZEUS-2D radiation-magnetohydrodynamics
code??* is being augmented to add the key capabil-
ities of the University of Wisconsin’s 1-D BUCKY
code, including multiple materials, multigroup radi-
ation diffusion, and table lookup of detailed opac-
ities and equations of state. ZEUS-2D is a two-
dimensional, Eulerian-mesh code, written in covari-
ant orthogonal coordinates and solved by finite differ-
ences with operator splitting into implicit source and



explicit transport steps. The finite-difference mesh
can be modified dynamically, although ZEUS-2D is
not an adaptive-mesh code, and the mesh spacing can
be varied independently in both dimensions.

The unmodified ZEUS-2D code has been tested
on simple radiation diffusion, microexplosion, and
Hohlraum test problems, and it appears to be a suit-
able code upon which to base the desired modifica-
tions. Multiple materials have been implemented by
including the solution of a separate equation of con-
tinuity for each species. The modifications to the
difference equations required to add multigroup fre-
quency dependence have been developed and tested in
a small auxiliary code, using the same variable names
and covariant differencing scheme presently in ZEUS-
2D. These modifications are in the process of being
introduced into ZEUS-2D. The table lookup subrou-
tines from the BUCKY code for equations of state and
opacities have been merged with the ZEUS-2D code,
and debugging of this merger is in its final stages.

IV. CONCLUSIONS

Verification of ion stopping, radiation transport,
atomic physics, vaporization, and melting are in
progress for the BUCKY code. The physics models
in BUCKY agree with experiments in several regimes.
The ZEUS-2D code is being modified to include multi-
group radiation diffusion, multiple material tracking
and realistic equations-of-state and opacities. Models
developed in BUCKY will be inserted into ZEUS-2D,
allowing the accurate simulation of 2-D target and
target chamber phenomena.
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Abstract

While many codes have been written to compute the induced activation and changes in
composition caused by neutron irradiation, most of those which are still being updated are
only slowly adding functionality and not improving the accuracy, speed and usability of their
existing methods. ALARA moves forward in all four of these areas, with primary importance
being placed on the accuracy and speed of solution.

By carefully analyzing the various ways to model the physical system, methods to solve
the mathematical problem and the interaction between these two issues, ALARA chooses an
optimum combination to achieve high accuracy, fast computation, and enhanced versatility
and ease of use.

The physical system is modelled using advanced linear chains, which include the con-
tributions from straightened loops in the reaction scheme, while the truncation philosophy
minimizes the discrepancies between the model and the real problem. The mathematical
method is then adaptively chosen based on the characteristics of each linear chain to use
analytically exact methods when possible and an accurate expansion technique otherwise.

Future modifications to ALARA include addition of new functionality by implementing
methods to use new data libraries, implementing methods to get new information from existing
libraries, enhancing usability, and improving speed by fine tuning and parallel processing.



Chapter 1

Introduction

When designing any system with a large neutron flux, an important characteristic is the
amount of induced activation expected in the system’s components during operation, at the
end of life and at various times after the shutdown of the system. Many codes have been
written to perform such calculations for a variety of systems, from accelerators to fission and
fusion reactors. The special conditions of fusion reactors, such as high neutron flux/fluence
and pulsed operation, have led to many variations of these codes.

The calculation of induced radioactivity in the first wall, blanket and shield materials
is an important task for the design and safety of fusion reactors. The neutron products of
the D-T reaction induce radioactivity by interacting with and transporting through these
materials with much higher initial energies and populations than those of fission reactors of
similar power. The results of these radicactivity calculations are used extensively in safety
and design analyses to determine such parameters as the nature of the radioactive waste, the
amount of shielding required for radiologically sensitive components, and the decay heating
after shutdown. Like other engineering calculations, the accuracy of the results is important;
overly conservative approximations result in costly and complicated designs while liberal
approximations result in safety and technical hazards to the operators, scientists, public and
equipment.

To solve this problem a code must perform two steps. First it must model the physical
system in time, space and isotopic composition, creating a system of linear first order ordinary
differential equations [ODE’s]. Second, the solution to this system of ODE’s must be found
using a numerical technique. Both steps are non-trivial since the physical problem, while
finite in time and space, is theoretically infinite in final isotopic composition, and the resulting
ODE’s have characteristics which can make their efficient and accurate solution difficult.

ALARA is a new computational tool for performing such calculations. Given a groupwise
neutron flux, ALARA uses data from a variety of libraries to determine the altered material
composition which is then used to calculate the activity, 3—, y—, and a— heating. In addition,
a groupwise y-ray source flux can be computed by ALARA to be used for the calculation of
doses. Finally, if provided with an adjoint importance field based on flux-to-dose conversion
factors and the gamma source distributions, ALARA can directly calculate the biological
dose.



1.1 Historical Attempts and Failings

The computational solutions to this problem have been well studied. Many different ap-
proaches for modelling the physical problem have been combined with at least as many
mathematical solution methodologies. Each combination has its advantages and disadvant-
ages,' but none have arrived at an optimum mixture of accuracy, efficiency and usability.
Even ignoring the issue of usability, there are few codes which are keeping up with the de-
mands of greater accuracy in modelling and solutions without becoming inconveniently slow.

One of the best performers in the past, in terms of speed and accuracy, has been the
DKR?*™ family of codes.” Unfortunately, even though it reaches the ultimate in mathematical
accuracy and efficient operation, its physical modelling has left it subject to much philosoph-
ical criticism. Namely, DKR is unable to model loops in the reaction scheme. If an isotope
undergoes a series of transmutations and decays which lead back to itself, DKR ignores any
such contribution in all but the simplest of cases. While it has been shown that this is a
somewhat valid criticism,” those codes which have addressed this problem in the past have
many other failings. Another criticism of DKR is its inability to track and log the production
of light ions, often important when analyzing the mechanical integrity of a material. On the
other hand, DKR has pioneered the ability to exactly model pulsed irradiation histories and
use mathematically exact solution methods while solving a multi-dimensional input problem.

Two of the most popular alternatives to DKR are FISPACT® and RACC.”'® While FIS-
PACT is heavily used in Europe, it has a number of disadvantages. First and foremost, it is
unable to accurately and exactly model the pulses which are today part of the designs of so
many fusion reactor systems. This has been shown to be an important issue in the calculation
of activity for some isotopes, leading to errors of up to several orders of magnitude.® Further-
more, it uses an ODE solver which is step-wise in time and, given the stiffness of the system,
requires a slow and tedious calculation. Finally, as a 0-dimensional code, it is only able to
find a solution for one given spectral distribution with each operation. While RACC has his-
torically had the same problems with pulse modelling and mathematical method, the newest
version, RACC-P, has addressed these issues and now models the pulsing exactly and uses
a matrix solution method to increase the speed. It does, however, have its own drawbacks.
In certain regimes, the solution method for each matrix is subject to significant errors which
can then be amplified as this matrix is used to repeatedly calculate the final answer. The
data handling methods of RACC are its biggest obstacle to efficient and accurate operation.
First, it employs a philosophy to truncate the reaction schemes which leads to inconsistent
precision in the solution. It also recreates the reaction schemes for each point in space with a
different flux spectrum, a very time consuming process which must be accelerated by solving
the problem with a flux which is averaged over a number of spatial points.

While ALARA is an entirely new code product, the methods and philosophies embod-
ied in DKR were chosen as a starting point for its development. The basic philosophies of
exact modelling of pulsing, consistent truncation of reaction schemes, and mathematically
exact solution methods were retained and the main criticisms addressed. The design philo-

9The DKR family of codes has evolved much since the original authoring of DKR to the most recent
version known as DKR-Pulsar. Throughout this report, DKR will refer generally to the entire family and
specifically to the most recent version.



sophy is outlined later in this chapter. The specific methodologies and techniques used to
improve the physical modelling and mathematical solution are described in Chapters 2 and
3, respectively.

1.2 Design Philosophy

ALARA has been designed with three basic principles in mind: accuracy, speed, and simpli-
city. These three qualities have been maximized in ALARA after extensive research of the
models involved in such calculations.!’® The errors, time of execution, and learning curve
have all been made “as low as reasonably achievable”.® The methods used to model the
physical system and to perform the mathematical solution are carefully combined to preserve
or enhance the accuracy while accelerating the solution. Throughout all this, there is an
underlying effort to ensure that ALARA will be easy to use by providing a simple, well-
documented input file format, checking this input for errors, and providing a broad, flexible
range of options.

1.2.1 Accuracy

The accuracy of the final solution is affected both by how realistically the physical system is
modelled and by what mathematical methods are employed for the final solution. Unfortu-
nately, these two requirements often conflict; as the physical model becomes more realistic the
required mathematical methods become more approximate or error prone. When modelling
the physical problem, two of the most important issues are how to deal with loops in the reac-
tion scheme and how to truncate the infinite isotopic composition to a finite problem. While
the effect of the latter on the mathematical method is negligible, the former has a great impact.
In the past, the unwritten rule has been that realistic treatment of loops requires complic-
ated /inefficient mathematical methods. ALARA has broken that rule by finding a physical
approximation to the loops which retains problem accuracy and allows for quite simple and
efficient mathematical methods. The keys to ALARA’s mathematical accuracy are the ability
to adaptively choose the mathematical technique and the accuracy of those techniques. Two
of the three mathematical techniques which ALARA employs are mathematically exact!

1.2.2 Speed

The most significant factor affecting the speed is the chosen class of mathematical method.
In particular, unless a linear transformation matrix method is used the time required to
exactly model a pulsed history will be large. ALARA employs such matrix methods, solving
for the linear transformation from the initial isotopic composition to the final composition
for each pulse and inter-pulse dwell period, and then multiplying these matrices to obtain
a complete linear transformation for the entire history. In addition to this decision, speed
was considered throughout the code design process. For example, data library formats and
internal data handling have been implemented with modern techniques to enhance versatility
without sacrificing speed.

5This phrase is the origin of the term ALARA, a well known philosophy in the nuclear industry related
to the minimization of radiation exposure when working in radioactive environments.



1.2.3 Simplicity

While accuracy and speed have long been issues in the creation of engineering codes, their
simplicity is of increasing importance. In this context, simplicity is an issue for both modi-
fication/maintenance and use of the code. Since ALARA has been written in O+, it benefits
from some of the philosophies of object-oriented code design. This allows the code itself to be
more readable to future programmers and also facilitates enhanced modularity. This mod-
ularity means that if new functionality is added to the code, it can be optimized internally
with minimal detrimental effect on the existing code.

ALARA has also been designed with the user in mind. Even though improved methods
have existed for years, many codes have continued to use input formats which are reminiscent
of punch card input entry. Furthermore, most tools in this field have been designed for the
solution at a single spatial point, requiring many subsequent and slightly altered runs to get
any kind of spatial information. ALARA allows the user to find the solution to an activation
problem in a variety of different multi-dimensional geometries, using a flexible system to
define the material properties and allowing a complicated pulsed/intermittent irradiation
history and a variety of after-shutdown solution times. Furthermore, the input file can be fully
commented, preventing the common difficulty of creating a long list of seemingly disconnected
numbers for code input.

Finally, the data used by ALARA can come from one of a variety of sources. To accom-
modate this, a companion code, ALARA Data Conversion [ALARA DC], has been written
and is described in Appendix C.



Chapter 2

Physical Model

After describing the nature of the physical problem, this chapter will describe the philosophies,
approximations and methods used by ALARA to model this physical problem.

When an isotope is subjected to neutron ir-
radiation, it is likely that a neutron will interact A
with a nucleus of that isotope, converting it to a | 4
different isotope. Many such reactions are pos- 1B 18 V5
sible with each isotope, so that after only one ¢ B
round of neutron reactions, a material made of {_lj l—: | r—i—l

\ . . F G
only one isotope can be partially converted into | . k
over 20 others. These isotopes, in turn, can un- L ' '
dergo similar interactions, leading to yet more
isotopes, and so on. Many of these isotopes can Figure 2.1: Sample reaction tree showing
and will be radioactive, and through their de- loops and cross-links.
cay, even more possible isotopes can enter the
physical system. If this is represented graphically (Figure 2.1), it forms a tree of isotopes
which can go on, in principle, infinitely. For the purpose of discussing this physical problem,
the products of each generation of reactions (transmutation or decay) will be referred to as a
rank and each individual reaction from one isotope to another will be referred to as a branch.

Each isotope has a unique destruction rate, d;, while each branch of this tree has an
associated production rate, F;;, for the isotope to which this branch leads. For decay reactions,
this production rate is independent of the neutron flux while for transmutation reactions it
is a function of the spectral distribution of the flux. The raw data used to form these
production rates is read from large data libraries, either as decay rate/half-life data from
decay libraries or as transmutation cross-sections from transmutation libraries. The methods
used to measure, evaluate and compile such data will not be discussed here.

It is possible, as mentioned in Chapter 1, for one nucleus to undergo a series of reactions,
being converted from one isotope to another and so on and eventually back to the original
isotope. Loops such as this are of specific importance when modelling this physical problem.
The nature of such loops is somewhat random; they can begin at any rank in the tree and can
undergo any number of reactions before closing the loop. If the order of a loop is defined as
the number of isotopes between two occurences of the same isotope in a loop, then the order
can range from 1 to greater than 10. A related but less important phenomenon is that of

Loop C‘ross-link



“cross-linking” of subtrees. This is caused when two different isotopes, which could each be
at any rank, both undergo reactions to the same isotope. In this case, the tree can become
quite tangled, departing from the classical tree structure known and studied in computer
science.

While the problem has finite dependencies on time and space (see below), it is the model-
ling of this potentially infinite aspect of the physical problem which causes the most difficulty
and is described in Section 2.1.

Current designs for experimental and power fusion reactors of all types often include the
necessity for pulses, from the short frequent pulses of an inertial confinement system to the
long infrequent pulses of a magnetic confinement system. This pulsing creates an important
effect®™! since between each pulse, the radioactive isotopes which have been created are
able to decay while the stable isotopes remain unchanged. This changes the distribution
of isotopes having important implications on the reactions during the subsequent pulses. In
practice, these reactors can be pulsed at different frequencies, depending on the experimental,
power and/or maintenance requirements. Section 2.2 will describe the approximations and
assumptions used in modelling this aspect of the physical model.

Finally, the material composition and neutron flux spectrum will vary from location to
location in the device. A structural region of a problem may contain some variety of steel
while a coolant region might have water and a breeding region would contain lithium. The
initial isotopes, and thus the reaction trees, will therefore be very different for each region.
Further, for each point of interest, the spectral distribution and magnitude of the fluxes
will be different. Thus, even for identical trees from the same material composition, the
production rates for each isotope will vary from point to point. Section 2.3 describes the
important aspects of modelling these spatial variations.

2.1 Chain Creation

In principle, it is possible to convert the
physical model in its entirety to a mathematical
one and solve the problem directly. It is much
more practical, however, to convert the single
large problem into a number of smaller sub-
problems and then solve each one individually,
combining the results where appropriate. The
first step in this process is to develop a philo-
sophy to convert the cross-linked and loop-filled
tree into a true classical tree structure (see Fig-
ure 2.2). To perform this requires the introduc-
tion of what will be called partial-contribution
isotopes, or pc-isotopes. A pc-isotope is an iso-
Figure 2.2: Fully straightened and un- tope in a tree or chain which is not necessar-
linked reaction tree. ily unique. The basic physical model described

above only allows for one occurence of each iso-
tope in each tree. By creating pc-isotopes, a somewhat larger system is created, but its
solution is more simply achieved. After the full solution of the problem, the pc-isotopes
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are collapsed into unique isotopes, with the contribution from each being accounted for
appropriately. While the use of pc-isotopes to remove cross-links is straightforward, their
implementation for removing loops is more complicated and the sub ject of section 2.1.1.
After all the loops and cross-links have been removed, each tree is traversed in a depth-
first search®, creating a number of independent linear chains (see Figure 2.3). In practice, it
is necessary at this stage to truncate these chains to some finite size. As mentioned above,
these trees, and therefore the resulting chains, are theoretically infinite and some philosophy

must be developed to decide exactly how these chains will be truncated. This is the subject
of section 2.1.2.

2.1.1 Loop Handling

In principle, the method used to remove the

loops from the reaction trees is the sameas that A A A A A A A A A A
used to remove the cross-links. Loops, in fact, ‘ l ‘ l l l ¢ ‘ ¢
are just a special case of cross-linked chains, C C B, D, D, D, D, D; D, D
where the chain is linked to itself. Thus, loops ¢ l ¢ l ‘ l ¢ ‘ i
are removed by a technique which will beref- F G E, H I, L &L &L § }
ered to as loop straightening. In this method, l l
all the isotopes which make up a loop in the L

)
PNy

-— O -
Ky

(%)
<—.U<_
[

trec are repeated using pc-isotopes. This re-
petition occurs an infinite number of times in
theory, but in practice, the chain is truncated
using the same methods which are outlined in
Section 2.1.2 below.

The primary reason for choosing such a methodFigure 2.3: Separated linear chains rep-
is to preserve the characteristics of the math- resentation of reaction tree.
ematical model which will be created. If the
reaction scheme is treated directly without the
removal of cross-links and loops, the mathematical model will inevitably be a somewhat large
and full matrix representing a stiff system of ODE’s and solving for a large number of isotopes
at the same time (Equation 3.1). If, however, it is possible to convert the physical model to
one of linear chains, the mathematical model can take the form of a lower bidiagonal matrix
(Equation 3.3). This type of mathematical model can be subjected to many special treat-
ments for the accurate and efficient solution of the matrix exponential, some of which are
described in Chapter 3.

It is now necessary, however, to show that the use of these methods does not jeopardize
the physical accuracy of the model. First, the qualitative effect that the loop-straightening
process has on the model must be understood. Each iteration of the loop isotopes adds a new
set of pc-isotopes to the chain and will be referred to as a correction. Just as in many such
approximation processes, in the limit as the number of corrections becomes very large, the
result approaches the exact solution. It is therefore necessary to choose a point to truncate
the approximation while retaining confidence in the solution. Of course, the entire problem,
loops or not, is theoretically infinite, so this truncation issue is not unique to loops.
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“A depth-first search is an algorithm which moves deeper into a tree as far as it can go before backtracking
and moving down a different path.
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Work has been done to show that the loop-straightening method is also valid quantit-
atively.® A study of the numerical effect of the loop corrections on the result showed that
for many realistic first order loops, a single correction could reduce the relative error to the
order of 107® and as few as 3 corrections can reduce this error to less than 10~1°. First order
loops were used in this analysis because the contribution from each correction in such cases
is logically greater than in higher order loops. It is important to recognize the importance of
this measure being a relative error. It has no effect on the precision of the results (discussed
further in Section 2.1.2), but only on the accuracy of the results.

Relative to other loop handling models, loop straightening can improve the speed and
accuracy of the mathematical calculation while maintaining the same precision in the physical
model as is being used throughout.

2.1.2 Truncation Philosophy

On the surface, the concept of truncating the theoretically infinite chains created by modelling
the physical system for these calculations is a simple one: truncate the chain once the isotopes
have a negligible effect on the result. In practice, however, this is a delicate process which
deserves some discussion.

There are two primary issues to be considered, namely,

o how can the effect of the isotopes at a certain rank in the chain be calculated, and,
e how the significance of that effect can be determined.

The easiest way to calculate the effect of a particular isotope in a chain is to simply solve
the problem including that isotope. This would require solving the entire problem twice,
however, drastically affecting the speed of the problem. The first enhancement, therefore, is
to perform this reference calculation only once for each initial isotope using a flux which is
somehow representative of all the spatial points which contain that initial isotope (see Section
2.4). If every point in space has a unique set of initial isotopes, this still leads to solving the
problem twice, but as the problems become more complex, with perhaps 50 or more spatial
points sharing the same mixture definition, this is a significant savings.

What is the best flux to represent all the spatial points which share an initial isotope?
Since higher fluxes will tend to maximize the amount of transmutation from one isotope to
another, the obvious choice is some flux which is a maximum bound for the problem. Since
the flux is groupwise and it is possible that one spatial point will have the highest fast flux
while another point has the highest slow neutron flux, the best choice for a bounding flux
should be the groupwise maximum flux of all the points which share an initial isotope. This
reference flux can then be used to solve the problem for a particular chain as it is being
created.

If this truncation reference calculation assumes that a unit quantity of the initial isotope
exists, then the solution gives the relative production of each isotope in the chain. A user
specified tolerance can then be used to determine how significant the relative production of
the last isotope in that chain is, and decide whether to continue the creation of the chain.
This too, however, is more subtle than first appearances suggest.



Consideration must be given as to how the user specified tolerance is to be interpreted.
The best interpretation of the many possibilities is that of an atom loss tolerance. Due to the
fact that we are truncating a theoretically infinite chain, atoms will be lost from the physical
model through branches leaving the last isotope in the chain. It is best, therefore, to use
this truncation tolerance to minimize this atom loss. Since it is also possible for this last
isotope to have a low relative production rate, yet still have a high loss of atoms through its
branches, it must be possible to calculate not just the relative production of the last isotope
in a chain, but the atom loss through this last isotope. Fortunately, this is quite simple.
By temporarily zeroing the destruction rates of this last isotope, the result of the reference
calculation will be the total relative production of all isotopes in the subtree rooted by this
isotope, and therefore represents the maximum possible atom loss through this isotope. This
value can then be compared to the user specified tolerance, which is now interpreted as the
maximum atom loss in any chain.

There are obviously two mechanisms of atom loss: transmutation and decay. The former
is only possible when there is a neutron flux present but the latter occurs throughout the
operation lifetime as well as after the shutdown of the device. This difference is important
since the after-shutdown lifetimes are often much longer than the operation lifetimes and
it is during these times that the activity is often most important. To guard against these
differences, it is necessary to compare the relative production both at shutdown and at each
after-shutdown time. If the relative atom loss is less than the tolerance at shutdown, but
greater than the tolerance at any of the after shutdown times, it may represent an important
atom loss path during shutdown. It is here that we can distinguish between atom loss
mechanisms. Since the only atom loss mechanism after shutdown is decay, only subsequent
decay branches are important, even if the relative atom loss is greater than the tolerance.

The results of this philosophy are quite simple. First, any relative atom loss which exceeds
the tolerance at shutdown will result in a continuation of the chain. Second, if the relative
atom loss is less than the tolerance both at shutdown and at all after-shutdown times, then the
chain should be totally truncated at this point. Finally, if the relative atom loss is less than
the tolerance at shutdown and greater at some after-shutdown time, then all transmutation
branches in that subtree should be truncated but decay branches followed.

This truncation approach affords some rudimentary error estimates for the results. Using
an analogy to experiment, the user specified tolerance provides a measure for the precision
of the calculation. The smallest possible correction and hence the largest possible error for
the results for any one isotope is this truncation tolerance. This will also be the dominant
source of physical modelling error in the result. Since these same truncation rules are used
indiscriminately for truncating straightened loops, the error from truncation will always be
greater than the error caused by not using more corrections to the loop. Thus, following the
analogy to experiment, the accuracy of loop solutions is affected by the number of corrections
while the precision is affected by truncation tolerance. Since the number of corrections
is determined indirectly by the truncation tolerance, this methodology provides the most
consistency across the entire problem.



2.1.3 Alternatives and Extensions to the Truncation Philosophy

The full implementation of this philosophy does have detrimental effects on the speed of the
solution. The most significant drag is caused by the full pulsing solution of the chain for
each truncation calculation. An alternative is to combine the reference flux concept with that
of a reference time, a representative steady-state simulation time to use only for truncation
calculations returning to the exact pulsing solution when performing the final solution. When
using this alternate method, it is important to understand the full implications. In particlar,
even if the chosen reference time approximates the operation history well, the reference cal-
culation includes no after-shutdown history, a period in which many isotopic compositions
may change. The user should always consider how sensitive the solution is to this reference
time.

Another source of drag is the solution of completely negligible data at the truncation point.
Considering the precision and extent of the available data, it is possible to reach a point in
the chain where the relative atom loss is many orders of magnitude less than the truncation
tolerance. While it is obvious that the chain should be truncated, the full solution of this
pc-isotope will probably lead to a negligible contribution. A second user defined tolerance,
known as an ignorance tolerance, can be used to determine when a truncation point should be
ignored completely and the chain creation procedure should continue without performing the
complete solution of this pc-isotope. To ignore all truncation points, an ignorance tolerance
of 1 should be used and to ignore none, an ignorance tolerance of 0.

This truncation method provides the optimum combination of speed and accuracy. In
general, using a relative atom loss is the most accurate way to physically model the system and
allow the user to get a useful measure for how precise the results are.! Faster approximations
could be made to conservatively estimate the relative lost atom production. However, while
conservatisms may seem appropriate for the physical model, they can lead to the physical
model being too large, causing the time required for mathematical solution to be greater. It
should also be noted that this measure of the truncation error in the physical model is an
upper bound since a groupwise maximum flux is being used for the calculations. In many
spatial regions, the actual production in the final solution may be many of orders of magnitude
less.

2.2 Pulsing Representation

Modern fusion reactor designs for both power and experimental reactors include either the
ability or necessity for pulsed or intermittent operation. This has important effects on the
calculation of induced activity since the radioactive isotopes which may be produced during
the pulses can decay between them. When an accurate pulsed solution is calculated and
compared to steady-state approximations,® the errors can be significant.

For most systems the pulsing scheme will follow a somewhat regular work schedule. As an
example, consider an experimental reactor which is designed to operate for 10 minutes every
half hour during the work day. If each operation period is neutronically identical, this could
easily be modelled for a 20 year lifetime as in Table 2.1. This kind of pulsing history can
be modelled exactly by ALARA, solving the problem efficiently through the use of matrix
methods.
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“ Description ’ Time ’ # of Pulses ”

Pulse length 10 min

Operation dwell 20 min 16 (half-hour segments)

Nightly dwell 16 h 20 min 5 (work days)

Weekend dwell 64 h 20 min 49 (weeks without maintenance)
Annual Maintenance | 3 weeks 64 h 20 min | 20 (years)

Table 2.1: Example pulsing schedule for experimental device.

Thus, the only assumption made by ALARA for the modelling of a pulsed history is that
the pulses all be of the same height (spectral characteristics) and length. Future modifications
may allow the pulse characteristics to change from one part of the scheme to another.

2.3 Spatial Variations

As mentioned above, most systems will have gross variations in material composition from
one spatial point to another. The existence of any material will also mean that the flux
can experience similar variations. It is most convenient for the user if this can be modelled
entirely within a single run of the code, rather than requiring that the code be run many
times, once for each point in space. This requires an algorithm which will not cause the
solution to become slow and inefficient.

ALARA accomplishes these goals. The space can be divided in up to three dimensions
and a number of different geometries into zones whose boundaries are the transition from
one material composition to another. Each zone contains a defined isotopic composition and
so a mirture can be thought of as the possibly disjoint set of all zones which have the same
initial isotopic composition. Each zone can be further subdivided into intervals, each allowed
to have a different flux spectrum. It is important that the data handling of these spatial
variations be implemented efficiently, as described briefly in the next section.

2.4 Implementation of Physical Modelling Techniques

To implement these various methods and techniques efficiently, it is first necessary to op-
timally cross-reference the physical model. In particular, many different mixture definitions
could, in practice, consist of overlapping sets of initial isotopes. If the solution is found
by looping through these mixtures, the chain information for the same root isotopes would
either have to be recalculated or stored, having a severe impact on either the speed or memory
resource, respectively. The solution is to create a global list of unique isotopes which are
cross-referenced to the relevant mixture definitions for the number density information, which
are, in turn, cross-referenced to the appropriate intervals for the local flux information. With
this list in place, the solution can be found by looping through each of the globally unique
root isotopes. The reference truncation flux must be found across all the intervals containing
the same root isotope, by accessing the cross-referenced lists of intervals from the cross-
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referenced list of mixtures. Finally, as alluded to above, as each chain is solved and its
relevant solution information stored, the chain information itself can be discarded reducing
any storage requirements.

Also, because the solution for each interval contains information about a large potential
number of isotopes in the final composition, an efficient data structure was needed to store
this data. The solution was a linked list in which each list item contained an identifier for the
isotope, the final number densities at shutdown and the various after-shutdown times, and
decay information relevant for the calculation of activities and decay heats.

12



Chapter 3

Mathematical Technique and Theory

The mathematical problem which results from the physical problem described in Chapter 2 is,
at first glance, a very simple one. If the original decay scheme (without removing cross-links
and straightening loops — Figure 2.1) is converted directly to its mathematical equivalent,
the result is a compact but potentially stiff system of linear first order ordinary differential

equations [ODE’s],

N(t) = AN(t)

i _dl P2—>1 P3—+1
Pl—}Z _d2 PS——;?
Pi,s Py, —ds

where:

Pl—>1

Pl—)Z

Pl—)3
—di-y Py
Py —d

N = number densities, N;, of all isotopes

d; = destruction rate of isotope 7

P;_,; = production rate of isotope 7 from isotope 7

(3.1)

After loop straightening and cross-link removal has been performed, the result is a some-
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what larger, simpler set of ODE’s:

( —d; 0 0 0 7 [ N
P, —d, 0 ce R 0 N,
Piya Prys dy - o0 N (3.2)
: : : Y 0 :
| Pl—)m P2—+m P3—-)m e Pm—l—-)m —dm ] | Nm ]

This lower triangular matrix is quite sparse with a maximum of two entries in each row since
each isotope has only one production path and one total destruction rate.

Finally, if this physical model is further broken into the previously described linear chains,
many small sets of ODE’s are created with special simplifying characteristics,

N(t) = CN (@)

—d; 0 0 0 1 [N ]
Py —dy 0 .- 0 N,
0 Pz —ds --- 0 N (3.3)
T 0 0 Py —dy N
: : : - 0 :
| 0 0 0 - Pese —di| | Ne ]

The bidiagonal nature of these matrices is an important factor in subsequent derivations and
calculations.

In all cases, the generic solution takes the form
N(t) = TN, (1), (3.4)

where T is the exponential of the matrices A, B, or C, depending on which method is used
(eg. T = eAt).

[t is interesting to compare the sizes of these three matrices as it gives some initial insight
into the efficiency of the solution. To compare the size of the original scheme, n, with that of
the straightened tree, m, is not easy. Since the physical conversion is to convert cross-links
and loops into pec-isotopes, it is clear that m > n; however, the severity of this inequality
is difficult to determine. An approximate comparison between k& and m, however, can be
made. Since B represents a true tree structure, it can be analyzed by assuming that it is
a full n-ary tree, that is, assuming that each pc-isotope in the tree has the same number
of branches. Since k is the depth of such a tree, there will be n*~! chains representing the
m = 2:_;11 ~ O(n*!) nodes of the tree. The mathematical operations performed on these
matrices are generally at least of order of the square of the matrix dimension, and often the
cube. Thus, for matrix B, the mathematical costs will be at least O(n?~2) and possibly
O(n®*=3) or higher. On the other hand, for the n*~1 matrices C, the mathematical costs will
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be O(k*n*1) or O(k3n*- 1) This very rough analysis shows that for mathematical operations
of order z, as long as n!=% > A= , the linear chain method will be more efficient. While it
may be difficult to visualize this relatlonshlp, it can be used to define some limits. For second
order operations, for n > 4, the linear chain method is always more efficient. For third order
operations, only n > 3 is required. On the other hand, for n = 2, the chain depth, k, must
be greater than 2, and even & = 3 requires 5% order operations for the linear chains to be
more efficient. Finally, for a real problem in which n > 4, the linear chain method is more
efficient for all orders of solution.

It is important to note that not only is this analysis not rigorous, but the order of the
mathematical solution is itself dependent on the method which is used. Thus, the analysis
gives a first glance into the comparison of efficiency, but is hardly complete.

By transfering this system to the Laplace domain and considering each equation individu-
ally, it is possible to write the solution in a more compact form (N.B. P; implies Pi_154):

- N; Ni_y
= 0 P, 3.5
N s+d; + s+ d; (3.5)
N Ni, P Ni_s, P P
T std  stdiasdd stdia(stdi)td) 3.6)
Ny, 1+ P Ni, & P '
+ ;
+s+d2]1;[33—|—dj s+d1j_]':‘[23-|-dj

which can be written as

V Ny

N;

<.
=l
—

N; P 3.7
jZ:; Jo k=I]1|-1 kll___{ s _l_ dl ( )
S) H Pk.

k=j+1

<.
]
-

In this representation, the matrix T is filled by setting

Ti; = Nij/N;,
(3.8
= »C [ ] H ka )
k=j5+1
and it becomes an exercise of solving for the inverse transform of the term
Fij(s) = 1‘[ ! (3.9)
* —: 8 + dl
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Normally, two such matrices, T and D, are required to represent the pulse and dwell
times, respectively. In the first case, all the destruction and production rates include the
terms for neutron transmutation which are dependent on the flux spectrum and therefore it is
only during this period in which loops can occur in the isotope tree. In the dwell period, the
destruction and production rates are only those of decay, and therefore, many of the values
will be zero.

3.1 Adaptive Mathematical Methods

Upon examining available methods to solve such lower bidiagonal systems, it can be seen
that there are certain easily determined characteristics of the matrix which can be used to
adaptively choose a method for each linear chain which will optimize the speed and accuracy
of the solution.

The eigenvalues of these matrices are simply the diagonal elements, which in turn are the
destruction rates of each isotope in the linear chain being modelled. True degeneracies in these
values will occur only when the chain being modelled by this matrix has straightened loops
and a simple test can determine whether this is the case. If no loop exists, this bidiagonal
system is mathematically identical to the system solved by Bateman!? many years ago, and
many accurate and efficient methods exist to find the solution. This method is always used
to calculate the transfer matrix for the dwell period since loops cannot exist. On the other
hand, if loops do exist, the solution is somewhat more complicated and is facilitated by this
transformation to the Laplace space. The next adaptive decision determines which method
will be used to perform the Laplace inversion and is based on an analysis of the spectral
radius of the matrix, C: for sufficiently small radii, a series method can be used, while in
other cases, a direct and analytic inversion is preferred.

Because the mathematical method is chosen independently and adaptively for each chain,
the efficiency and accuracy of the entire solution is optimized. In particular, if a small loop
occurs in one small portion of a scheme, it is not necessary to perform the slower Laplace
based calculations on the entire problem when the Bateman solution is available for most of
the problem. On the other hand, the solution is not limited by the non-loop Bateman solution
when loops do exist.

3.2 The Analytical Bateman Solution
If all the destruction rates, d;, are distinct, Equation 3.9 can be easily inverted,
7 7 1
fit)y =Y e I] : (3.10)
I=j m=j dm — dy

m;l

This leads to a compact representation of the solution to the Bateman equations:

i—1 i—1 —dit —d;ty i—1
—ds Prpi(em %t — gmdit) Py
i(t) = Ny e % N;
N;(t) LT ED N Y T d ) s

i=1 k=j
I#k

(3.11)
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Finally, we can write the transfer matrix elements as:

Ty = e~
I = zz—f Peyq(emBt — g=dity izl p . (3.12)
i oy di — dy, 1= 41 — ds

Ik

3.3 Laplace Inversion Method

When the destruction rates (eigenvalues) are not distinct, other methods of solving Equa-
tion 3.9 are required. In general, however, because of the bidiagonal nature of the matrix
representation (that is, because of the linear chain physical representation), this is a simple
problem which, for a small system, can easily be solved on paper by hand. In particular, this
Laplace space representation can be directly inverted to the time representation.

For repeated poles, one uses the residue theorem to determine the coeflicients for each
term in a partial fractions expansion. Each of those terms would result in an exponential,
perhaps multiplied by a polynomial in time, ¢, when converted back to the time domain.
Those residues are calculated using one of two simple rules.

If the pole is not repeated, then the residue, Ry, for the pole, —dy, is calculated as

Ri = lim (s + dk)Ej(S) (313)
s—rdg
which becomes Rye™%! in the time domain. If all poles have a singular multiplicity, the
solution reduces exactly to the Bateman solution, and can be represented in many ways.
This is obviously the solution with no loops.

If the pole is repeated m times, under a partial fraction expansion, this becomes m terms
in that expansion:

Rim Rim—1 Ry

(8 +di)™ * (s + di)m1 L (s +dy) (3.14)

which becomes

e-dkt (ka

tm—l tm—2

1 + Rk,m—l

t
m ' +"'+Rk2F+Rk1> (3.15)

(m —2)

in the time domain.. In this case, the residues are found using:

1 m—n

-
Bin (m —n)! smrdy dsm™m

(s + di)™ Fis(s)] - (3.16)

This latter rule requires the ability to evaluate derivatives of a generic function:

Gli(s) = (s + di)" Fy () (3.17)
at values of s = —dj, for all 5. By examining the successive derivatives of G(s) it can be
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shown (see Appendix A) that these derivatives can be recursively defined as:

5] =§ — e )" )Z(ZLITZ-)? (3.18)

J=1 ]) 1

and this, in turn, can be converted to a computational numerical algorithm, allowing the
entire problem to be solved.

We will call this method the Laplace Inversion Method.

3.4 Laplace Expansion Method

Alternately, an expansion in 1/s may be desirable in some cases. There are cases in which the
above method might amplify roundoff errors due to division by small numbers which result
from the subtraction of two similar numbers (such as when two of the poles are very near
each other), but such divisions can be eliminated by writing the solution as a difference of
exponentials, expanding that difference, factoring out the offending term from the numerator
and cancelling. While this seems like a monumental task to perform on an arbitrary problem,
thanks to the bidiagonal nature of the system, it is again quite simple to implement. If we
start again with our function:

Lo

Fiy(s) =
J(S) gs+dl

(3.19)

and making no assumptions about the multiplicity of the poles, we expand this as a series in
1/s, the result is:

Fiy(s) = —
J(S) 81_1_1_151

:Si—j+1H<1_ P +_"_+"'
I=

=i S (3.20)
1 [ Y= di Zl_] d Yy i i G ki i @
= ——|1-
gt—it+l1 s 82 g3
If n =1 — j, in the time domain, this becomes:
fi() =" i—“‘t—i:dﬂf Zddek
! n! (n—l—l)! = —|—2' =
(3.21)

n+3 ‘lz;dlzdk;d i
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and thus:

T = e~
i-1
3.22
Tij = fi(t) [ Pe. (3.22)
i#) k=j

It is clear that this solution will only be computationally viable when the product, max{d;}-
t is small. For arbitrary problems, this is only guaranteed when there are small times, but
can easily be tested for a particular problem. Other representations can be formed, each
providing different insight into the method (see Appendix B).

We will call this method the Laplace Expansion Method.

3.5 Mathematical Implementation with Pulsing History

As with the physical modelling, the implementation of the mathematical solution requires
some special implementation to enhance its efficiency.

The first such enhancement is to store the solution matrices from one chain to another.
The value of this implementation can be seen when considering the solution of many sub-
sequent chains of large rank, n. If each chain differs in only the last branch, all the n x n
transfer matrices would have to be completely recalculated (n?/2 calculations) for each of
these subsequent chains. On the other hand, if the transfer matrix solution for each interval is
stored after its use in the solution of one chain, only the last row (n calculations) is necessary.
This savings carries to all situations throughout the scheme. Since the chains are formed by a
depth-first search, it is likely that for each chain, a significant portion of the data has already
been determined for a previous calculation.

This is also true for the decay matrices between pulses and after-shutdown, but in this
case, the matrices are not only saved between chains, but between intervals for the same
chain. Since the decay matrices are independent of flux, they need only be calculated once
for each chain and then used in all the intervals for that chain. This has large potential
savings since there may be many intervals which share the decay matrices, each recalculation
of which would cost n calculations even with the already implemented savings. Furthermore,
since the decay matrices are likely to be much sparser than the pulse transfer matrices, a
special implementation of the Bateman solution routine to intelligently fill these matrices has
been implemented.

Once these methods have been implemented to efficiently calculate the individual transfer
matrices for each pulse, each inter-pulse decay period and each after-shutdown decay period,
it is straightforward to calculate the total transfer matrix for the entire problem.

First, a single pulse transfer matrix, T, and a single dwell matrix for the dwell time of
the first level of pulsing, D, are calculated. The product of these, DTy, is then raised to a
power representing the number of pulses in that level, n;. This becomes the transfer matrix
for the next level, Ty = To(D1To)™. Now a single dwell matrix for the dwell time of the
second level is calculated, D,. This is repeated using the general formula!®

T,‘ = Tz'_l(DiTi._l)m. (323)
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It is important to use an efficient algorithm'? for this matrix exponentiation process since it
will be performed so often during the operation of the code.

For N levels of pulsing, the matrix, Ty, will be the transfer matrix for the entire problem
history up to shutdown. Multiplying this matrix by the initial number density, ]Vo, results in
a final, at-shutdown number density. This final number density vector can then be multiplied
by a single dwell matrix for each after-shutdown time to determine the appropriate isotopic
compositions.
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Appendices

A Derivation of Recursive Derivative Definition

Moo
G(s) = 1:[1 S d
N -1 ¥ 1
G/(S):;S"I“dj I:118+dz
= —G(s) ; ; _i 7
N 1 N
6"(s) = ~G(8) 3 s + G0 (o + )
N N
G"(s) = —G"(s) Z . -:dj + G'(s) Z_;(s +d;)?
J]; N
G s) Yoo+ )7 = 2G(s) Yol + )
];V 1 N
“-TWE g v R
g
—2G(s) ;(3 +d;)7?
N 1 N
G””(S) — —GI”(S) Z-: pors dj + G”(S) Z_;(S + dj)—2
J—N .
+ 2G"(s) Z_:(s +d;)7? — 4G (s) ;(5 +d;)?
J]\: ij
— 26(s) 3206 )+ 6G(5) (s + )
S
= —G"(s) Z_: ) + 3G"(s) 2_;(8 +d;) 2
N N
— 6G"(s) Z(S +d;)7° + 6G(s) ;(S +d;)™

(A.5)



Thus, for n=4,

T EZ - ;;;G(n‘” (s) é(s L d)

- EZ - ;;G(n_g’)(s) é(s L d)

T EZ = éll;iG(n_4)(5)§;(s )
=l 1)’((2 — :))' (n_z)(s)g(s e

A.1 Induction Proof

given

which matches Equation A.2.

Now, we solve for n=2:

(A.6)

(A.7)

(A.10)



which matches Equation A.3.

Now, given G®¥(s), we take the derivative, G*+1)(s), and see if it matches the correct form:

6#(s) = 3 (1) B | Gt (0 4 )4 — i 3 s 4 )6

= (k —1)! =
(A.11)
letting, | = k + 1:
-1 _ N
GU(s) = (—1)z(l(fif)l),aﬂ-ﬂz(wd )™
= = A12
S i (=2 (lmie1) o —(i+1) ( )
—;(—1)(1_2,_1)’6}' ;(S-Fd)
Now, letting m =1 + 1 in the second sum
-1 _ N
GO(s)= S (-1) (z(i ; E)i)!G(H) 2 (s +dy)™
= 7=t A3
+ 2 T 2. (s+d
and recombining the sums
_ N
G0(s) = ~{= g6 ) s + )
-1 _ _ . N .
+ l (—1)° [(l(i—lf)—;—)—, + (i — 1)((11 _?)):] G- Z:(s +d;)7" (A.14)
N
+ (=11 = 2)(1 = 1)G(s) 2_:(8 +d;)
N g
GU(s) S (s + )
< il (1-2)! PN Geat)l) ey
+ 2= Sy - DR 6 ek EA )
+ (1)1 = DIG(s) ‘N (s +dj)™



+§(—1)"(<lzj>)z!0“ DyeEvin (A16)
N
(=1 = DIG(s) 3ofs + )
=§(—1>i((’lj))fa“ ﬁ( s+ d;)” (A.17)

QED.

B Other Forms of 1/s Expansion

The 1/s expansion from Section 3.4 can take on many slightly different forms providing dif-
ferent methods for determining the coeflicients. First, it is instructive to relate the expansion
as shown in Equation 3.21 to a simple difference of exponentials. Starting with the Bateman

solution (Equation 3.10) for a single matrix element,

PQ((:’_dlt - e‘dat) P3 n Pg(e_dzt — 6_d3t) P2

Tay =
3 ds — d; dy — dy ds — d, dy — ds

(3.12)
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and using the standard expansion for the exponential, we get

1—dyt + A B gy gy (e (0
(d3 — dyi)(dy — dy)
+1~d2t+id2—;ﬁ—5digﬁ—1+d3t—i"i;ﬁ+i%ﬁ+...
(ds — dy)(dy — dy)
(ds — d)[t — (ds + di) 5 + (G + dsds + D)5 + .. ]
(d3 — dy)(dy — dy)

(ds — o)t = (ds + do) 5 + (3 + dady + d2)2 + .. ]
(ds — d2)(d1 — d3)

:P2P3

= PP

P ; ; (B.1)
= PP, (d2-d1)t7+[d3(d1—d2)+(d%_dg)]%+“.
d2 —dl
=PBPP 5_(d3+d2+d1)€+.“]

1t
= P,Ps t* §—g(d3+d2+d1)+...]

which has the form of Equation 3.21.

Whether in the Laplace Transform domain or the time domain, there is a necessity to

calculate coefficients of the form:

{Ci}———{zdj,Zdedk,Zdededl,...} (BQ)

j=1 k=3 7=1 k=j =k

A different form for these coefficients becomes apparent when N = 2 or N = 3. The

coefficients, {c¢;}, are:

{e}={di+ds, di(di + o)+, d [di(dy + o) + | + 5 ,...} (B.3)
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or

{ei} = {di + dy + dy, di(dh + dz + d) + da(dy + d3) + 2,

dy [dl(dl + dy + ds) + dy(da + d3) + d?),] +dy [dz(dz +ds) + dg} +d3 .. '}(B.4)

This shows the following pattern, assuming {Ao;} = 1; j = [1, N]:

N

)\,'j = de/\i—-l,k (B5)
k=j

C;, = )\,’1 (B6)

This last form leads to an efficient way to calculate these coefficients using matrix mul-

tiplcations. If we form a matrix, M, with elements m;; = d;; 5 >

dy dy dz ... dy
0 dy ds ... dy
M=10 0 ds ... dy|> (B.7)

-,

it is clear that A\; = [M - 1] and that A; = [M* - I]. Therefore,

C; = /\il = [Ml ' f]l . (B8)
Since the direct calculation of
N N N N N 1 N
Z djl Z djz Z dja T Z djn—l Z d'n = H Z djt (B.9)
=1 J2=J1 J3=J2 Jn—1=Jn-2 In=Jn—1 I=n j1=511

tends to require O(N™) calculations, the matrix method above will be highly advantageous
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since it requires only O(nN?) calculations.

Once these coefficients have been calculated, they are then used to calculate the time

response using Equation 3.21:

nl 1
f(t)=t a7 (n+1'zl+ 'Z;dIde

(3.21)

n+3 ,Z;dzzdkmzz dm + -
C ALARA_DC: Data Conversion for Code Interfacing

In designing ALARA for maximum usability, consideration was taken for the way that it
would be implemented by the end user. Most important was to consider the origins of the
various inputs which would be needed to complete each calculation. Every ALARA problem

requires four distinct types of input:
1. cross-section, decay and gamma libraries
2. geometry/mixture definitions
3. groupwise flux input
4. pulsing and history information

By facilitating the conversion of these various inputs from other standard formats to
that required by ALARA, the ease of use for the end user is enhanced. Such conversions are
available for input types 1-3, while input type 4, pulsing and history information is particular
to the pusled history activation calculation. ALARA Data Conversion [ALARA DC] is being
written with these conversion needs in mind.

It was originally written to convert the cross-section, decay and gamma data from various
international standard text formats to the proprietary data format required by ALARA (see

Appendix D for binary data format). However, because the geometry definitions are required
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in various formats for neutron transport calculations which generate the groupwise fluxes in
various formats, ALARA _DC is being extended to convert these data as well.

While most transport calculations do require geometry definitions at least as specific as
those needed by ALARA, the mixture definitions often lack certain trace elemental quant-
ities which are unimportant for transport calculations but may be important for activation
calculations. For example, a transport calculation through a steel block may define the mix-
ture as iron for the purpose of the transport calculation while the alloying concentrations of
nickel, chromium, and other elements are very important in determining the activation char-
acteristics of the material. Therefore, ALARA_DC will be designed to extract the geometry
definitions from the transport calculation and allow the user to modify/upgrade the mixture
definition. In different cases, this geometry information may be extracted from either trans-
port calculation input (deterministic calculations) or output (Monte Carlo calculations with
combinatorial geometries).

The flux data can also take a number of different formats. Some of the available codes
share standard binary and/or text based data formats for these results while others have their
own formats. ALARA_DC will be extended to first convert the standard shared formats and
then the more popular unique formats. In some cases, this conversion will be simultaneous
to the geometry conversion, and in others, the fluxes will be interactively extracted from the

available output.

D Binary Reaction Library Format

Because the reaction schemes/chains are created by a depth first search using the data from
the transmutation and decay libraries, these libraries need to be accessed extensively and
randomly. In the past, such random access was not possible because of the limits on mass
storage devices. Currently, in a text format, such random access would still be very tedious.
To ensure that this random access does not create a drag on ALARA, it is necessary to either

store the entire library in memory or use a binary file format. Because the libraries are often

A-8



quite large (many MB) a simple binary format was designed. This section will describe the
formats for the binary files and their indexes, which are generated in a text format and then
appended in binary format to the end of the binary library.

The format of the binary file will be described by listing, in order, the data written to the

file using the format: (data type Description[size)].

D.1 Transmutation Library
o (long)File Position of Index[1]

e (int/Number of Parent Isotopes[1]

(int)Number of Neutron Energy Groups[1]

(int)Flag indicating existence of Group Boundary info[1]

(float)Group Boundary Data[Number of Groups + 1 if above flag]

(int)Flag indicating existence of Integral Flux Data[1]

(float)Integral Flux Data[Number of Groups if above flag].

Parent Isotope Info
— (int)Parent KZA[1]
— (int)Number of Reactions[1]
— Reaction info once for each reaction
* (int)Daughter KZA[1]
* (char)Emitted Particles[6)
* (float)Cross-section Data[Number of Groups|

This is followed by the index:
(char)Library Type[1]

(int)Number of Parent Isotopes[1]

(int)Number of Neutron Energy Groups[1]

(int)Special Code for Group Boundary Data[1]

o (long)File Index of Group Boundary Data[1]

(int)Special Code for Integral Flux Data[1]

(long)File Index of Integral Flux Data[1]
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e Parent Index Info

— (int)Parent KZA[1]
— (int)Number of Reactions[1]
— (long)File Index of This Parent[1]
— Reaction info once for each reaction
* (int)Daughter KZA[1]
* (char)Emitted Particles|6]
* (long)File Index of This Reaction[1]

D.2 Decay Library
¢ (long)File Position of Index|1]
e (int)Number of Parent Isotopes[1]
e Parent Isotope Info

— (int)Parent KZA[1]
— (int)Number of Decay Paths[1]
— (float)Half Life[1]
— (float)Average Beta Energy[1]
— (float)Average Gamma Energy[1]
— (float)Average Alpha Energy|[1]
— Reaction info once for each decay path
* (int)Daughter KZA[1]
* (char)Daughter Flag[1]
* (float)Branching Ratio[1]
This is followed by the index:
e (char)Library Type[l]
e (int/Number of Parent Isotopes[1]

e Parent Index Info

— (int)Parent KZA[1]
— (int)Number of Decay Paths[1]
(long)File Index of This Parent|[1]
— Reaction info once for each decay path
* (int)Daughter KZA[1]
* (char)Daughter Flag|[1]
* (long)File Index of This Decay Path[1]
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D.3 Mzized Reaction Library

(long)File Position of Index[1]

(int)Number of Parent Isotopes[1]

(int)Number of Neutron Energy Groups[1]

(int)Flag indicating existence of Group Boundary info[1]

(float)Group Boundary Data[Number of Groups + 1 if above flag]

(int)Flag indicating existence of Integral Flux Data[1]

(float)Integral Flux Data[Number of Groups if above flag].

e Parent Isotope Info

— (int)Parent KZA[1]

— (int)Number of Transmutation Reactions[1]

— (int)Number of Decay Paths[1]

— Reaction info once for each transmutation reaction
* (int)Daughter KZA[1]
* (char)Emitted Particles[6]
* (float)Cross-section Data[Number of Groups]

Reaction info once for each decay path
* (int)Daughter KZA[1]
* (char)Daughter Flag[1]
* (float)Branching Ratio[1]

This is followed by the index:

(char)Library Type[1]

(int)Number of Parent Isotopes[1]

(int)Number of Neutron Energy Groups[1]

(int)Special Code for Group Boundary Data[1]

(long)File Index of Group Boundary Data[1]

(int)Special Code for Integral Flux Data[1]

(long)File Index of Integral Flux Data[1]

Parent Index Info
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— (int)Parent KZA[1]

— (int)Number of Transmutation Reactions|[1]

— (int)Number of Decay Paths[1]

— (long)File Index of This Parent[1]

— Reaction info once for each transmutation reaction
* (int)Daughter KZA[1]
* (char)Emitted Particles[6]
* (long)File Index of This Reaction[1]

Reaction info once for each decay path
* (int)Daughter KZA[1]
* (char)Daughter Flag[1]
% (long)File Index of This Decay Path[1]

!

D.j, Gamma Source Library

e (long)File Position of Index[1]
e (int)Number of Parent Isotopes|1]

e Parent Isotope Info

— (int)Parent KZA[1]

— (int)Number of Spectra[1]

— (int)Number of Discrete Gammas in each Spectra[Number of Spectra]

— (int)Number of Interpolation Regions in each Spectra[Number of Spectra]
— (int)Number of Interpolation Points in each SpectraNumber of Spectra]
— Reaction info once for each spectrum

* (float)Discrete Gamma Energies[Number of Discrete Gammas(i))
* (float)Discrete Gamma IntensitiesNumber of Discrete Gammas(i)]

*

(float)Interpolation Region BoundariesNumber of Interpolation Regions(i)]

*

(float)Interpolation Region Types[Number of Interpolation Regions(i)]

*

(float)Interpolation Point X-valuesiNumber of Interpolation Points(i)]

*

(float)Interpolation Point Y-valuesiNumber of Interpolation Points(i)]
This is followed by the index:

e (char)Library Type[1]

e (int)Number of Parent Isotopes[1]

o Parent Index Info
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— (int)Parent KZA[1]

~ (int)Number of Spectra[1]
(long)File Index of This Parent|[1]
Reaction info once for each Spectra

* (int)Number of Discrete Gammas|[1]

* (int)Number of Interpolation Regions[1]

* (int)Number of Interpolation Points[1]

D.5 Adjoint Library

(long)File Position of Index[1]

(int)Number of Daughter Isotopes(1]

(int)Number of Neutron Energy Groups[1]

(int)Flag indicating existence of Group Boundary info[1]

(float)Group Boundary Data[Number of Groups + 1 if above flag]

(int)Flag indicating existence of Integral Flux Data[1]

(float)Integral Flux Data[Number of Groups if above flag].

e Daughter Isotope Info

— (int)Daughter KZA[1]
— (int)Number of Transmutation Reactions to this Daughter[1]
— (int)Number of Decay Paths to this Daughter[1]
Reaction info once for each transmutation reaction
* (int)Parent KZA[1]
* (char)Emitted Particles|6]
* (float)Cross-section Data[Number of Groups]

|

Reaction info once for each decay path
* (int)Parent KZA[1]
* (char)Daughter Flag[1]
* (float)Branching Ratio[1]

This is followed by the index:
e (char)Library Type[1]
o (int)/Number of Daughter Isotopes[1]

e (int)Number of Neutron Energy Groups|[1]
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(int)Special Code for Group Boundary Data[1]

(long)File Index of Group Boundary Data[1]

(int)Special Code for Integral Flux Data[1]

(long)File Index of Integral Flux Data[1]
o Daughter Index Info

— (int)Daughter KZA[1]
— (int)Number of Transmutation Reactions to this Daughter[1]
— (int)Number of Decay Paths to this Daughter[1]
(long)File Index of This Daughter[1]
Reaction info once for each transmutation reaction
* (int)Parent KZA[1]
* (char)Emitted Particles[6]
* (long)File Index of This Reaction[1]

— Reaction info once for each decay path
* (int)Parent KZA[1]
* (char)Daughter Flag[1]
* (long)File Index of This Decay Path[1]

The repitition of much of this data in the index as well as the files allows the simple

reading and extracting of the index without jumping back and forth in the binary file.
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4.1 Introduction

The design of an inertial confinement fusion (ICF) reaction chamber involves identifying
the structural response of the containment vessel to intense thermal and mechanical loads as
energy is released from the implosion. The Fusion Technology Institute (FTI) has been involved
with a number of ICF reactor designs over the last fifteen years. The response of the first wall to
an impulsive pressure or thermal shock is a critical issue and has been included in nearly all of
the reactor designs. The primary mechanism for simulating the mechanical response of the
chamber has been numerical computer codes developed for each of the individual designs.
Whenever possible the finite element codes have been verified with analytical and experimental
data. The intent of this research is to extend existing programs and generate new codes in
parametric form so that software packages can be made available to the ICF community.
Consequently, the user may easily change geometry, materials, boundary conditions or loading
conditions to arrive at the final design.

The code development effort has been divided into the following four areas:

A) Cylindrical shells

B) Spherical shells

C) Hemispherical shells

D) Perforated Plates

E) Reactor components (beam/cooling tubes)

Under the guidance of Professor R. L. Engelstad, three graduate students and one undergraduate
student have investigated different areas of ICF chamber design during the course of this
contract. Cylindrical shells are being studied using finite element and experimental methods by
Cousseau for his Ph.D. thesis [1] and results will be presented at the 16th International Modal
Analysis Conference (IMAC) [2]. In collaboration with Professor P. Peterson from the
University of California - Berkeley, results for spherical shells were reported at the 12th Topical
Meeting on the Technology of Fusion Power [3]. Hemispherical shells were investigated by
Sprague and results are presenting in his undergraduate thesis [4]. Perforated plates were studied
using finite element and experimental techniques by Kaap and results are presented in his M.S.
thesis [5] and at the 16th IMAC [6]. Results for reactor components, specifically beam cooling
tubes have been presented at 16th IEEE/NPSS Symposium on Fusion Engineering [7]. This
report presents a summary of the completed work in each of these areas.



4.2 Cylindrical Shells
4.2.1 Unperforated Cylindrical Shells |

Many investigators have developed the differential equations of motion which describe
the behavior of thin shells. An extensive publication by Leissa [8] is a compilation of a wealth
of information about shell vibrations, primarily cylindrical shells. Forsberg [9, 10] and Ludwig
and Krieg [11] considered the effect of various boundary conditions on the natural frequencies of
cylindrical shells, including axisymmetric cases, using quasi-exact methods. More recently,
Powers [12] studied the use of equivalent elastic properties to model the dynamic response of
perforated cylinders. Adler [13] used a variety of boundary conditions on a cylindrical shell to
show their effects on frequencies and mode shapes. He showed that boundary conditions can
affect cylindrical shell frequencies and mode shapes in unexpected ways; natural frequencies
change only slightly when various end conditions are applied, although mode shapes can vary
greatly. Since the loading of the reaction chamber is primarily axisymmetric, the response to this
type of excitation will be considered in the code development work.

Figure 4.1 shows the schematic of a cylindrical shell with the axial, circumferential and
radial directions denoted by x, 6, and z, respectively. The corresponding displacements are given
by u, v, and w. In addition, the shell dimensions are given by the following: 4 is the thickness, R
is the radius, and L is the length. Material properties use E for elastic modulus, p for density, and
v for Poisson’s ratio.

A x

N p

Fig. 4.1. Cylindrical coordinate system and displacement components.



There are many different formulations of the general differential equations of motion for
thin shell vibrations (Love, Flugge, Timoshenko, Sanders, etc.). The analyses follow the
common assumptions of linear thin shell theory proposed by Love [14], i.e., the cylinder is
assumed to be thin (R/A>10), of constant wall thickness and made of a linear, isotropic,
homogeneous material. The equations as developed by Sanders are:

K, K, K;|(u(x,80,: u(x,0,t
11 12 13 ( ) p(l—DZ)RZ 82 ( ) (1__02)R2
K, K, K,[v(x06,1)t= o v(x,60,1) ¢+ = 0
K, K, K, ||w(x,0,) -w(x,0,1) p(x,0,1)

where

K =R 2sa-vftrid] 2
K,=K, = R[(l ;v) _k3(18_v)}ax39
o vR??TkR - 20) axaaam
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Markus [15] describes Sanders equations as “the best first order equations describing the
deformations of cylindrical shells”. In the case of axisymmetric vibrations, the differential
equations can be separated, or decoupled, from an 8th order equation to a 6th order and a 2nd
order equation. A finite element model of a thin cylindrical shell with no holes was created and
compared with previous studies and known analytical solutions; agreement was excellent.

4.2.2 Perforated Cylindrical Shells - Problem Description

The two most common perforation patterns are triangular and rectangular as shown in
Figs. 4.2 and 4.3, respectively. The shaded area represents a unit cell; in the case of the
triangular pattern the cell is hexagonal and for a rectangular perforation pattern the cell is
rectangular. Each cell has one perforation, a circular hole with radius a. To complete the
perforation pattern, the unit cell is replicated over the pattern region. The pattern’s void fraction
is defined as the percent of total mass (or area) removed when creating the perforation pattern.



In this study, the entire surface area of the cylindrical shell is covered uniformly by the
perforation pattern. The circumferential distance between hole centers, i.e., the pitch P,, must be
an integer fraction of the circumference of the cylinder to insure continuity of the pattern. Also
when the perforation pattern extends to the ends of the cylinder the axial distance between hole
centers, i.e., the pitch P,, must be an integer fraction of the length. No known analytical solution
exists for thin cylindrical shells with perforation patterns.

Hexagonal
Unit Cell

Fig. 4.2. Triangular perforation pattern.

Rectangular )
Unit Cell

OO0

Fig. 4.3. Rectangular perforation pattern.



4.2.3 Perforated Finite Element Model

The finite element method was used to study the effects of perforations on the natural
frequencies of cylinder shells. The commercially available finite element (FE) software
ANSYS® was used to perform a modal analyses. All FE models were generated with eight-
noded elastic shell elements. Perforation patterns on two different cylindrical geometries were
studied:

. R_ L_1iny3 _
Case 1: 3-=200, p=-—7"=19.95
R _ L_4m3 _

Case 2; 71' = 200, —R; = 11 =1.98

The length-to-radius ratios of the cylinders are irrational to accommodate the exact dimensions
of the perforation pattern. Both cylinders have the same thickness (5 mm) to aid in comparing
the results of the two cases. The length-to-radius ratios were chosen to compare different types
of cylindrical shell behavior: the Case 1 cylinder was long and beam-like, the Case 2 cylinder
was short and square. For each case triangular and rectangular perforation patterns were used.
Figure 4.4 shows a Case 1 cylinder with a rectangular perforation pattern and a 40% void
fraction. Figure 4.5 shows a Case 2 cylinder with a triangular perforation pattern and a 20% void
fraction. A rectangular pattern has to be used instead of a square pattern to fit both types of
patterns on the same length cylinder. The number of holes in the patterns was varied between 25
and 825 while keeping the void fraction constant. Void fractions of 20% and 40% were
considered.



Fig. 4.4. Finite element model of a Case 1 cylinder with a rectangular perforation pattern,
40% void fraction, 14,256 elements.
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Fig. 4.5. Finite element model of a Case 2 cylinder with a triangular perforation pattern,
20% void fraction, 19,008 elements.

4.2.4 Perforated Finite Element Results



Figure 4.6 illustrates a typical mode shape of a cylinder with a rectangular perforation
pattern. Figure 4.7 shows the finite element results for the change in natural frequencies of the
lowest three modes of a simply supported Case 1 cylinder. The solid symbols on the vertical
axis represent the unperforated natural frequencies; the dashed and solid curves illustrate the
natural frequencies for the rectangular perforation pattern with 40% and 20% void fraction,
respectively. Figure 4.8 shows similar results for a simply supported Case 2 cylinder.

4.2.5 Experimental Setup and Procedure

Impact testing of perforated cylinders was used to verify the finite element results and
characterize the natural frequencies of cylinders with completely different hole patterns but the
same void fraction. Figure 4.9 shows the three cylinders tested. From left to right, the first is an
unperforated aluminum cylinder used to benchmark the experimental setup. The next two are
commercially manufactured perforated cylinders provided by Perforated Tubes, Inc., Ada,
Michigan. The cylinders are stainless steel with 33% and 23% void fractions, respectively.

Impulse testing was performed by attaching accelerometers to the cylinders using a wax
adhesive. The commercial software package, Snapmaster, was used to acquire the voltage
signals created by the accelerometers; FFT algorithms provided by the software package Matlab
were used to transform the voltage signal into the frequency spectrum. The positions of the
accelerometers were chosen using a reference grid on the cylinder. The intersections of the grid
lines were designed to fall upon node and antinode positions of the cylinder. The free response
due to an impulse was measured by the accelerometers with the cylinders supported to simulate
free-free boundary conditions. Initial impulse testing was performed to identify the optimum
mass and stiffness of the impact hammer. Because the accuracy of the FFT used to determine
the natural frequencies is inversely proportional to the sample time, it was important to create an
impulse providing the maximum response time of the cylinder.



Fig. 4.6. Mode shape of a simply supported cylinder with a square perforation pattern.

4.2.6 Experimental Results

Tables 4.1 - 4.3 compare the experimental and finite element results of the lowest modes of each
cylinder. The unperforated cylinder used for benchmarking shows excellent correlation between
the experimental and finite element values. The FE model of the perforated cylinder does not
exactly duplicate the experimental cylinder in hole location or size but the void fraction was
identical. Good correlation between the experimental and finite element data was found. A
source of possible experimental error was the helical weld present on the manufactured cylinders
which was not present in the FE model.
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Fig. 4.7. Case 1 cylinder - the change in natural frequency with increasing number of holes

(E =70%10° N/m?, p = 2700 kg/m®, v = 0.3). All data is for a square perforation
pattern.
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Fig. 4.8. Case 2 cylinder - the change in natural frequency with increasing number of holes

(E =70x10° N/m?, p = 2700 kg/m?, v=0.3). All data is for a square perforation
P q
pattern.



Fig. 4.9. The three cylinders used in the experimental procedure.

10.46 cm, h = 0.84 cm).

Table 4.1. Natural Frequencies of the Unperforated Aluminum Cylinder with Free-Free
Boundary Conditions (E = 70 GPa, v = 0.33, p = 2700 kg/m’, L = 26.0 cm, R =

n m| Finite Element | Experimental | Percent
[Hz] [Hz] Difference
21 504 503 <1%
22 615 605 2%
31 1417 1412 <1%
32 1584 1593 -1%

Table 4.2. Natural Frequencies of the Perforated Stainless Steel Cylinder (33% Void
Fraction) with Free-Free Boundary Conditions (£ = 190 GPa, v = 0.3, p = 7920

kg/m*, L =60.5cm, R=3.11 cm, A =0.107 cm).

n m| Finite Element | Experimental| Percent -
[Hz] [Hz] Difference
21 329 313 5%
22 333 320 4%
23 560 553 1%




Table 4.3. Natural Frequencies of the Perforated Stainless Steel Cylinder (23% Void
Fraction) with Free-Free Boundary Conditions (E = 190 GPa, v = 0.3, p = 7920
kg/m’, L =60.5cm, R=5.17 cm, h=0.157 cm).

n m| Finite Element | Experimental | Percent
[Hz] [Hz] Difference
21 587 575 2.1%
22 590 582 -583 1.3%
23 660 627 - 635 4.3%

4.2.7 Conclusion

The effects of uniform perforation patterns on the natural frequencies of cylindrical shells has
been assessed by FE and experimental analyses. The following general observations can be
made.

As the number of holes increases the natural frequencies approach a steady value.

In general, the reduction in stiffness is a stronger influence on frequency change than the
reduction in mass, i.e., the addition of holes reduces the unperforated natural frequencies.

Increasing the void fraction from 20% to 40% reduces the natural frequencies.

For a large number of holes, the ordering of the natural frequencies remains unchanged from
the unperforated ordering.

For a large number of holes, the mode shapes are similar to the unperforated mode shapes.

4.2.8 Ongoing Investigations

Thus far the finite element models have all been developed for a modal analysis solution

within the commercial code ANSYS. A transient solution type is being benchmarked in order
to simulate the dynamic response to blast waves and identify the regions under the highest stress.



4.3 Spherical Shells
4.3.1 Introduction

Spherical shells have also been proposed to be used as containment vessels for inertial
confinement fusion, for example in National Ignition Facility (NIF). Determining the structural
response (i.e., the location of maximum displacement and stresses) of spherical shells with
perforations subjected to repetitive thermal and mechanical loads released from the implosion is
necessary for the successful design of an ICF reactor. Analytical solutions for the axisymmetric
natural frequencies for a homogenous, continuous sphere can be found in the literature [16, 17].
These analytical solutions can be used to benchmark more complicated finite element models,
such as spherical shells with perforations for laser beams and target injection.

4.3.2 Finite Element Modeling and Verification

An axisymmetric finite element model of a spherical shell has been created using the
commercially available program ANSYS. This model includes membrane and bending stress,
and boundary conditions can be specified to correspond to realistic support conditions. The
analytical equation for the torsionless natural frequency based on bending theory can be found in
[16] and the torsional natural frequency equation based only on membrane theory can be found
in [17]. For both of these solutions, it is necessary to idealize the problem such that no support
forces (i.e., boundary conditions) are applied to the spherical shell. Table 4.4 compares the
analytical and finite element torsionless natural frequencies and Table 4.5 compares the torsional
natural frequencies. The finite element model is in excellent agreement with the analytical
solutions. Mode 1 of Table 4.4 is the “breathing” mode of the sphere. This is the mode that will
be predominately excited from a uniform blast wave emanating from the center of the sphere.

Table 4.4. Natural frequencies of the first three modes of torsionless vibration dominated by
in-plane motion for the following parameters: a = 1 m, A = 0.02 m, E = 216 GPa,
v=0.3, p = 7800 kg/m’.

Mode Number Analytical Solution [Hz] FEM Solution [Hz]
(Bending Theory) (Axisymmetric Model, 201 Nodes)
1 1415.7 1415.7
1733.9 1733.8
3 2389.9 2389.8

Table 4.5. Natural frequencies of the first three torsional modes for the following
parameters: g = 1m, h=0.02 m, E = 216 GPa, v= 0.3, p = 7800 kg/m’.

Mode Number Analytical Solution [Hz] FEM Solution [Hz]
(Membrane Theory) (Axisymmetric Model, 201 Nodes)
1 1038.7 1038.9
1642.4 1642.7
3 2203.5 2204.1




In addition, an analytical solution based on membrane theory and a numerical
implementation of the solution has been completed to simulate the dynamic response of an
axisymmetric spherical shell to uniform sequential impulses. It is assumed that the shell is thin
and will be uniformly excited by the blast loading. A single mode solution using the “breathing”
mode has been used for this solution. The intent here is to use this numerical solution to
benchmark the individual finite element models as they are developed for the transient and
steady-state simulations. A typical example is presented in the following section.

4.3.3 NIF Minichamber

The NIF minichamber is a concept proposed by Professor Per Peterson at the University
of California at Berkeley for basic diagnostic testing. The minichamber is a smaller chamber
that is to be inserted inside the main NIF target chamber through the hollow cylinder used for the
pedestal support. With this design constraint, the proposed minichamber would be
approximately one tenth the size of the main chamber. The target would be contained inside the
minichamber and both would be cryogenically cooled.
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Fig. 4.10. Spherical and cylindrical NIF mini-chambers [3].

Possible design options for the configuration of the minichamber included a spherical
chamber or a cylindrical chamber with hemispherical end caps; see Fig. 4.10. It would be
constructed out of aluminum with perforations to allow the laser beams to reach the target. To
investigate the feasibility of the minichamber withstanding a typical blast loading, a scoping



study was performed. For the case presented here, the chamber was assumed to be spherical in
shape with no perforations (a worst case scenario). In addition, no supporting structure or
constraints were placed on the sphere. The outer radius was assumed to be 55 cm and the
thickness was set at 5 cm (but could be varied as needed). A finite element model was generated
to simulate the response of the shell structure to an internal, time-dependent pressure load.
Analytical solutions were then used to benchmark and verify the dynamic results.

Table 4.6 lists the material properties of 6061 aluminum at room temperature. However,
at a temperature of -240 °C, the yield strength increases from 270 MPa to 340 MPa and the
ultimate strength (or tensile strength) increases from 310 MPa to 480 MPa. Therefore, for this
scoping study, the more conservative properties were used in the analyses, i.e., those at room
temperature. In addition, a structural damping level of 1.0 % was set for all calculations.

Table 4.6. Material properties of 6061 aluminum at room temperature.

Yield Strength 270 MPa
Ultimate Strength 310 MPa
Modulus of Elasticity 70 GPa
Density 2700 kg/m’
Poisson’s Ratio 0.33
Structural Damping 1%

4.3.4 NIF Minichamber - Hydrodynamics

Figure 4.11 shows the time-dependent pressure load as computed by the scientists at the
University of California at Berkeley using the code TSUNAMI. It is assumed that the pressure is
applied uniformly on the inside of the sphere, normal to the surface. The maximum pressure of
2.66 MPa occurs at 4.3 ps, then at 100 us the pressure decays away until it reaches zero at 1 ms.
For convenience, a linear function was assumed for the decay beyond 100 us.

4.3.5 NIF Minichamber - Mechanical Response

The response of the minichamber to the internal pressure load was calculated
numerically. An axisymmetric finite element model of a sphere was constructed employing
elastic shell elements that included both bending and membrane stiffness. The time-dependent
pressure loading was applied uniformly and normal to the inside surface of the sphere. A
transient solution was used to calculate displacements and stresses as a function of time due to
the time-dependent pressure loading.
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Fig. 4.11. Internal pressure load on the NIF minichamber (Prof. P. Peterson).

An analytical solution for the response of the minichamber to an impulse loading was
also examined. Soedel [16] presents the axisymmetric equation of motion of a thin, spherical
shell with free boundary conditions. The theoretical solution also neglects bending stiffness (i.c.,
provides only a membrane approximation). Using the convolution integral, the impulse solution
with the pressure load was numerically integrated to find the response of the shell. Figure 4.12
shows the analytical results for the radial displacement of the shell during and after the impulsive
pressure loading. For a thickness of 5 cm, a maximum radial displacement of 0.0385 mm occurs
at 0.19 ms. The figure shows the shell “ringing” or vibrating for 20 to 30 ms after the end of the
pressure loading. The duration of the “ringing” is directly affected by the amount of structural

damping in the system.
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Fig. 4.12. Radial displacement of the minichamber as a function of time.

Figure 4.13 compares the analytical and finite element solutions for the in-plane or
membrane stress in the shell during the first 0.20 ms of the pressure loading. A maximum stress
of 7.7 MPa occurs at 0.19 ms (the same time as the maximum radial displacement). The
remainder of stress history will follow the same characteristic curve as the displacements. In
addition, the finite element model is capable of calculating the stress at both the inner and outer
surfaces of the shell, which can be seen in Fig. 4.13. Note that as the impulse load is first
applied, the shell can not respond in the same time frame. In fact, on the inner surface of the
shell a compressive stress develops because the shell itself is effectively behaving as a constraint.

The maximum stress in the spherical shell (7.7 MPa) is well below the yield strength of
6061 aluminum (270 MPa at room temperature). In the above analysis, none of the typical stress
risers, such as perforations in the shell and boundary conditions, were modeled. In an actual
structure the maximum stress could be as much as an order of magnitude larger. Also, the



possibility of brittle fracture or fatigue fracture at the low operating temperature has not yet been
addressed.
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Fig. 4.13. In-plane stress of the minichamber as a function of time.



4.4 Hemispherical Shells
4.4.1 Introduction

The primary goal of this research is to aid in the design of hemispherical endcaps for use
in inertial confinement fusion reactor target chambers. Any shell structure used in a target
chamber may require various holes, or perforation patterns, for diagnostic equipment, target
insertion, and beam lines. To properly design a target chamber, the natural frequencies of the
structure must be known to prevent catastrophic failures due to resonant conditions and as a basis
for any fatigue analysis.

4.4.2 Problem Formulation

A spherical coordinate system, (7, 6, ¢), was used throughout this analysis. It is shown in
Fig. 4.14 with the (x, y, z) Cartesian coordinate system for reference. In addition, an element of
the shell is shown with all associated displacements. The displacement normal to the shell is
represented by w. Tangential circumferential displacement and tangential meridional
displacements are represented by v and u, respectively.

All shells studied in this research are considered “thin,” i.e., &/R << 1. In the study of
thin shells, the outer surfaces of the structure are compressed to the middle surface, and a
thickness is assigned to the structure. Two general perforated hemispherical shell structures
were studied in this analysis. The first case studied was a hemispherical shell with a hole at the
apex. This configuration is of primary importance in the design of fusion target chambers, e.g.,
the apex hole is required for target injection and also maintenance. A detailed drawing of this
configuration is shown in Fig. 4.15 with all associated dimensions and variables. Obviously, for
hemispherical shells, the half-angle, ¢,, was maintained at 90°. For each thickness to shell radius
ratio, #/R, the apex hole radius to shell radius ratio, a/R, was evaluated for a wide range of
values.

The second hemispherical shell studied had circumferential holes in addition to the apex
hole. A view of this configuration is shown in Fig. 4.16. Like the previous shell, the
hemispherical shell with an apex hole and circumferential holes was tested for three A/R values.
The circumferential hole radius to shell radius ratio, /R, was varied for each A/R ratio. The
radius of the apex hole, a, was held constant. As a general case, the distance of the
circumferential hole axis from the apex, ¢,, was taken as 45° for all analyses.



i

Fig. 4.15. Geometry definitions of a hemispherical shell with an apex hole.
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Fig. 4.16. Geometry of a hemispherical shell with an apex hole and circumferential holes.

All numerical frequency results in this study will be presented in terms of the non-
dimensional frequency parameter, €2, given by

Q= f2nR p(l_v2)

where f is the frequency, p is the mass density, v is Poisson’s ratio, and E is the modulus of
elasticity.

4.4.3 Unperforated Hemispherical Shells

A quarter symmetry finite element model of a hemispherical shell was created using 8-
noded, quadrilateral shell elements (see Fig. 4.17). The sv-face geometry was created using
Pro/ENGINEER and subsequently meshed with PATRAN'; the model was then solved using
ANSYS. By using quarter symmetry, greater mesh refinement could be achieved, however, this
type of model could only be used to find the axisymmetric modes of the hemispherical shell. A
full model is required to study all mode shapes.



Fig. 4.17. Quarter symmetry finite element model of a hemispherical cap.

Solutions for the dynamic response of a clamped hemispherical shell without perforations
have been previously documented. Eikrem and Doige [18] found the first 23 axisymmetric
modes using both analytical and experimental methods. The asymmetric mode shapes were
studied by Singh and Mirza [19] using finite elements. These previous results were used to
verify and benchmark the finite element modeling techniques that were used to investigate
perforated hemispherical shells.

Eikrem and Doige studied a 6.0 in. radius steel hemispherical shell with clamped edges,
utilizing both experimental and analytical methods. The experimental shell had a mean thickness
of 0.031 in. This shell has been reproduced with a finite element model as shown in Fig. 4.17.
The model was created using 5824 nodes and 1887 elastic shell elements. The frequencies of the
first three axisymmetric modes are shown in Table 4.7.

Table 4.7. Natural frequencies of the first three axisymmetric modes with the following
parameters: R = 6.0 in., A = 0.031 in., E = 30x10° psi, p = 0.733x10? Ib-s*/in*, v=0.3.

Axisymmetric Mode Eikrem & Doige FEM Solution % Difference
Number (Analytical) (Hz) (Hz)
1 4040.85 4044 4 .09
2 5001.42 5004.46 .06
3 5216.07 5218.50 05




Singh and Mirza used finite element methods to determine the asymmetric natural
frequencies of clamped hemispherical shells. To reproduce their results, a full model of the shell
was created to view all possible mode shapes. A mesh similar in structure to that in Fig. 4.17
was used, but with a less refined mesh (7521 nodes, 2480 elastic shell elements). The results are
given in Table 4.8. '

Table 4.8. Natural frequencies of the first eight asymmetric modes with the following
parameters: R = 6.0 in., & = 0.030 in., E = 30x10° psi, p = 0. 733x10° Ib-s%/in*, v =

0.3.
Asymmetric Mode - M, I Singh & Mirza FEM Solution (Hz) % Difference
M = Meridonal (Analytical)
I = circumferential (Hz)
1,1 3034.36 3022.17 0.40
2,1 4768.69 4761.13 0.16
1,2 4829.44 4826.63 0.06
1,3 5065.15 5062.26 0.06
3,1 5141.09 5136.34 0.09
2,2 5160.78 5158.53 0.04
1,4 5168.10 5165.18 0.06
1,5 5232.23 5229.36 0.05

As shown by Tables 4.7 and 4.8, the finite element model gives excellent results when compared
to known dynamic responses. This finite element method can subsequently be used to identify
the dynamic response of hemispherical shells with various perforation patterns.

Finite element models have been created for two perforation patterns. The first is a
quarter symmetry model of a hemisphere with a hole at the apex (see Fig. 4.18). The second is a
quarter symmetry model with a perforation pattern around the circumference in addition to the
hole at the apex (see Fig. 4.21). It should be noted that the quarter symmetry models can be
easily transformed into a full model. In addition, the models were created using only
quadrilateral elements, which will yield the best results.

4.4.4 Axisymmetric Vibrations of a Hemispherical Shell with an Apex Hole

Any fusion target chamber with a hemispherical endcap will most likely have an apex
hole for target insertion and maintenance. This section presents numerical results for the
axisymmetric frequency of the first mode of clamped hemispherical shells with apex hole radius
to shell radius ratios, a/R, varying from O to 0.8. Shells with thickness-to-radius ratios, #/R, of
0.005, 0.010, and 0.050 were evaluated.

Because this research had a direct application, analyses were performed to represent
conditions anticipated in a fusion target chamber. When a uniform, radial, impulse load is
applied to an axisymmetric shell, only the axisymmetric modes will be excited. Also, when a
hemispherical shell is used as a structural component of a target chamber, the edge will most



likely be rigidly clamped. Therefore, only the axisymmetric natural frequencies of a
hemispherical shell with a clamped edge were studied. Modeling using symmetry conditions can
minimize computational time and allow proper mesh refinement. Quarter symmetry models
were used to study the axisymmetric case of a hemispherical shell with an apex hole. An
example of the mesh used is shown in Fig. 4.18. Symmetry conditions were applied to the edges
at 6 = 0° and 6 = 90°. The bottom edge at ¢ = 90° was rigidly clamped. A quarter symmetry
model was used rather than a model created from axisymmetric elements since quarter symmetry
was required to model the non-axisymmetric circumferential perforation pattern.

Figure 4.19 shows Q vs. a/R for the first axisymmetric mode for each A/R ratio evaluated.
As shown, Q increases as a/R increases. Interestingly, the apex hole has negligible effects on the
natural frequency for small radius values. The normalized mode shapes of the fundamental

axisymmetric modes for a hemispherical shell with #/R = 0.050 with an apex hole are shown in
Fig. 4.20.

Fig. 4.18. Quarter symmetry finite element model of a hemispherical shell with an apex
hole, 1247 elements.
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4.4.5 Impulse Loading of a Hemispherical Shell with Apex and Circumferential Holes

Hemispherical shells used for fusion target chambers may have circumferential holes in
addition to the apex hole. Circumferential holes are used for diagnostic equipment and laser
ports. The apex hole is still needed for target insertion and maintenance. Because of the
circumferential holes, the shell is no longer axisymmetric and will therefore not have
axisymmetric mode shapes. This section investigates the response of a clamped edge
hemispherical shell with 16 equally spaced circumferential holes in addition to an apex hole for
the impulse load.

Figure 4.21 shows the quarter symmetry finite element model used for this investigation.
It as 2536 nodes and 783 elements. The shell had the following parameters: R =5.01in., h =
0.050 in., @ = 0.50 in., b = 0.25 in., E = 30.0x10° psi, p = 0.733x10” Ib-s%in*, v = 0.3, ¢, = 45°.
The boundaries around the holes are free (not reinforced or supported).

A radial impulse pressure of 450 psi was applied for 2.0x10°¢ seconds to the FE model
shown in Fig. 4.21. The response of the shell was taken to 0.008 seconds with damping
neglected. Figure 4.22 shows the displacements of a node at ¢= 50° as a function of time. A
Fourier transform of the data is shown in Fig. 4.23. A modal analysis was performed to identify
the frequencies of the quasi-axisymmetric modes. The resulting nondimensional frequencies are
shown in Table 4.9. The frequencies in Table 4.9 can be compared with the spikes in Fig. 4.23.

Table 4.9. Non-dimensional quasi-axisymmetric natural frequencies for clamped edge
hemispherical shell with the following parameters: a/R = 0.10, b/R = 0.05, h/R =

0.01.
Quasi - Axisymmetric Mode Q
1 0.7073
2 0.8306
3 0.9341
4 0.9583
5 1.0149
6 1.0800
7 1.1896
8 1.3179
9 1.4804
10 1.5658
11 1.7236
12 1.9478
13 2.2616




Fig. 421. Quarter symmetry finite element model of a hemispherical shell with 16
circumferential holes and an apex hole. The geometry has the following

parameters: a/R = 0.10, b/R = 0.05, ¢, = 45°, 783 elements.

oo | Mﬂ ]
AL
A

-0.0200 |- -

w [in.]

. i | L L X I L L f I I L 1 ! ) s L | [ R
0.0000 0.0005 0.0010 0.0015 0.0020
Time [s]

0.0025

Fig. 4.22. Radial displacement of a FE node at ¢ = 50° as a function of time after an impulse
load of 450 psi for 2.0x10s.
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4.5 Perforated Plates
4.5.1 Introduction

Mechanical, aerospace, and civil engineers all design structures and structural
components with plates and shells. Fortunately, the design and analysis of solid plates
and shells is well established. Structural designs often deliberately incorporate cutouts or
perforations to reduce materials, lighten loads, allow for ventilation, or provide functional
openings. Accounting for these perforations in the analysis can be an integral part of
determining the correct deflections, stresses, modal frequencies, and mode shapes of a
particular structure. In static cases where a plate is perforated with a number of circular
holes, assembled in a pattern, the structural changes have traditionally been accounted for
by using effective material constants. Usually, the perforated plate is equivalent to a
uniform solid plate of the same thickness but having new modulus and Poisson ratio
values established by an equal global stiffness criterion.

Industry. has numerous engineering applications involving perforated plates. For
example the heat exchanger industry, focusing on tube sheet behavior, has supported
perforated plate research for over fifty years. As a result, there is an abundance of
numerical and experimental work on the static behavior of perforated plates. This data
has been tabulated and plotted in design curves and can be found in codes such as the
French pressure vessel code CODAP [20] and ASME Boiler and Pressure Vessel Code
[21]. Osweiller [22] and Slot [23] have written excellent summaries on the history of
perforated plate research. However, there are no known design curves for dynamic
behavior of perforated plates.

This study is intended to take the next logical step in understanding the behavior
of perforated structures, i.e., characterizing the dynamic response of perforated plates.
The study focuses on thin square plates with completely clamped boundary conditions.
More specifically the plates are perforated with a large number of uniform circular holes
arranged into a square or triangular pattern.

A natural frequency and associated mode shape characterize the dynamic behavior
of a perforated plate. Finite element methods and experimental methods were utilized to
predict and define this behavior. The resulting data was correlated and converted into
effective elastic constants that could be presented as design curves. Classical solid plate
theory was used for this conversion from frequency to effective dynamic stiffness.

4.5.2. Perforation Terminology
Two perforation patterns, square and triangular, are most common in industry (see

Figs. 4.24 and 4.25). Both patterns use a common parameter, 4, referred to as the
ligament efficiency, i.e.,
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Ligament efficiency is the ratio of ligament width, A, to the perforation center-to-center
distance, defined in Figs. 4.24 and 4.25 as the pitch, P. The most fundamental cells for
the square and triangular patterns are square and hexagonal, respectively. These basic
shapes, containing a single hole, are used in conjunction with solid modeling and FE
meshing methods to generate a uniform perforation pattern.

Square Element Square Penetration Pattern

Fig. 4.24. Geometry for square perforation pattern [23].

Hexagonat Element Triangular Penetration Pattern

e

Fig. 4.25. Geometry for triangular perforation pattern [23].



4.5.3 Classical Plate Theory

The characteristic equation for thin clamped square plates can be described by the
following [24]:

w,=— [— (n=1,23,.)

where A is a frequency constant, listed in Table 4.10, m is the mass per unit area, b is the
length of the square plate and D is the flexural rigidity of the plate. The mass per unit
area is defined as follows:

r
g

m=

=pt

where ¥ is the specific weight of the material, g is the gravitational acceleration, p is the
mass density, and ¢ is the plate thickness.

Table 4.10. Frequency constants for clamped square plates [24].
mode number, n A
1 35.97
73.36
108.13
131.51
164.82
210.38
219.69

NN AW

4.5.4 FE Modeling and Benchmarking

Benchmarking FE models with published design curves, comprised of static
effective constants, is simplified by limiting the number of plate variables. For example,
Kaap’s work [5] focused on thin, homogeneous square plates loaded in pure bending.
Consequently, only the design curves on perforated plates subjected to pure bending were
used for benchmarking the FE models.

Solid plate models were constructed within the FE software package ANSYS. The
material properties and geometry used to generate each model are defined in Table 4.11.
A number of different models with perforations were generated from the basic model.
Some of the parameters that were individually varied were Poisson’s ratio, hole size,
material density, and the perforation pattern. Varying the perforation hole size indirectly
varied ligament efficiency. It should be noted that the pitch, P, is held constant at a value
of 2.0.



Table 4.11. Properties for a solid plate model.

Material 6061-T6 Aluminum
Poisson’s ratio, v 0.32

Young’s modulus, E 10.0 x 10° Ib/in’
Density, p 2.536 x 10 1b-s*/in’
Thickness, ¢ 0.125in

Plate width and length, ! | 10in

Meshing the perforated plate models was also done within ANSYS using
SHELL63, a four-node elastic shell element. This element was chosen because it has
been successfully benchmarked against solid plate theory and has excellent convergence
for perforated plate models. Model generation started by constructing a controlled mesh
around a single hole using the most basic repeatable shape. This meshed area was then
replicated to generate a full model.

4.5.5 FE Analysis and Results

Dynamic effective elastic constants are the independent variables in the frequency
response equation. The primary dependent variable is the natural frequency of the
perforated plate, which is taken from the FE analysis. Effective stiffness values, for
example, are determined from backing out stiffness values from a governing equation
where the all the parameters other than stiffness are known. Known parameters include
the overall dimensions of the plate, 10 in. X 10 in. X 0.125 in.

Finite element plate models were generated with either square or triangular
perforation patterns and variable ligament efficiencies. Using clamped boundary
conditions, each model was analyzed and the modal frequencies computed. The resulting
stiffness values from the first seven modes of vibration were plotted for a Poisson’s ratio
of 0.32 (see Figs. 4.26 and 4.27). For comparison purposes, the static effective material
constants are also shown on the plots. In addition to generating modal frequencies, mode
shapes were generated for the first five modes of vibration (see Figs. 4.28 and 4.29). The
shapes are only intended to supplement the stiffness and therefore do not cover all seven
modes.

The FE models were also used to conduct parametric studies on the effective
stiffness values. The studies focused on the effects of Poisson’s ratio, plate thickness,
material density, and number of perforations. To simplify the study only mode 1 was
considered. Results showed that effective stiffness is not a function of plate thickness as
long as dimensions are within the thin plate regime (see Table 4.12). A second study
showed that effective stiffness is sensitive to Poisson’s ratio (see Figs. 4.30 and 4.31).
Further study showed that the number of holes used to develop the data shown in Figs.
4.26 and 4.27 was a good approximation to an infinitely perforated plate (see Fig. 4.32).



Finally, parametric studies showed that effective stiffness is not a function of material
density.
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Fig. 4.28. ANSYS modal contours for clamped plates with triangular perforation patterns (P = 2.0, v = 0.32).
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Fig. 4.29. ANSYS  modal contours for clamped plates with square perforation patterns (P = 2.0, v = 0.32).



Table 4.12.  Sensitivity of effective stiffnesses for a square clamped plate with a square
perforation pattern, based upon fundamental mode (v = 0.32, u=0.7).

t (in) t/P 1/l f(Hz) | D/D
0.0625 | 0.0312 | 0.00625 | 114.88 | 0.926
0.125 | 0.625 | 0.0125 | 229.77 | 0.926
025 | 0.125 | 0.025 | 459.53 | 0.926
0.5 | 0.25 0.05 | 919.06 | 0.926
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Fig. 4.30. Effective stiffnesses based upon the fundamental frequencies for square
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4.5.6 Experimental Work

Section 4.5.5 describes the use of FE models to determine the dynamic effective
stiffness of completely clamped thin plates perforated with square or triangular
penetration patterns. The effective stiffness values were generated using, in addition to
other constant parameters, the frequency data taken from the FE modal analysis. The
results differ from previously developed effective material constants, presumably,
because FE results are based on a dynamic analysis rather than a static analysis. To
verify these results, an experimental investigation was carried out.

Plates with material properties and dimensions listed in Table 4.11 were clamped
into a rigid support frame and tested for resonant conditions. An optical vibrometer
system was used to identify and compute the resonant frequencies of these plates. Each
plate tested had either a square or triangular perforation pattern, and a ligament efficiency
0f0.1,0.2,04, 0.6, or 0.8.

Optical measurements utilized the doppler effects of a laser beam that reflected
off the surface of the plate. The vibration of the plate due to an initial impulse caused
shifts in the reflected light. It was these shifts that were used to compute resonant
frequencies. Impact tests were also run with an accelerometer to confirm the optical
equipment. As expected the accelerometer data leads to higher frequencies due to the
added mass of the accelerometer. Because of this the optical results are believed to be
more accurate and are therefore presented in Figs. 4.33 and 4.34. Static effective theory
has also been added to the figures for comparison purposes.
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fundamental mode of square clamped plates with square perforation
patterns.

4.5.7 Conclusions

The vibration characteristics of perforated plates are important when designing
structures where resonance or fatigue are possible modes of failure. Literature review of
methods for predicting perforated plate vibrations showed that no design curves for this
analysis have been developed. Essentially, there are no analytical, numerical, or
experimental data available that would enable a designer to predict the dynamic response
of perforated plates.

For this study, finite element models were developed to determine the natural
frequencies and mode shapes of perforated plates. In order to approximate an infinitely



perforated square plate a large number of perforations were used. Two basic models were
then developed, one with a square penetration pattern and the other with a triangular
pattern.  Adjusting parameters on these models, such as ligament efficiency, was
computationally straightforward and thus this method of analysis was very effective for
parametric studies.

Parametric studies were carried out to investigate the effects of various material
properties. Results show that by decreasing Poisson’s ratio, the effective stiffness values
increase, however the general trend of stiffness as a function of ligament efficiency
remains constant. Material density, on the other hand, has no effect on the dynamic
effective stiffness.

Perforated plate mode shapes are essentially independent of perforation size and
type. The analytical shapes determined from classical plate theory apply to all the
perforated plates examined. The only effect the perforations have on the dynamic
characteristics is via structural frequency change. Knowing this, it should be possible to
predict the frequency of each mode for all perforated plates. This is an important first
step toward understanding more complex problems where either the perforation pattern
does not cover the entire structure, the holes are not circular, or the structure has
curvature, such as a shell.



4.6 Reactor Components - Beam/Cooling Tubes

A major problem in ICF reactor design is the protection of the first wall from X-rays,
neutrons, target debris and mechanical shock resulting from target ignition. The concept of
protecting the cylindrical cavity by an annular bank of vertical tubes conveying liquid
lithium/lead has been proposed in a number of reactor designs, i.e., HIBALL and LIBRA. A set
of five different computer codes have been developed to model the vertical tube's response to
planar impulsive excitations. A brief description of each code is given below:

* B-Tube (Braided Tube):

A braided silicon carbide tube conveying liquid coolant is modeled as a tube with no
bending stiffness but having an constant internal fluid flow. The hollow “string-like”
model is preloaded with an axial tension to provide the structural load carrying
capability. The nonplanar, nonlinear equations of motion were previously derived by
Engelstad [25]. Numerical integration routines have now been written to solve the
differential equations of motion and simulate the tube response to sequential
impulses. The code's adjustable parameters include the repetition rate of the reactor
(i.e., the period of the sequential impulses), the excitation magnitude, the velocity of
the internal fluid, the damping in the system and the geometry of the tube. The code
reports data for the midspan displacement of the tube as a function of time. With this
data both the steady state and transient response of the tube can be studied. Also, the
amplitude-frequency relationships identifying resonance conditions can be
determined. With this code, it has been shown that the primary response of the tube
will be a radial displacement (or planar displacement), however, the tubes could begin
to "whirl" under certain operating conditions.

* E-Tube (Extensional Tube):

This code models an “elastic” tube clamped at both ends conveying a liquid coolant
while subjected to planar sequential impulses. In this case, the tube has an actual
bending stiffness so no preload axial tension is needed. It is also assumed that the
clamped end conditions are rigidly fixed and the length of the tube will extend during
oscillatory motion. The nonplanar, nonlinear equations of motion were previously
derived by Lee [26]. A computer code has now been generated to simulate the
dynamic response of the tube. The adjustable parameters and data output are similar
to the B-Tube code. This code also demonstrates that the tube could enter “whirling”
motion under certain operating conditions.

* I-Tube (Inextensional Tube):
The I-Tube code package is similar to the nonlinear E-Tube code with clamped
boundary conditions that move freely in the axial direction. Consequently,
longitudinal deformation does not occur. Again, the nonplanar, nonlinear equations
of motion were previously derived by Lee [26]. The adjustable parameters and data
output are similar to the B-Tube code.



* S-Tube (Stress Tube):

This code models the planar displacement and bending stress in a elastic tube with
arbitrary boundary conditions conveying liquid coolant subjected to planar sequential
impulses. A major feature of this code is that the stress and displacement histories for
any location along the length of the tube can be calculated, in contrast to the above
three codes where only displacement at the center of the tube is returned. Another
feature of the program is the ability to easily model any combination of classic
boundary conditions; for example pinned-pinned, clamped-clamped, pinned-clamped;
by using their associated orthogonal shape functions.

The general equation of motion describing the planar mechanical response of a tube
under sequential impulse loading can be found in [27]). A modal solution of the
equation of motion for arbitrary boundary conditions is also given. This solution was
programmed in the S-Tube code. In the above derivation the following assumptions
were made. The pressure load is assumed to be uniformly distributed over the length
of the tube, is impulsive in nature and is applied at the rep rate of the reactor. Since
the flow velocity of the liquid coolant is small, the effects of moving liquid within the
tube can be neglected and the fluid considered stationary. Stationary fluid in a tube
adds mass to the system without change the flexural rigidity of the tube. Rayleigh
damping was used to model internal structural damping and external viscous
damping. The code's adjustable parameters include the repetition rate of the reactor,
the excitation magnitude, the tube geometry, and the material properties of the tube
and liquid coolant.

Figure 4.35 shows for particular input parameters the absolute maximum steady state
midspan displacement of a clamped-clamped tube as a function of sequential impulse
frequency. This figure illustrates the frequencies or repetition rates associated with
resonant conditions, i.e., the peaks in the response curves. The large peak in the
center of the figure is the fundamental frequency of the system and the peaks to the
left are overtones of the fundamental frequency. These peaks would effectively shift
as the length of the tube changes. Therefore, this program can be used to establish the
free span tube length in order to place the reactor’s operating rep rate away from the
resonant peaks.

* FEM-Tube (Finite Element Model):
A finite element model of a tube conveying coolant fluid under sequential impulse
loading was also constructed using the commercially available program ANSYS.
The finite element model confirms the displacement and stress results from the above
analytical solutions. Figure 4.36 compares the transient displacement of a pinned-
pinned tube subjected to sequential impulses at a frequency of 3.8 Hz.
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Cavity Clearing

1. INTRODUCTION

In Inertial Confinement Fusion (ICF) reactors, the performance of the reactor cavity is of
paramount importance to the overall qualification of the reactor. Controlling the initial
conditions of the gas in the reactor cavity prior to every microexplosion is the key to many
crucial aspects related to the performance of the reactor cavity. The immediate pre-explosion
gas pressure and the concentration (mass density) of different species in the reactor cavity
atmosphere have a strong direct effect on the efficiency and performance of the reactor.

Predicting the initial conditions of the gas in the reactor cavity prior to every
microexplosion with a reasonable degree of accuracy is highly desirable to insure a
successful reactor design. Clearing the products of the microexplosion (condensable vapors,
noncondensable gases, target fragments, etc.) is normally achieved by either self-pumping of the
high pressure/temperature gases through ports in the reactor cavity walls or by mechanical
evacuation. These ports are usually connected to a large dumping tank. Hard vacuum pumps are
connected to the dumping tank to assure constant low pressure during reactor operation. There is
a major additional contribution from the vapor condensation process either in droplet form or
from thin film condensation on various cold surfaces in the cavity. The dynamics of this system
from the time of the target explosion until the time of next explosion (This period of time is
proportional to the reciprocal of the repetition rate.) is the subject of this proposed work.

The goals of this project are to:
1. Analyze the transient hydrodynamics of the clearing system.

2. Evaluate the effects of the evaporation and recondensation of the first wall and target

materials.
3. Evaluate the needed rate of pumping.
2. BACKGROUND

The cavity atmosphere is primarily dictated by the requirements needed to propagate the
beams to the target with minimum loss due to stripping and charge exchange. The equilibrium
pressure of the noncondensable gases (D7, T2, and He, Ar, Xe, etc.) has to be maintained
reasonably low, although its effect on beam propagation is not as great as the vapor of liquid or
solid metals at the same number density. Furthermore, the noncondensable partial pressure has



to be kept low because it constitutes a continuous source of molecules migrating into the beam
lines where the pressure must be kept at a very low value depending upon whether heavy ion,
light ion, or laser drivers are used.

Immediately after a shot, the gas pressure in the cavity reaches as high as 100 torr.
Immediately near the cavity inner surfaces the local pressure exceeds that value by many orders
of magnitude due to the vaporization of the surface material for dry wall designs or due to the
vaporization of the liquid metals for designs using wetted walls. Due to rapid expansion near the
wall droplet formation is expected and the internal surfaces of the cavity act as a condenser for
the remainder of the condensable vapors. Accurate prediction of the condensation state either on
the cavity cold internal surfaces or in the form of droplets is required to insure that the

condensation is rapid enough to achieve the desired repetition frequency of several hertz.
3. PROBLEM FORMULATION

The issue of metal vapor condensation, either from the wetted or dry wall concept, may be
divided into three fundamental problems:

1. Homogeneous droplet nucleation in a supersaturated vapor within the body of the gas-
vapor mixture inside the cavity.

2. Heterogeneous droplet nucleation.

3. Liquid film condensation on the rather cold surfaces of the cavity interior.
The three fundamental problems will be addressed briefly in the next discussion.
3.1. Homogeneous Droplet Nucleation

Clearly, as condensation progresses, the mass fraction of liquid metal will change. Thus,
the partial pressure of the metal vapor will be affected. Now we will consider the nucleation rate
equation.

The single-component nucleation rate is given from classical liquid drop nucleation theory
as discussed by Hill, et al. [1], as:
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where

J  Nucleation rate per unit volume

P, Local vapor partial pressure of liquid metal

K  Boltzman constant = 1.38054 x 10-23 J/molecules K
M  Molecular weight

N4 Avogadro's number = 6.03 x 1026 molecules/kg mol
p; Liquid density

m  Molecular mass = M/Na

T  Local vapor flow temperature

o Surface tension

r,  Critical radius

The critical radius is the radius where the drop has equal probability of growth or decay,
and is given by:

= 2
re PJ (2)

where

p; Liquid density
R Universal gas constant
P, Partial pressure of liquid metal

Py, Flat film saturation pressure

The number of molecules in the droplet n, is found as
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Using Eq. (2) to eliminate 7, from the previous expression for the nucleation rate per unit

volume J, Eq. (1) becomes:
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J  Nucleation rate per unit volume (m2 s-1)
P, Local vapor partial pressure of liquid metal

where



K  Boltzman constant = 1.38054 x 10-23 J/molecules K
M  Molecular weight

N4 Avogadro's number = 6.03 x 1026 molecules/kg. mol
p; Liquid density

m  Molecular mass = M/Np

T  Local vapor flow temperature

o Surface tension

The drop is in equilibrium only if the vapor is supersaturated. In other words, the drop is in
equilibrium at a specified temperature only if the pressure of the surrounding vapor exceeds its
saturation pressure Pg,,. An equilibrium of a drop with its vapor is unstable since the drop will
grow if its diameter suddenly experiences either an infinitesimal size increase as a result of
condensation or sudden infinitesimal size to decrease due to evaporation. The initial drop size
must therefore be larger than the critical size for the droplet to grow. Hill, et al. [1] concluded
that the initial droplet size corresponding to a zero probability of decay is achieved around 1.3
times the critical radius. The minimum drop size cannot be smaller than the average distance
between liquid molecules; such a limitation allows an estimate of the maximum supersaturating

or the minimum subcooling that can exist without condensation.

The supersaturating limit data for lead are compared with the corresponding limits
predicted by Eq. (4) with J taken to be 1014 m-3 s-1. The choice of J =1014 m3 s-1 for droplet
nucleation was made by Frurip and Bauer [2] to provide a best fit to droplet nucleation available
data. The value of ( P, )ss| the vapor pressure at the supersaturating limit for T = T, predicted by
Eq. (4) varies weakly with J, so uncertainty in J does not strongly affect the accuracy of the
predicted supersaturating limit.

Figure 1 shows the supersaturation limit of PbLi as a function of temperature. Figure 2
shows the supersaturation limit pressure ratio for lead, J = 1014 m-3 s'1. To determine (7, )gs]
for a given vapor pressure P, using Eq. (4) with J = 1014 m™3 s-! requires an iterative calculation
because of the implicit temperature dependence of P, and . However, it can be shown that
the following relation approximates Eq. (4) to a high degree of accuracy (to within less than

0.5%):
1/2
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where the dimensionless variables J* and E*, which are functions only in 7, are
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The following are the physical data of liquid lead used in these calculations:

Atomic weight (based on 12C) 207.19

Atomic volume (cm3/g-atom) 18.27

Atomic radius (A) 1.75

Surface tension ¢(T) (N/m) 0.514-9x 10-5 T(K)

Liquid density p,(T) kg/m3 1.07 x 104 - 1.2 T(K)

Melting point/Boiling point (K) 600.4/2022

AHftys (kJ/mol 4.772

AHyap (kJ/mol) 179.5 (866345.6 J/kg)

Saturation vapor pressure (Pa) 133.3224 exp(17.86-22300/T(K)).

To estimate the degree of subcooling T, — T, we utilize the Clausius-Clapeyron equation

[3], relating saturation pressure and temperature,

h
T_d£ = J8 (5)
dT v, -
where
v, Specific volume of vapor =1/p,
v Specific volume of liquid = 1/p,;
by Latent heat of vaporization per mole.
To obtain, assuming the vapor to be a perfect gas and v, » v;,
P V/7T,-1/T
Inf = |=hy —¥— 5= 6
(P sm] 8 R ©
The critical radius 7, in terms of subcooling T — T, is estimated to be
rc _ 20 T g0 _ 20 1 (7)
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Figure 3. An embryo liquid droplet formed at an idealized liquid-solid interface.

where

T, Vapor temperature

T, Saturation temperature.

Fig. 4 shows graphically the relationship between r,, (L) and i . It is clear from the above

Soo Soo
discussion that it is in fact possible for a vapor to be in a highly supersaturated state without
condensation occurring. This behavior can play a major role in many circumstances of practical
interest, including cloud (fog) formation and precipitation in the ICF reaction chambers during
rapid expansion of liquid metal-gas mixture.

3.2. Heterogeneous Nucleation in Vapor

In most applications involving condensation, the process is initiated by removing heat
through the walls of the structure containing the vapor to be condensed. In our present case, the
microexplosion provides enough energy to heat up the gas in the cavity and to evaporate some of
the liquid metal coolant. If enough heat is removed by the coolant, the vapor near the rather cold
wall may be cooled below its equilibrium saturation temperature for the specified system
pressure. Since the heat removal process will establish a temperature field in which the
temperature is lowest right at the wall of the containment, the formation of a liquid droplet
embryo is most likely to occur right on the solid-vapor surface. The formation of a liquid embryo
at the interface between a metastable super-saturated vapor and another solid phase is one type of
heterogeneous nucleation. Figure 3 shows a schematic of such an embryo. Figures 4 and 5 show
the relationship between the critical radius, temperature ratio and pressure ratio for different
vapor temperatures for lead.
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As in the case of heterogeneous nucleation of vapor bubbles, the analysis of homogeneous
nucleation of liquid droplets can be extended to heterogeneous nucleation at a solid-vapor
interface. Because the analysis of the kinetics of the heterogeneous nucleation process is very
similar to that described in the previous section for the comparable homogeneous nucleation
process, the analysis for heterogeneous nucleation will be only briefly summarized here. If the
solid surface is idealized as being perfectly smooth, in general, the shape of a droplet at the
surface will be dictated by the shape of the surface itself, the interfacial tension o, and the
contact angle 8. For a flat, solid surface, the embryo liquid droplet will have a profile like that
shown in Figure 3. We will specifically consider the heterogeneous nucleation process in which
formation of a droplet embryo occurs in a system held at constant temperature Ty, and pressure
Py . If the embryo shape is idealized as being a portion of a sphere, it follows directly from its
geometry that the embryo volume V] and the areas of the liquid-vapor (Ajy ) and the solid-liquid

interfaces (Ag/ ) are given by:

Vi =[m1r3/3] (2 -3 cos 8+ cos3 0) (8)
Ap=2mr2(1 - cos 0) (9)
Agl=m 12 (1 +cos 0) . (10)

In the above relations, 0 is the liquid contact angle and r is the spherical cap radius indicated in
Fig. 3.

The availability function (A¥(r)) of the system is usually associated with the maximum

(reversible) work that can be extracted from the system to bring it entirely to an equilibrium
reference state at 77 and Pj :

A¥Y (r)=@R)rre?2 o F-@B)rol FR2+Pi/PyelT-re)+... (1D
where F is defined by:
F =(2-3cos 8+cos30)/4.

Noting that the term in square brackets in Eq. (11) is approximately equal to 2, because
P] « Pye, The expansion of A¥(r) indicates that AY has a local maximum at r = rp. AW also

approaches zeroas r — 0.

It is known from basic thermodynamic considerations that equilibrium requires that the
change in the total availability approach zero, and the total availability of the system (Y) must be



a minimum for stable equilibrium. Spontaneous internal changes always result in a decrease in
the availability of the system.

It follows directly from the same arguments presented for the homogeneous case in the
previous section that the equilibrium condition corresponds to a maximum value of the change of
the availability of the system (AY¥) and is therefore an unstable equilibrium. As in the

homogeneous case, A is expected to increase to a maximum and then decrease with increasing
radius r. This once again leads to the conclusion that embryos having a radius less than re

spontaneously disappear, while those having a radius greater than r, spontaneously grow.

The determination of the kinetic limit of supersaturation of the heterogeneous nucleation is
similar to that for the homogeneous nucleation case considered previously. The details are
virtually identical to those of the homogeneous nucleation analysis presented, and hence they
will not be presented here. There are, however, two important differences in the heterogeneous

nucleation analysis. First, as an initial step in the analysis, it is postulated that, at equilibrium, the
number density of embryos containing n molecules per unit of interface area Ny, is given by:

Nn = N3 exp [-AP(r YK Ty ] (12)

where Ny is the number density of vapor molecules per unit volume and A¥(r) is the availability

function previously defined. For the heterogeneous nucleation process considered here, only
vapor molecules near the solid surface can participate in embryo droplet formation. To account
for this condition, the factor multiplying the exponential term in Eq. (12) is taken to be Ng/ 3,

which is representative of the number of vapor molecules immediately adjacent to the solid
surface per unit of surface area.

The second different aspect of the heterogeneous analysis is the relationship between the

number of molecules # in the embryo and its radius:

n=[Namr3/3Mv]] (2-3cos8+cos30). (13)

This relation differs from that used in the analysis of homogeneous nucleation because the
embryo geometry is different. Analysis of the kinetics of the heterogeneous nucleation process
incorporates these two changes and makes use of the expansion for A¥ developed for this case.

Carrying the analysis to completion yields the following relation between the rate of
embryo formation J (m2 s-1) and the system conditions and properties:
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where F is defined as before.

Hence if the equilibrium contact angle 6 is zero (i.e. if there is complete "wetting" of the

substrate by the condensate), the critical free energy of droplet formation equals zero and
nucleation will be most rapid. If 6 is taken to be 180° and Nf/ 3 s replaced by Ny,

corresponding to no "wetting" at all, then Eq. (14) becomes

) ! B 3 -2
J= (ij M 1/30—- exp 1670 5 [ln[ Py D (15)
KT) Nyp;\ 7m 3KT>(p, R) Py,

where

J Nucleation rate per unit volume (m2s1)

P, Local vapor partial pressure of liquid metal

K  Boltzman constant = 1.38054 x 10-23 J/molecules K
M  Molecular weight

N4 Avogadro's Number = 6.03 x 1026 molecules/kg mol
p; Liquid density

m  Molecular mass = M/Np

T  Local vapor flow temperature

o Surface tension

obtained in the previous section for homogeneous droplet nucleation analysis.

As in the homogeneous nucleation case, J is interpreted as the rate at which embryos of
critical size are generated. As J increases, the probability that a bubble/droplet will exceed
critical size and grow spontaneously becomes greater. If a threshold value of J is specified as
corresponding to the onset of nucleation, the corresponding vapor temperature 7, = (T, )ssL for
the specified system pressure can be determined from Eq. (14). Alternatively, for the specified
threshold J value, the limiting supersaturation pressure can be determined for a given system
temperature.

11
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Figure 6. Variation of the rate of embryo formation at a Li;7Pbg3-solid interface with vapor
pressure as predicted for different contact angles by analysis of the kinetic of embryo
droplet formation.

For Lij7Pbg3 vapor at 400°C, the variation of J with vapor pressure as predicted by
Eq. (14) is shown in Figure 6 for several values of liquid contact angle. It is clear from the graph
that J at high values of P, is not sensitive for the value of conact angle.

Assuming that a fixed threshold value of J would apply for all contact angles, it is clear
that the predicted value of (P, )ss1, decreases with decreasing contact angle toward the normal
saturation vapor pressure. At a liquid contact angle of 50° or less, the difference between the
predicted ( P,)ssr. value and Pga(7,) is negligible for virtually any threshold value of J
between 10-11 and 106.

Contact angles for virtually all real systems lie between zero and about 110°, and for metal
surfaces with nonmetallic liquids, the contact angle is often below 50°. The results of the above
analysis therefore suggest that condensation can be initiated at a solid surface in contact with the
vapor at supersaturation levels significantly below those required for homogeneous nucleation, if
the liquid phase of the vapor wets the surface reasonably well.
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It is quite possible for a thin microfilm of liquid to be absorbed on all or part of a solid
surface. This is particularly true for high-energy surfaces such as metals. In addition, when water
is the liquid, its polar nature can enhance the tendency of water molecules to attach to portions of
the solid surface. (Many oxides and corrosion-produced compounds on metal surfaces are
hydrophilic.) Patches of adsorbed liquid molecules on the solid surface can thus serve as nuclei
for condensation of the liquid phase when the vapor is supersaturated. Condensation on the
surface can begin as the formation of very small droplets on the surface at the sites of these
nuclei. This so-called dropwise condensation process is, in fact, commonly observed when water
vapor in air condenses on a cold beverage glass. This is usually interpreted as being a direct
consequence of the fact that the liquid poorly wets the glass, except at nuclei locations where
water molecules have adsorbed to crevices (scratches) or foreign matter (such as dust particles)
on the surface. Dropwise condensation is discussed further in the next section.

3.3. Dropwise Condensation

Dropwise condensation may occur on a solid surface cooled below the saturation
temperature of a surrounding vapor when the surface is poorly wetted except at locations where
well-wetted contaminant nuclei exist. The poorly wetted surface condition can result from
contamination or coating of the surface with a substance that is poorly wetted by the liquid phase
of the surrounding vapor. In practice, this can be achieved for liquid metal condensation
by permanently coating the surface with a low surface-energy polymer or a noble metal. This
method of promoting dropwise condensation is of particular interest because it holds the prospect
of providing continuous dropwise condensation. Dropwise condensation is generally
the preferred mode of condensation because the resulting heat transfer coefficient may be as
much as an order of magnitude higher than that for film condensation under comparable
circumstances. Recent studies by Westwater and co-workers [4, 5] have demonstrated that
dropwise condensation of steam can be consistently obtained on gold and silver surfaces. The
occurrence of dropwise condensation on gold and silver surfaces would appear to contradict the
reasoning that high-surface-energy metal surfaces should be well wetted by the liquid phase,
producing film condensation instead of dropwise condensation. During dropwise condensation,
the condensate is usually observed to appear in the form of droplets, which grow on the surface
and coalesce with adjacent droplets. When droplets become large enough, they are generally
removed from the surface by the action of gravity or drag forces resulting from the motion of
the surrounding gas. As the drops roll or fall from the surface, they merge with droplets in their
path, effectively sweeping the surface clean of droplets. Droplets then begin to grow anew on the
freshly exposed solid surface. This sweeping and renewal of the droplet growth process is
responsible for the high heat transfer coefficients associated with dropwise condensation. Despite
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numerous studies of dropwise condensation over the years, its mechanism remains the subject
of debate. Two different types of models have been proposed. The first model type is based on
the premise that droplet formation is a heterogeneous nucleation process like that described in
Section 3.2. Droplet embryos are postulated to form and grow at nucleation sites, while portions
of the surface between the growing droplets remain dry. Experimental evidence supporting this
physical model of the condensation process has emerged from several experimental
investigations. A model of the dropwise condensation process that includes droplet nucleation,
growth, removal, and renucleation on re-exposed sites was developed by Gose et al. [6]. In the
second type of dropwise condensation model, it is postulated that condensation occurs initially in
a filmwise manner, forming an extremely thin film on the solid surface. As condensation
continues, this film eventually reaches a critical thickness, estimated to be about 1 pum, at which
point it ruptures and droplets form. Condensation then continues on the surface between
the droplets that form when the film ruptures. Condensate produced in these regions is drawn to
adjacent drops by surface-tension effects. Droplets also grow by direct condensation on the
droplet surfaces themselves. The results of several investigations seem to support this type of
interpretation of the condensation process. These results indicate that condensation occurs
entirely between droplets on a very thin liquid film. In contrast, it is postulated in the first model
described above that condensation occurs only on the droplets, and not on the surface between
them. The rate of condensation on the larger droplets is less than on the smaller ones because of
the higher resistance to heat conduction through larger drops. The large drops therefore grow
primarily through coalescence. This model implies that most of the heat transfer during dropwise
condensation is transferred to that portion of the surface covered with the smallest droplets.
Detailed modeling of dropwise condensation heat transfer based on the first model hypothesis
has, in fact, been attempted by several investigators. These models generally idealize the
heat transfer process. Correlations for the heat transfer coefficient associated with dropwise
condensation have been proposed by a number of investigators. One example is the following
correlation, proposed by Peterson and Westwater [7] for dropwise condensation of steam

and ethylene glycol:

Nu =1.46 x 1078 (Re*) 1631116 pr -5

where
2hoTy,,

u=
plhlvkl(Tsat - Tw)
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kl(Tsat — Tw)

Re* =
,ulhlv
Hk - 20-2Tsat )
My,

While correlations of this type can be made to agree quite well with data for a specific
surface and fluid combination their general applicability has not been demonstrated. The use of
such a correlation for circumstances other than those for which it was developed is questionable
at best. Further discussion of correlation for dropwise condensation is provided in the review
article by Merte [8].

3.4. Other Factors Affecting Condensation
a. Nucleation of Droplets on Gaseous Ions

This very important case was first investigated by Thomson who showed that vapor
molecules form stable clusters about all gaseous ions. The analysis showed that even at
zero supersaturation the ion is surrounded by a stable shell of vapor molecules. Of course, a
finite supersaturation ratio (PyP.) > 1 is required for nucleation of macroscopic droplets.

b. Nucleation of Droplets on Foreign Particles of Subcritical Size

The presence of vapor impurities like dust, bring about nucleation of droplets and fog
formation even though the vapor is unsaturated with respect to pure material. It is
understood that this phenomenon is due to their effects in greatly lowering the vapor
pressure Pg, giving rise to a large negative to the Gibbs free energy of formation of a
critical cluster. Also, the presence of vapor immiscible impurities enhance the nucleation

rate because of their effect in reducing the surface tension by adsorption.
4. METHODOLOGY OF CALCULATIONS

The calculations start with the final condition in the cavity after the x-rays hit the first wall
(dry or wet). The amount of vaporized material, the pressure and temperature are readily
calculated. The cold surface of the cooled first wall is the main sink for condensation. Then the
heterogeneous nucleation in vapor would be the major condensation mechanism. Applying the
relationship of the heterogeneous nucleation with the decaying background conditions of
pressure/temperature linked to the amount of vapor left in the cavity gives the time change of the
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mass density of the vapor between shots (microexplosion). If, at the end of the time of
(1/frequency) the conditions in the cavity are not suitable for the next shot, an external means of
clearing should be sought and a new set of calculations need to be performed. In the meantime,
the conditions in the cavity are known; the homogeneous droplet nucleation analysis would be
checked to make sure that no rain or fog will form during this period. In such a case, other

methods should be sought to prevent such formation of either rain, fog or both.

4.a. Case Study:

Reactor LIBRA-SP [9]
Coolant PbLi

FW protection wet FW by PbLi
Mass blown into chamber/shot 1.15 mg/cm?
Initial pressure in the cavity 100 torr

Final pressure required in the cavity 0.52 torr
Number of PbLi molecules blown into chamber/shot 3.34 x 1022

From Figure 6 for a contact angle of 100°, the relationship between J and P, can be

approximated by the following:

J (1/m3s) = 1.1681 x 1014 p20477 (pay .

If we assume that the pressure will decay exponentially from the initial pressure in the cavity to
the final pressure in 0.3 s, the following relation can be obtained:

P, =133 x 104 exp (-17.49 t(s)) .

Calculating the number of condensed molecules at the end of this time will be:

03 03
[ Jdr= [ 3.25x10%2¢733814 g = 1021 molecules.
0 0

Comparing this number with what is already evaporated shows that another means of evacuation
is needed.
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5. DISCUSSION AND CONCLUSIONS

In Inertial Confinement Fusion (ICF) reactors, the performance of the reactor cavity is of
paramount importance to the overall qualification of the reactor. Controlling the initial
conditions of the gas in the reactor cavity prior to every microexplosion is the key to many
crucial aspects related to the performance of the reactor cavity. The immediate pre-explosion
gas pressure and the concentration (mass density) of different species in the reactor cavity
atmosphere have a strong direct effect on the efficiency and performance of the reactor.

Predicting the initial conditions of the gas in the reactor cavity prior to every
microexplosion with a reasonable degree of accuracy is highly desirable to insure a successful
reactor design. Clearing the products of the microexplosion (condensable vapors,
noncondensable gases, target fragments, etc.) is normally achieved by either self-pumping of the
high pressure/temperature gases through ports in the reactor cavity walls or by mechanical
evacuation. These ports are usually connected to a large dumping tank. Hard vacuum pumps are
connected to the dumping tank to assure constant low pressure during reactor operation.

There is a major additional contribution from the vapor condensation process either in
droplet form or from thin film condensation on various cold surfaces in the cavity. The dynamics
of this system from the time of target explosion until the time of the next explosion is greatly
affected by too many factors. The cavity atmosphere is primarily dictated by the requirements
needed to propagate the beams to the target with minimum loss due to stripping and charge
exchange. The equilibrium pressure of the noncondensable gases (D,, T,, and He, Ar, Xe, etc.)
has to be maintained reasonably low, although its effect on beam propagation is not as great as
the vapor of liquid or solid metals at the same number density. Furthermore, the noncondensable
partial pressure has to be kept low because it constitutes a continuous source of molecules
migrating into the beam lines where the pressure must be kept at a very low value depending
upon whether heavy ion, light ion, or laser drivers are used.

Immediately after a shot, the gas pressure in the cavity reaches as high as 100 torr. Near
the cavity inner surfaces, the local pressure exceeds that value by many orders of magnitude due
to the vaporization of the surface material in the case of dry wall designs or due to the
vaporization of the liquid metals in designs using wetted walls. Due to rapid expansion near the
wall, droplet formation is expected and the internal surfaces of the cavity act as condensers for
the remainder of the condensable vapors. Accurate prediction of the condensation state either
on the cavity internal cold surfaces or in the form of droplets is required to insure that the
condensation is rapid enough to achieve the desired repetition frequency.

The issue of metal vapor condensation, either from the wetted or dry wall concepts, may
be divided into three fundamental problems:
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1. Homogeneous droplet nucleation in a supersaturated vapor within the body of the gas-
vapor mixture inside the cavity.

Heterogeneous droplet nucleation.

3. Liquid film condensation on the rather cold surfaces of the cavity interior.

The three fundamental problems have been addressed in this report.

a)

b)

)

In the case of the first problem it is clear from the above discussion that it is
possible for a vapor to be in a highly supersaturated state without condensation
occurring. This behavior can play a major role in many circumstances of practical
interest, including cloud (fog) formation and precipitation in ICF reaction chambers
during rapid expansion of liquid metal-gas mixtures.

Addressing the second problem, it is quite possible for a thin microfilm of liquid to
be absorbed on all or part of a solid surface. This is particularly true for high-energy
surfaces such as metals. In addition, when water is the liquid, its polar nature can
enhance the tendency of water molecules to attach to portions of the solid surface.
(Many oxides and corrosion-produced compounds on metallic surfaces are
hydrophilic.) Patches of adsorbed liquid molecules on the solid surface can thus
serve as nuclei for condensation of the liquid phase when the vapor is
supersaturated. Condensation on the surface can begin as the formation of very
small droplets on the surface at the sites of these nuclei. This so-called dropwise
condensation process is, in fact, commonly observed when water vapor in air
condenses on a cold beverage glass. This is usually interpreted as being a direct
consequence of the fact that the liquid poorly wets the glass, except at nuclei
locations where water molecules have adsorbed to crevices (scratches) or foreign
matter (such as dust particles) on the surface.

For the third problem, dropwise condensation may occur on a solid surface cooled
below the saturation temperature of a surrounding vapor when the surface is poorly
wetted except at locations where well-wetted contaminant nuclei exist. The poorly
wetted surface condition can result from contamination or coating of the surface
with a substance that is poorly wetted by the liquid phase of the surrounding vapor.
In practice, this can be achieved for liquid metal condensation by permanently
coating the surface with a low surface-energy polymer or a noble metal. This
method of promoting dropwise condensation is of particular interest because it
holds the prospect of providing continuous dropwise condensation. Dropwise
condensation is generally the preferred mode of condensation because the resulting
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d)

heat transfer coefficient may be as much as an order of magnitude higher than that
for film condensation under comparable circumstances.

Some other factors affecting condensation:

1) Nucleation of droplets on gaseous ions: This very important case was first
investigated by Thomson who showed that vapor molecules form stable clusters
about all gaseous ions. The analysis showed that even at zero supersaturation the
ion is surrounded by a stable shell of vapor molecules. Of course, a finite
supersaturation ratio (P/P,) >1 is required for nucleation of macroscopic droplets.

i) Nucleation of droplets on foreign particles of subcritical size. The presence of
vapor impurities like dust, bring about nucleation of droplets and fog formation
even though the vapor is unsaturated with respect to pure material. It is understood
that this phenomenon is due to their effects in greatly lowering the vapor pressure
P,, giving rise to a large negative Gibbs free energy of formation of a critical
cluster. Also, the presence of vapor-immiscible impurities enhances the nucleation

rate because of their effect in reducing the surface tension by adsorption.
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