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Abstract

The Vibration of Perforated Hemispherical Shells

Michael Alan Sprague
Under the Supervision of Professor Roxann Louise Engelstad

Hemispherical shells used for inertial confinement fusion reactor target chamber
components may require various perforation patterns for beam lines, diagnostic
equipment, and target insertion. For design and analysis purposes, the natural
frequencies of these shells must be known. This research investigated the
axisymmetric vibrations of clamped perforated hemispherical shells using the finite
element method. Shells with an apex hole and shells with circumferential holes in
addition to the apex hole were studied. The nondimensional frequencies were identified
for the first three axisymmetric modes for a shell with a wide range of apex hole sizes
and shell thickness. It was shown that a clamped hemispherical shell’s response to a
uniform radial impulse load was dominated by modes with frequencies considerably
higher than the fundamental frequency. This behavior was seen in all clamped
hemispherical shells studied. With damping neglected, the dominant impulse response
frequencies were presented for each shell tested. The shell with-circumferential holes in
addition to the apex hole responded to the impulse load in a manner approaching an
axisymmetric condition. The frequencies of these quasi-axisymmetric modes were
identified up to the thirteenth mode for the shell tested. This investigation has
demonstrated that a uniform hemispherical shell can be used to accurately approximate
the dynamic behavior of a hemispherical shell with relatively small perforations.

Approved:

Professor Roxann Louise Engelstad
University of Wisconsin—-Madison
Mechanical Engineering
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Chapter 1

Introduction

1.1 Introduction

The primary goal of this research is to aid in the design of hemispherical endcaps for
use in inertial confinement fusion reactor target chambers. Any shell structure used in a
target chamber may require various holes, or perforation patterns, for diagnostic
equipment, target insertion, and beam lines. To properly design a target chamber, the
natural frequencies of the structure must be known to prevent catastrophic failures due
to resonant conditions. Currently, methods exist for accurately calculating the natural
frequencies of uniform hemispherical shells. This research is concerned with finding
the natural frequencies of perforated hemispherical shells, for which no known
analytical solution exists. In addition, no work regarding the dynamic behavior of deep
perforated spherical shell segments has been found by the author. Because of the
impossibility of generating an analytical solution, finite element (FE) models were used
in this analysis to identify numerical values for the natural frequencies of the
axisymmetric vibration of several perforated hemispherical shells.

1.2 Inertial Confinement Fusion (ICF)

Fusion energy is released from a reaction between two light nuclei when they combine
to form a single nucleus. It is the energy of the sun. If implemented, it could be a
virtually inexhaustible energy source for the earth. Fusion could remove much of the
need to burn fossil fuels that are unkind to the earth’s atmosphere. The radiological
hazards associated with fusion power are hundreds of times less than those of fission,
and the process releases no greenhouse gases [1.1].

One proposed method to produce fusion energy is Inertial Confinement Fusion (ICF).
It is produced by focusing beams of either accelerated ions or laser light on targets filled
with hydrogen. The beams force the target to implode, thereby squeezing the nuclei

together so a fusion reaction occurs [1.1].



An ICF power plant would consist of drivers, a target factory, a target chamber, and
steam turbines. Targets, small capsules containing fuel such as deuterium-tritium,
would be manufactured and injected in the target chamber. Beams of either accelerated
ions or laser light from the driver would be focused on the target to induce the fusion
reaction. Heat from the reaction would be captured in the target chamber and converted
to usable energy through the steam turbine [1.1].

1.3 National Ignition Facility (NIF)

The first step towards an ICF power plant would be the construction of the proposed
National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (see
Figs. 1.1 and 1.2). If constructed, it would use lasers to induce fusion reactions. Its
primary purpose would be defense, but would also be used to study issues associated
with implementing fusion as a viable energy source. These include target chamber
dynamics, target physics, ICF fusion power technologies, and target systems [1.2].
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This research is concerned with target chamber dynamics. Several designs have been
proposed for the target chamber [1.3, 1.4], as shown in Figs. 1.3 and 1.4. All designs
require perforation patterns for diagnostic equipment, laser ports, target insertion, and
target maintenance.

1.4 Thesis Overview

Chapter 2 will discuss previous work on the vibrations of deep spherical shells. It will
be shown that no work has been done for deep, perforated, spherical shells. Chapter 3
will present the coordinate system used throughout this analysis, and discuss the
nondimensional frequency parameters used for spherical shells. The geometry of the
shells to be tested will then be introduced. The FE method used for studying the
vibration of spherical shells will be verified in Chapter 4. Chapter 5 will present
numerical results for the axisymmetric natural frequencies of a clamped hemispherical
shell with an apex hole. The response of the shell to a uniform radial impulse load will
be investigated in Chapter 6. Chapter 7 is concerned with the response of a clamped
hemispherical shell with circumferential holes in addition to the apex hole to an impulse
load. Chapter 8 will summarize the conclusions made in this research. '
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Chapter 2

Literature Survey

2.1 Literature Survey
The study of the vibration of shells of revolution began in 1881 with Lord Rayleigh’s

[2.1] inextensional analysis. His work was aimed at the calculation of the natural
frequencies of bells. The first extensional analysis was performed by Lamb [2.2] in
1882 in a study on the vibrations of closed spherical shells. As shown by De Souza
and Croll [2.3], Rayleigh and Lamb were both correct in their extensional or
inextensional approximations. The low-frequency modes for open spherical shells are
composed almost entirely of bending energy, whereas the low-frequency modes of
closed spherical shells are “dominated by the membrane contribution to stiffness” [2.3].

“Classical thin shell theory” was developed by Love [2.4] using what is now known as
Love’s first approximation. This was the first work to combine both bending and
membrane deformations in the analysis. Other early studies of spherical shell
vibrations were carried out by Zwingli [2.5] and Federhofer [2.6].

The next phase in thin shell theory was initiated by the needs of the aerospace and
nuclear industries where the simplifying approximations of Rayleigh and Lamb were no
longer adequate [2.3]. In 1956, Naghdi [2.7] developed the equations of motion for
thin, elastic, isotropic shells of uniform thickness, which included the effects of
transverse normal stress, transverse shear deformation, as well as rotary inertia. A
complete solution for the free vibration of deep spherical shells had to await the 1962
work of Naghdi and Kalnins [2.8]. This work reduced the basic equations of Love’s
first approximation to a system of two coupled differential equations. Numerical
solutions for the torsionless axisymmetric vibration of a hemispherical shell with a free
edge were presented. Their results implied that the vibrations of the hemispherical shell
studied were primarily extensional. Because of this, and the computational difficulties
associated with calculating asymmetric vibrations using general shell bending theory,
the asymmetric modes were studied using the more simplistic extensional theory.



Numerical values were presented and compared to those found using Rayleigh’s [2.1]
inextensional approximation.

The study of deep open spherical shells was taken further with the work of Kalnins
[2.9] in 1964 with an analysis based on the “linear classical bending theory of shells”
from the works of Naghdi and Kalnins [2.8] and Federhofer [2.6]. This investigation
presented numerical results for the axisymmetric vibration of a deep spherical shell with
various edge conditions, including the clamped case. The shell studied had a shell half-
angle, ¢,, of 60°, and a thickness-to-radius ratio, #/R, of 0.05. Kalnins showed that
extensional theory is capable of accurately predicting the membrane modes, but may
produce considerable error in predicting bending modes, especially if bending is
neglected in the formulation of the governing equations. Kalnins showed that the
membrane modes were essentially the degenerate case of the bending modes, and these
were independent of thickness. It was also shown that neglecting tangential inertia
terms is not justified for deep spherical shells, and that open spherical shell modes of
free vibration can be separated into two basic groups, i.e., bending and membrane
modes.

Prasad [2.10] presented the equations of motion for deep open spherical shells reduced
to a system of two uncoupled equations and one partly coupled equation. As an
example, he solved the equations of motion for a hemispherical shell with a clamped
edge. The results were presented in terms of associated Legendre functions. Prasad
claimed that his solution included the effects of transverse shear deformation as well as
rotary inertia. This claim was attacked by Jahanshahi [2.11], who specialized the
equations of Naghdi’s [2.7] work for the case of deep spherical shells. Naghdi’s
equations included the effects of transverse shear deformation, rotary inertia, and
normal stress. Jahanshahi showed that Prasad’s final system of equations disagree
with those derived from the specialized (or reduced) set of Naghdi’s equations, and
questioned why certain terms were neglected in Prasad’s analysis.

Wilkinson and Kalnins [2.12] derived solutions for the dynamic deformation of
spherical shells which included the effects of rotary inertia and transverse shear
deformation. This analysis retained the appropriate inertia terms neglected by Prasad



[2.10]. It was shown that the effects of rotary inertia and transverse shear deformation
are of negligible importance in the low-frequency range, but affect the higher frequency
solutions. It was also shown that drastic changes are expected to occur in the solution
where the nondimensional spherical shell frequency, £, equals the frequency of the
first shear mode (or thickness mode) of an infinite plate, £2,. Kalnins and Kraus [2.13]
extended this analysis to the free vibration of hemispherical and closed spherical shells.
It was shown that as Q approaches €2, the improved theory reveals modes not
predicted by classical theory. It was also shown that if transverse shear deformation is
neglected in the analysis, but rotary inertia is maintained, the results are almost the same
as those derived using classical theory.

Ross [2.14] performed an approximate analysis of the axisymmetric vibrations of deep
spherical shells based on the work of Kalnins [2.9]. Whereas Kalnins used a
numerical analysis to solve the differential equations, Ross utilized the asymptotic
formulas for Legendre functions with large arguments to generate an approximate
solution in closed form. The axisymmetric natural frequencies generated using this
method are the same as those generated using membrane theory. This approximation
was shown to be in good agreement with the results of Kalnins except where the classic
nondimensional frequency, £2’ (which neglects effects of Poisson’s ratio), approaches

unity. It was also shown that no bending frequencies occur where Q< 1.

One of the first finite element analyses of the axisymmetric vibrations of deep spherical
shells was performed by Navaratna [2.15] in 1966. A finite element model of a deep
spherical shell (¢, = 60°, /R = 0.05) with 100 degrees of freedom was created and
tested with various boundary conditions. The results were compared to those of Ross
[2.14] and Kalnins [2.9], which neglected torsional vibrations. The values compared
very well with those of Kalnins, but introduced torsional modes of vibration that were

missed by both Kalnins and Ross.

Hwang [2.16] performed the first experimental work on the vibrations of deep
spherical shells. The experiments investigated the axisymmetric and asymmetric
vibrations of an aluminum hemispherical shell with a free edge and constant thickness.
The results were compared with those found using several analytical methods. Using



the general bending shell theory of Naghdi and Kalnins [2.8], Hwang showed that the
axisymmetric vibrations corresponded well with theory. However, he claimed that
general shell theory failed to predict the asymmetric modes seen in the experiment, and
showed that the inextensional approximation of Rayleigh [2.1] yields acceptable
results. Hwang attributed the failure of general shell theory to predict asymmetric
modes to either computational error, or inherent errors in the theory. Kalnins [2.17], in
a later letter, states that its failure must be attributed to computational errors. Kalnins
claimed that the inextensional theory is a special case of the general bending theory of
shells, and it cannot be true that the general shell theory is incapable of predicting the
inextensional modes if they are predicted by the inextensional theory, and if they
actually occur.

In 1965, Zarghamee and Robinson [2.18] studied the asymmetric vibrations of
spherical shells using an approximate asymptotic analysis. They presented a later work
[2.19] in which the asymmetric frequencies were found using the Holzer method,
which was originally developed for the determination of the torsional frequencies of a
vibrating shaft. Zharghamee and Robinson generalized the method to be used in the
analysis of the free vibration of spherical shells. It was shown that the Holzer method
gave results that corresponded well with their earlier approximation, but the method is
not applicable to extremely thin shells.

In Russia, approximate analyses of the asymmetric vibrations of deep spherical shells
were presented in 1969 by Shmakov [2.20]. Based on the equations of motion of
Shmakov, solutions for the asymmetric vibration of deep spherical shells were also
developed by Valikov and Gots [2.21] using numerical methods. The solutions to the
differential equations of motion were presented in the “form of rapidly converging
series of Legendre functions and their derivatives.” Numerical values for the clamped
edge case were presented for two A/R values. Later work from Valikov and Gots
[2.22] was presented in 1972. In 1973, Martynenko and Shpakova [2.23] presented
an exact analysis of the asymmetric vibrations of spherical shells. The results of this
work contradicted those found by Valikov and Gots [2.22]. Martynenko and
Shpakova stated that the analysis of Valikov and Gots was incorrect since it neglected
the effects of normal rotation in the governing equations of motion.
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The first experiments on the axisymmetric vibrations of a clamped edge hemispherical
shell were performed by Eikrem and Doige [2.24]. The shell had a radius of 6 in., and
a thickness that varied from 0.023 in. at the edge, to 0.045 in. at the apex. Their
results were compared to analytical values derived from the differential equations of
motion of Naghdi and Kalnins [2.8], which neglected transverse shear deformation and
rotary inertia. An average shell thickness, R,y of 0.031 in. was used in the analytical
analysis. Analytical and experimental values were carried out to the 23* flexural
axisymmetric mode. The experimental modes agreed well with the analytical results,
but failed to identify the modes in the region where 2°~ 1. The experiment also failed
to show the first and second extensional modes which occur at £’ = 1.663 and Q’ =
2.837, respectively, for the shell tested.

Using a finite difference modeling of “classical” thin shell formulation, De Souza and
Croll [2.3] studied open spherical shells ranging from a shallow cap to a hemispherical
dome. The coordinate frame chosen for the finite difference analysis caused
singularities to occur at the apex. To overcome this singularity, De Souza and Croll
placed a hole with a small half-angle, ¢,, at the apex of all shells studied. It was shown
that an apex hole with ¢,/ ¢, << 1, for practical purposes, has negligible effects. The
analysis showed how membrane and bending stiffness contribute to a shell’s resistance
to both axisymmetric and asymmetric vibrations. It was shown that decreasing the
thickness-to-radius ratios increases the membrane energy associated with the low-
frequency vibration modes. For deep spherical shells, the vibrations associated with
the lowest circumferential wave numbers, i, are mostly composed of meridonal
membrane energy. Circumferential membrane action and membrane shear action also
contribute significant energy to the total energy of the system for low values of i.
Higher values of i are dominated by circumferential bending energy. It was also shown
that decreasing the depth of an open shell increases the contributions of bending
energy. Numerical results included the axisymmetric and asymmetric vibrations of a
clamped-edge hemispherical shell with #/R = 0.005.

Using a finite element analysis based on the shell theory of Naghdi [2.7], Singh and
Mirza [2.25] presented numerical results for the asymmetric modes of deep spherical
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shells with ¢, ranging from 30° to 90°. Boundary conditions included the clamped

edge and hinged edge cases. The analysis included the effects of shear deformation and

rotary inertia. The spherical shells analyzed by Singh and Mirza, like those studied by

De Souza and Croll [2.3], had a small hole at the apex to remove the singularity effects

that occur in the equations of motion at the apex for asymmetric vibrations. The half-
angle of the apex hole was taken to be 0.125% of the shell half-angle, ¢,
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Chapter 3

Problem Formulation

3.1 Introduction

This chapter will present the problem formulation for this research, which is focused
solely on perforated hemispherical shells; the coordinate system used and the
nondimensional frequency parameters associated with spherical shells will be
presented. The geometry of the perforated shells studied in this research will then be
introduced. All shells investigated in this study were hemispherical, a category of deep
shells. Shells are considered deep if the ratio of the shell height, H, to the base span,
2c, is at least 1/8. If H/2c is less than 1/8, the shell may be considered shallow, and
simplifying assumptions, such as small angles, may be made in solving the governing
equations of motion. For reference, a shallow spherical shell geometry definition is
shown in Fig. 3.1.

Fig. 3.1.  Spherical shallow shell geometry.
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3.2 Spherical Coordinate System

A spherical coordinate system, (r, 6, ¢), was used throughout this analysis. Tt is
shown in Fig. 3.2 with the (x, y, z) Cartesian coordinate system for reference. In
addition, an element of the shell is shown with all associated displacements. The
displacement normal to the shell is represented by w. Tangential circumferential
displacement and tangential meridonal displacement are represented by v and u,
respectively. Shell rotation symbols are not shown. The rotation of the shell normal

about the shell normal vector is measured by w,,. Rotation of the shell normal about

)’ ¢'
tangential circumferential and meridonal vectors are B, and B,» respectively.

Fig. 3.2.  Spherical coordinate system with shell displacement
components.

3.3 Thin Shell Definition

All shells studied in this research are considered “thin,” i.e., /R << 1. In the study of
thin shells, the outer surfaces of the structure are compressed to the middle surface, and
a thickness is assigned to the structure. Other than simplifying the geometry, this also
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allows the option for making other simplifying assumptions, such as neglecting
bending and thereby limiting the shell to membrane deformation only.

3.4 Perforated Shell Geometry

Two general perforated hemispherical shell structures were studied in this analysis.
The first case studied was a hemispherical shell with a hole at the apex, as shown in
Fig. 3.3. This configuration is of primary importance in the design of fusion target
chambers, e.g., the apex hole is required for target injection and also maintenance. A
detailed drawing of this configuration is shown in Fig. 3.4 with all associated
dimensions and variables. Obviously, for hemispherical shells, the half-angle, ¢,, was
maintained at 90°. For each thickness to shell radius ratio, i/R, the apex hole radius to
shell radius ratio, a/R, was evaluated for a wide range of values.

O

Fig. 3.3.  Isometric view of a hemispherical shell with an apex hole.
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2

ik

Fig. 3.4.  Geometry definitions of a hemispherical shell with an
apex hole.

The second hemispherical shell studied had circumferential holes in addition to the apex
hole. An isometric view of this configuration is shown in Fig. 3.5. A detailed drawing
is shown in Fig. 3.6. Like the previous shell, the hemispherical shell with an apex hole
and circumferential holes was tested for three #/R values. The circumferential hole
radius to shell radius ratio, b/R, was varied for each A/R ratio. The radius of the apex
hole, a, was held constant. As a general case, the distance of the circumferential hole
axis from the apex, ¢,, was taken as 45° for all analyses.
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Fig. 3.5.  Isometric view of a hemispherical shell with an apex hole
and 12 circumferential holes.

=R

Fig. 3.6.  Geometry of a hemispherical shell with an apex hole and
circumferential holes.
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3.5 Nondimensional Frequency Parameter

All numerical frequency results in this study will be presented in terms of the
nondimensional frequency parameter [3.1], &, given by

=)

Q= f27R (3.1)

where f is the frequency, p is the mass density, v is Poisson’s ratio, and E is the
modulus of elasticity. Some previous studies [3.2] have used a classical
nondimensional frequency parameter, £2’, which neglects the effects from Poisson’s

Q= f27rR\/g (3.2)

These nondimensional frequency parameters are used for the case of spherical shells

ratio and is given by

with any boundary conditions and shell half angle, ¢,
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Chapter 4

Finite Element Model Verification

4.1 Introduction

The finite element models used in this research were created using a combination of
commercially available software packages. The surface geometries of the models were
created using Pro/ENGINEER®. IGES was used to transfer the surface models into
PATRAN® for finite element mesh creation, and ANSYS® was subsequently used for
finite element analyses. Several hemispherical shell models without perforations were
generated for model verification. The vibration frequencies of these models were
compared with the analytical results found in the literature.

4.2 Finite Element Types

The majority of the models used for the modal analyses in this study were created with
8-node quadratic shell elements (SHELL93 [4.1]). Because of its midside node, this
element is excellent for modeling curved surfaces. It has six degrees of freedom at each
node: three rotational and three translational. A schematic of this element is shown in
Fig. 4.1. The element includes the effects of out-of-plane (normal) stress, transverse
shear stress, transverse shear strain, and shear deformation. Transverse shear stress is
assumed to be constant through the element thickness, and the out:of-plane stress
varies linearly through the thickness. The element will also allow for plasticity, stress
stiffening, large deflection, and large strain. The deformation shapes are quadratic in
both in-plane directions [4.1].

Several axisymmetric shells were also modeled with 2-node axisymmetric elements
(SHELLS1 [4.2]). These elements were used to minimize computational time when
identifying higher axisymmetric modes and examining impulse loading solutions. The
elements were also used to verify the response of the quadratic shell element models.
All hemispherical shells with circumferential holes require the use of quarter symmetry

models since the shells are not axisymmetric.
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Fig. 4.1.  Schematic of the 8-node shell element [4.1].

4.3 Finite Element Model Verification

Eikrem and Doige [4.3] performed an analytical and experimental analysis of the
axisymmetric vibrations of a hemispherical shell with a clamped edge. Their analysis
was based on the equations of motion derived by Naghdi [4.4] which neglected rotary
inertia and transverse shear deformation. Their experimental and analytical results
agreed well. A quarter symmetry finite element model of this shell was created and is
shown in Fig. 4.2. The nondimensionalized axisymmetric frequencies of this model
were compared to the analytical results of Eikrem and Doige. Table 4.1 shows that the
FE results correspond within 1% of the analytical results.

Because of the boundary conditions needed to model quarter symmetry, axisymmetric
torsional modes of vibration are not excited in any of the analyses. This is an
acceptable simplification since only axisymmetric, radial impulse loads are of concern

in this investigation, which will not excite torsional modes of vibration.
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Fig. 42. Quarter symmetry finite element model of the
hemispherical shell studied by Eikrem and Doige [4.3]
(1887 elements).
Table 4.1. Nondimensional natural frequencies, Q, of the first six
axisymmetric modes of a hemispherical shell studied by
Eikrem and Doige [4.3] compared with the FE results of
this investigation. The shell studied had the following
parameters: A/R = 0.005, v = 0.3, clamped edge.
Axisymmetric Eikrem & Doige FE Solution Percent Difference
Mode Number | Analytical Solution
Q Q [%]
1 0.7183 0.7189 -0.08
2 0.8891 0.8896 -0.06
3 0.9272 0.9277 -0.05
4 0.9463 0.9464 -0.01
5 0.9635 0.9639 -0.04
6 0.9854 0.9865 -0.11
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The asymmetric vibrations of spherical shells were studied by De Souza and Croll [4.5]
and Singh and Mirza [4.6]. De Souza and Croll based their analysis on a finite
difference model formulated from classical thin shell theory, whereas the analysis of
Singh and Mirza was performed using finite element models. Both studies placed a
small hole at the shell apex to remove the singularities that occur in the governing
equations at that point. Spherical shells ranging from a shallow cap to a hemispherical
dome were studied, including clamped edge boundary conditions. For this
investigation, a full model of a hemispherical shell with a clamped edge was created and
is shown in Fig. 4.3. The resulting asymmetric frequencies of this model were
compared to those found in the literature. As shown in Tables 4.2 and 4.3, the
asymmetric frequencies agree within 1% for both sets of analytical results.

Fig. 4.3.  Finite element model of the hemispherical shell studied by
De Souza and Croll [4.5] and Singh and Mirza [4.6]
(2480 elements).
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Table 4.2. Nondimensional natural frequencies, €2, of the first eight
asymmetric modes of a hemispherical shell studied by De
Souza and Croll [4.5] compared with the FE results of
this investigation. The shell studied had the following
parameters: //R = 0.005, v = 0.3, clamped edge.

Asymmetric Mode - mi | De Souza & Croll FE Solution Percent Difference
m = meridonal wave | Finite Difference
number Q Q [%]
i = circumferential

wave number
11 0.5385 0.5372 0.24
21 0.8472 0.8464 0.09
12 0.8580 0.8580 0.00
13 0.9010 0.9000 0.11
31 0.9141 0.9131 0.11
22 0.9191 0.9170 0.23
14 0.9190 0.9182 0.09
15 0.9300 0.9296 0.04

Table 4.3.  Nondimensional natural frequencies, £2, of the first eight
asymmetric modes of a hemispherical shell studied by
Singh and Mirza [4.6] compared with the FE results of
this investigation. The shell studied had the following
parameters: h/R = 0.005, v = 0.3, clamped edge.

Asymmetric Mode - mi | Singh & Mirza FE Solution Percent Difference
m = meridonal wave FE Solution
number 0 0 [%]

i = circumferential
wave number

11 0.5394 0.5372 0.41
21 0.8477 0.8464 0.15
12 0.8585 0.8580 0.06
13 0.9004 0.9000 0.04
31 0.9139 0.9131 0.09
22 09174 0.9170 0.04
14 0.9187 0.9182 0.05

15 0.9301 0.9296 0.05
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4.4 Mesh Refinement

An investigation was performed to identify the minimum number of elements needed to
generate accurate results in a modal analysis. The fundamental axisymmetric frequency
of a uniform hemispherical shell (/R = 0.005) analytically determined by Eikrem and
Doige [4.3] was used as a target value (f = 4848.9 Hz). Both 8-node quadratic shell
elements and 2-node axisymmetric elements were studied. Figure 4.4 shows the
frequency computed using the FE method as a function of the number of quadratic shell
elements; Fig. 4.5 shows the FE frequency as a function of the number of 2-node
axisymmetric elements. As shown, the models require relatively few elements to
generate accurate results. The model created with quadratic elements converged to a
frequency within 1% of the target value with approximately 500 elements. The
frequency of the shell created with the axisymmetric elements converged to within 1%
of the target value with only 30 elements.

4900

4800

4700

4600 -

—0O— 8-Node Quadratic Shell Eiements
~— — - Eikrem & Doige (4848.9 Hz)

0§ OO 0044t OOV SO

Frequency [Hz]

4400

4300 L 1 i L L L 1 L 1 I 1 L It 1 1 Il L 1 1 1
0 500 1000 1500 2000 2500 3000

Number of 8-Node Shell Elements

Fig. 4.4.  Finite element frequency of the fundamental axisymmetric
mode for a hemispherical shell with a clamped edge (A/R
= 0.005) as a function of the number of 8-node quadratic
shell elements used.



25

4900

4800

B s R S-S

Frequency [Hz]
2
j

—O— 2-Node Axisymmetric Elements

4500 — — - Bikrem & Doige (4848.9 Hz)
4400
4300 :
0 100 200 300 400 500 600

Number of Axisymmetric Shell Elements

Fig. 4.5.  Finite element frequency of the fundamental axisymmetric
mode for a hemispherical shell with a clamped edge (/R
= 0.005) as a function of the number of 2-node
axisymmetric elements used.
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Chapter 5

Axisymmetric Vibrations of a Hemispherical Shell with an
Apex Hole

5.1 Introduction

In 1992 and 1993, Hwang and Foster [5.1, 5.2] presented an analytical and finite
element analysis of the axisymmetric vibrations of a shallow spherical shell with an.
apex hole. No known study has been performed on the dynamic behavior of deep
spherical shells with perforations. The simplest perforation pattern, and most important

pattern in fusion applications, is an axisymmetric shell with a single apex hole.

Any fusion target chamber with a hemispherical endcap will most likely have an apex
hole for target insertion and maintenance. This chapter presents numerical results for
the axisymmetric frequencies of the first three modes of clamped hemispherical shells
with apex hole radius to shell radius ratios, a/R, varying from 0 to 0.8. Shells with
thickness-to-radius ratios, A/R, of 0.005, 0.010, and 0.050 were evaluated.

5.2 Finite Element Model

Because this research had a direct application, analyses were performed to represent
conditions anticipated in a fusion target chamber. When a uniform, radial, impulse load
is applied to an axisymmetric shell, only the axisymmetric modes will be excited. Also,
when a hemispherical shell is used as a structural component of a target chamber, the
edge will most likely be rigidly clamped. Therefore, only the axisymmetric natural
frequencies of a hemispherical shell with a clamped edge were studied. Modeling using
symmetry conditions can minimize computational time and allow proper mesh
refinement. Quarter symmetry models were used to study the axisymmetric case of a
hemispherical shell with an apex hole. An example of the mesh used is shown in Fig.
5.1. Symmetry conditions (u = w,, = BB,= 0) were applied to the edges at 6= 0° and 0
=90°. The bottom edge at ¢ = 90° was rigidly clamped u=v=w =w,, = f§, = f, =
0). A quarter symmetry model was used rather than a model created from axisymmetric
elements since quarter symmetry was required to model the non-axisymmetric

circumferential perforation pattern.
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Fig. 5.1.  Quarter symmetry finite element model of a hemispherical

shell with an apex hole (1247 elements).

5.3 Axisymmetric Vibration Natural Frequencies

The analyses were performed to identify the first three axisymmetric modes of each
hemispherical shell investigated. An example of fundamental axisymmetric frequency
of the finite element model is shown in Fig. 5.2. Figure 5.3 shows Q vs. a/R for the
first axisymmetric mode for each A/R ratio evaluated. As shown, (2 increases as @R
increases. Interestingly, the apex hole has negligible effects on the natural frequency
for small radius values. The percent increase in £2 with increasing a/R is shown in Fig.
5.4. The nondimensional frequency, €2, increased less than 1% until the apex-hole
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radius to shell radius ratio, a/R, was approximately 0.15. This is shown to be true for

each A/R value tested.

Fig. 5.2.

ANSYS 5.3
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Figures 5.5 through 5.7 present 2 for the first three axisymmetric modes for each 4/R
value. For the thinnest shell tested (Fig. 5.5, /R = 0.005), 2 increased with increases
in a/R, for all three modes. For the shell with &/R = 0.010 (Fig. 5.6), the third
axisymmetric mode deviated from the expected path, i.e., at /R = 0.75, Q2 began to
decrease. As shown in Fig. 5.7, both the second and third axisymmetric modes
followed unexpected paths for the thickest shell tested (W/R = 0.050). The normalized
mode shapes of the fundamental axisymmetric modes for a hemispherical shell with #/R
= 0.050 with an apex hole are shown in Fig. 5.8.
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Fig. 5.5. Nondimensional frequencies for the first three
axisymmetric modes (4/R = 0.005).
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Chapter 6

Axisymmetric Impulse Loading of a Hemispherical Shell
with an Apex Hole

6.1 Impulse Loading of a Uniform Hemispherical Shell

Originally, it was assumed that applying a uniform radial impulsive pressure load to a
hemispherical shell would result in the first fundamental axisymmetric mode being the
largest contributor to displacement. To confirm this response, a clamped edge
hemispherical shell without perforations was modeled with axisymmetric elements and
subjected to a uniform radial pressure of 450 psi for 2.0x10° seconds (see Fig. 6.1).
The use of axisymmetric elements minimizes the amount of computational time needed
for extended transient analyses. The computations reported in this chapter were carried
out to 0.008 seconds. Since this research is primarily interested in the natural
frequencies of hemispherical shells, damping was neglected in all studies. This chapter
is limited to the case of a perforated hemispherical shell with a /R ratio of 0.010. The
resulting time-dependent radial displacement of a FE node point at approximately ¢ =
40° is shown in Fig. 6.2 to ¢ = 0.0025 seconds. From the modal analysis in Chapter 5,
it is known that the fundamental axisymmetric frequency for the shell with #/R = 0.010
is 4900 Hz (£2=0.726). The response of the shell to the impulse loading was indeed
axisymmetric, but the primary response frequency appeared much higher than the
fundamental frequency.
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Fig. 6.1. Impulse load magnitude and duration.

0.020

0.010

[\ AAMAA il f\ i v
U W\/VW W \W\/

W [in.]

-0.010 -

0020 b e e
0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

Time [s]

Fig. 6.2. Radial impulse response of a node at ¢ = 40° on a
uniform hemispherical shell. The shell tested had the
following parameters: R =5.0in., A =0.050in., a = 0.0
in., E = 30.0x10°psi, p = 0.733x10° Ib-s¥in*, v = 0.3.

As shown by Fig. 6.2, the response was not uniform over time. The variation in radial

displacement was caused by traveling wave effects. To find what modes were
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contributing most to the displacements, a Fourier transform was performed on the data
using Mathematica®. This method identified the approximate contributions of
individual modes. As shown in Fig. 6.3, the main contributions to displacement are
from modes other than the first three studied in Chapter 5. A modal analysis of the
shell was extended to identify the exact frequencies of the first 13 axisymmetric modes.
The resulting nondimensional axisymmetric frequencies are shown in Table 6.1.
According to Fig. 6.3 and Table 6.1, the main contributors to displacement are the tenth
(£2=1.584) and eleventh axisymmetric modes (£2 = 1.693).
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Fig. 6.3.  Fourier transform of the data shown in Fig. 6.2 (uniform
hemispherical shell with A/R = 0.010). Frequency values
are shown in nondimensional terms.
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Table 6.1.  Nondimensional frequencies for the first 13 axisymmetric
modes of a uniform hemispherical shell with a clamped
edge (A/R = 0.010).

Axisymmetric Mode Q
1 0.7263
2 0.8948
3 0.9382
4 0.9731
5 1.0209
6 1.0909
7 1.1884
8 1.3157
9 1.4688
10 1.5837
11 1.6932
12 1.9061
13 2.1566

6.2 Impulse Loading of a Hemispherical Shell with an Apex Hole

Since this research was performed to aid in the design of fusion target chambers, the
dynamic response of the shell to an impulse pressure is of primary importance. The
previous section demonstrated that the response of a clamped unperforated
hemispherical shell to a uniform radial impulse load will be dominated by contributions
of modes other than the fundamental. Therefore, the study of the dynamic behavior of
hemispherical shells with an apex hole was continued to find the actual response to an

impulse loading.

This section studies the impulse response of two representative cases of hemispherical
shells with an apex hole and clamped edges. The investigation was performed for
shells with a/R values of 0.20 and 0.50. A A/R ratio of 0.010 was used for both cases.
The impulse loading (shown in Fig. 6.1) was applied to both shells with the effects of
damping neglected. Figures 6.4 and 6.5 show the resulting radial displacements for
a/R = 0.20 and a/R = 0.50, respectively.
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Fig. 6.4. Radial impulse response of a node at ¢ = 51° on a
hemispherical shell with the following parameters: R =
5.0 in., h =0.050 in., @ = 1.0 in., E = 30.0x10° psi, p =
0.733x107 1b-s¥in*, v = 0.3.
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Fig. 6.5. Radial impulse response of a node at ¢ = 60° on a

hemispherical shell with the following parameters: R =
5.0 in., h = 0.050 in., @ = 2.5 in., E = 30.0x10° psi, p =
0.733x10°* 1b-s¥in*, v = 0.3.
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Like the previous section, a Fourier transform was performed on the radial response
data for both shells. Figures 6.6 and 6.7 show the Fourier transform for a/R = 0.20
and a/R = 0.05, respectively. As with the uniform shell, contributions to displacement
came from modes other than the fundamental. Modal analyses were extended for both
shells to identify the frequencies of the first 11 axisymmetric modes. The
nondimensional frequencies are shown in Table 6.2 for both shells studied.
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Fig. 6.6. Fourier transform of the data shown in Fig. 6.4
(hemispherical shell with /R = 0.2 and A#/R = 0.010).
Frequency values are shown in nondimensional terms.
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Fig. 6.7. Fourier transform of the data shown in Fig. 6.5

(hemispherical shell with /R = 0.5 and A/R = 0.010).
Frequency values are shown in nondimensional terms.
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Table 6.2.  Nondimensional frequencies for the first 11 axisymmetric
modes of two hemispherical shells with a/R values of
0.20 and 0.50 (&/R = 0.010).

Axisymmetric Mode Q Q
a/R = 0.20 a/R = 0.50
1 0.7383 - 0.7964
2 0.9037 0.9320
3 0.9454 0.9836
4 0.9848 ‘ 1.0707
5 1.0457 1.2156
6 1.1385 1.3157
7 1.2692 1.4443
8 1.4346 1.7274
9 1.5523 2.0628
10 1.6779 2.2148
11 1.9247 2.5297

Figure 6.6 shows that the main contributions to displacement are coming from the ninth
(2= 1.552) and tenth (£2 = 1.668) axisymmetric modes for the shell with /R = 0.20.
This response is very similar to that of the uniform hemispherical shell which had
displacements dominated by the tenth (2 = 1.583) and eleventh modes (£2 = 1.693).
There is only a 2.0% difference between the frequency of the ninth mode of the shell
with an apex hole and the tenth mode of the uniform shell. Likewise, there is only a
1.5% difference between the frequency of the tenth mode of the shell with an apex hole
and the frequency of the eleventh mode of the uniform hemispherical shell. This
indicates that the response behavior of a hemispherical shell with a relatively small apex
hole can be accurately approximated as a uniform shell. For a shell with a/R = 0.50,
the contributions to displacement are dominated by the sixth axisymmetric mode (£2 =
1.316) as shown by Fig. 6.7. This is considerably less than that for a uniform shell.
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Chapter 7

Impulse Loading of a Hemispherical Shell with Apex and
Circumferential Holes

7.1 Introduction

Hemispherical shells used for fusion target chambers may have circumferential holes in
addition to the apex hole. Circumferential holes are used for diagnostic equipment and
laser ports. The apex hole is still needed for target insertion and maintenance. Because
of the circumferential holes, the shell is no longer axisymmetric and will therefore not
have axisymmetric mode shapes. This chapter investigates the response of a clamped
edge hemispherical shell with 16 equally spaced circumferential holes in addition to an
apex hole for the impulse load discussed in Chapter 6.

7.2 Finite Element Model

Figure 7.1 shows the quarter symmetry finite element model used for this investigation.
It as 2536 nodes and 783 elements. The shell had the following parameters: R = 5.0
in., h =0.050 in., a=0.50 in., b = 0.25 in., E = 30.0x10° psi, p = 0.733x107 Ib-
s*in*, v = 0.3, ¢, = 45°. The boundaries around the holes are free (not reinforced or
supported).

7.3 Response to a Uniform, Axisymmetric, Impulse Load

A radial impulse pressure of 450 psi was applied for 2.0x10°° seconds to the FE model
shown in Fig. 7.1. The response of the shell was taken to 0.008 seconds with
damping neglected. Figures 7.2 through 7.3 show the resulting shell displacements at
0.0005, 0.0010, and 0.00015 seconds, respectively. The shell deformed in
approximately an axisymmetric manner at all times. Figure 7.5 shows the
displacements of a node at ¢ =~ 50° as a function of time. A Fourier transform of the
data is shown in Fig. 7.6. A modal analysis was performed to identify the frequencies
of the quasi-axisymmetric modes. The resulting nondimensional frequencies are
shown in Table 7.1.



Fig. 7.1.

Quarter symmetry finite element model of a hemispherical
shell with 16 circumferential holes and an apex hole. The
geometry has the following parameters: a/R = 0.10, b/R
=0.05, ¢, = 45°, 783 elements.
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Fig. 7.2.

Radial response of a perforated hemispherical shell to an
impulse load at £ = 0.0005 s. The shell had a clamped
edge and the following parameters: R = 5.0 in., & =
0.050 in., a = 0.50 in., b = 0.25 in., E = 30.0x10° psi, p
= 0.733x10 1b-s*/in*, v = 0.3, ¢, = 45°.
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Radial response of a perforated hemispherical shell to an
The shell had a clamped
edge and the following parameters: R = 5.0 in., 4
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Table 7.1.  Nondimensional quasi-axisymmetric natural frequencies
for clamped edge hemispherical shell with the following
parameters: a/R = 0.10, b/R = 0.05, h/R = 0.01, ¢, =

45°.
Quasi - Axisymmetric Mode Q
1 0.7073
2 0.8306
3 0.9341
4 0.9583
5 1.0149
6 1.0800
7 1.1896
8 1.3179
9 1.4804
10 1.5658
11 1.7236
12 1.9478
13 2.2616

According to the Fourier transform of Fig. 7.6 and the quasi-axisymmetric frequencies
listed in Table 7.1, the tenth mode (2 = 1.566) is the primary contributor to the
displacements. Figure 7.7 shows the mode shape corresponding to the tenth mode.
Chapter 6 showed that the response of uniform shell (#/R = 0.010) to an impulse load
was dominated by modes with frequencies at 2= 1.583 and Q = 1.693. The shell
with circumferential holes in addition to an apex hole has an impulse response
frequency that has a 1.1% difference compared to the 2 = 1.583 frequency of a
uniform hemispherical shell and a 7.5% difference compared to the 2 = 1.693
frequency. This shows that a uniform hemispherical shell may be used to approximate
the response of a hemispherical shell with small perforations subjected to a uniform
impulse load.
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Hemispherical shell with a clamped edge and the
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Chapter 8
Summary and Conclusions

This research investigated the dynamic behavior of perforated clamped hemispherical
shells to aid in the design of target chambers for fusion reactors. Target chambers
require various perforation patterns for laser ports, diagnostic equipment, and target
insertion. No work regarding the dynamic behavior of perforated hemispherical shells
has been found by the author. Because of the extreme difficulty associated with
deriving the general equations of motion for perforated shells, a finite element method
was used in this analysis. Two specific cases of clamped perforated hemispherical
shells were studied: a shell with an apex hole and a shell with twelve circumferential
holes in addition to the apex hole. This research was concerned with only
axisymmetric vibrations since these will be the only modes excited by a uniform radial
impulse load, as seen in fusion target chamber applications. All frequencies were
presented in nondimensional terms which can be applied to shells with identical
geometry ratios (a/R, b/R, h/R).

Initially, modal analyses were performed on a clamped edge hemispherical shell with
a/R ranging from 0.0 to 0.8, and A/R values of 0.005, 0.010, and 0.050. The natural
frequencies of the first three axisymmetric modes were identified. Although increasing
the hole radius caused an increase in the natural frequency of all modes, holes with
small a/R values had negligible effects on frequencies. For each 4/R value, a/R was
taken to 0.15 with less than a 1% increase in the first three natural frequencies. Over
the full range of a/R values tested, the thinnest shell (A/R = 0.005) showed the greatest

increase in the frequency of the fundamental mode.

It was assumed at the beginning of this analysis that the fundamental mode would be
the largest contributor to displacements resulting from a uniform radial impulsive
pressure load. To verify this response, hemispherical shells with a/R of 0.0, 0.2, and
0.5, respectively, were subjected to a uniform radial impulse load. A A/R value of 0.01
was used for each shell. Since this research was concerned only with natural

frequencies, damping was neglected in all transient response analyses. It was shown
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that the radial displacement response over time was not uniform due to traveling wave
effects. A Fourier transform was used on the response data to find approximate
contributions of all modes. For all shells tested, modes higher than the fundamental
were the primary contributors to radial displacement. Extended modal analyses were
performed to find exact frequencies of dominant response modes. For the shell with
@/R = 0.2 and h/R = 0.01, modes at 2 = 1.552 and 2 = 1.668 were the largest
contributors to radial displacement. These frequencies were very close to the dominant
response frequencies of the uniform hemispherical shell (2 = 1.583 and Q2 = 1.693).
The response of the shell with a/R = 0.5 and /R = 0.01 was dominated by a single
mode at a significantly lower frequency of 2= 1.316.

An impulse load was also applied to a clamped hemispherical shell with twelve
circumferential holes at ¢ = 45° in addition to the apex hole. A single clamped shell
was studied with the following parameters: a/R = 0.10, b/R = 0.05, an

d /R = 0.1. " Because of the circumferential holes, the shell was no longer
axisymmetric. However, the uniform radial impulse load did excite modes approaching
an axisymmetric condition. A modal analysis was performed to identify the first 13
frequencies of these quasi-axisymmetric modes. Like the shells with an apex hole
alone, a Fourier transform was used to show that modes well above the fundamental
were the largest contributor to displacement. The response of the shell studied was

dominated by a single quasi-axisymmetric mode at Q= 1.566.

This research has shown that the equations of motion for a uniform hemispherical shell
may be used to accurately approximate the dynamic behavior of clamped perforated
hemispherical shells with hole radii that are small in comparison to the shell radius, R.
Although only two specific cases were studied in this analysis, the dynamic behavior of
shells with similar perforation patterns may be approximated with the solution for a
uniform hemispherical shell. This may be an invaluable approximation for calculating
the dynamic response of the perforated shells proposed for the target chamber of the
National Ignition Facility.





