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Abstract

Quantifying mechanical response characteristics of perforated plate structures supports
the design of products such as heat exchangers, injection nozzles, sieves and sound
suppressors. The size and pattern of regular perforations influence a plate’s flexural
stiffness. For static applications, widely accepted design guidelines exist. In these
procedures replacing the plate’s elastic modulus by an artificial or effective modulus
accommodates the average decrease in stiffness. Similar procedures do not exist for the
dynamic design of perforated plates. This thesis addresses the issue, reporting results for
natural frequencies and mode shapes for common configurations. Uniform square or
triangular patterns of identical circular holes were modeled for square plates with outer
edges either all simply supported (hinged) or all clamped. Finite element methods were
used, first to verify established static effective stiffnesses, and then to analyze vibrational
characteristics. It was found that frequencies calculated using static effective stiffnesses
do not correlate well with the FEM dynamic results. These discrepancies are quantified
and new dynamic effective stiffnesses are proposed. In addition, experimental results are

included which substantiate the FEM data.
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Chapter 1

Introduction

1.1 Background

Mechanical engineers, aerospace engineers, and civil engineers all design structures
and structural components with plates and shells. Fortunately, the design and analysis
of solid plates and shells is well established. Structural designs often deliberately
incorporate cutouts or perforations to reduce the materials, lighten the loads, allow for
ventilation, or provide functional openings. Accounting for these perforations in the
analysis can be an integral part of determining the correct deflections, stresses, modal
frequencies, and mode shapes of a particular structure. In cases where a plate is
perforated with a number of circular holes, assembled in a pattern, the structural
changes have traditionally been accounted for by using effective material constants.
Usually, the perforated plate is equivalent to a uniform solid plate of the same
thickness but having new modulus and Poisson ratio values established by an equal

global stiffness criterion.

Effective material constants have been developed for plates rather than for shells. To
the best of the author’s knowledge, there is no documented research detailing their
applicability to shells. This is partially because the behavior of a shell is much more
complex than that of a plate. In addition, industry has had numerous engineering
applications involving plates. For example the heat exchanger industry, focusing on
tube sheet behavior, has supported perforated plate research for over fifty years. As a
result, there is an abundance of numerical and experimental work on the static

behavior of perforated plates.

This study is intended to take the next logical step in understanding the behavior of a

perforated structure, i.e., characterizing the dynamic behavior of a perforated plate.



The work is intended to answer three questions. First, are effective material constants
developed for statically loaded plates applicable to dynamically loaded plates? Next,
what are the values of these “dynamic” effective material constants? Finally, can one
gain any insight as to whether “dynamic” effective material constants are applicable to

dynamically loaded shells?

1.2 General Approach

To compare and contrast the applicability of statically developed material properties in
a dynamic analysis, finite element (FE) methods and experimental methods are utilized
to predict the dynamic behavior of perforated plates. In the case of a static analysis
this behavior is quantified as a deflection, and for a dynamic analysis, this behavior is

quantified as a natural frequency and the associated mode shape.

The theoretical behavior of a perforated plate, as determined by statically developed
material properties, was determined by applying effective material properties to
response equations for a solid plate. This approach was compared to the results
obtained by analyzing a perforated plate model with FE software, as well as

experimental vibration measurements.

1.3 Thesis Outline

Previous studies have been completed on the effective material properties generated
from plates with statically applied loads and various perforation patterns. In addition,
work has been done on the dynamic behavior of plates with a single hole. These
previous investigations are reviewed in Chapter 2. Chapter 3 gives some applications
for the dynamic loading of perforated plates. Chapter 4 describes how the FE models
were developed and benchmarked against previous work. Chapters 5 and 6 present the
results of the modal analysis of perforated plates. In Chapter 5, FE results identify the

effective stiffness parameters as a function of perforation size. In Chapter 6,



experimental data is presented to support the results of Chapter 5. Finally, Chapter 7

summarizes the findings and provides conclusions.



Chapter 2

Previous Investigations on Perforated Plates

2.1 Introduction

There are two distinct areas of study associated with the analysis of perforated plates,
i.e., the static analysis of a plate with multiple uniform perforations and the dynamic

analysis of a plate with a single perforation.

The static analysis of perforated plates has been a topic of interest for years because of
the many industrial applications. Some examples include nozzles, material or fluid
strainers, and heat exchangers. Each of these applications incorporates a design based
on classical plate theory and static loading. Of these, the heat exchanger (Fig. 2.1) is
the most documented. The tubes in a heat exchanger are held in place by a perforated
plate called a tube sheet (Fig. 2.2). The increased compliance caused by the
perforations in this sheet are accounted for by using equivalent plate theory.
Equivalent plate theory was developed to replace the actual drilled plate by an
equivalent undrilled one of the same dimensions, for which the classical solid plate
theory in the elastic range is applicable. This equivalent plate must have the
appropriate elastic constants so as to present the same behavior as the actual one when

subjected to the same loading.

The dynamic analyses of perforated plates has been limited to a single perforation, and
as far as the author knows there have been no studies completed that investigate
dynamic effective material constants. However, there are a countless number of
applications in industry, which require the dynamic analysis of perforated plates.
Identification of the effective material properties for such cases would be a significant

contribution to the field.
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Fig. 2.1. Heat exchanger with cutaway view showing tube sheet [2.1].

Fig. 2.2. Tube sheet from heat exchangef [2.2].



2.2 Perforation Geometry and Terminology
Two perforation patterns, square and triangular, are most common in industry (see
Figs. 2.3 and 2.4). Both patterns are geometrically defined by one parameter, L,

referred to as the ligament efficiency, i.e.,
- [1_25] (2.1)

Ligament efficiency is the ratio of ligament width to the perforation center-to-center
distance, defined in Fig. 2.3 as the pitch, P. The most fundamental cells for the square
and triangular patterns are a square and a pentagon, respectively. These basic shapes,
containing a single hole, are used in conjunction with solid modeling and FE meshing

methods to generate a uniform perforation pattern.

y
4

Square Element

Square Penetration Pattern

Fig. 2.3.  Geometry for square perforation pattern [2.3].
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Hexagonal Element Triangular Penetration Pattern

Fig. 2.4. Geometry for triangular perforation pattern [2.3].

2.3 History of Perforated Plates — Static

Over the past fifty years there have been a large number of technical publications
dealing with stress and stiffness calculations for perforated plates. With the
development of industrial applications in tubesheet heat exchangers and other similar
equipment, this was an active research area that continued to evolve through 1985. By
1985 most issues had been resolved and solutions to these problems have since been
incorporated into modern pressure vessel codes. “Evolution and Synthesis of Effective
Elastic Constants Concept for the Design of Tubesheets” by Osweiller [2.4] outlines
the evolution of equivalent plate theory. This paper is an excellent reference that
summarizes about 60 other papers and codes. One of the key findings discussed in
Osweiller’s paper is the transition range from thick to thin plates, which is relevant to

this thesis because it focuses on thin plates.



Osweiller breaks the evolution down into three generations: 1948-1959, 1960-1962,
and 1963-1985. The first generation, as Osweiller calls it, marks the introduction of
equivalent solid plate theory. In 1948 Gardner [2.5] proposed equivalent solid plate
theory. He suggested that the flexural rigidity, D, of the plate before drilling be
reduced by factor A which he refers to as “deflection efficiency.” This factor allows
for the calculation of the flexural rigidity, D", of the equivalent plate where D =AD
(A<1). In 1954 Duncan [2.6] experimentally determined A by measuring the
deflections of tubesheets loaded in bending. He measured the deflection of the plate

before drilling, Wops and after drilling, w_ . The ratio of the two gave the deflection

p*

. wnp
efficiency, A = .
w

p

The second generation, 1960-1962, marks the introduction of equivalent material
constants. As a refinement of the effective flexural rigidity, second generation

constants defined Young’s modulus, E*, and Poisson’s ratio, v', for a perforated plate.
E* D* . E*
Curves for -E- were preferred over curves for o because the ratio of I is

material independent. These effective material constants were first investigated
experimentally. In 1960 Sampson [2.7] performed experimental tests using photo-
elastic techniques. The tests, performed with rectangular plates, perforated with a

triangular penetration pattern and loaded in bending, showed the following:

a) — does not vary with material

b) — and v" are independent of loading direction (isotropic behavior)

t . .. . .
c) ;— = 2 is a transition value for thin-to-thick perforated plates, where

t is the thickness of the plate



E* «
d) —E— and v vary markedly with plate thickness when % <2

In 1962 O’Donnell [2.8] synthesized Sampson’s results to propose a single set of

curves to determine = and v" as a function of ligament efficiency. These curves,

however, were for thick plates (¢ > 2P). The ASME Boiler and Pressure Vessel Codes
[2.9] also cite curves for effective elastic constants, but they too are only for thick

plates.

The third generation, 1963-1985, marks the introduction of doubly periodic stress
distribution theory. Using this theory in conjunction with computational methods,
effective elastic constants for triangular and square patterns were determined. The
theory was applied to infinite plates evenly perforated in two directions and loaded in
bending (also loaded in plane stress). Meijers’ published papers in 1960 and 1980
focused on thin plates in bending [2.10 and 2.11]. His work for thin plates has been
adopted into the French Pressure Vessel Code CODAP [2.12]. The CODAP curves,

for both triangular and square perforation patterns, are used in this paper.

2.3.1 Loading Orientation

Experimental work done by Sampson [2.7] and confirmed by O’Donnell [2.8] shows
that effective elastic constants for triangular patterns are independent of loading
direction (isotropic) for bending problems. O’Donnell [2.2, 2.13, 2.14] also shows,
however, that elastic constants for square patterns depend on the loading direction
(anisotropic) for bending. Fortunately, the two sets of effective elastic constants for
square perforation patterns have been converted (an approximation) into one set of
“isotropic” effective elastic constants. The approximation simplifies this study by
enabling a direct comparison between finite element data and classical isotropic theory

applied to an equivalent plate.
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2.3.2 Thick to Thin Transition Range

*

Studies done by Sampson [2.7] showed that values of %(Fig. 2.5) and v (Fig. 2.6)
can vary significantly with plate thickness. For # > 2P this variation is very gradual,
and as the plate gets thicker the bending values approach the plane stress values for a
solid plate. In this region, the effective elastic constants are determined by equating
strains in the equivalent solid material to the average strains in the perforated material.
For t < 2P, the variation in effective material properties is rapid, and highly dependent

on plate thickness. In the “thin plate” region, plane stress conditions are

approximated.

0.6
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—o— h/P = 0.250
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0.3
o
| T e
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0.1 1 10 100

/P

Fig. 2.5. Variation of Sampson effective elastic modulus with thickness
for a plate in bending (v = 0.50) [2.7].
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Fig. 2.6. Variation of Sampson effective Poisson’s ratio with thickness
for a plate in bending (v = 0.50) [2.7].

2.3.3 Numerical and Experimental Data

Theoretical and experimental data for effective material properties have been fused
together in the design curves used today. The resulting curves are complete over the
full range of ligament efficiencies. Theoretical data incorporated into these curves is
based on doubly periodic stress distribution theory. Experimental data comes from

deflection data of thin plates statically loaded in bending.

The CODAP curves (Figs. 2.7 and 2.8), used as a static benchmark in this thesis, are
applicable over a wide range of plate thickness (0.25 < #P < 50). The data is for
simply supported thin plates (#/P < 1) loaded in bending. Osweiller [2.4] explains that
they are constructed using a combination of Meijers’ theoretical values and other

experimental values.
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Fig. 2.7. Static effective stiffness, D", versus ligament efficiency for
simply supported plate with a square perforation pattern.
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Fig. 2.8. Static effective stiffness, D, versus ligament efficiency for
simply supported plate with a triangular perforation pattern.
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2.4 History of Perforated Plates — Modal

Free-vibration data for perforated plates is only available for square, single-hole plates.
As far as the author knows there are no special effective material constants for the
free-vibration of plates, or shells, having multiple perforations. However, some
researchers doing work with multiple perforations, such as Powers [2.15], have
assumed that effective material constants developed through statically applied loading

apply to a dynamic analysis.

Vibration studies on square, single-hole elastic plates date back to the middle 1900’s.
In 1975, Hegarty and Ariman [2.16] published the first paper of practical significance,
which identified trends caused by perforations. They investigated the free vibration of
simply supported and clamped plates with a single, centrally located hole using a least-
squares point-matching method. Their work focused on thin, homogenous, isotropic,
linearly elastic plates with a uniform thickness . The geometric variables were edge
length, /, and the hole radius, r,. Their results show that the fundamental frequency of
a plate depends on boundary conditions and Poisson’s ratio. For example, Figs. 2.9

and 2.10 illustrate how the frequency decreases with Poisson’s ratio. The point where

. .. . . : 2r, .
the frequency ratio is a minimum is referred to as the critical ratio, R, = T” Figure

2.11 shows how the theoretical ratio varies as a function of Poisson’s ratio for the
simply supported and clamped boundary conditions. Hegartly and Ariman [2.16]
proposed a two-fold mechanism of strain relief and mass reduction to explain to the

existence of the critical ratio (Fig. 2.12). Here Hegartly and Ariman use the parameter
@', defined as the frequency parameter @ =] 2\/—;; where p denotes the mass

density.
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In 1981 Nagaya [2.17] presented a solution to the problem of vibrating plates of
doubly connected arbitrarily shapes. Using a “simplified approximate method”

Nagaya derived boundary dependent equations for eigenfrequencies and mode shapes.

In 1988 Bicos and Springer [2.18] presented a method for analyzing the free damped
vibration characteristics of plates and cylinders with circular cutouts. They claimed to
have a computer code that calculates natural frequencies and mode shapes for simply

supported and clamped plate models.

In 1995 Lim and Liew [2.19] performed a vibration analysis on a continuum-plate
domain rather than using discretization methods. Employing the global Ritz
minimization procedure, with a set of orthogonally generated polynomials as
admissible function, they derived a governing eigenvalue equation. By applying this
equation they developed a comprehensive set of first-known vibration frequencies and

mode shapes for perforated plates.
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Chapter 3
Specific Application for Perforated Plates and Shells

3.1 Introduction

There are a large number of perforated structures in use that are dynamically loaded.
Some examples include auto bodies, aircraft bodies, screens, strainers, and nuclear
fusion reaction chambers. In some applications, such as the nuclear fusion chamber,
there is more emphasis on structural analysis. This is partially because the harsh
loading cycles amplify the detrimental effects caused by perforations. In addition, the

safety and reliability of the fusion chamber are critical.

3.2 Fusion Chambers

The process of nuclear fusion (Fig. 3.1) is the source of energy for the sun and all other
stars. Reproducing this process on earth is a potentially safer way to produce cost-

effective electricity. For example, the fission process produces dangerous by-products

20

and is always at risk of a runaway reaction while the fusion process is clear of these

hazards.

Fuslon Fission

Fig. 3.1. Diagram of nuclear reactions - fusion vs. fission [3.1]



There are three ways of confining fusion fuel reactions: gravitational confinement,
magnetic confinement, and inertial confinement. Of these only the later two can be
achieved in a laboratory. Inertial confinement, in particular, is interesting because of
the perforated confinement chamber. The chambers are indirectly related to this study
because of their perforations, yet they are more complex than the plates because of the

different geometry.

The Department of Energy supports research for developing fusion energy using
inertial confinement fusion (ICF) (Fig. 3.2). The program is currently involved with a
number of different projects. The Nova Laser Facility is the world’s primary research
tool in this area while the newer National Ignition Facility (NIF) (Fig. 3.3), currently
under construction, is envisioned as a large step forward from Nova. Both of these

facilities incorporate spherical chambers (Figs. 3.4 and 3.5).
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Fig. 3.2. Diagram showing four steps of the ICF process [3.1].
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Fig. 3.3, View of the laser and target area building for NIF, the world’s
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Fig.3.4.  Enlarged view looking into NIF’s target area with the spherical
target chamber located at the center of the diagram [3.2].
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Pole access and diagnostic port

Fig. 3.5. NIF target chamber [3.3].

A facility that the ICF program proposed but failed to complete was the Light Ion
Microfusion Facility (LMF) (Fig. 3.6). This proposed facility utilized a cylindrical
chamber rather than the traditional sphere (Fig. 3.7). Powers [3.4] analyzed this

chamber using effective material constants to account for the perforations.

Fig. 3.6. Light Ion Microfusion Facility [3.5].



Fig. 3.7. Perforated cylindrical target chamber from LMF [3.4].

ICF target chambers, no matter what their geometry, must withstand large structural
loads. The initial fusion blast and the dynamic cycling through repeated blasts cause
these loads. For a chamber design to endure these shocks the designer must be able to
model the chamber and predict its response. Analytically modeling chamber
perforations is a challenge, especially in light of the incredible number of holes in

some of these chambers. In the NIF, for example, there are over 100 laser ports [3.3].
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Chapter 4

Finite Element Benchmark

4.1 Introduction

Simply supported perforated plates have been used in the past to generate “static-
plate” effective material constants and thus are used here as a benchmark for
“dynamic-plate” effective material constants. A benchmark, such as this, is used to
validate a model. In this case the model is a finite element (FE) representation of a
simply supported perforated plate. Comparing the FE static-deflection results to the
deflection values calculated with the effective material constants enables model

refinement.

4.2 Solid Plate Theory
4.2.1 Thin Plate Theory

The work done in this thesis focuses on plates but the intent is to transfer the
knowledge gained to the dynamic analysis of a shell. Such a transfer of information
requires as much similarity as possible between the shell and the plate. For example,
thin plates are used because the previously mentioned shells are thin-walled, e.g.,

t
Rshell

1 ) . .
<-—, where ¢ denotes the shell thickness and R, is the mean radius of the

shell. Thin plate theory requires that %S —2-16 , where ¢ denotes the plate thickness and /

the minimum edge length.

4.2.2 Classical Plate Theory - Static Analysis

The following analysis utilizes a simply supported rectangular plate of dimensions a x

b
b x t subjected to symmetrically distributed edge moments at y= ia (Fig. 4.1). The
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uniformly distributed edge moments per unit length, M,, are statically applied,
resulting in a transverse deflection w. Ugural [4.1] represents the solution with an

infinite series, i.e.,

2M a i sm(mnx/a) b mmy

ny
) = —tanho, h————— h—— 4.1
w(x,y) =D 223 7 cosha. 2 an cos p ysin a ) 4.1)

where the flexural stiffness, D, and dimensional parameter, 0y, are given by:

EW’
120-v?) *2)
o, = 'Zb @.3)
A A
M =C0nstant
Q a AWAYAWAYA
—
M, G
b
2

qd
qw
-
d
qw
qw ____>

Fig. 4.1.  Schematic of a simply supported plate with uniform edge moments.
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4.2.3 Classical Plate Theory - Modal Analysis

The dynamic response of thin, simply supported plates (Fig. 4.1) can be described by
the following series [4.2]:

wx,y)=W(x,y)T()= ii w.. cos(wm,nt)sin{mm}sin{mm}
a J .

m=1 n=l b
(m=123,... and n=1,2,3,...) 4.4
m* n*||[D
o, =7L’2|:—2+Zz—:| — (m=123,... and n=1,2,3,...) 4.5
a -
m

where W(x,y) is the shape function, T(z) is the characteristic time function, W,, is the

amplitude coefficient determined from initial conditions, and m is the mass per unit

area. The mass per unit area can be defined as follows:

m=tlzp1 4.6)
g

where yis the specific weight of the material, g is the gravitational acceleration, p is

the mass density, and ¢ is the plate thickness.

A shape function, W(x,y), contains information about the relative displacements of the
structure at a particular frequency. The relative displacements, often referred to as
mode shapes, are always a function of position. In the case of a plate the relative out-
of-plane displacements are a function of coordinates x and y. The theoretical mode
shapes for the first seven modes, in order of frequency, of a simply supported plate
were generated using the numerical software Mathematica® [4.3]. Figure 4.2 shows

each of these shapes in both a three-dimensional and a two-dimensional contour plot.
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Fig. 4.2.  Mode shapes for simply supported square plate, generated with
the numerical software Mathematica® [4.3].
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The frequency response of thin clamped plates can be described by the following [4.4]:

A
w,, = b”;" 2 (m=123,... and n=1,23,...) (4.7)
m

where A, is a frequency constant and is listed in Table 4.1. The dynamic deflection

response is more complex than the simply supported equation (see Eqn. 4.4) but the
general shape is similar (see Fig. 4.2). Since the deflection equation, w(x,y,t), for a

clamped plate is not used in this thesis the equation has been omitted.

Table 4.1. Frequency constants for clamped plate [4.4].

(m, n) A
1,1 35.975
1,2 73.363
2,2 108.126
1,3 131.51
2,3 164.821
1,4 210.383
3,3 219.69

4.3 Solid Plate Analysis
4.3.1 Geometric Modeling and Meshing

Solid plate models were constructed within the finite element (FE) software package
ANSYS® [4.5]. The material properties and geometry used to generate each model

were the same and are defined in Table 4.2.
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Table 4.2. Properties for a solid plate model [4.6].
Material 6061-T6 Aluminum

Poisson’s ratio, v 0.32

Young’s Modulus, E 10.0 x 10° 1b/in?

Density, p 2.536 x 10™* Ib-s%in*
Thickness, ¢ 0.125in

Plate width, a 10 in

Plate length, b 10 in

Meshing the solid plate models was also done within ANSYS®. Of the 120 different
elements available only a few were considered. By using thin plates, as discussed
previously, the number of possible elements applicable to this analysis was reduced to
two shell elements (see Table 4.3). Both of these elements can be meshed over two-
dimensional geometry and both can have the same mesh. The difference between the
two is the number of nodes, and thus, the shape functions used in the analysis. A solid
square plate, possibly meshed with either element, is shown in Fig. 4.3. Figure 4.3

does not necessarily display an optimum mesh density.
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Table 4.3. Comparison of ANSYS® shell elements.

Element No. of | No. of nodal | Deformation | Important characteristics

name nodes | D.O.F shape

SHELL63 4 6 Linear in | Includes bending and membrane
both in-plane | capabilities.
directions

SHELL93 8 6 Quadratic in | Mid-side node makes this element

both in-plane

directions

well suited to model curvature
around holes. It includes bending
and membrane capabilities. Non-
linear capabilities include stress
stiffening and large deflection

theory.

Fig. 4.3.

Solid square plate model meshed with ANSYS®.
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4.3.2 Nodal Static Loading

Moment distributions on parallel edges must be applied at nodes in such a way as to
simulate a uniform edge moment. Consistent nodal loading does this. When used
correctly the deflection contours for the simply supported plate will look like the ones
in Fig. 4.4. Consistent nodal loading for 4-node and 8-node elements is shown in Fig.

4.5. They are calculated using the following relationship [4.7]:
L
(r.} = [INT qds 4.8)
0

where the loading per unit length g is M,, [N]" is the element shape function, and

{r, }is the load vector for consistent nodal loading.

Uniform Edge Moment
JuaWON 98pH wIojun

Fig. 4.4. Deflection contours for consistent nodal loading using full
plate model. Edges are simply supported.
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Fig. 4.5. Consistent nodal loading for 4-node and 8-node elements [4.7].

4.3.3 Finite Element Results

Solid plate models, based on the properties listed in Table 4.2, were analyzed using the
FE software ANSYS®. Results show that SHELL63, the 4-node elastic shell element,
more nearly approximates theory for the maximum static deflection (Fig. 4.6), the
dynamic mode 1,1 (Fig. 4.7), and the dynamic mode 1,3 (Fig. 4.8). Also shown in Fig.
4.6 are the results of a nonlinear analysis using SHELL93, the 8-node structural shell
element, indicating that the thin plate does not exhibit membrane behavior. The
higher order 8-node element would seem to be a better choice for a perforated plate
analysis because it is well suited to model curvature around holes but results here
show it inaccurately predicts the static behavior of a plate. Table 4.4 lists a summary

of element convergence.

Two dimensional mode shape plots were also generated on the finite element (FE)
software ANSYS® (see Fig. 4.9). Shell63, the 4-node element, was used to generate

the mode shapes.
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Mesh convergence for fundamental mode of solid plate.
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Table 4.4. FEM error convergence for solid plate models.

Analysis Type Element Total Nodes Percentage Error
Static 4-node 841 0.0215%
Static 8-node 841 1.5595%
Static 8-node nonlinear 841 1.3870%
Modal 4-node (mode 1,1) 841 0.0100%
Modal 8-node (mode 1,1) 841 0.5921%
Modal 4-node (mode 1,3) 841 0.0437%
Modal 8-node (mode 1,3) 841 0.4206%
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Mode 2 (1,2)
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Mode 6 (1,4)

Mode 7 (3,3)

Fig.4.9. Discrete mode shapes generated in ANSYS®.
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4.4 Perforated Plate Theory

“Static” effective material constants, meant to be employed with perforated plates, are
well documented and are commonly published in the form of design curves. They are
denoted here as “static” because they were originally generated by subjecting the plate
to a static structural load. All constants are plotted as a function of ligament
efficiency, 4, where the particular curve depends on parameters such as loading type,
loading orientation, material thickness, and hole pattern. These design curve plots
were developed, primarily through heat exchanger research, by graphing data from the

experimental and/or numerical analysis.

Benchmarking FE models with published design curves is simplified by limiting the
number of plate variables. For example, the previous work presented in this thesis (for
the purpose of benchmarking) focused on thin, homogeneous, simply supported plates
loaded in pure bending. Consequently, only the design curves on perforated plates

subjected to pure bending are used for benchmarking the FE models.

4.5 Perforated Plate Analysis
4.5.1 Geometric Modeling and Meshing

Perforated plate models were also constructed within the FE software package
ANSYS®. Each model was based on a basic solid plate model with the material
properties and geometry listed in Table 4.2. A number of different models with
perforations were generated from the basic model. Some of the parameters that were
individually varied were Poisson’s ratio, hole size, material density, and the
perforation pattern. Varying the perforation hole size (see Table 4.5) indirectly varied

ligament efficiency. It should be noted that the pitch, P, is held constant at a value of

2.0.



Table 4.5. Variations in ligament effiéiency (P=2.0).

Hole diameter, R Ligament Efficiency, u

0 1.0
0.2 0.9
04 0.8
0.6 0.7
0.8 0.6
1.0 0.5
1.2 0.4
1.4 0.3
1.6 0.2
1.8 0.1
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Once a solid model was defined the perforated plate models could be meshed in

ANSYS® using the 4-node element SHELL63. A controlled mesh was constructed

around a single hole using the most basic repeatable shape [4.8]. For example, the

shape used in the square pattern is a square and the shape used in the triangular pattern

is a hexagon (see Figs. 2.3 and 2.4). The basic shape, with a hole in the center, was

then used like a building block to generate a plate with a number of perforations (see

Fig. 4.10). Figure 4.9 is for illustration only and does not necessarily display an

optimum mesh density.
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Fig. 4.10. Square and triangular pattern perforated plate models meshed
with ANSYS®.

4.5.2 Nodal Static Loading

Consistent nodal loading vectors, defined in equation 4.6, were again applied as
outlined in Section 4.3.2. When used correctly the deflection contours for the simply
supported plate will look like the ones in Fig. 4.10. For reference, the consistent nodal

loading for a 4-node element is shown in Fig. 4.5.

Uniform Edge Moment
JUSWION 98pg wiIoJTUN)

Fig. 4.11. Deflection contours for consistent nodal loading using
perforated plate model. Edges are simply supported.
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4.5.3 Finite Element Results

The FE results for the static deflection of two different perforated plates were
compared to calculated deflections based on published data for static effective
constants. The two plates were identical except for perforation hole size (also
quantified as ligament efficiency). This procedure was repeated for the triangular and
square mesh patterns to give two sets of data — two for each type of perforation pattern
(Figs. 4.11 and 4.12). Using a 4-node shell element and mesh refinement, FE results
with smaller ligament efficiencies converge to the published data. However, FE
results become smaller than published data as ligament efficiency increases. The
results from the square pattern show a 4.3% deviation and the results from the
triangular pattern show a 3.3% deviation from effective material constant theory, both

at a ligament efficiency of 0.20.
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Fig. 4.12. Mesh convergence for static loading of plate perforated with
square pattern and meshed with 4-node element (ANSYS®
SHELL63).



42

I T T : :
- —n
1.00 | /___/- j
]
098 ]
e e M e r
0.96 - o ° 1
g e
N e
-
Yy 094 /' ]
Ry
; /
0.92 / —B—y =07
~l / —8—y =02 .
090 | / |
J
088 ' ' * 1 . i . 1 . 1
0 2500 5000 7500 10000 12500
Number of Nodes

Fig. 4.13. Mesh convergence - for static loading of plate perforated with
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Chapter 5

Dynamic Behavior of Perforated Plates

The dynamic analysis of perforated plates is based on the FE models developed in
Chapter 4 and the concept of effective stiffness, D", presented in Chapter 2. Using
ANSYS [5.1] to perforrﬁ modal analyses with the FE models, natural frequencies and
mode shapes were generated. The frequency results were then compiled and used to

generate effective stiffness values for the respective plates.

5.1 Dynamic Effective Elastic Constants

Effective stiffness values are determined from backing out stiffness values from a
governing equation where the all the parameters other than stiffness are known,
including the response to loading. Known parameters include the overall dimensions
of the plate, which is 10 in. x 10 in. x 0.125 in. As outlined in Chapter 2, the

traditional way of determining the response was to statically load a plate and measure
the deflection. In this thesis, however, modal frequencies generated through finite
element methods (FEM) are used in conjunction with the frequency response equation
to generate stiffness values. The resulting stiffness values are subsequently called the

dynamic effective elastic constants.

5.1.1 Simply Supported Plate with Square Penetration Pattern

Finite element plate models were generated with a square perforation pattern and
variable ligament efficiencies. Using simply supported boundary conditions, each
model was analyzed and the modal frequencies computed. The resulting stiffness
values from the first seven modes of vibration were plotted for the three different

values of Poisson’s ratio (see Figs. 5.1 — 5.3). For comparison purposes, the static



45

effective elastic constants are also shown on the plots. In addition to generating modal
frequencies, mode shapes were generated for the first five modes of vibration (see
Figs. 5.4 - 5.6). The shapes are only intended to supplement the stiffness values and

therefore do not cover all seven modes used previously.

1.0 =
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Fig. 5.1.  Effective stiffness for square simply supported plate with a
square perforation pattern (v = 0.20).
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Fig. 5.2.  Effective stiffness for square simply supported plate with a
square perforation pattern (v = 0.30).
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Fig. 5.3.  Effective stiffness for square simply supported plate with a

square perforation pattern (v = 0.45).
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Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Fig. 5.4. ANSYS® output for simply supported plates with square
perforation patterns (P = 2.0, v = 0.20).
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Mode 1
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Mode 3

Mode 4

Mode 5

Fig.5.5. ANSYS® output for simply supported plates with square
perforation patterns (P = 2.0, v = 0.30).
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Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Fig. 5.6. ANSYS® output for simply supported plates with square
perforation patterns (P = 2.0, v = 0.45).
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5.1.2 Clamped Plate with Square Penetration Pattern

Finite element plate models were generated with a square perforation pattern and
variable ligament efficiencies. Using clamped boundary conditions, each model was
analyzed and the modal frequencies computed. The resulting stiffness values from the
first seven modes of vibration were plotted for the three different values of Poisson’s
ratio (see Figs. 5.7 — 5.9). For comparison purposes, the static effective material
constants are also shown on the plots. In addition to generating modal frequencies,
mode shapes were generated for the first five modes of vibration (see Figs. 5.10 —
5.12). The shapes are only intended to supplement the stiffness values and therefore

do not cover all seven modes used previously.
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Fig. 5.7. Effective stiffness for square clamped plate with a square
perforation pattern (v = 0.20).
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Mode 1
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Fig. 5.10. ANSYS® output for clamped plates with square perforation
patterns (P = 2.0, v=0.20).
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Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Fig. 5.11. ANSYS® output for clamped plates with square perforation
patterns (P = 2.0, v=0.03).
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Mode 1
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Mode 3

Mode 4

Mode 5

Fig. 5.12. ANSYS® output for clamped plates with square perforation
patterns (P =2.0,v= 0.45).
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5.1.3 Simply Supported Plate with Triangular Penetration Pattern

Finite element plate models were generated with a triangular perforation pattern and
variable ligament efficiencies. Using simply supported boundary conditions, each
model was analyzed and the modal frequencies computed. The resulting stiffness
values from the first seven modes of vibration were plotted for the three different
values of Poisson’s ratio (see Figs. 5.13 — 5.15). For comparison purposes, the static
effective material constants are also shown on the plots. In addition to generating
modal frequencies, mode shapes were generated for the first five modes of vibration
(see Figs. 5.16 — 5.18). The shapes are only intended to supplement the stiffness

values and therefore do not cover all seven modes used previously.
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Fig. 5.13. Effective stiffness for square simply supported plate with a
triangular perforation pattern (v = 0.20).
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Fig. 5.16. ANSYS® output for simply supported plates with triangular
perforation patterns (P = 2.0, v = 0.20).



58

Mode 1

Mode 2

Mode 3
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Mode 5

Fig. 5.17. ANSYS® output for simply supported plates with triangular

perforation patterns (P = 2.0, v = 0.30).
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Fig. 5.18. ANSYS® output for simply supported plates with triangular
perforation patterns (P = 2.0, v = 0.45).



60

5.1.4 Clamped Plate with Triangular Penetration Pattern

Finite element plate models were generated with a triangular perforation pattern and
variable ligament efficiencies. Using clamped boundary conditions, each model was
analyzed and the modal frequencies computed. The resulting stiffness values from the
first seven modes of vibration were plotted for the three different values of Poisson’s
ratio (see Figs. 5.19 — 5.21). For comparison purposes, the static effective material
constants are also shown on the plots. In additioﬁ to generating modal frequencies,
mode shapes were generated for the first five modes of vibration (see Figs. 5.22 —
5.24). The shapes are only intended to supplement the stiffness values and therefore

do not cover all seven modes used previously.
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Fig. 5.19. Effective stiffness for square clamped plate with a triangular
perforation pattern (v = 0.20).
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Fig. 5.20. Effective stiffness for square clamped plate with a triangular
perforation pattern (v = 0.30).
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Fig. 5.21. Effective stiffness for square clamped plate with a triangular
perforation pattern (v = 0.45).
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Fig. 5.22. ANSYS® output for clamped plates with triangular perforation
patterns (P = 2.0, v=0.20).
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Fig. 5.23. ANSYS® output for clamped plates with triangular perforation

patterns (P = 2.0, v=0.30).
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Fig. 5.24. ANSYS® output for clamped plates with triangular perforation

patterns (P = 2.0, v=0.45).
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3.2 Poisson’s Ratio
Dynamic effective stiffness is a function of Poisson’s ratio and the sensitivity to

Poisson’s ratio is a function of boundary conditions. To show this, different
configurations were analyzed, each with a different Poisson’s ratio (Figs. 5.25 — 5.28).
The resulting data is based on the fundamental frequency data for mode 1,1. Other

modes were not considered.
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Fig. 5.25. Effective stiffnesses based upon the fundamental frequencies
for simply supported square plates with square perforation
patterns.
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Fig. 5.27. Effective stiffnesses based upon the fundamental frequencies

for simply supported square plates with triangular perforation

patterns.
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Fig. 5.28. Effective stiffnesses based upon the fundamental frequencies
for clamped square plates with triangular perforation patterns.

5.3 Number of Perforations

U
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All FE models were based on 23, or 25-hole penetration patterns depending on

whether the pattern was triangular or square. The number of holes was assumed large

enough to approximate an infinitely perforated plate. To verify this, the number of

holes was varied with all other parameters held constant. Results are shown in Figure

5.29.



68

0.928

0.927 —

0.926

0.925 i/

/

0.924 —=—

D*D

0.923 A 1 1 1 il A 1 I i
0 50 100 150 200 250 300 350 400 450 500

Total number of holes

Fig. 5.29. Sensitivity of effective stiffness for fundamental mode to number of
holes for a clamped perforated square plate with a square
perforation pattern (v = 0.30, i = 0.70).

5.4 Plate Thickness

All FE models were based on plates having a 0.125-in. thickness. This thickness was

chosen because a thin plate was desired. It was assumed that any thickness within the
: : 1 . . . .
thin plate region, _lt; < 20’ would yield the same results. To verify this assumption the

thickness was varied with all other parameters held constant. Results show that the
effective stiffness is not a function of the plate thickness within this thin plate region

(see Table 5.1).



Table 5.1.

Sensitivity of fundamental mode to plate thickness for a
clamped perforated square plate with a square perforation
pattern (v=0.3, 4 =0.7).

Thickness 7 [in] t/P t/b Fundamental D"/D
Frequency [Hz]

0.0625 0.03125 | 0.00625 114.88 0.926

0.125 0.625 | 0.0125 229.77 0.926

0.25 0.125 0.025 459.53 0.926

0.5 0.25 0.05 919.06 0.926

5.5 Material Density
All FE models were based on plates having a density of 0.000744 1b-s*/in* [5.2]. The
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dynamic stiffness values, however, were assumed to be independent of material

density. To verify this assumption, the density, p, was varied with all other parameters

held constant. Results show that the effective stiffness is not a function of the material

density (see Figs. 5.30 and 5.31).
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Fig. 5.30. Effective stiffness sensitivity to material density for
fundamental mode of a plate with a square perforation pattern
(v=0.30, u=0.70).
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Chapter 6

Experimental Work

Chapter 5 describes the use of FE models to determine the dynamic effective stiffness
of various thin plates perforated with square or triangular penetration patterns. The
effective stiffness values were generated using, in addition to other constant
parameters, the frequency data taken from a modal analysis. The results differ from
previously developed effective material constants, presumably, because FE results are
based on a dynamic analysis rather than a static analysis. To verify these results, an

experimental investigation was carried out.

6.1 Plate Specimens and Plate Fixture

The FE work described in Chapter 5 employed many different plate configurations, yet
each model had a number of common parameters. For example, the plates all had the
same overall dimensions of 10 in. X 10 in. X 0.125 in. They also had variable
perforation patterns, boundary conditions, and Poisson’s ratios. The experimental
work did not encompass the full range of parameters. To reduce the amount of work,
all tests were done with 10 in. X 10 in. x 0.125 in. clamped plates made of 6061-T6
aluminum (see Table 4.2). The ligament efficiency and penetration pattern were the

only experimental parameters that were varied (see Table 6.1).

A clamping fixture, also made of 6061-T6 aluminum, was designed to enforce the
boundary conditions. Clamped boundary conditions were chosen because they could
be replicated more easily and more accurately than simply supported boundary
conditions. In addition to enforcing boundary conditions, the.fixture served as an
adapter between the plate and the experimental equipment. As an integral part of the

dynamic tests, the fixture had to be made stiff enough so as to not exhibit any modes
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of vibration under 2000 Hertz, the range of plate frequencies being studied. As an

additional point of reference, the fixture was mounted onto an 1100-pound

electromagnetic shaker for all tests.

Table 6.1. Experimental test

specimens using 6061-T6 aluminum
(geometric and material properties listed in Table 4.2) with

clamped boundary conditions.

Specimen Perforation Perforation Ligament
Number Pattern Diameter, in. Efficiency, u

0 Solid plate 0.0 1.0

1 Square 04 0.8

2 Square 0.8 0.6

3 Square 1.2 04

4 Square 1.6 0.2

5 Square 1.8 0.1

6 Triangular 04 0.8

7 Triangular 0.8 0.6

8 Triangular 1.2 04

9 Triangular 1.6 0.2

10 Triangular 1.8 0.1

Accurately manufacturing perforated plate specimens was a concern because the size

and location of the holes were the only parameters varied. To achieve the desired

degree of accuracy, the plates and fixturing were modeled and manufactured using

computer technology. The solid modeling was done with the software ProEngineer®

[6.1]. The model geometry was then converted to G-N code using the software EZ-

mill [6.2], and finally, the code was loaded into a computer numerically controlled

horizontal mill [6.3] (Fig. 6.1). This allowed for very tight tolerances and holes that

were extremely accurate, both in placement and circularity (see Figs. 6.2, 6.3 and 6.4).
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Fig. 6.1. Photograph of Bridgeport® R2G4 CNC horizontal mill.

Fig. 6.2. Photograph of CNC mill cutting 1.6 in. holes in a square
pattern.
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Fig. 6.3. Photograph of CNC mill using circular interpolation to cut an
accurate perforation pattern.

Fig. 6.4. Photograph of experimental specimens and clamping fixture.
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6.2 Procedure for Impulse Testing

A number of resonant frequencies can be excited within a structure by applying an
impulse. The range of frequencies that are excited depends on the amount of energy
transferred to the structure, e.g., the type of hammer used and the duration of the pulse.

In this study these parameters were adjusted to excite frequencies under 2000 Hertz.

An accelerometer, fixed to the structure with wax, recorded the structure’s response to
the impulse. Both the impulse and the accelerometer were orientated in the z-direction
(perpendicular to the plate’s surface). The data acquisition software SnapMaster [6.4]
was then used to collect the data and convert it into the frequency domain using a Fast
Fourier Transform (FFT). The equipment used for the impulse testing is listed in
Table 6.2. Figure 6.5 shows a schematic of the experimental apparatus, while Figs.

6.6 shows a photograph of the actual setup.

Table 6.2. List of experimental equipment for impact tests.

Computer Pentium PC - 133 MHz
Data Acquisition Software HEM - SNAPMASTER
Signal Conditioner/ Power Amplifier Kistler Model 5128A
Digital/Analog Converter IOTECH DAQBOOK 100
Accelerometers Kistler Piezomeam Model 8632C50
Plate
Specimen

# (Signal Conditioner)

Computer &
SnapMaster
Software

v(Digital/Analog Converter)
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Fig. 6.5. Schematic of impact analysis setup.

Fig. 6.6. Photograph of a perforated plate, clamped in the fixture, with
an accelerometer attached.

6.3 Procedure for Optical Vibrometer Testing

Laser Doppler vibration sensing is a technique used to conduct non-destructive, non-
contacting vibration measurements. When the laser is positioned normal to the
vibrating surface it acts as an acceleration transducer, providing an analogue output
directly comparable to that obtained from a conventional accelerometer charge-
amplifier combination. In addition to single point data collection, full-field vibration
patters (mode shapes) can be obtained by combining a laser Doppler vibration sensor,
a beam scanning mechanism with signal processing and display system, and a central

computer.

The Polytec® vibrometer system utilizes a single-beam backscatter arrangement based

on the well-known Mach-Zehnder Interferometer [6.5]. The beam from the laser

source is divided into an internal reference beam and an external measuring beam, the
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latter being directed onto the moving test surface. Light that is reflected back from the
test surface is shifted in frequency. This frequency change is known as the Doppler
shift and although the shift in light from the test specimen is very small (typically 1
part in 10°® or less) it can be measured very accurately using optical interferometry.
Optical interferometry enables the measurement of displacements much smaller than
the wavelength of light by exploiting the sinusoidal relationship between the output of

an interferometer and the difference in optical path lengths traversed by its beams.

Two different vibration measurement tests were run with the Polytec® optical
vibrometer. First, impulse tests were run to verify the impulse testing described in
Section 6.2. For these tests the Polytec® optical sensor and data acquisition system
replaced the accelerometer and SnapMaster® software which were used previously. In
addition to the impulse tests a series of forced vibration tests were performed with the
1100-pound electromagnetic shaker. By exciting the plate with a constant sinusoidal
input while at the same time scanning the surface of the plate with the laser, mode
shapes were generated graphically on the computer. The equipment used for the mode
shape tests is shown in Table 6.3. Figure 6.7 shows a schematic of the experimental

setup, while Fig. 6.8 shows photographs of the actual setup.

Table 6.3. List of experimental equipment for optical tests.

Shaker V830-335T air-cooled vibrometer by Ling
Dynamic Systems LTD

Power Amplifier SPA10K power amplifier by Ling
Dynamic Systems, LTD

Shaker Control Software Data Physics version 2.3

Data Acquisition System Polytec GmbH  Optical  Scanning
Vibrometer, version 5.13a
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~ (Vibrometer hardware )

(Shaker power supply

) \ @nalog/digital convertea

[ Computer and ]/ L Computer and )
V.
S

haker control software ibrometer software

Fig. 6.7. Schematic of experimental modal analysis setup.



80

Fig. 6.8. Photograph of laser vibrometer test setup.

6.4 Resonant Frequency Results

Impulse tests were run with two different testing configurations. One test measured
the plate’s response with an accelerometer fixed to the plate’s surface while the other
test measured response via an optical sensor. Figures 6.9 and 6.10 show the results for
the fundamental mode after being transformed to effective stiffness. Figures 6.11 and
6.12 compare FEM results to the experimental results. Figures 6.13 and 6.14 FEM
effective stiffness results for the first two modes. The contents of Tables 6.4 and 6.5

summarize frequency results for the solid plate.
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Fig. 6.11. Experimental and FEM dynamic effective stiffness results for
the fundamental mode of clamped plates with square
perforation patterns.
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Table 6.4. Fundamental frequency data for a clamped solid plate.

Source Fundamental frequency [Hz]
Classical plate theory 432.8
FEA 432.0
Experimental — accelerometer 442.0
Experimental — optical 465.2

Table 6.5. Mode 2 (1,2) frequency data for a clamped solid plate.

Source Fundamental frequency [Hz]
Classical plate theory 878.2
FEA 880.1
Experimental — accelerometer 853.5
Experimental — optical 880.0

6.5 Mode Shape Results

Mode shapes graphically illustrate the relative displacement of a structure at a specific
frequency. The laser scanning system uses the Doppler effect to measure the relative
acceleration of a number of different points on the plate, and thus, it is able to
construct mode shape diagrams. The mode shapes of the experimental plate
specimens correlated very well with the predicted FEA mode shapes. Because they
were so similar only one experimentally scanned mode shape has been included.
Figure 6.15 shows a scanned image for mode 2 (1,2). The image is applicable for

every test specimen listed in Table 6.1.
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Fig. 6.15 Experimentally scanned mode shape for all clamped square plates
tested.
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Chapter 7

Summary and Conclusions

The vibration characteristics of perforated plates are important when designing
structures where resonance or fatigue are possible modes of failure. A literature
review of methods for predicting perforated plate vibrations showed that no design
curves for this analysis have been developed. Essentially, there are no analytical,
numerical, or experimental data available which would enable a designer to predict

dynamic response of perforated plates.

Two areas of study, indirectly related to perforated plate vibrations, have previously
addressed the structural changes from perforations. They are (a) the effective elastic
constants developed with either static deflection equations or experimental data and
(b) the vibration characteristics of square plates with a single circular hole located at
the center of the plate. Published results in these two areas cannot be accurately

applied to the vibration of uniformly perforated plates.

For this thesis, finite element models were developed to determine the natural
frequencies and mode shapes of perforated plates. In order to approximate an
infinitely perforated plate a large number of perforations were used. Two basic
models were then developed — one with a square penetration pattern and the other with
a triangular pattern. Adjusting parameters on these models, such as boundary
conditions and ligament efficiency, was computationally straightforward and thus this

method of analysis was very effective.

Previous investigations on single-hole plates suggested that as ligament efficiency
increases, the frequency of a perforated plate would decrease until a critical point was

reached. At this critical point, the frequency would begin to increase as ligament
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efficiency continued to increase. This two-fold mechanism of mass reduction and
kinetic energy reduction (described in previous literature as strain energy reduction)
was seen in the FEA results for plates with a triangular penetration pattern, but not for

plates with a square penetration pattern.

Static effective elastic constants taken from the CODAP code did not correlate with
the FEA results. In particular, there was a difference in effective stiffness values that
quickly increased with decreasing ligament efficiency, reaching errors of about 100%

at a ligament efficiency of 0.01.

The effects of other material properties were also investigated. Results show that by
decreasing Poisson’s ratio, the effective stiffness values increase. The general trend,
however, remains constant. Material density, on the other hand, has no effect on the

dynamic effective stiffness.

Experimental frequency data did support FEM results, especially at higher modes.
However, the fundamental mode was a special case. As seen by the shifts in
experimentally scanned mode shapes, the fundamental frequency of an experimental

plate was very sensitive to boundary conditions.

Perforated plate mode shapes are essentially independent of perforation size and type.
The analytical shapes determined from classical plate theory apply to all the perforated
plates examined. The only effect the perforations have on the dynamic characteristics
is via structural frequency change. Knowing this, it should be possible to predict the
frequency of each mode for all perforated plates. This is an important first step toward
understanding more complex problems where either the perforation pattern does not
6over the entire structure, the holes are not circular, or the structure has curvature, such

as a shell.





