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1.  Introduction 

1.1  Background 
Perforated plates and shells are used in a variety of industrial applications.  Some 
examples include nozzles, material or fluid screens, and heat exchangers.  Most of these 
applications incorporate a design based on classical plate or shell theory and employ 
static loading only.  Of these, the heat exchanger (Fig. 1) is the most documented.  The 
tubes in a heat exchanger are held in place by a perforated plate called a tube sheet (Fig. 
2).  The structural deficiencies caused by the perforations in this sheet are accounted for 
by using “effective” material properties.  The idea of using “effective” material 
properties, based on theoretical and experimental work, first started in 1948 and has since 
evolved into an industry standard for the design of tubesheets [1]. 
 
 
 
 

 
Fig. 1. Heat exchanger with cutaway showing tube sheet [2]. 

 



 
Fig. 2. Tube sheet from heat exchanger [3]. 

1.2  Motivation 
Every paper published in the past 80 years documenting the structural design or analysis 
of perforated structures has focused on either experimental data generated from statically 
loaded plates or on theories related to the static analysis of perforated plates.  Even papers 
dealing with the dynamic analysis of shells have used effective material properties 
generated from static loading.  One example of this is the Light Ion Microfusion Facility 
(LMF) cylindrical shell (Figs. 3 and 4) analyzed by Powers [4].  The current research 
addresses the accuracy in using “static-plate” effective material properties in a dynamic 
analysis. 

 
Fig. 3. Perforated cylindrical target chamber from LMF [4]. 
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Fig. 4. Light Ion Microfusion Facility (LMF) [5]. 

2.  Plate Terminology and Perforation Geometry 

2.1  Nomenclature 
a plate width, in 
b plate length, in 
t plate thickness, in 
h hole-edge to hole-edge distance, in 
R radius of perforations, in 
P pitch, in. 

� ligament efficiency [1 d
P

� ] 

D bending stiffness [
3

2

*
12*(1 )

E h
��

], lb-in 

D* effective bending stiffness, lb-in 
 mass per unit area, lb-s2/in4 

E Young’s modulus, psi 
E* effective Young’s modulus, psi 
� Poisson’s ratio 
�
� effective Poisson’s ratio 

Mo  edge moment per unit length on plate, lb-in/in 
x, y, z rectangular coordinates 
r, �, z polar coordinates 
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w deflection of plate perpendicular to the x-y plane, in 
wFEM deflection of plate derived using finite element methods, in 
wtheory deflection of plate derived using statically developed material properties, in 
fFEM frequency derived using finite element methods, Hz 
ftheory frequency derived using statically developed effective material properties, Hz 
�FEM circular frequency derived using finite element methods, rad/s 
�theory circular frequency derived using statically developed effective material properties, 

rad/s 
n, m modal half waves corresponding to directions x and y, respectively 
{ }re  load vector for consistent nodal loading, lb-in 
q loading per unit length, lb-in/in 
[ ]N T  element shape function 

2.2  Geometry of the Perforation Pattern 
Two geometry patterns, square and triangular, are used in industrial applications, but only 
the square pattern (Fig. 5) is considered here.  This pattern, as well as the triangular 
pattern, is determined fully by one parameter, �, referred to as the ligament efficiency 
(see the nomenclature list in Section 2.1). 
 

 
Fig. 5. Square perforation pattern geometry [6]. 
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3.  Finite Element Model Development and Verification 

3.1  Classical Plate Theory - Static Loading 
Simply supported perforated plates have been used in the past to generate “static-plate” 
effective material properties and thus, are used here as a benchmark for the finite element 
(FE) models.  More specifically, the following analysis utilizes a simply supported 

rectangular plate subjected to symmetrically distributed edge moments at 
2
by � �  (Fig. 

6).  The uniformly distributed edge moments per unit length, Mo, are statically applied, 
resulting in a transverse deflection w.  This deflection can be determined experimentally 
[8], or, in the case of this paper, numerically with the FE software ANSYS.  By 
substituting this deflection data, along with plate dimensions and applied edge moments, 
into a relationship for the deflection of a square plate, the corresponding stiffness, D, may 
be found.  Ugural [9] represents the solution for the deflection of a simply supported 
square plate with an infinite series, i.e., 
 

2 2
1,3,...

2 sin( / )( , ) ( tanh cosh sinh )
cosh 2

o
m

m m

M a m x a b m y m yw x y y
D m a

� �

�

� �

�

�

� �� a
�

 

 

where  
2m

m b
a
�

�� .  When perforated plates are subsequently evaluated, the effective 

stiffness, D*, can then be determined by the same procedure. 

3.2  Classical Plate Theory - Dynamic Loading 
The natural frequencies of the benchmarked plate models were obtained by running a 
modal analysis on each model using ANSYS.  As with the static case the stiffness, D, of 
the plate can be found by substituting know values, such as natural frequency and mode 
number, into a relationship for the frequency of a square plate.  The vibration of thin, 
simply supported plates (Fig. 6) is described by the following shape function and 
frequency equation [10], respectively, 
 

W x y X x Y y W
mx

a
ny
bm n

nm
( , ) ( ) ( ) sin sin,� �

�

�

�

�

��
�

11

�          (m = 1,2,3,…  and  n = 1,2,3,…) 

 

� �m n

m
a

n
b

D

m
, _� �

�

�
�

�

	



2
2

2

2

2   (m = 1,2,3,…  and  n = 1,2,3,…) 
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Fig. 6. View of simply-supported plate with edge moments. 

3.3  Thin Plate Theory 
The work done in this paper focuses on plates but the intent is to transfer the knowledge 
gained to the dynamic analysis of a shell, such as the LMF chamber.  Such a transfer of 
information requires as much similarity as possible between the shell and the plate.  For 
example, thin plates are used because the above mentioned shells are thin-walled, e.g., 
t
R
�

1
20

.  Thin plate theory requires that 
h
b
�

1
20

. 

3.4  Geometric Modeling and Meshing 
The FE model should accurately represent the number of holes, the perforation geometry 
of the holes, the plate thickness, and the boundary conditions.  In addition, a large number 
of holes should be used to approximate an infinite plate.  An infinite plate is desirable in 
perforated plate analysis because the irregularities around the supported edges are 
“washed out.” 
 
Models constructed within ANSYS were also meshed within ANSYS.  Of the 120 
different elements available only a few were considered.  By using thin plates, as 
discussed previously, the number of possible elements applicable to this analysis was 
reduced to two shell elements (see Table 1).  The optimal mesh pattern, using either 
element, is shown in Fig. 7 [11].  Figure 7 does not necessarily display a optimum mesh 
density. 
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Table 1. Comparison of ANSYS shell elements. 
Element 
Name 

No. of 
Nodes 

No. of 
Nodal 
D.O.F 

Deformation 
Shape 

Important Characteristics 

SHELL63 4 6 Linear in both in-
plane directions 

Includes bending and membrane 
capabilities. 

SHELL93 8 6 Quadratic in both 
in-plane 
directions 

Mid-side node makes this element 
well suited to model curvature 
around holes. It includes bending 
and membrane capabilities.  Non-
linear capabilities include stress 
stiffening and large deflection 
theory. 

 

 
Fig. 7. Full square-pattern plate model meshed on ANSYS. 

3.5  Nodal Loading 
Moment distributions on parallel edges must be applied at nodes in such a way as to 
simulate a uniform edge moment.  Consistent nodal loading does this.  When used 
correctly the deflection contours for the simply supported plate will look like the ones in 
Fig. 8.  Consistent nodal loading for 4-node and 8-node elements is shown in Fig. 9.  
They are calculated using the following [12]: 
 

{ } [ ]r N qdse
T

L

� �
0
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where the loading per unit length q is ,  is the element shape function, and 
is the load vector for consistent nodal loading.  

Mo [ ]N T

{ }re

 

 
Fig. 8. Deflection contours for consistent nodal loading using full plate 

model. 
 

 
Fig. 9. Consistent nodal loading for 4-node and 8-node elements. 

3.6  Finite Element Results - Solid Plate 
The base model for the analyses done in this paper, either on solid or perforated plates, is 
a solid aluminum plate with dimensions of 10 in x 10 in x 0.125 in.  The solid model, 
without perforations, was analyzed using two different element types.  Results show that 
SHELL63, the 4-node elastic shell element, more nearly approximates theory for the 
static deflection (Fig. 10), the dynamic mode 1,1 (Fig. 11), and the dynamic mode 1,3 
(Fig. 12).  Also shown in Fig. 10 are the results of a nonlinear analysis using SHELL93, 
the 8-node structural shell element, indicating that the thin plate does not exhibit 
membrane behavior. The higher order 8-node element would seem to be a better choice 
for a perforated plate analysis because it is well suited to model curvature around holes 
but results here show it inaccurately predicts the static and dynamic behavior of a plate.  
Table 2 lists a summary of element convergence. 
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Fig. 10. Mesh convergence for static loading of solid plate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11. Mesh convergence for dynamic loading (mode 1,1) of solid plate. 
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Fig. 12. Mesh convergence for dynamic loading (mode 1,3) of solid plate. 
 
Table 2. Comparison of error convergence for solid plate. 

Analysis Type Element Total Nodes Percentage Error 
Static 4-node 841 0.0215% 
Static 8-node 841 1.5595% 
Static 8-node nonlinear 841 1.3870% 
Dynamic 4-node (mode 1,1) 841 0.0100% 
Dynamic 8-node (mode 1,1) 841 0.5921% 
Dynamic 4-node (mode 1,3) 841 0.0437% 
Dynamic 8-node (mode 1,3) 841 0.4206% 

3.7  Finite Element Results - Perforated Plate 
The FE results for the static deflection of two different perforated plates were compared 
to calculated deflections based on published data for static effective constants.  The two 
plates were identical except for perforation hole size (also quantified as ligament 
efficiency).  Using a 4-node shell element and mesh refinement, FE results with smaller 
ligament efficiencies converge to the published data.  However, FE results become 
smaller than published data as ligament efficiency increases, showing a 4.3 % deviation at 
a ligament efficiency of 1.60 (Fig. 13).  
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Fig. 13. Mesh convergence for static loading of perforated plate using 4-node 

element (ANSYS SHELL63). 

4.  Dynamic Analysis of Perforated Plates 

4.1  Dynamic Effective Material Constants 
Effective material constants developed over the past 50 years have been based on static 
criteria.  Experimentally, these constants have been calculated using deflection data [13].  
These deflections are then substituted into a governing equation for deflection (found in 
Section 3.1) and the elastic modulus is computed.  Usually material constants are used to 
determine static deflections, but in this case the procedure is reversed.  The finite element 
procedures in Section 3 are identical to this except that the deflection comes from a finite 
element analysis rather than experimental data. 
 
Dynamic effective material constants, or constants derived from a dynamic analysis, are 
calculated in much the same way as the static effective material constants.  The difference 
is in the governing equation. Modal frequencies from a finite element analysis are entered 
into the equation from Section 4.1 and the effective stiffness is extracted. 

4.2  Finite Element Results 
The finite element analysis showed that plate modal frequencies are a function of 
ligament efficiency (Fig. 14).  In addition, results show that dynamic effective material 
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constants are very different from static effective material constants (Fig. 15).  Two sets of 
static effective material constants are included in Fig. 15 to highlight this fact.  One set of 
data was generated from an ANSYS model of a perforated plate while the other set was 
generated using the combination of a solid plate and static effective material constants.  
Table 3 summarizes the differences in static versus dynamic stiffness. 
 

Table 3. Comparison of static stiffness to dynamic stiffness for a simply 
supported plate with a square penetration pattern (� = 0.30). 

Analysis Type Ligament 
Efficiency 

(�) 

Effective Stiffness / Stiffness 

D*/D 

Percent 
Difference (static 

vs. dynamic) 
Static 0.8 0.963 
Dynamic Mode 1 0.8 0.939 2.5% 
Static 0.6 0.874 
Dynamic Mode 1 0.6 0.760 13.0% 
Static 0.4 0.769 
Dynamic Mode 1 0.4 0.542 29.5% 
Static 0.2 0.662 
Dynamic Mode 1 0.2 0.318 108.2% 
 
 

 

5.  Conclusions 
Experimental and theoretical effective stiffness values for tubesheets agree well with 
stiffness values determined from FE deflection analysis of statically loaded perforated 
plates.  A comparison of theoretical and experimental values with FE results for stiffness 
showed a fractional percentage difference at a ligament efficiency of 0.20, increasing to a 
4.3 % difference at a ligament efficiency of 1.60.  However, modal frequencies based 
upon equivalent static stiffness values do not compare well with modal frequencies from 
FE analysis.  The results have identified a new category of dynamic effective stiffness 
that should generally be used in vibration problems in lieu of traditional static values. 
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Fig. 14.  Dimensionless frequency versus ligament efficiency for a square 

simply supported plate with a square perforation pattern. 
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Fig. 15.  Dimensionless effective dynamic stiffness versus ligament efficiency 

for a square simply supported plate with a square perforation pattern. 
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