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1. Introduction

In this report we summarize work performed at the University of Wisconsin Fusion

Technology Institute in support of ion beam-plasma interaction experiments at Sandia

National Laboratories during the period April 1995-June 1996. This work has focussed

primarily on: (1) collisional-radiative and spectral modeling of moderate density plasmas;

(2) calculation of basic atomic cross section data; (3) developing a “simple” time-dependent

collisional-radiative model for the IPROP simulation code; (4) calculation of ion stopping

powers, and (5) analysis of Kα satellite emission spectra.

The tasks for the April 1995-June 1996 period are listed in Table 1.1. The results of

this work are discussed in the report as follows. In Section 2, we discuss model development

and calculations to investigate atomic processes affecting the ionization dynamics and

spectral properties of plasmas generated during light ion beam transport experiments.

Calculations to date have focussed on Ar plasmas at densities relevant to the PBFA-II

gas cell. This section also includes a paper presented at the 11th Topical Conference on

High-Temperature Plasma Diagnostics in May 1996 (see Section 2.3).

In Section 3, a time-dependent collisional-radiative model developed for the IPROP

transport code is described. Atomic physics cross section models and calculations are

discussed in Section 4.

In Section 5, final results are presented from our calculation of ion stopping powers

based on a finite-temperature random phase approximation model and a self-consistent

treatment of the electron distribution. Finally, in Section 6 we describe recent work on the

analysis of Kα spectra. Here, we also document several improvements and benchmarkings

of both our radiation-hydrodynamics and collisional-radiative equilibrium codes.
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Table 1.1. Tasks for April 1995–June 1996

1. Generate time-dependent atomic physics models for ion beam transport and supply

relevant cross sections in a report.

2. Help couple the atomic physics model into the IPROP transport code and assist in

comparisons with experimental data.

3. Develop a unified stopping power computer code based on the finite temperature RPA
stopping power model and a self-consistent treatment of the electron distribution

function.

4. Calculate ion stopping powers for Li on Au and Al using the self-consistent unified

stopping power model.

5. Perform detailed CRE calculations to estimate the effects of heating of thin Al layers

by Au radiation in flat-foil Kα experiments.

6. Document results in a report to Sandia National Laboratories
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2. Ionization Dynamics for Light Ion Transport Experiments

In this section we describe our modeling for ion beam transport plasmas. This

work represents an extension of our previous CRE modeling in the following ways: (1)

time-dependent multilevel atomic rate equations are solved to determine the atomic level

populations; and (2) excitation and ionization by energetic (non-Maxwellian) electrons are

considered.

The goals of this work are to develop a detailed understanding of the physical

processes affecting the ionization dynamics of light ion transport plasmas. In addition,

the spectral characteristics of these plasmas are being studied to determine which processes

most affect the visible, VUV, XUV, and x-ray portions of the spectrum. The goal here is to

identify spectral signatures which may help diagnose the properties of the various particle

distributions (thermal electrons, energetic electrons, beam ions). Finally, our ionization

dynamics calculations are being compared with IPROP ionization simulations in order to

benchmark the codes.

In this section, the time-dependent collisional-radiative model used in studying ion

beam transport plasmas is summarized (Section 2.1), followed by a description of the model

used to compute energetic electron collisional rates. Section 2.3 contains a paper recently

presented at the 11th Topical Conference on High-Temperature Plasma Diagnostics in

Monterey, CA.

2.1. Collisional-Radiative Model for Transport Plasma Simulations

In our simulations of the ionization dynamics of transport plasmas, atomic level

populations are calculated by solving a system of multilevel atomic rate equations of the

form:
dni

dt
=

NL∑
j �=i

njWji − ni

NL∑
j �=i

Wij (i = 1, ..., NL) (2.1)

where ni is the number density of atoms (ions) in state i, Wij is the transition rate for i→ j,

and NL is the total number of levels in the atomic model. To ensure mass conservation,

one of the above equations (e.g., for i = 1) is replaced by the particle conservation equation

dni

dt
= −∑

j �=i

dnj

dt
(2.2)

which assumes the number of atoms is fixed (i.e.,
∑NL

i=1 ni = Ntot = constant). The initial

state of the plasma must be specified by the user. For example, one could specify that all

atoms are in the ground state of the neutral stage (a cold gas).
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The processes included in the rate equations are:

• collisional excitation and ionization by thermal electrons, energetic electrons, and

beam ions;

• collisional deexcitation by thermal electrons and energetic electrons;

• collisional, radiative, and dielectronic recombination by thermal electrons;

• spontaneous emission; and

• autoionization.

At present photon-induced processes are not included. Although it can be

expected that photoionization is unimportant in the transport plasmas being considered,

photoexcitation (resonant self-absorption) will be important for some transitions. It is

anticipated that this effect will be included into our models in the near future.

The populating (Wji) and depopulating (Wij) rates in Eq. (2.1) are given by:

W�u = n0
eC�u + nH

e

(
2

me

)1/2 ∫ ∞

∆Eu�

ε1/2σ�u(ε)f(ε)dε+ JBσ
′
�u(EB) (2.3)

for excitation (� < u),

Wu� = n0
eCu� + Au� + nH

e

(
2

me

)1/2 ∫ ∞

0
ε1/2σu�(ε)f(ε)dε (2.4)

for deexcitation (u > �),

W�κ = n0
eC�κ + nH

e

(
2

me

)1/2 ∫ ∞

∆E�κ

ε1/2σ�κ(ε)f(ε)dε+ JBσ
′
�κ(EB) + A�κ (2.5)

for ionization (� < κ), and

Wκ� = (n0
e)

2 Cκ� + n0
e(α

RR
κ� + αDR

κ� ) (2.6)

for recombination (κ > �). Quantities in the above equations are defined as:
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� = lower state index

u = upper state index
κ = continuum state index

n0
e = density of thermalized electron component

nH
e = density of hot (energetic) electrons

C�u = collisional excitation rate coefficient

Cu� = collisional deexcitation rate coefficient
Au� = spontaneous emission rate

C�κ = collisional ionization rate coefficient
Cκ� = collisional (3-body) recombination rate coefficient

αRR
κ� = radiative recombination rate coefficient

αDR
κ� = dielectronic recombination rate coefficient

A�κ = autoionization (Auger) rate
JB = ion beam current density

σ′
ij = ion-impact excitation or ionization cross section at beam voltage EB

f(ε) = distribution of non-Maxwellian (hot) electrons
σij = electron-impact excitation or ionization cross section.

Note that the collisional rate coefficients (Cij) are for a thermalized (Maxwellian) electron

distribution. In practice, these are computed and tabulated as a function of the electron

temperature prior to the collisional-radiative calculation.

A description of how collisional rates due to the non-Maxwellian electron component

are computed is provided in the next section. Calculations of the other atomic parameters

are described in Section 2.3.2 and Section 4.

2.2. Calculation of Collisional Rates for Energetic Electrons

Energetic electrons can significantly affect the ionization dynamics in ion beam

transport plasmas. To treat non-Maxwellian electron distributions in our collisional-

radiative simulations we use a hybrid electron model composed of a thermal (Maxwellian)

component and a high energy tail. This approach is similar to that used in the IPROP

simulation code. In our model, the energetic electron component affects the ionization

dynamics through the following processes: collisional excitation and deexcitation, collisional

ionization, and radiative recombination.

The collisional ionization rate is given by:

C�κ = nH
e

(
2

me

)1/2 ∫ ∞

∆E�κ

ε1/2σ�κ(ε)f(ε)dε , (2.7)

where the integral is over the kinetic energy of the incident electron and has a lower

bound of ∆E�κ (= ionization potential for the bound electron being ionized). The electron
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distribution, f(ε), is normalized such that

∫ ∞

0
f(ε)dε = 1 . (2.8)

For a Maxwellian distribution,

f(ε)dε = 2π(πkT )−3/2e−ε/kT ε1/2dε , (2.9)

where T is the electron temperature.

For the ionization cross section, we use the semi-empirical formula of Burgess and

Chidichimo [7]:

σiκ,j(ε) = C ′ξj

(
IH
Ij

)2
ln(x)

x
W (x)(πa2

0) (2.10)

where x ≡ ε/Ij, Ij is the ionization potential for an electron in the jth subshell (Ij =

∆Eiκ), ξj is the number of electrons in the jth subshell, a0 is the Bohr radius, and IH

is the ionization potential of hydrogen (= 13.6 eV). The value of C ′ is finite and slowly

varying for all ε. For argon ions, C ′ is taken to be 2.3. W (x) is a function which provides

a correction near the threshhold region and is given by:

W (x) = [ln(x)]β/x (x > 1) (2.11)

where

β =
1

4



[
(100z + 91)

(4z + 3)

]1/2

− 5


 , (2.12)

z is the charge state (e.g., z = 0 for neutrals). Note that W (x < 1) = 0.

The collisional excitation rate is given by Eq. (2.7), with an excitation cross section

given by the Burgess and Summer formula [8]:

σ�u(ε) =
8π√

3

(
IH
ε

)(
IH
∆E

)
f�u ḡ (πa2

0) , (2.13)

where ∆E is the transition energy between the lower state (�) and upper state (u), f�u is the

oscillator strength, and ḡ is the effective Gaunt factor which accounts for near-threshhold

behavior.

The collisional deexcitation rate for a non-Maxwellian electron distribution is given

by:

Cu� = nH
e

(
2

me

)1/2 ∫ ∞

0
ε1/2σu�(ε)f(ε)dε , (2.14)
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where σu�(ε) is the deexcitation cross section. Note that unlike Eq. (2.7), the lower

bound for this integral is zero. The deexcitation cross section is obtained from the

“microreversibility” relation [12]:

σu�(ε) =
G�

Gu

(
ε+ ∆E

ε

)
σ�u(ε+ ∆E) , (2.15)

where G� and Gu are the statistical weights of the lower and upper state configurations,

respectively.

Note that the cross sections in Eq. (2.10) and (2.13) refer to the configuration-

averaged cross sections. In more detailed atomic models which account for term splitting

or fine structure splitting, the cross sections must be adjusted accordingly. This can be

done using the relations:

σ�u(ε) = σLU (ε)
gu

GU

(2.16)

and

σu�(ε) = σUL(ε)
g�

GL

, (2.17)

where upper case symbols refer to configuration-averaged values and lower case symbols

refer to “fine structure” values. Note that

GL =
∑
��L

g� and GU =
∑
u�U

gu , (2.18)

where the sums are over all fine structure levels (u or �) within a configuration (U or L).

Note also that for the excitation rate this is automatically accounted for when using the

fine structure oscillator strength, f�u (see Eq. 2.13).

The cross section for radiative recombination in a non-Maxwellian distribution can

be obtained from the Milne formula:

σκi(ε) =
gi

gκ

h2ν2

2mec2
1

ε
σiκ(ν) (2.19)

where hν = ε+ Ij is the photon energy, ε is the kinetic energy of the incident electron, and

σiκ(ν) is the photoionization cross section.

2-5



2.3. Investigation of Non-Thermal Particle Effects on Ionization Dynamics in

High Current Density Ion Beam Transport Experiments

H.-K. Chung, J. J. MacFarlane, P. Wang, and G. A. Moses (Fusion Technology Institute);

J. E. Bailey, C. L. Olson (Sandia National Laboratories); D. R. Welch (Mission Research

Corporation)

Abstract

Light ion inertial fusion experiments require the presence of a moderate density

background gas in the transport region to provide charge and current neutralization for

a high current density ion beam. In this paper, we investigate the effects of non-thermal

particles such as beam ions or non-Maxwellian electron distributions on the ionization

dynamics of the background gas. In particular, we focus on the case of Li beams being

transported in an argon gas. Non-thermal particles as well as thermal electrons are

included in time-dependent collisional-radiative calculations to determine time-dependent

atomic level populations and charge state distributions in a beam-produced plasma. We

also briefly discuss the effects of beam ions and energetic electrons on the visible and

VUV spectral regions. It is found that the mean charge state of the gas, and hence the

electron density, is significantly increased by collisions with energetic particles. This higher

ionization significantly impacts the VUV spectral region, where numerous resonance lines

occur. On the other hand, the visible spectrum tends to be less affected because the closely

spaced excited states are populated by lower energy thermal electrons.

2.3.1. Introduction

In light ion beam transport experiments, high energy, high current beam ions ionize

a background gas during the transport towards a target. The beam space charge is partly

or completely neutralized by the electrons from the gas, and the beam current is partly

or completely neutralized by an induced plasma return current [1]. During the breakdown

process, energetic electrons are produced from ion impact ionization collisions with gas

atoms, knock-on collisions of beam ions with free electrons, and by free electrons being

accelerated by electric fields. These non-Maxwellian electrons are predicted to form a hot

electron “halo” around the beam, which leads to an increase in plasma conductivity and

return current fraction outside the beams; this results in higher net currents inside the beam

channel [2]. It is predicted that the thermalization of these energetic electrons through

electron-electron and electron-neutral collisions is sufficiently slow that about 1% of the

free electrons reside in a high energy tail. Since the evolution of the plasma conductivity
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is dependent on the ionization state of the gas, an improved understanding of the physics

of ion beam transport can be achieved by studying ionization dynamics, or breakdown

physics, of the background gas.

In this paper, we consider the case of Li ion beams incident on an Ar gas. Visible

spectra resulting from transitions between excited states of Ar II have been measured in

PBFA-II gas cell beam transport experiments [3]. These data have been used to infer the

temperature of the relatively cold, “thermal” component of the free electron distribution.

The purpose of this current study is to understand the effects of energetic electrons and Li

beam ions on the ionization dynamics of these moderate-density Ar plasmas. To do this,

we use a time-dependent collisional radiative model which includes collisional excitation

and ionization effects due to energetic electrons, Li beam ions, and thermal electrons. The

implications for spectroscopic diagnostics are also briefly addressed.

2.3.2. Theoretical Models

In our time-dependent collisional-radiative (CR) model, ionization and excitation

populations are computed by solving multilevel atomic rate equations. The population

of each atomic level is determined by computing collisional and radiative transition

rates between each level. The ionization and recombination processes considered are:

collisional ionization by thermal electrons, Li beam ions and energetic electrons; three-

body recombination by thermal electrons; and radiative recombination by thermal and

energetic electrons. Three-body recombination by energetic electrons is neglected since

energetic particles are less important for the three-body recombination processes [4].

Inner-shell ionization and autoionization processes are included since energetic particles

can induce such processes even in a low electron temperature plasma. The excitation

and deexcitation processes considered in our calculations are: collisional excitation and

deexcitation by thermal and non-thermal electrons, and spontaneous radiative decay. At

present, photoexcitation and photoionization are neglected in our calculations. Although

photoionization for the Ar gas cell plasmas discussed here should be unimportant,

photoexcitation due to resonant self-absorption could lead to lower effective spontaneous

decay rates. This will be explored in future calculations.

The rate coefficients for collisional and radiative processes involving thermal

electrons and ion beam particles have been described elsewhere [5,6]. The energetic electron

collisional excitation and ionization rate coefficients are obtained by integrating collisional

cross-sections taken from semi-empirical formulae [7,8]. The form of the energetic electron

energy distribution function (which is based on results from particle-in-cell simulations)
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is assumed to be inversely proportional to electron energy. Particle-in-cell simulations

will give more detailed form of the energetic electron distribution function for our future

study. The total number of energetic electrons is taken to be 1% of thermal electrons.

The non-thermal electron collisional excitation cross-sections and radiative recombination

cross-sections are obtained, respectively, from collisional ionization and photoionization

cross-sections by reciprocity relations [9]. The corresponding rate coefficients are computed

by integrating the cross-sections with the energetic electron energy function. In our time-

dependent collisional-radiative calculations, 270 atomic levels distributed over 7 ionization

stages from Ar I to Ar VII are considered. A configuration averaged atomic model is used

in determining populations and charge state distributions. Separate calculations based on

a fine-structure atomic model are used to compute spectra. Calculated spectra include

contributions from bound-bound, bound-free, and free-free transitions. Opacity effects are

included in the spectral calculations. Voigt profiles are used for line profiles.

The plasma and beam conditions used in our calculations are as follows. We assume

a constant thermal electron temperature of 3 eV. The 9 MeV Li ion beam current increases

linearly with time to 20 kA/cm2 at 18 ns, and then abruptly falls to zero. The thermal

electron density is determined from the effective charge state of the Ar gas, which is updated

via the time-dependent collisional-radiative equations. The energetic electron density is

assumed to be 1% of the thermal electron density during the beam rise time. The argon

gas has a density of 7 × 1016 ions/cm3 (2 torr at room temperature), and at t = 0 the

electron density is assumed to be equal to the ion density.

2.3.3. Results

First we investigate the effects of energetic particles on collisional rates. The

collisional rates considered are an ionization transition from Ar II (singly ionized argon)

ground state to Ar III (doubly ionized) ground state, and an excitation transition between

Ar II 4p and Ar II 4s (see Figure 2.1(a) and (b)). The transition between Ar II 4p and

Ar II 4s was selected since line emission from transitions of this type have been observed

in PBFA-II experiments.

At the low temperatures typical of experimental conditions (T ∼ 3 eV), energetic

particles provide the dominant source of ionization for large energy transitions. Ionization

and excitation due to the energetic electron component exceeds that of the low temperature

Maxwellian component for ∆E >∼ 20 eV transitions because relatively few particles in the

T = 3 eV Maxwellian tail have energies greater than the threshold energy. On the other

hand, for small ∆E transitions (e.g., 4s → 4p) a large fraction of the low temperature
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Figure 2.1. Ionization and excitation rate coefficients for thermal electrons, Li beam ions

and energetic electrons plotted as a function of electron temperature : (a)
excitation between Ar II 4p and 4s states (∆E = 2.7 eV) (b) ionization

between Ar II ground state and Ar III ground state (∆E = 27.7 eV). Solid line:

energetic electron rate. Dotted line: Li beam ion rate. Dashed line: thermal
electron rate.
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Maxwellian electrons can participate in the excitation process. Thus, since there are

significantly more electrons in the low temperature component of our model, excitation

and deexcitation in small ∆E transitions (which produce lines in the visible or UV portion

of the spectrum) are driven by the thermal electron component.

Due to high excitation and ionization rates for high-energy transitions, beam ions

and non-thermal electrons populate high-lying levels. In Figure 2.2, the population ratio

of Ar II 4p to Ar II 4s levels and the ratio of the Ar II ground state to Ar III ground

state are shown as a function of time. The population ratios are scaled to their Local

Thermodynamic Equilibrium (LTE) values. The LTE population ratios between two levels

are based on an electron temperature of 3 eV and an electron density of 7× 1016 cm−3. If

the ratio f(CR)/f(LTE) is unity, the collisional processes are in a detailed balance between

the two levels. Figure 2.2 shows that the relative populations of the two ground states

eventually reach a steady-state ratio in which the Ar II is slightly enhanced relative to

its LTE value. On the other hand, the relative populations of two excited states, which

have a small transition energy, equilibrate very quickly and maintain an LTE ratio. This

results from the fact that excitation processes have such a transition energy comparable to

or smaller than the electron temperature, and that a detailed balance between collisional

processes is established between the two levels in a very short time by thermal electrons.

The equilibration time scale for these excited states is ∼ 10−11 s.

It should be noted that the energetic particles do not significantly affect the relative

populations of the two excited states of a low transition energy [10]. However, the energetic

particles do play a significant role in larger ∆E transitions. The fact that energetic particles

do not cause the relative populations between two closely spaced excited states to deviate

significantly from their LTE value has implications for visible spectral measurements. For

instance, a Boltzmann plot analysis can be used to infer the temperature of the thermal

component of the electron distribution [11].

We next present the results of four simulations which illustrate the effects of energetic

particles on the mean charge state of the Ar plasma. Case A refers to a calculation which

includes contributions from thermal electrons, Li beam ions, and non-thermal electrons

on the Ar ionization dynamics. Case B neglects Li beam ions, but includes thermal and

energetic electrons. Case C neglects energetic electrons, but includes thermal electrons and

Li beam ions. Case D includes only thermal electrons. For each case, the thermal electron

temperature is assumed to be constant at 3 eV and the initial thermal electron density is

assumed to correspond to the ion density (ncold
e = 7× 1016 cm−3); that is, all populations

are in Ar II ground state at t = 0. Thus, the calculations provide insight into the processes
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Figure 2.2. Population ratios for Ar II 4p to 4s (∆E = 2.7 eV) and for the Ar II ground
state to Ar III ground state (∆E = 27.7 eV). Both ratios are scaled to their

LTE values. Solid line: the case in which energetic particles are included for
the first 18 ns. Dotted line: without energetic particles.
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which affect the growth of the electron density after it has become partially ionized. The Li

ion beam and energetic electrons are assumed to rise linearly between t = 0 and 18 ns, and

then abruptly falls to zero. Figure 2.3 shows that the energetic particles can significantly

affect the mean charge state. At 18 ns where the Li beam current and non-thermal electron

density reach their peak value, the mean charge state for case A differs from the value for

case D by a factor of two. For this particular set of plasma and beam conditions, the

energetic electrons are seen to be more effective than the Li beam ions in ionizing the

singly ionized Argon gas. After the energetic particle pulse is removed at 18 ns, the mean

charge state for case A stays near its peak value before going into a recombining stage.

The mean charge state for case D, however, continues to increase before reaching its steady

state value. These results clearly indicate that energetic particle effects play a key role in

affecting the ionization dynamics of these moderate-density transport plasmas.

It is of interest to investigate the implications of the above results for spectral

diagnostics. Figures 2.4 and 2.5 show how energetic particles can affect the visible and

VUV spectral region. The visible spectrum results from small ∆E transitions is shown

and, as stated above, is more influenced by thermal electrons. The energetic particles can

affect the spectrum in the sense that they influence the absolute population of the excited

states, but not their relative populations. Absolute fluxes of many visible lines are close to

Planck function-limited values of πBν . This is due to the fact that: (1) the upper and the

lower levels of the transition are in LTE with respect to each other; and (2) optical depths

for the line cores exceed unity for both cases A and D. It should be noted that if these two

conditions are not met, the absolute intensities for the two cases would not necessarily be

similar as they are in Figure 2.4.

In the VUV region, where resonance lines are prominent, the line spectrum can be

very significantly affected by energetic particles. Several VUV lines are identified in Figure

2.5 as coming from high ionization stages such as Ar III, IV or even V when energetic

particles are included in the calculation. In simulations which neglect energetic particles,

emission lines from the relatively high ionization stages of Ar are not seen. Thus, either

emission or absorption spectroscopic measurements could provide valuable information on

the ionization dynamics of these transport plasmas. We are also presently investigating

whether EUV and x-ray spectral lines resulting from inner-shell transitions can be used to

diagnose energetic particle characteristics. This work will be presented elsewhere.
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Figure 2.3. Mean charge state is plotted as a function of time for 4 cases. (A) Includes
all energetic particles, Li beam and energetic electrons. (B) Includes energetic

electrons but no beam ions. (C) Includes Li beam without energetic electrons.
(D) Includes no energetic particles.
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Figure 2.4. Visible spectra at 18 ns for Case A (top) where energetic particles are included;

Case D (bottom) where no energetic particles are included.
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Figure 2.5. VUV spectral region at 18 ns for Case A (top) and Case D (bottom). Several

of the argon lines are identified by their ionization stage.
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2.3.4. Summary

Time-dependent collisional-radiative calculations have been performed to investigate

the effects of Li beam ions and energetic electrons on the ionization dynamics of light ion

beam transport plasmas. We find that energetic particles play a significant role in affecting

the ionization dynamics, leading to a higher charge state and a higher electron density in

the background plasma. We have also briefly investigated the role of energetic particles in

affecting the visible and VUV spectral regions. We find the visible transitions are strongly

influenced by thermal electrons, while energetic particles can significantly affect the VUV

spectral region.
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3. A Time-Dependent Collisional-Radiative Model for IPROP

A “simple” time-dependent collisional-radiative model has been developed for

IPROP. It is based on models from both NLTERT [1], the CRE code used in our analysis

of Kα satellite spectra, and models developed to study the ionization dynamics of transport

plasmas [2]. It is simple in the sense that: (1) the atomic physics is based on a “local”

approximation; that is, the state of a plasma mass element depends only on the history of its

own local electron temperature and density and ion beam flux, but is not coupled to other

parts of the plasma (by radiation-induced processes, for example); (2) photoexcitation and

photoionization are presently neglected, although a resonance self-absorption model based

on a local approximation could be added if warranted; and (3) emergent spectra are not

calculated. Although the model is being set up to handle an arbitrary number of energy

levels (up to ∼ 103), it is anticipated that within IPROP a relatively small number ( <∼ 100)

of atomic energy levels will be used. This is typically done by using configuration-averaged

levels, as opposed to term-split or fine structure atomic level models.

This model is currently being implemented within IPROP. Substantial progress was

made during a recent visit by Dale Welch to the University of Wisconsin. The interface

has been developed in a manner such that additional improvements in the atomic modeling

can be readily incorporated into IPROP.

Below, we provide a description of the processes included in the collisional-radiative

model. Atomic cross section data utilized by the model is described in Sections 2 and 4 of

this report.

The atomic level populations are calculated from the set of coupled atomic rate

equations of the form shown in Eqs. (2.1) through (2.19). Atomic processes considered in

the model include:

• collisional excitation and ionization by thermal electrons, energetic electrons and

beam ions

• collisional deexcitation by thermal and energetic electrons

• collisional (3-body) recombination by thermal electrons

• spontaneous emission

• radiative and dielectronic recombination

• autoionization.
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It is anticipated that IPROP should be able to fully utilize this model within the

next several months. Computational timing studies should be performed to determine the

extent to which the C-R model increases the overall simulation time of IPROP, particularly

when using large atomic models. This will provide guidance on whether less detailed models

should be used, or whether one can use more sophisticated atomic modeling.
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4. Atomic Data Calculations

In this section, we summarize some of the atomic data calculations for basic atomic

processes occurring in transport plasmas. In particular, this section focuses on dielectronic

recombination and charge exchange.

The first practical problem one will face in atomic model setup is how to specify

atomic level structure for a specific problem. The analysis of atomic spectroscopy

diagnostics requires a detailed specific classification of the level structure of ions (e.g., LS or

LSJ resolution), whereas to cope with the very many excited states participating in plasma

ionization equilibrium calculations necessitates a less detailed viewpoint (for example nl or

even a ‘bundle-n’ average). In our atomic models, fine-structure (LSJ) is resolved for those

levels principally responsible for the dominant spectral lines which can provide potential

diagnostic information; term structure (LS) is used for levels which are not responsible for

important spectral lines, but strongly couple to the relevant transition levels; configuration

average structure (nl) is used for levels which can have an important effect on the ionization

distibution and are necessary for providing a reasonable representaion of radiation energy

balance; and finally, hydrogenic structure is used for a few high levels to represent a large

number of highly excited states.

For IPROP it is expected that a small set of configuration-averaged (nl) levels will

be used to represent the lower levels and hydrogenic levels to represent higher excited

levels. The accuracy of this kind of simple atomic model depends on the calculations of

the corresponding average quantities, i.e., average energies, average oscillator strengths,

and average radiative and collisional cross sections. In our calculations, a configuration-

interaction approach with Hartree-Fock wavefunctions is used to calculate the baseline data

(e.g., energy levels, oscillator strengths, and photoionization cross sections). These baseline

data are fine-structure resolved and quite accurate. From these baseline data, we evaluate

the corresponding average quantities with the use of the standard sum rules [1].

The background theory and the methods for our calculations of electron

impact excitation/deexcitation, electron impact ionization/recombination, radiative

recombination, ion impact excitation/ionization have been described elsewhere [2]. In the

following we outline the new features of our calculations of rate coefficients for dielectronic

recombination and charge exchange.
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4.1. Dielectronic Recombination

A dielectronic recombination is the reaction

XZ+1
i + e(ε)←→ X+Z

j,nl

X+Z
j,nl −→ X+Z

k + h̄ω (4.1)

where Ei + ε = Ej,nl = Ek + h̄ω. The initial state of the recombining ion XZ+1 is

denoted i and is called the “target state”. Target states whose populations are of sufficient

abundance in a plasma to be relevant starting points for recombination events only include

the ground state of the Z + 1 ion and a few of the lowest metastable states. For a low

density plasma, where the electron collisional stabilization process is not important, the

dielectronic recombination rate coefficient for the reaction from the initial state XZ+1
i to

the final state X+Z
k can be evaluated from the Auger transition probability Aa

j,nl and the

radiative transition probability Ar
j,nl→k:

αDR(i− k) =
4π3/2a3

0

T 3/2

∑
d

[
gd

gi
e−Edi/kTAa

d→i

Ar
d→R∑

i′ A
a
d→i′ +

∑
k′ Ar

d→k′

]
(4.2)

where d denotes all possible autoionizing states connecting the initial target state i and the

final stablization state k, Edi = Ed−Ei = ε is the kinetic energy of the recombining electron,

and gi and gd are the statistical weights of the state XZ+1
i and XZ

d (j, nl), respectively. Both

the temperature and energy are in rydbergs and a0 is the Bohr radius. In our previous

calculations an approximate Burgess-Merts formula [3] is used:

αDR(i) =
∑
k

αDR(i→ k)

= 4.8× 10−11B(z)

T 3/2

nt∑
j=i+1

f̄ijA(x)e−E∞
s /aT (cm3/s) , (4.3)

where E∞
s and T are in rydbergs, with E∞

s = Ej − Ei

z = Z −N + 1 , x = E∞
s /(z + 1) , B(z) = z1/2(z + 1)5/2/(z2 + 13.4)1/2 ,

A(x) =



X1/2/(1 + 0.105X + 0.015X2) ∆n = 0

0.5X1/2/(1 + 0.210X + 0.030X2) ∆n > 0

and

a = 1.0 + 0.015z3/(z + 1)2 .
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The summation over j is to be carried out from the minimum energetically allowed value

n0 up to a value nt at which the highly excited nl electron is collisionally ionized faster

than it decays radiatively. The value of nt can be estimated from the expression

n7
t = 5.6× 1017Z6T 1/2/ne ,

where ne is the electron density in cm−3. Although the Burgess-Merts formula has been

widely used in many CRE calculations, it is very difficult to assess its accuracy for a specific

application. The Burgess-Merts formula only represents the total rate coefficient and does

not indicate how the total should be split up into n or nl-shell components. To achieve

this, we have developed a program starting from first principles to calculate dielectronic

recombination rate coefficients.

In our new calculations, we start from Eq. (4.2) which defines the rate coefficient

αDR(i → k). The major effort of doing such detailed calculations is to calculate a large

number of autoionization rates Aa
d−i′ and radiative decay rates Ar

d−k′. We calculate fine-

structure resolved autoionization and radiative decay rates for doubly excited levels up

to principal quantum number n = 6 for isoelectronic systems of Na-like to He-like. For

example, for a Li-like system, Table 4.1 lists the autoionization configurations considered

explicitly in a DR calculation:

Table 4.1.

Target states: 1s2 2s1 1s2 2p1 1s2 3s1 1s2 3p1

Autoionization states: 1s2 3s2 1s2 3s1 4s1 1s2 3s1 5s1 1s2 3s1 6s1

1s2 3s1 3p1 1s2 3s1 4p1 1s2 3s1 5p1 1s2 3s1 6p1

1s2 3s1 3d1 1s2 3s1 4d1 1s2 3s1 5d1 1s2 3s1 6d1

1s2 3s1 4f1 1s2 3s1 5f1 1s2 3s1 6f1

1s2 3s1 5g1 1s2 3s1 6g1

1s2 3p1 4s1 1s2 3p1 5s1 1s2 3p1 6s1

1s2 3p2 1s2 3p1 4p1 1s2 3p1 5p1 1s2 3p1 6p1

1s2 3p1 3d1 1s2 3p1 4d1 1s2 3p1 5d1 1s2 3p1 6d1

1s2 3p1 4f1 1s2 3p1 5f1 1s2 3p1 6f1

1s2 3p1 5g1 1s2 3p1 6g1

1s2 3d1 4s1 1s2 3d1 5s1 1s2 3d1 6s1

1s2 3d1 4p1 1s2 3d1 5p1 1s2 3d1 6p1

1s2 3d2 1s2 3d1 4d1 1s2 3d1 5d1 1s2 3d1 6d1

1s2 3d1 4f1 1s2 3d1 5f1 1s2 3d1 6f1

1s2 3d1 5g1 1s2 3d1 6g1
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Autoionization states 1s2 4s2 1s2 4s1 5s1 1s2 4s1 6s1

(cont.): 1s2 4s1 4p1 1s2 4s1 5p1 1s2 4s1 6p1

1s2 4s1 4d1 1s2 4s1 5d1 1s2 4s1 6d1

1s2 4s1 4f1 1s2 4s1 5f1 1s2 4s1 6f1

1s2 4s1 5g1 1s2 4s1 6g1

1s2 4p1 5s1 1s2 4p1 6s1

1s2 4p2 1s2 4p1 5p1 1s2 4p1 6p1

1s2 4p1 4d1 1s2 4p1 5d1 1s2 4p1 6d1

1s2 4p1 4f1 1s2 4p1 5f1 1s2 4p1 6f1

1s2 4p1 5g1 1s2 4p1 6g1

1s2 4d1 5s1 1s2 4d1 6s1

1s2 4d1 5p1 1s2 4d1 6p1

1s2 4d2 1s2 4d1 5d1 1s2 4d1 6d1

1s2 4d1 4f1 1s2 4d1 5f1 1s2 4d1 6f1

1s2 4d1 5g1 1s2 4d1 6g1

1s2 4f1 5s1 1s2 4f1 6s1

1s2 4f1 5p1 1s2 4f1 6p1

1s2 4f1 5d1 1s2 4f1 6d1

1s2 4f2 1s2 4f1 5f1 1s2 4f1 6f1

1s2 4f1 5g1 1s2 4f1 6g1

1s2 5s2 1s2 5s1 6s1

1s2 5s1 5p1 1s2 5s1 6p1

1s2 5s1 5d1 1s2 5s1 6d1

1s2 5s1 5f1 1s2 5s1 6f1

1s2 5s1 5g1 1s2 5s1 6g1

1s2 5p1 6s1

1s2 5p1 1s2 5p1 6p1

1s2 5p1 5d1 1s2 5p1 6d1

1s2 5p1 5f1 1s2 5p1 6f1

1s2 5p1 5g1 1s2 5p1 6g1

1s2 5d1 6s1

1s2 5d1 6p1

1s2 5d2 1s2 5d1 6d1

1s2 5d1 5f1 1s2 5d1 6f1

1s2 5d1 5g1 1s2 5d1 6g1
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Final stabilization states: 1s2 2s1 2p1 1s2 2s1 3s1 1s2 2s1 3p1 1s2 2s1 3d1

1s2 2s1 4s1 1s2 2s1 4p1 1s2 2s1 4d1 1s2 2s1 4f1

1s2 2s1 5s1 1s2 2s1 5p1 1s2 2s1 5d1 1s2 2s1 5f1

1s2 2s1 6s1 1s2 2s1 6p1 1s2 2s1 6d1

1s2 2p2 1s2 2p1 2s1 1s2 2p1 3p1 1s2 2p1 4s1

It should be noted that the ground configuration of Be-like systems cannot directly

couple to the Li-like ion through the dielectronic recombination reaction in the two-step

process model.

For the autoionization states with principal quantum number n > 6, we use the

following formula to estimate their contribution to the total rate coefficient:

∞∑
n2=nc

αDR(n2) � αDR(nc − 1)

2
nc

(
nc − 1

n1

)3
(

1 +
1

nc

+
1

2n2
c

)
,

where nc has the value of 7 in our calculations, and n1 and n2 are the principal quantum

numbers in autoionization configurations of type

Core + (n1l1)(n2l2) .

For the higher excited target states (e.g., 1s2 4p1, 1s2 5s1, etc.), their contribution

to the dielectronic recombination is very small. We use the Burgess-Merts formula to

estimate the rate coefficients when necessary. We believe that our new calculations for

dielectronic recombination rate coefficients are more accurate and can be used for better

atomic spectroscopy modeling for ICF related plasmas.

4.2. Charge Exchange

A change exchange process is the reaction

A +Bz+1 → A+ +B+z (4.4)

in which an electron goes from the atom A to the ion B+z+1.

In IPROP, the concern is with charge exchange capture by beam ions for ground

and excited states of neutral species in the background. Considering that the relative

velocity of the colliding particles, i.e., beam ions and background atoms, will not be very

low, perturbation theory can be used. In the framework of perturbation theory, the velocity

dependence of the charge-exchange cross section is given by the Brinkman-Kramers formula

[4]:

α(nal
N
a − n) = πa2

0

28η

5
N

(2I)5/2(2In)5/2n2

f(v)

(
v0

v

)2

, (4.5)
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where η = 1/3, N is the number of electrons in the nala shell of the neutral atom, I is the

ionization potential of the shell nala, n is the principal quantum number of a level of ion

B+z with the corresponding ionization potential of In = Z2/2n2, v0 = e2/h is the atomic

unit of velocity, and v is the relative velocity. The function f(v) is given by

f(v)

{[(
v0

v

)
∆I +

1

2

(
v0

v

)]2
+ 2In

}5

(4.6)

where ∆I = I − In.

At low velocities, the cross section decreases more rapidly than follows from Eq. (4.5);

in fact, exponential decrease occurs:

σ(nal
n
a − n) = πa2

0N
π2

8γ2
exp

[
−π∆I

2γ

v0

v

]
(4.7)

where

γ =
1

2



√
N2I +

1

4

(
v

v0

)2

+

√
2In +

1

4

(
v

v0

)2

 . (4.8)

Combining Eq. (4.5) and Eq. (4.7), we have

σ(nal
N
a − n) =



πa2

0
n8η
5
N (2I)5/2(2In)5/2n2

f(v)

(
vn

v

)2
v > vc

πa2
0

π2

8γ
N exp

[
−π∆I

2γ
v0

v

]
v ≤ vc

where Vc is determined from σhigh(vc) = σlow(vc).

The total charge-exchange cross section can be obtained by summing σ(nal
N
a − n)

over all nala and n:

σcx(v) =
∑

(nala)

∑
n

σ(nal
N
a − n) .
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5. A Unified Self-Consistent Model for Calculating Ion Stopping

Powers in ICF Plasmas

P. Wang and T. A. Mehlhorn

Abstract

We have developed a new unified self-consistent ion stopping power model for

use in ion-driven inertial confinement fusion (ICF) target design. This model includes

sophisticated treatments for the electron density distribution of an atom in plasmas

and a full Random Phase Approximation stopping function which extrapolates the zero

temperature Lindhard stopping function to arbitrary temperatures. We have shown that

this model provides accurate ion stopping powers for cold materials, including both low-Z

and high-Z elements. For finite temperature plasmas, the model accounts for the stopping

effects due to electrons in ground states, excited states, resonance states and continuum

states in a self-consistent manner. There is no separate treatment for “bound” and “free”

electrons. Hence, our approach allows for ion stopping powers to be calculated using a single

unified model over a wide range of beam and target conditions relevant to ICF studies.

5.1. Introduction

For many years, the stopping of energetic ions in matter has been a subject of great

interest. In the context of ion driven inertial confinement fusion (ICF) experiments, the

stopping power of ions in matter of both solid and plasma states is crucial for target designs.

For reliable diagnostics and evaluation of ion beam and target parameters such as beam

intensity, target temperature, and density, one must know the stopping power accurately.

Comprehensive reviews of calculations and measurements of ion stopping power in ICF

targets have been well documented [1-4].

For typical plasma conditions in ion beam-target interaction experiments, the target

plasmas are often only partially ionized. Both bound and free electrons make contributions

to the stopping power. The most commonly used approach for calculating ion stopping

power in partially ionized plasmas is to divide the stopping electrons into two groups:

those bound to the plasma ions and those which constitute the plasma free electrons. The

number of free electrons in the plasma is determined by solving the Saha equation. The

contribution of each group of electrons to the stopping power is calculated separately. For

example, most of the stopping power calculations [1,3,5] use the Bethe equation [6] for the

bound electrons and use a separate term for the plasma free electrons. Although this kind

of combined stopping power model has provided a reasonably accurate description of the
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energy deposition of both light and heavy ions in ICF plasmas, one significant weakness is

that the combined stopping power models abruptly switch electrons from “bound” states

to “free” states with the use of a quantum treatment for bound electrons and a statistical

model for the free electrons. Because of the complexity of the calculation, most of the

combined models make the further assumption that all the bound electrons are in their

ground states.

The response of the strongly bound orbital electrons to the ion projectiles is different

from that of the free plasma electrons. The models which abruptly switch an electron from

“bound” states to “free” states may produce undesirable discontinuities in the results of

stopping power as a function of target temperature and density. In fact, for an ion in the

plasma the transition between “bound” and “free” states is physically continuous. One

can represent the effect of the plasma by a fluctuating microfield; the perturbations of

this microfield to the bound states can cause an orbital electron to have some nonzero

probability of becoming unbound from its original nucleus. However, an electron which

is unbound in a one-center system may still be bound in a two-center system consisting

of the original nucleus and a neighboring ion. Moreover, the electron may also be bound

in a 3,4,..., center system which includes additional neighboring ions. Such complexes

have lifetimes on the order of the mean interionic distance divided by mean thermal ion

speed, which is long enough for electronic energy to be well specified, although adiabatically

varying in time. A relevant discussion of these quasi-free electrons has been given by More

[7], who makes use of formal collision theory to describe these electrons in terms of “shape

resonance” in the short-range effective potentials arising from neighboring particles. More

studied this problem within the framework of the ion-sphere model which is appropriate

for atomic systems in plasmas at the conditions of our interest. In ion stopping power

calculations, these quasi-free electrons should be treated properly because they provide a

smooth interpolation between strongly bound orbital electrons and freely moving plasma

electrons.

Another drawback of the combined stopping power models is that they use different

models for different ion velocity regimes, and the separation boundary of “low” and “high”

velocity regimes is usually somewhat ambiguous.

For better understanding of ion stopping power in ICF plasmas, it is necessary to

make more precise treatment of electronic stopping. We describe a unified ion stopping

power model which treats the “bound” and “free” target electrons in a self-consistent

manner. We present the model in detail, describe the computational implementation, and

give a detailed and critical evaluation of the calculation results.
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5.2. General Formalism of the Unified Ion Stopping Power Model

The dielectric formulation of ion stopping theory pioneered by Lindhard and his

associates [8,9,10] combined with the local density approximation [11] has proven to be

a powerful and flexible tool for ion stopping power calculations. Our model is developed

within this framework.

A charged particle passing through an ionized medium will induce an electric field

by polarizing the medium. The induced electric field will then act back on the particle,

resisting its motion, and cause it to lose energy. This induced electric field can be related to

the dielectric function ε(k, ω) of the medium through its Fourier transform. For a fast ion

with charge Z1e moving in a straight line in the x direction with velocity V , the stopping

power dE/dx is given by

dE

dx
= −4π

m

(
Z1e

2

V

)2

ρL(ρ, V ) , (5.1)

where ρ and m denote, respectively, the electron density and the electron mass, and L is

the stopping function which is related to the dielectric function ε(k, ω) through

L(ρ, V ) =
i

πω2
0

∫ ∞

0

dk

k

∫ kV

−kV
ω dw

[
1

ε(k, ω)
− 1

]
, (5.2)

where ω0 is the plasma frequency, i.e.,

ω2
0 =

4πe2ρ

m
. (5.3)

Eq. (1) can be extended to calculate the stopping power of a nonuniform electron

cloud with the use of the local density approximation [11]. In the local-density

approximation, the nonuniform electron cloud is divided into small independent volume

elements, and the electron density distribution in each volume element is assumed to be

uniform. The stopping power is calculated for a charged particle in a free electron gas of

each volume element’s density, and the final stopping power is computed by averaging over

these values, weighted by their distribution in the nonuniform electron cloud:

(
dE

dx

)
= −4π

m

(
Ze2

V

)2 ∫ ∞

0
ρ(r)L(ρ, V )4πr2dr, (5.4)

where ρ(r) is the radial electron density distribution function of the stopping medium.

Since the stopping medium of interest are solids and partially ionized plasmas,

because of atomic shell structure, the spatial variation of electron distribution is very
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dramatic. It is therefore necessary to examine the assumption that the local density

approximation is applicable for these targets. Consider a fast charged particle with velocity

V passing through a nonuniform electron gas with a spatial distribution function ρ(r). The

spatial variation of the electron gas is determined by

ρ(r)

|dρ(r)/dr| . (5.5)

Then the interaction between the charged particle and the “local” electron gas can be

characterized by the effective interaction time

Teff =
ρ(r)

|dρ(r)/dr|
1

V
. (5.6)

On the other hand, the plasma oscillation causes an intrinsic variation of the electron density

distribution which is characterized by the plasma frequency ω0 = (4πρ(r)e2/me)
1/2. This

intrinsic variation is seen by the incident charged particle in both uniform and nonuniform

electron gases in the time scale of 1/ω0. If the effective interaction time between the

incident charged particle and “local” electrons in a target with nonuniform electron density

distribution is smaller than the local plasma oscillation period, then the local density

approximation is applicable for such a target. Figure 5.1 shows the comparison of these two

parameters for a proton with various energies passing through a gold target. The radial

charge density profile of a gold atom is also shown at the top of the figure. Note that the

wave feature in the curves of the effective interaction time and plasma oscillation period

result from the shell structure in the electron density profile. We see that for protons with

energies above 1 MeV, the effective interaction times are always smaller than the local

plasma oscillation period. For protons with lower energies, the effective interaction time

becomes larger than the local plasma oscillation period in the interior region because of

the extreme large density gradient. This means that the local density approximation may

not be appropriate for slow ions at this region. However, it is known that the slow ions are

largely stopped by the outer region of electrons where the condition Teff < ω−1
0 is always

true. We therefore use the local density approximation in the development of our stopping

power model.

To develop a unified model for electronic stopping, the stopping power in general is

(
dE

dx

)
= −4π

m

(
Ze2

V

)2 ∫ ∞

0
ρ(T,N, r)L(T, ρ, V )4πr2dr , (5.7)

where T and N denote, respectively, the temperature and particle number density of the

target, V is the projectile velocity, ρ is the electron density function of the target, and L is a
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Figure 5.1. Comparison of the local plasma oscillation period and the effective interaction

times for the interaction of a proton and a cold gold target. (Top) Radial
electron density profile for neutral gold atom. (Bottom) The corresponding

local plasma oscillation period and the effective interaction times for protons

with three different energies.
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generalized stopping function which is temperature dependent. Using this general formula

as a starting point, our present work is concerned with establishing two main points.

The first main point is how to choose an atomic model with which we can determine

the electron density distribution accurately over a wide range of temperature and density

conditions relevant to ion-driven inertial confinement fusion targets. The conventional

isolated atom Hartree-Fock model has been widely used to calculate electron density

distributions for various purposes, but its results are feasible only for low density plasmas.

The self-consistent-field (SCF) band-structure model [12,13] can provide a very accurate

electron density distribution for solids. However, because of its complexity, this model is

rather difficult to extend to high-Z materials (where relativity plays an important role) and

to finite temperatures. In 1979 Liberman developed a self-consistent-field “atom-in-jellium”

model [14] to study atomic properties in high temperature and high density plasmas. This

model has much of the simplicity of an isolated atom but captures much of the physics

of the band-structure model. More importantly, it provides a self-consistent treatment for

both “bound” and “free” electrons in finite temperature plasma conditions. Its accuracy

and simplicity make it attractive for large scale calculations of electron density distributions

for materials containing either low- or high-Z atoms and either zero- or finite temperatures.

We therefore choose this atomic model to determine the electron density distribution for

ICF targets of our interest.

The second main point of this work concerns the stopping characteristics of pointlike

and nonrelativistic positive ions with arbitrary velocity in ICF targets at any temperature.

Here we take advantage of the exact Random Phase Approximation (RPA) dielectric

function developed by Maynard and Deutsch [15], which is not constrained by projectile

velocities and target temperatures.

5.3. Electron Density Distributions in Plasmas

In a partially ionized plasma, the electron density distribution function, ρ(r), is

determined by summing over electron population densities in a strongly bound ground

state, loosely bound excited states, quasi-free resonance states, and free states. In the

“atom-in-jellium” model, electrons in all these different states are treated in a self-consistent

manner. The transition between localized bound states and freely moving continuum states

is smoothly continuous.

The schematic illustration of the “atom-in-jellium” model [14] is given in Figure 5.2,

where the atom is represented as a point nucleus embedded in a spherical cavity in a

continuous background positive charge. The cavity radius R is determined either by the
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matter density (ρ = 3M/4πR3, whereM = atomic mass) or by other physical considerations

( e.g., chemical potential). There are sufficient electrons to neutralize both the nucleus and

the surrounding positive charge. Electrical neutrality is also required inside the atomic

cavity. Outside the cavity, a “muffin-tin” approximation is used, i.e., the electron density

is replaced with its volume average in all potential-energy expressions.

The electrons are governed by a set of self-consistent-field one-electron Dirac

equations:

[c�α · �p+ βc2 − c2 + V (r)]φi(�r) = εiφi(�r) , (5.8)

where φi(�r) is the normalized one-electron orbital function, εi is the energy eigenvalue, and

V (r) is the potential function which can be expressed as

V (r) =



−Z

r
+
∫
r′<R

ρ(r′)
|�r−�r′| − [3π2ρ(r)]1/3

π
− ν r < R

− (3π2 ρ̄)1/3

π
r > R ,

(5.9)

where the Lagrangian multiplier ν is given by

ν =

{[
4− ρ̄

ρ(R)

]
(3π2ρ̄)1/3 − 3[3π2ρ(R)]1/3

}
/4π . (5.10)

The electron density itself is given in terms of normalized one-electron orbital functions

and the muffin-tin approximation:

ρ(r) =




∫
ρ−(�r) sin θ dθ dϕ

4π
r < R

∫
x>R

ρ−(�x) d�x∫
x>R

d�x
= ρ̄ r > R

(5.11)

ρ−(�r) =
∑

i

ni |φi(�r)|2.

The orbital occupation number, ni, is determined by the Fermi-Dirac distribution function:

ni =
1

exp
[

(εi−µ)
kT

]
+ 1

, (5.12)

where µ is the chemical potential of the plasma. The sum in Eq. (11) includes electrons in

ground states, excited states, and an integral over the continuum.

Figure 5.3 shows the calculated electron radial density profiles for aluminum at room

temperature and various densities. Also shown are the SCF band-structure calculation [13]

result at normal density and the isolated atom Hartree-Fock (HF) result. We note that the
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Figure 5.2. A schematic charge distribution for the “muffin-tin” atomic model: (a) a point
nucleus at the center of a spherical cavity; (b) a constant positive charge

density outside the cavity which represents surrounding ions; (c) a spherically

symmetric electronic charge density inside the cavity; (d) a volume averaged
electronic charge density outside the cavity. R is the radius of the cavity.
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electron density distributions show the same shell structure in all the cases, but significant

differences appear away from the interior region at different matter densities. At normal

density, our calculated result is very close to that of the SCF band-structure calculation,

and as density decreases, our calculated results converge to the isolated atom Hartree-Fock

result. This indicates that to some degree the “atom-in-jellium” model correctly accounts

for the environmental effects on the electron density distributions. This model smoothly

connects the solid-state band-structure model and the isolated atom Hartree-Fock model,

and naturally extends the solid-state band-structure model into finite temperature high

density plasmas. On the other hand, for low density regimes this model describes an

isolated atom or an ion in equilibrium with an electron sea.

The temperature effect on electron density distributions is shown in Figure 5.4, where

the radial electron density profiles for gold at a density of 1.93 g/cm3 and three different

temperatures are plotted. The charged states of the plasma are determined by summing

over all the “resonance” and “free” electrons within the atomic cavity. As temperature

increases, more and more electrons are excited and ionized. Therefore we see the electron

density decrease in the inner regime and increase in the outer regime. It is important to

note that the “atom-in-jellium” model uses the same quantum treatment for both bound

and continuum states, and as a result there is a smooth transition from bound state to

narrow resonance and then to broad resonance as the density or temperature is changed.

5.4. The Random-Phase-Approximation Stopping Interaction Function

The stopping interaction function, L(ρ, V ), describes the response of an electron gas

to the perturbation of a charged projectile. It includes the polarization of the electrons by

the charged particle and the resultant charge-screening and plasma density fluctuations. In

the Lindhard theory, both individual electron excitation and collective plasmon excitation

are treated smoothly without separate “distant” and “close” collision processes. The

conventional zero-temperature Lindhard stopping interaction function takes the form [16]

L =
6

π

∫ V/V F

0
u du

∫ ∞

0
dz

z3f2(u, z)

[z2 + χ2f1(u, z)]2 + [χ2F2(u, z)]2
(5.13)

where

f1(u, z) =
1

2
+

1

8z
[1− (z − u)2]

∣∣∣∣ln z − u+ 1

z − u− 1

∣∣∣∣

+
1

8z
[1− (z + u)2]

∣∣∣∣ln z + u+ 1

z + u− 1

∣∣∣∣ , (5.14)
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Figure 5.3. Calculated radial electron density profiles for aluminum atoms at room

temperature and three different densities. Results for isolated atom and SCF
band-structure calculations [13] are also shown.
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Figure 5.4. Calculated radial electron density profiles for a gold atom in plasmas with
ρ = 1.93 g/cm3 and at three different temperatures.
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and

f2(u, z) =




1
2
πu for z + u < 1

( π
8z

)[1− (z − u)2] for |z − u| < 1 < z + u

0 for |z − u| > 1.

(5.15)

The variables z and u are the reduced wave number and frequency:

z =
k

2kF
and u =

ω

kVF
(5.16)

with kF and VF denoting Fermi wave number and velocity:

EF =
1

2
mV 2

F ≡
h2k2

F

2m
=

h̄2

2m
(3π2ρ)2/3 . (5.17)

The dimensionless quantity χ2 is defined by

χ2 =
V0

πVF
(5.18)

with V0 = e2/h̄ denoting the Bohr velocity.

Some typical illustrations of the variation of Lindhard stopping interaction function

with electron density and the ion velocity are presented in Figure 5.5. We see that each

curve has a flat section at low electron densities where the ion is going much faster than

the mean electron velocity. Each curve bends down where the ion velocity becomes equal

to the Fermi velocity, VF , of the free electron gas. The interaction between the free electron

gas and ion is reduced at higher electron densities because some of the electrons of the free

electron gas have higher velocities and can respond adiabatically to the ion.

Lindhard’s result is only feasible for cold targets. For finite temperature cases, the

increase of the electron thermal motion results in the decrease of ion stopping. In order

to study ion stopping in ICF-relevant hot dense plasmas, it is necessary to extrapolate the

zero-temperature Lindhard stopping quantity to plasmas at any temperature. Maynard and

Deutsch [15] have developed a model which makes use of the full RPA dielectric function to

give formulae for the temperature-dependent stopping function of the electronic stopping:

L =
6

πχ2

∫ V/VF

0
u du

∫ ∞

0
dz

z3χ2f2(u, z)

[z2 + χ2f1(u, z)]2 + [χ2f2(u, z)]2
(5.19)

where

f1(u, z) =
∫ ∞

0
dk n0(k) + πTe

∞∑
n=0

{
bn
γn
− 1

4z

[
tan−1

(
P+ + an

bn

)

+ tan−1
(
P+ − an

bn

)
− tan−1

(
P− + an

bn

)
− tan−1

(
P− − an

bn

)]}
, (5.20)
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Figure 5.5. Plot of variation in zero-temperature Lindhard stopping function with electron

density for various projectile energies.
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f2 = −πTe

8z
ln




1 + exp
[

γ−P 2
+

Te

]

1 + exp
[

γ−P 2
−

Te

]

 , (5.21)

with

n0(k) =

[
exp

(
k2 − γ
Te

)
+ 1

]−1

,

T e =
T

TF
,

P± = u± z,
γ = αTe. (5.22)

The quantity α is determined from

F1/2(α) =
2

3
T−3/2

e , (5.23)

where Fn(α) denotes the Fermi function. The coefficients an and bn in Eq. (20) are given

by

an = ±1

2
{γ + [γ2 + (2n+ 1)2π2T 2

e ]1/2}1/2

and (5.24)

bn = ±1

2
{γ + [γ2 + (2n+ 1)2π2T 2

e ]1/2}1/2 .

It is important to note that with these equations, one can recover the Lindhard result at

the low-temperature limit (T = 0) and make a quantitative connection to the well-known

Jackson procedure [17] at the high-temperature limit (T →∞):

LRPA = LJ
e + ψ(x)∆(x) (5.25)

where

x = V/Vth,

ψ(x) = erf(x)− 2x√
π
e−x2

,

∆(x) = ∆1(x) +
1

2
∆2(x) +

1

2
− ln(0.764x2

√
1 + 1/x2).

The functions ∆1(x) and ∆2(x) have been tabulated by May [18].

Direct application of the RPA stopping number to large scale stopping power

calculations is a formidable task since f1 is a very slowly converging quantity. We
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have chosen an interpolation formula of L(T, ρ, V ) which bridges the accurate asymptotic

expression of Eq. (19) in both the small and large projectile velocity limits [15]:

L(T, ρ, V ) =



L1 =

(
V
VF

)3
C(χ2, α) 1

1+GV 2 V ≤ Vint

L2 = ln
(

2mV 2

Tω0

)
− 〈V 2

e 〉
V 2 − 〈V 4

e 〉
2V 4 V ≥ Vint,

(5.26)

where 〈
V 2n

e

V 2
F

〉
=
T n

e Fn+1/2(α)

F1/2(α)
, (5.27)

C(χ2, α) =
∫ ∞

0

dz z3

(z2 + χ2 f1 (z, 0))2
[
1 + exp

(
z2

Te
− α

)] . (5.28)

The interpolation boundary velocity, Vint, can be determined from

Vint = [
3〈V 2

e 〉
2

+
3h̄ω0

2m
]1/2, (5.29)

and G is fixed by L1(Vint) = L2(Vint). Detailed numerical calculations have shown that the

relative error of this interpolation formula is smaller than a few percent at any temperature.

The values of the exact RPA stopping function for ions of various energies stopped

in uniform electron gases with different densities and temperatures are shown in Figures 5.6

and 5.7. It is seen that as temperature increases, the interaction strength decreases.

This temperature effect can be seen more clearly from Figure 5.8, where stopping powers

calculated from two different stopping functions for protons in a gold plasma with T = 1

keV and ρ = 0.193 g/cm3 are compared. We see that the use of the Lindhard stopping

function significantly overestimates the stopping power in the low energy regime. With the

exact RPA stopping function, we have an accurate description for ion stopping in plasmas

over the whole temperature range.

5.5. Effective Charge Theory

The effective charge of an ion is usually inferred by comparing the stopping power

of a higher-Z ion to that of a proton. Any deviation from a Z2 dependence is attributed to

an effective charge. In our calculations, we use the expression given by Brown and Moak

[19]:

Z̄1/Z1 = 1.− 1.034 exp(−137.04 β/(Z1)
0.69) . (5.30)
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Figure 5.6. Plot of variation in the full RPA stopping function with electron density and
temperature for ions with E = 1 MeV/amu.
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Figure 5.7. Plot of variation in the full RPA stopping function with electron density and
temperature for ions with E = 0.1 MeV/amu.
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Figure 5.8. Stopping power for protons in a gold target with T = 1 keV and ρ =

0.193 g/cm3. Shown are results calculated with the Lindhard stopping function
and the full RPA stopping function.
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where β is the ion velocity in the units of the speed of light. Figure 5.9 displays the effect

of the effective charge of the projectile ion on the stopping power. In the figure we compare

the stopping powers for carbon in a cold gold target with Z̄1 = 6 and Z̄1 determined by

Eq. (30). It can be seen that the effective charge of the projectile ion has a very important

impact on the stopping power result.

We emphasize that it is very important to have reasonable expressions for Z̄1 for the

ion stopping power in cold materials where experimental data is available since a scaled

form of these expressions is used in heated materials where no experimental data is currently

available. Furthermore, special care is required in distinguishing between charge state data

that is obtained by comparison of stopping powers as mentioned above and data obtained

in transmission experiments. Brandt [20] points out that the charge state of an ion can

be substantially altered upon exiting a foil. Consequently, transmission data does not

accurately reflect the charge state of an ion when it is inside the stopping medium.

5.6. Numerical Results

The stopping of protons on cold aluminum has been well studied. We begin by

studying the case of a monoenergetic beam of proton ions incident on a planar aluminum

target so that we can check the validity of the electron density distribution represented by

the “atom-in-jellium” atomic model. Figure 5.10 shows the related change in the calculated

proton stopping power in neutral aluminum as compared to experimental data using the

isolated atom Hartree-Fock-Slater (HFS) electron density distribution and the “atom-in-

jellium” electron density distribution discussed above. It can be seen that while in the

high energy regime both atomic models give good agreement with the experimental data,

the low energy stopping power is over-predicted for isolated atoms. It has been known

that the low energy ion and high energy ion are mainly stopped by two different parts of

electrons of the target atom. Most of the energy of the low energy ion is lost to outer shell

electrons, while the inner shell electrons play a major role in stopping high energy ions.

As mentioned above, while outer shell electrons are strongly affected by the surrounding

environment, the inner shell electron distribution is relatively stable. Significant difference

is seen in the spatial variation of the “atom-in-jellium” electron densities and isolated atom

HFS electron densities away from the interior of the target atom due to solid state bonding

effects. For inner shell electrons, especially for K-shell electrons, the density distributions

of the two models are almost identical. The difference of the outer region electron density

distributions of the two atomic models results in a significant discrepancy for the low energy

ion stopping power. The good overall agreement of the calculated stopping power with the
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Figure 5.9. Stopping power for carbon in a gold target at room temperature and normal

density. Shown are results predicted from two different effective charge models.
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Figure 5.10. Stopping power for protons in neutral aluminum as a function of energy.

Experimental data are compared with results calculated from two different
electron density distributions.
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experimental data [21] demonstrates that the electron distribution of the “atom-in-jellium”

atomic model is quite accurate for both outer and inner shell electrons.

In Figure 5.11 the calculated proton stopping powers for a cold gold target with two

different atomic electron density distributions are shown together with the experimental

data [21]. We see that for this high Z target, the calculated stopping power with the

“atom-in-jellium” electron density distribution shows good overall agreement with the

experimental data.

Figure 5.12 shows the stopping power of a monoenergetic beam of carbon ions

incident on a planar gold target. Our calculated result is compared with Northcliffe’s

tabulated data [22] and the results of two other different models [1]. It can be seen that

the Bethe model is only valid for the high energy range, while the LSS model is accurate

in the low energy range. Our result shows good agreement with the tabulated data over

the whole energy range.

Figures 5.13 and 5.14 show the stopping powers for protons in hot gold plasmas.

Figure 13 represents the case of a gold target having Te = 1 keV, ρ = 0.193 g/cm3, and

Figure 14 considers the case of a gold target having Te = 50 eV, ρ = 1.93 g/cm3. In the first

case, there are about 270 electrons/Debye sphere, while in the second case, this number is

only about 2.5. In both cases there is fairly good agreement between our result and that of

three other commonly used models. These two cases correspond to two completely different

plasma conditions. The first case represents a weakly coupling plasma, while the second

case is a strongly coupling plasma. The good agreement of our results with the results of

other commonly used models for these extreme cases indicates that our stopping model is

valid for a wide range of target conditions.

Finally, we come to the main point of this work: studying the ion stopping

characteristics of hot targets using a self-consistent treatment for both bound and free

electrons. We have calculated the proton range in a hot gold target with the model discussed

in previous sections and made comparisons with the results of the Generalized Oscillator

Strength (GOS) model [23] and that of the scaled-Bethe model [24]. Figures 5.15 and

5.16 demonstrate the variation of the range in gold with ionization for protons of various

energies. Results of this work, GOS results and those using the scaled-Bethe model are

shown. There are two points of interest in this comparison. First, the range is predicted

to decrease more slowly with ionization for the GOS results. Our results lie somewhere

between the GOS results and the scaled-Bethe results. Secondly, our results show a smooth

decrease with ionization in all the cases, while the GOS model predicts that the range for

high energy projectiles can initially increase with ionization of the atom.
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Figure 5.11. Stopping power for protons in neutral gold as a function of energy.

Experimental data are compared with results calculated from two different
electron density distributions.
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Figure 5.12. Stopping power of solid density room temperature gold for carbon ions. (Top)
Calculated result from the model developed in this paper. (Bottom) Results

from the LSS model, the Bethe model, and Northcliffe’s tabulated values.
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Figure 5.13. Stopping power for protons in a gold plasma with Te = 1 keV, ρ =

0.193 g/cm3. (Top) Calculated result from the model developed in this paper.
(Bottom) Free electron stopping power calculated from the polarization

response model (Spitzer), the simple binary model (Jackson), and the

binary+collective model (Dielectric).
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Figure 5.14. Stopping power for protons in a gold plasma with Te = 50 eV, ρ = 1.93 g/cm3.

(Top) Calculated result from the model developed in this paper. (Bottom)
Free electron stopping power calculated from the polarization response model

(Spitzer), the simple binary model (Jackson), and the binary+collective model
(Dielectric).
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Figure 5.15. Stopping range of 1 MeV and 2 MeV protons in gold as a function of ionization

state of the target. Results predicted by three different models are presented.
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Figure 5.16. Stopping range of 4 MeV and 10 MeV protons in gold as a function of

ionization state of the target. Results predicted by three different models
are presented.
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It has been argued [24] that such an initial range lengthening characteristic in high

Z targets occurs because the interaction velocities for bound electrons are different from

those of free electrons. The characteristic velocity of a bound electron is given by the local

Fermi velocity and the characteristic velocity of a free electron is the thermal velocity.

We note that these GOS results were calculated by assuming that all the bound electrons

are in ground configurations. Hence, the physical picture for these GOS calculations is

that the projectile ion interacts with two completely different groups of electrons: strongly

bound ground state electrons and free plasma electrons. The bound electron interacts more

strongly with the fast projectile ion than the free electron does until the plasma thermal

velocity becomes comparable to or greater than the relevant Fermi velocity of the bound

electron. Therefore we see the range of a slightly ionized ion can increase over that of the

neutral atom in the GOS results. However, in reality we have a different physical picture for

the interaction between the projectile ion and plasma. The target electrons continuously

distribute over strongly bound ground states, weakly bound excited states, “quasi-bound”

resonance states, and free states. The interaction velocities for electrons in different states

are different. But instead of switching abruptly from the local Fermi velocity to the thermal

velocity, the transitions between the electron interaction velocities in different states are

smoothly continuous. Therefore the GOS results could overestimate the effect of different

electron interaction velocities on the ion range. If the stopping effect from excited electrons

is included in the GOS calculation, we expect that the initial range lengthening features

in the GOS results could be reduced. This needs to be verified in future investigations. In

our calculations, contributions from electrons in all states (ground, excited, and continuum

states) are essentially taken into account in a self-consistent manner. This characteristic

of the model is reflected in Eq. (11). The sum in Eq. (11) runs through the ground state

and all excited states and continuum states. The population of each state is determined

by the Fermi-Dirac distribution. The difference between our results and the GOS results

demonstrates that the contributions from electrons in excited states and resonance states,

which can be interpreted as “quasi-bound” electrons in high density plasmas, is important

in stopping power calculations and should be treated carefully.

5.7. Analytic Fits

In order to provide input data for hydrodynamic codes, we have fitted the calculated

stopping power data to simple analytic functions. The value of the total ion stopping power

of a plasma target depends on the following parameters:

(1) charge of the projectile,
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(2) energy (velocity) of the projectile,

(3) nuclear charge of the target,

(4) temperature of the target,

(5) particle density of the target.

Hence, an ideal data table for ion stopping powers would require five dimensions.

In practice, a 5-dimensional table lookup is too complicated to implement. To reduce the

complexity, the following points were considered:

A. A different data table is set up for each combination of projectile species and target

plasma.

B. For given projectile and target conditions, the stopping power is a very smooth

function of projectile energy. A 10-parameter function is used for fitting the energy

dependence.

C. Our calculations show that stopping power and target charge state (Z̄) are not in

one-to-one correspondence. Hence, instead of using Z̄, we do a curve fit for each

(T, ρ) point.

At low energies, the electron stopping power is proportional to projectile velocity,

while the high energy behavior of the stopping power is very well described by the Bethe

formula [6]. Based on these asymptotic functional forms, we used the following functions

to fit the energy dependence of stopping power, which is similar to that used by Ziegler,

et al. [21]:
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dE

dx
= A1 ·EA2 0 < E ≤ 0.1E0

dE

dx
= S1 · S2/(S1 + S2)

S1 = A3 · EA4

S2 = (A5/E) · ln (1 + A6/E + A7E)




0.1E0 < E ≤ 10E0

dE

dx
= (A8/E) · ln (1 + A9/E + A10E) E > 10E0 . (5.31)

The fit is divided into three parts, one for the low energy regime (E ≤ 0.1E0), one for

the high energy regime (E > 10E0), and one for bridging the gap between low- and high-

energy regimes. The energy E0 corresponds to the maximum of the stopping power at

each temperature and density point. It has been found that this fitting procedure works

very well for all cases. Typical errors in the fit are only a few percent. Figure 5.17 shows

a typical comparison of calculated data and its fitting curve. It can be seen that the fit

well-represents the data over the entire energy range.

5.8. Summary

We have developed a model to study the energy deposition of an arbitrary ion

in a material of arbitrary composition, density, and temperature. This model includes

sophisticated treatments of the electron density distribution of an atom in plasmas and a full

Random Phase Approximation stopping function which extrapolates the zero temperature

Lindhard stopping function to arbitrary temperatures. Therefore, it can accommodate a

wide range of temperatures and densities relevant to ICF plasmas. We have shown that

this model provides quite accurate ion stopping powers in cold materials, including both

low-Z and high-Z targets. For finite temperature plasmas, the model accounts for the

stopping effects due to electrons in ground states, excited states and continuum states in

a self-consistent manner. We have compared our calculated results of proton range in a

gold plasma with those of the GOS model and scaled-Bethe model. Our results lie between

the results of these two different models. No initial range lengthening feature is seen in

our calculated results, which appears in the GOS results. We conclude that this difference

could be caused by the different treatment of less-bound electrons in excited states and

resonance states.

It is worthwhile pointing out that this model is in the framework of the first-Born

approximation for the projectile. For low energy heavy ions, the first-Born approximation
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Figure 5.17. Stopping power for protons in aluminum at room temperature and normal

density. Both calculated data points and the curve fit are shown.
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is no longer appropriate and higher-order Born corrections should be included [15]. This

can be done by directly including the Barkas term [25] and Bloch term [26] into our model.

Further development of the model in this direction is currently under way.

References for Section 5

1. Mehlhorn, T.A., J. Appl. Phys. 52, 6522 (1981).

2. Deutsch, C., Laser Part. Beams 2, 449 (1984).

3. Nardi, E., Peleg, E., and Zinamon, Z., Phys. Fluids 21, 574 (1978).

4. Peter, T. and Meyer-Ter-Vehn, J., Phys. Rev. A43, 1998 (1990).

5. Brueckner, K. A., Senbetu, L., and Metzler, N., Phys. Rev. B25, 4377 (1981).

6. Bethe, H.A., Handbuch Der Physik, Edited by S. Flugge, Springer-Verlag, Berlin,

Vol. 24, 273 (1933).

7. More, R. M., Adv. Atomic Molec. Phys. 21, 305 (1985).

8. Lindhard, J., Mat. Fys. Medd. Dan. Vid. Selsk. 28, 8 (1954).

9. Lindhard, J., Scharff, M., Schiott, H.E., Mat. Fys. Medd. Dan. Vid. Selsk. 33, 14

(1963).

10. Lindhard, J., Winther, A., Mat. Fys. Medd. Dan. Vid. Selsk. 34, 4 (1964).

11. Lindhard, J. and Scharff, M., Mat. Fys. Medd. Dan. Vid. Selsk. 27, 1 (1953).

12. Moruzzi, V. L., Williams, A. R., and Janak, J. F., Phys. Rev B15, 2854 (1977).

13. Moruzzi, V. L., Janak, J. F., and Williams, A. R., Calculated Electronic Properties

of Metals (Pergamon, New York, 1978).

14. Liberman D. A., Phys. Rev. B20, 4981 (1979).

15. Maynard, G, and Deutsch, C., J. Physique 46, 71 (1985).

16. Jackson, J.D, Classical Electrodynamics (Wiley, New York, 1975).

17. May, R.M., Aust. J. Phys. 22, 687 (1969).

5-33



18. Iafrate, G.J. and Ziegler, J.F., J. Appl. Phys. 50, 5579 (1979).

19. Brown, M.D. and Moak, C.D., Phys. Rev. B6, 90 (1972).

20. Brandt, W., Atomic Collisions in Solids, Edited by S. Datz, B. Appleton, and C.

Moak Vol. 1, 261 (Plenum, New York, 1975).

21. Ziegler, J.F., Stopping Cross Sections for Energetic Ions In All Elements, Vol. 5

(Pergamon, New York, 1980).

22. Northcliffe, L. and Schilling, R., Nucl. Data Tables A7, 233 (1970).

23. McGuire, E.J., Phys. Rev. A26, 1871 (1982).

24. Mehlhorn, T.A., Peek, J.M., McGuire, E.J., Olsen, J.N., and Yong, F.C., J. Physique

44, 8 (1983).

25. Barkas, W.H., Dyer, J.W., and Heckmann, H.H., Phys. Rev. Lett. 11, 26 (1963).

26. Bloch, F., Ann. Phys. 16, 285 (1933).

5-34



6. Analysis of Kα Satellite Emission Spectra

6.1. Improvements to Radiation-Hydrodynamics Modeling

The purpose of this section is to summarize simulations regarding the analysis of

the Kα spectroscopy experiments on PBFA-II.

A fairly substantial effort was recently made to understand the effects of line

radiation on the overall energetics and temperature of the expanding foil targets. The

CRE line transport model within the hydrocode was improved to take into account the

effects of the radiation emitted by the gold (as well as other layers) on heating the Al

due to the Al line opacity. Thus, when using the “full” radiation model in calculations

described in this section, the following are taken into account:

1. The continuum is transported using a multigroup (100 groups), multiangle integral

radiation transport model; the opacities for the continuum are tabulated ahead of time

using EOSOPA code of P. Wang; the continuum opacities are computed using CRE

populations which neglect photoexcitation/photoionization (LTE is not assumed).

2. Line radiation effects are modeled using a CRE model which includes resonant self-

absorption effects on the NLTE atomic level populations; a total of 269 levels were

used (222 for Al, 43 for CH, 4 for H); 1368 lines were transported; after the populations

are obtained, zone-to-zone escape probability (EP) coupling coefficients are obtained

to get the heating/cooling in each zone; the net heating rate for each line also takes

into account the radiation due to an external continuum source (e.g., the gold); this

is done within the context of the escape probability model and introduces no more

assumptions than those already in the EP modeling.

The CRE model within the hydrocode was benchmarked using the standalone

CRE model. In the standalone calculation, a more refined treatment of the radiation

effects on the populations and heating/cooling rates is done. For example, the effects

of the Al continuum radiation field on photoexcitations is modeled, as are its effects on

heating/cooling rates. (In short, the emissivities and opacities computed before doing the

radiation transport include all Al transitions as well as a blackbody radiation field due to

the external source).

Figures 6.1 and 6.2 show the net heating rates computed using the standalone CRE

code (NLTERT) and the hydrocode (BUCKY/CRE), respectively. In each case, results for

an electron temperature of Te = 25 eV for the Al are plotted at the top, and Te = 35 eV are
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Figure 6.1. Calculated using standalone CRE code (NLTERT): net radiative heating rates
for an Al plasma at electron temperatures of Te = 25 eV (top) and Te = 35 eV

(bottom). The plasma is exposed on one side to a blackbody radiation source

with TR = 0, 25, and 35 eV. The total (lines + continuum) net heating is
represented by solid curves. The continuum contribution is represented by

dashed curves.
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Figure 6.2. Same as Fig. 6.1, but results are from CRE and continuum radiation transport

models in BUCKY-1 radiation-hydrodynamics code.
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plotted at the bottom. All plots are as a function of Al ion density. The different curves

in each plot correspond to 3 different radiation temperatures due to an external source

(TR = 0, 25, and 35 eV). The solid curves represent total net radiative heating, while the

dashed curves represent the contribution from the continuum only.

Looking at the bottom plot in Figure 6.1, one can see that for no external radiation

source (TR = 0), the net cooling rate (< 0 indicates cooling) for a 35 eV Al plasma

is 893 TW/g at 1020 ions/cc and 202 TW/g at 1019 ions/cc. Clearly, there is a very

strong density dependence on the net cooling rate. We next look at the case when the

external radiation field is TR = 25 eV (thin dark line). Note that this is an important

case because this is typically what is predicted by the hydrodynamics simulations of the

flat-foil experiments in the t = 20 to 30 ns regime. During this phase the Al must continue

to be heated so that the He- and Li-like satellites produce observable fluxes. In this case,

the total net cooling rate is 814 TW/g at 1020 ions/cc, and 178 TW/g at 1019 ions/cc.

Thus, there is a reduction ∼ 10% or so due to the TR = 25 eV external radiation field.

As the external radiation temperature becomes closer to the plasma temperature, the net

cooling rate decreases substantially, and would go to zero at TR = 35 eV if it were applied

at both sides of the Al plasma (this would represent a case of true radiative equilibrium;

populations would be LTE; and there would be zero net heating). Note that in the upper

plot where Te = 25 eV, when TR = 35 eV the plasma is being radiatively heated (net

heating > 0) by the external source. This situation, however, does not occur in the flat-foil

experiments.

Looking now at Figure 6.2, one can see that there is reasonably good agreement

between the net heating rates predicted by the hydrocode model (Fig. 6.2) and the

standalone code (Fig. 6.1). Typical differences between the two calculations are ∼
50− 100 TW/g for the total net heating and about half of that for the line contributions.

By comparison, the Li ion beam heating rate is ∼ 200− 400 TW/g. Note that without the

recent improvements to the hydro CRE model, the net line heating predicted by BUCKY

would show no dependence on the external radiation temperature.

It is also interesting to compare results using a more “traditional” radiation transport

model. Figure 6.3 shows results in which the individual lines were NOT transported

using the CRE model (which includes resonant self-absorption effects), but instead were

transported along with the continuum using the multigroup transport model (still 100

groups). Looking at the Te = 35 eV, TR = 25 eV case (bottom plot), one sees that the

cooling rate is 2100 TW/g at 1020 ions/cc, and 1160 TW/g at 1019 ions/cc (by comparison,

the NLTERT results were 814 and 178 TW/g, while the BUCKY/CRE results were 851 and
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Figure 6.3. Same as Fig. 6.2, but with line opacities and emissivities both contained
within multigroup opacities. This method of not transporting lines individually

represents the more “traditional” approach to multigroup radiation transport
used within many radiation-hydrodynamics codes.
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109 TW/g). Clearly, the CRE line transport model represents a significant improvement

over the traditional multigroup model in which line opacities/emissivities are grouped

together with the continuum. Nevertheless, the radiation modeling must still be considered

one of the important sources of uncertainty in the analysis of the Kα experiments due to

the complexity of the atomic physics.

6.2. Improvements to Collisional-Radiative Modeling

We have upgraded our CRE and atomic models to include in detail dielectronic

recombination processes. The primary purpose is to assess the effects of dielectronic

recombination on Kα satellite spectra in light ion beam experiments. Also, we have

attempted to understand why an emission feature appears just to the long-wavelength

side of the Heα line in the experimental spectra, but has not appeared in our computed

spectra. In this section, we also discuss: (1) what transitions this feature is likely due

to; (2) under what conditions the feature “normally” appears (that is, when not in the

presence of fast ions or electrons); and (3) possible explanations for the feature in the

PBFA-II experiments.

Dielectronic recombination is modeled by computing the electron capture rate

coefficient (βec) from the autoionization rates using the detailed balance relation:

βec = Aa
� ne (1.66× 10−22 cm3 eV3/2)

(
g�

gu

)
T−3/2 e∆Eu�/T

where Aa is the autoionization (Auger) rate from level �, ne is the electron density, g� and

gu are the statistical weights of the upper (i.e., higher ionization state) and lower states,

respectively, T is the electron temperature and ∆Eu� is the energy separation of the two

states. To test the reliability of the new model, we have compared our results with the

previously published calculations of Duston and Davis [1]. Results are shown in Figure 6.4,

where the ratio of the Li-like jk satellite (1s12p2 2D → 1s22p1 2P ) to the Heα line is

plotted as a function of ion density for an optically thin Al plasma. Results are shown

for two electron temperatures: T = 300 eV and T = 1200 eV. Our results are represented

by the circles and squares, while the results of Duston and Davis are indicated by the

solid curves. Except for ion densities >∼ 10−1 nsolid (nsolid = 6× 1022 ions/cm3 for Al), the

predicted line ratios are in reasonably good agreement. Differences in the two calculations

could be due to differences in the Auger rates, fluorescence yields, collisional excitation

rates, and/or the degree of atomic level coupling in the atomic models. Note that the

agreement is good for the ion densities in the PBFA-II Kα experiments (n ∼ 10−3 nsolid).
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Figure 6.4. Comparison between computed line intensity ratios for the Li jk satellite to
Heα. Filled symbols: UW results; solid curve: Duston and Davis (1980).
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Table 6.1. Transition Data for Al Heα Spectral Region

Upper State Lower State f�u λ(Å)

1s1 2p1 1P 1s2 1S .789 7.757

1s1 2p1 3d1 2P 1s2 3d1 2D .142 7.756

1s1 2p1 3d1 2F 1s2 3d1 2D .295 7.765

1s1 2p1 3p1 2S 1s2 3p1 2P .070 7.768

1s1 2p1 3d1 2D 1s2 3d1 2D .253 7.772

1s1 2p1 3s1 2P 1s2 3s1 2S .603 7.774

1s1 2p1 3p1 2P 1s2 3p1 2P .244 7.776

1s1 2p1 3p1 2D 1s2 3p1 2P .367 7.778

Figure 6.5 shows a calculated spectrum for an Al plasma at T = 100 eV and n = 10−3

nsolid. Note the appearance of several strong emission lines on the long wavelength side of

the Heα line (which is a 1s 2p 1P → 1s2 1S transition). In the calculation, besides Heα

(λ = 7.757 Å) there are 7 strong emission lines (using a LS term split model) between

λ = 7.756 Å and 7.778 Å. Table 6.1 lists some of the properties of these transitions. They

are all of the type:

1s1 2p1 3�1 → 1s2 3�1 , � = s, p, d .

That is, these are Heα-like transitions with M-shell spectator electrons. The appearance

of these features in this calculation is due to dielectronic recombination, which for these

transitions originate from the He-like Al ground state:

1s2 e− capture−→ 1s1 2p1 3�1
Kα emission−→ 1s2 3�1 .

It is worth noting that this feature has also appeared in laser-produced plasma spectra.

Figure 6.6 shows a spectrum obtained from a recent paper by Renner et al. [2]. Note the

M-shell spectator lines at 7.77 Å are clearly seen.

Note that the energy of the free electron colliding with the ion in the 1s2 state must

have an energy at least as large as the energy difference between the 2 states (that is,

E(1s1 2p1 3�) − E(1s2)). This energy is 1.4 keV. Therefore, if the electron distribution is

Maxwellian the electron temperature must be sufficiently high to have enough electrons with

6-8



Figure 6.5. Calculated spectrum for Al at T = 100 eV, n = 10−3 nsolid, and ∆Lorig =
2000 Å.
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Figure 6.6. Experimental Al K-shell spectrum from a laser-produced plasma (from

Ref. [2]).
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energies >∼ 1.4 keV to electron capture into the 1s1 2p1 3�1 states. By simply integrating

a Maxwellian distribution from 1.4 keV to infinity, one finds the fraction of electrons with

energies > 1.4 keV is ∼ 10−6 for T = 100 eV and ∼ 10−15 for T = 40 eV.

Figure 6.7 shows results from CRE calculations at temperatures of T = 40, 80, 100,

and 120 eV. Note that at temperatures of 80 eV and below the M-shell satellites do not

show any significant emission, while at T >∼ 100 eV the emission is much stronger. This

suggests the possibility that the appearance of the feature at λ = 7.77 Å in the PBFA-II

Kα satellite spectrum might be due to “hot” electrons: that is, at some location, at some

time in the Al layer the number of electrons with energies >∼ 1.4 keV was characteristic of

a Maxwellian plasma with a temperature of >∼ 100 eV. Thus, if produced by dielectronic

recombination, two possible explanations of this feature are: (1) a small region of the Al

target layer was heated to a temperature of∼ 100 eV; or (2) the temperature at all locations

in the target was lower, but that the electron distribution is non-Maxwellian, with a “hot”

component producing the electron capture events.

Another possible explanation of the appearance of the M-shell spectator satellite

lines in the PBFA Kα spectra could be simultaneous ionization and excitation by the Li

beam, or perhaps even by contaminants in the beam at late time. This is in some ways

analogous to multiple ionization, which has been shown to be an important process in

affecting the PBFA-II Kα spectra [3,4]. For instance, while Heα is produced by:

1s2 2p1 ion−impact−→ 1s1 2p1 Heα−→ 1s2 (single ionization),

or

1s2 2s1 2p1 ion−impact−→ 1s1 2p1 Heα−→ 1s2 (double ionization) ,

perhaps the M-shell spectator lines could be produced by:

1s2 2s1 2p1 ioniz./excit.−→ 1s1 2p1 3�1 −→ 1s2 3�1 .

Simulataneous beam-induced ionization-excitation processes are not included in our models

because of the difficulties associated with computing reliable cross sections.

To conclude, in this section we have:

1. shown that significant emission from dielectronic recombination transitions could be

observable for Al at temperatures >∼ 100 eV;

2. identified the transitions responsible for the emission feature observed just to the

long-wavelength side of the Al Heα line;
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Figure 6.7. Calculated Kα spectra for T = 40, 80, 100, and 120 eV. In each case n = 1020

ions/cm3 and the original foil thickness was 2000 Å.
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3. discussed several possible explanations for the appearance of this feature in PBFA-II

flat-foil experiments.

In regards to the last point, it is difficult with the existing set of data to determine

definitively the reason for its appearance in PBFA-II experiments. However, it seems

possible that in future PBFA-X experiments, perhaps with additional diagnostics (e.g.,

absorption spectroscopy), one might be able to determine the physical processes responsible

for this feature.

6.3. Simulation of PBFA–II Experiments

In this section, we discuss results from the hydro simulations. In particular, we have

focussed on the sensitivity of the Al plasma conditions and resultant Kα spectra to the Li

beam conditions and radiation effects.

We have performed radiation-hydrodynamics simulations to study the effect of

having a non-monoenergic beam on heating the target. To do this, we take the beam

parameters supplied to us by SNL; then at each timestep the ions are divided into several

“bunches”. Results are shown in Figure 6.8 from a simulation in which the beam was

divided into 3 components:

25% of the current with V = 0.8 V0(t)

50% of the current with V = 1.0 V0(t)

25% of the current with V = 1.2 V0(t) ,

where V0(t) is the time-dependent mean voltage. Note that using this model, the beam

current and mean voltage are “conserved”. In Figure 6.8, two curves are shown for the Al

temperature as a function of time, one from a calculation using a 3-component beam, the

other from a calculation for a monoenergetic beam. Using a 3-component beam is seen

to produce a slightly higher temperature than a monoenergetic beam (by ∼ 1 − 2 eV).

Thus, the low-V component more than compensates for the lower dE/dx of the higher-V

components. This obviously is not a huge effect. If, however, the energy spread was larger

than the 20% assumed above, the effect could become significant to the analysis.

Most of the recent calculations described below assume a 5-component beam with

a smaller spread:

10% of the current with V = 0.8 V0(t)

20% of the current with V = 0.9 V0(t)
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Figure 6.8. Comparison of calculated evolution of Al temperatures using a 3-component

(i.e., 3 voltages) Li beam (solid curve) and a monoenergetic Li beam (dash-
dotted curve).
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40% of the current with V = 1.0 V0(t)

20% of the current with V = 1.1 V0(t)

10% of the current with V = 1.2 V0(t) .

Figures 6.9 through 6.11 show results from several radiation-hydrodynamics simulations

with and without CRE line transport. Figure 6.9 shows the mean temperature in each

layer (CH/Au/Al/CH) as a function of time in two simulations: one in which lines were

ignored (curves with circles), the other in which lines were transported using the CRE

model. Note that the temperature in the Al layer drops significantly due to the addition of

cooling by lines. Although the reduction of the line cooling rates due to the Au radiation

field is included, this effect is small. At t = 30 ns (approximately the time during which

the He/Li satellites form), the mean Al temperatures are 39 eV without line emission, and

33 eV when lines are included.

Figure 6.10 shows the mean Al temperature for a variety of simulations. The curves

labeled “no mult” correspond to the curves shown on Figure 6.9. Two additional curves

are shown for enhanced beam cases with CRE line transport: both labeled “w/ lines”. The

“20% mult” refers to the current enhancement at t = 10 ns. This is a linearly increasing

enhancement, so that the multiplier is 1.2 at 10 ns, 1.4 at 20 ns, 1.6 at 30 ns,.... Note that

Al temperature for this case exceeds all other cases. This enhancement probably produces

too much He/Li Kα emission. The curve labeled 15% is probably more consistent with the

observed spectra. So one question is: is a beam which is enhanced by 1.3 at t = 20 ns, and

1.45 at t = 30 ns inconsistent with the experimental ion beam diagnostics?

Figures 6.11 through 6.13 show the time-dependent beam parameters used for the

nominal, 15% enhancement, and 20% enhancement cases. Again, a key question in the

analysis is what is the uncertainty in the beam data at t ∼ 20− 30 ns.

To summarize, when using the nominal beam data, our best radiative models, and

the “standard” stopping power model, we get a synthetic spectrum which will produce the

He- and Li-like Kα satellite intensities which are lower than those observed for Shot 5851.

Possible sources of error include:

A) the beam data at late times;

B) uncertainties in dE/dx; either for Au or Al. The Al dE/dx would probably have

to be ∼ 30% higher than the values predicted by both the Mehlhorn [5] and Wang and

Mehlhorn [6] models. Alternatively, if the gold dE/dx was larger, the voltage of the ions

in the Al would be lower and the Al dE/dx would be higher.
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Figure 6.9. Comparison of mean temperatures in CH/Au/Al/CH target regions calculated
using radiation model with continuum opacities and emissivities only (curves

with circles), and a model which includes detailed line radiation transport
(curves without circles).
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Figure 6.10. Evolution of mean temperature in Al layer for different radiation and beam

models. Refer to text for explanation of curves.
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Figure 6.11. Time-dependent Li beam current densities on target used in radiation-

hydrodynamics simulations.
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Figure 6.12. Time-dependent Li beam power densities on target used in radiation-

hydrodynamics simulations.
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Figure 6.13. Time-dependent Li beam voltage on target used in radiation-hydrodynamics

simulations.
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C) 2-D effects: If the densities were lower than what is predicted by the 1-D hydro

calculations, the radiative cooling could change significantly. From looking at the different

1-D hydro calculations for the different (A, B, C, D, E) spatial regions, the thickness of the

Al at t = 30 ns is:

A: 0.93 mm

B: 0.83 mm

C: 0.78 mm

D: 0.66 mm

E: 0.40 mm.

That is, the Al moves ∼ 1 mm. But because the beam spot size is ∼ 8 mm one could argue

that this would be a <∼ 10− 15% effect.

D) Non-uniformities in the beam. If there were non-uniformities in the beam which

were small compared to the spatial resolution of the detector, one could get localized hot

regions. Again, the beam would have to be enhanced several tens of percent for this to be

a contributor.

Figures 6.14–6.17 show time-integrated Kα spectra computed for PBFA-II Shot

5851 using 4 beam intensities. In these simulations we used the beam parameters sent

to UW by Tom Haill [7]. The calculated spectra are obtained first by running radiation-

hydrodynamics simulations for a given set of Li beam parameters, and then performing

CRE calculations using the temperature, density, Li voltage, and Li current density

distributions in the Al layer at 3 ns time intervals. Note that using the “nominal” beam

intensities (Fig. 6.14), the calculated Al Kα spectrum shows relatively weak emission for

Heα (λ = 7.76 Å) and the Li-like satellites (λ ≈ 7.85 Å). This is weaker than observed

for PBFA-II shots 5851, 5846, and 6347. (The observed spectrum for 5851 is shown in

Figure 6.18.)

Figures 6.15 through 6.17 show simulated Kα spectra for enhanced beam intensities.

Here, we simply multiplied the nominal beam current density used in the rad-hydro

simulations by some factor (1.25, 1.5, and 2.0). This obviously results in higher

temperatures in the target, which in turn shows up in the synthetic time-integrated spectra

as higher intensities for the satellites of relatively high ionization stages. Note that when

using a multiplier of 1.25 (Figure 6.15) that the overall agreement with the experimental

spectrum is good. Given the uncertainties in the actual beam conditions, these results
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Figure 6.14. Time-integrated Al Kα satellite spectrum calculated using “nominal” Li beam

intensity.

Figure 6.15. Same as Figure 6.14, but with Li beam current density enhanced by a factor

of 1.25.
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Figure 6.16. Same as Figure 6.14, but with Li beam current density enhanced by a factor

of 1.5.

Figure 6.17. Same as Figure 6.14, but with Li beam current density enhanced by a factor

of 2.0.
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Figure 6.18. Experimental time-integrated Al Kα satellite spectrum for Shot 5851.
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suggest a reasonably good overall understanding of the target heating, as well as the atomic

processes which influence the spectrum.

Figures 6.16 and 6.17 show synthetic time-integrated Kα spectra for Li beam

current density multipliers of 1.5 and 2.0. In these cases the He- and Li-like emission

(λ ≈ 7.75−7.90 Å) is signficantly stronger than that of the satellites of the lower ionization

stages, which is not at all in agreement with the experimental spectra.

To conclude, although the agreement between simulation and the data is not perfect,

a good understanding of the physical processes which affect the resulting spectra has been

achieved. It appears that the beam data needs to be accurately diagnosed throughout the

entire pulse to constrain the problem. On the other hand, one could turn the problem

around to use Kα data to constrain the beam.

6.4. Absolute Flux Estimate for Kα Satellites

In this section we estimate the absolute Kα flux from the Al layer in PBFA-II

experiments. In our analysis, fluxes are calculated using the short characteristics model

(integral radiation transport). Results from NLTERT (CRE) are in units of erg/cm2/s/eV.

Time-dependent NLTERT results are then post-processed to do time-integration and add

instrumental response (λ/∆λ is typically ∼ 1000). Checks are performed on energy/flux

conservation in the post-processing to make sure we do not “lose photons.” Units at the

end of the time-integration post-processor are erg/cm2/eV. All results are into 2π, as the

Kα spectra are for planar targets. The flux is out of the Al surface adjacent to the CH

tamper (not the Au-facing side).

The time-integrated results for the 4 series of calculations (JB multiplier = 0.98, 0.82,

0.51, and 0.11) area then “space-integrated using the areal weights suggested by J. Bailey:

Shots 5846, 51,81 Shot 6347

JB multiplier Areal Weight (cm2) Areal Weight (cm2)

0.98 0.031 0.031
0.82 0.204 0.097

0.51 0.183 0.090

0.11 0.417 0.173

The flux at the end of the space-integration calculation is in erg/eV, again into 2π.

Typically, we get numbers like:

Fmax ∼ 1000 erg/eV for C,N ions .
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For C and N , integrating in frequency we get

F = 4× 103 erg into 2π

⇒ 1.7× 1012 photons

2π
= 2.6× 1011 photons/steradian

One could imagine this could be off by a factor of several tens of percent due to

geometry (2-D) effects, cross sections, etc. But it is likely to be accurate to within a factor

of 2.
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