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ABSTRACT

LIBRA-SP is a conceptual design study of an in-
ertially confined 1000 MWe fusion power reactor uti-
lizing self-pinched light ion beams. There are 24 ion
beams which are arranged around the reactor cavity.
The reaction chamber is an upright cylinder with an
inverted conical roof resembling a mushroom, and a
pool floor. The vertical sides of the cylinder are occu-
pied by a blanket zone consisting of many perforated
rigid HT-9 ferritic steel tubes called PERITs (PEr-
forated RIgid Tube). The breeding/cooling material,
liquid lead-lithium, flows through the PERITS, pro-
viding protection to the reflector /vacuum chamber so
as to make it a lifetime component. The neutronics
analysis and cavity hydrodynamics calculations are
performed to account for the neutron heating and also
to determine the effects of vaporization/condensation
processes on the surface heat flux. The steady state
nuclear heating distribution at the midplane is used
for thermal hydraulics calculations. The maximum
surface temperature of the HT-9 is chosen to not
exceed 625°C to avoid drastic deterioration of the
metal’s mechanical properties. This choice restricts
the thermal hydraulics performance of the reaction
cavity. The inlet first surface coolant bulk tempera-
ture is 370°C, and the heat exchanger inlet coolant
bulk temperature is 502°C.

I. INTRODUCTION

The scope of this work is limited to the ther-
mal hydraulics analysis of the LIBRA-SP reaction
chamber. Other issues of the design are discussed
elsewhere.!?> The LIBRA-SP reaction chamber is an
upright cylinder (Fig. 1). The vertical sides of the
cylinder are occupied by a blanket zone consisting of
many perforated rigid HT-9 ferritic steel tubes (PER-

ITs) through which the breeding/cooling material,
liquid lead-lithium, flows. In each perforation there
is a special fan spray nozzle to maintain a very thin
liquid vertical sheet which acts as a first protection
surface. This way we assure having a continuously
wetted metallic first surface due to splashing of the
thin liquid metal sheet on the PERIT units with ev-
ery target microexplosion. These fan spray sheets are
overlapped to completely shadow the PERIT units.
The radius to the first row of tubes is 4.0 m, the
thickness of the blanket zone is 1.25 m and the length
of the tubes is 10.6 m in two segments of 5.3 m each.
There are two rows of 7 and 8 cm diameter PERIT
units arranged at 14 cm between centerlines in the cir-
cumferential direction as well as between rows. These
front tubes are configured to totally shadow the rear
zone, and the spaces between the rows are determined
from dynamic motion considerations. The rear tubes
are 15 cm in diameter and there are 7 rows of them.
Their sole function is to transport the PbLi which
moderates neutrons and breeds T5. There are vac-
uum tubes located behind the shield/blanket zone at
the chamber midplane leading to an expansion tank
situated below the reaction chamber. As the vapor
flows into the expansion tank it exchanges heat with
the PERIT units, and cools itself by virtue of an isen-
tropic expansion. The chamber roof is not protected
by PERIT units and for this reason is removed to
a distance of 16 m from the target, also making it
a lifetime component. Since the roof will be cooled,
it also will condense vapor and have a wetted sur-
face which will be vaporized after each shot. Another
function of the mushroom shape is to protect the side
walls which are shadowed by the PERIT units and to
provide additional volume in the chamber for the va-
por to expand into. The cooling units consist of two
groups. The first is at the front (first surface units)
and the second are solid curved circular tubes in the
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Fig. 1. A general cross-sectional view of the LIBRA-SP chamber.
ION -\

Fig. 2. A general layout of the PERIT units in the LIBRA-SP chamber.



Heating (W/cm®)

TABLE I

General Parameters of the First Surface and Blanket

The First Surface Unit | The Secondary Group
PERIT | Second Row
Number of rows 1 1 8
Number of tubes/row 175 175 175/first — 120 /rest
Diameter of each tube (cm) 7.0 8 8.0/first — 15/rest
Diameter of the first row (cm) 800 - 440
Total number of tubes 175 175 1015
concentric rows of solid HT-9 tubing. They are
positioned in the back behind the feed and return
manifold and act as a breeder blanket.
40 , ‘ ' l T 0.8 The general parameters for the first surface unit
357 et 007 g and the blanket geometry are in Table I.
3 07 g Fo.6 3
25 Fo.s g IT. THERMAL HYDRAULICS CALCULATIONS
201 F0.4 = . . . 4
LB Using the neutronics analysis results® along
157 ;0-3 > with the hydrodynamics calculations® the distribu-
107 ﬁ:ﬂg{,f’ﬁ’,&ﬁ;g"i:ﬁa' ro.2 g;—_ tion of the volumetric nuclear heating in the blan-
51 ..-/ the Firat wo fows of Lo.1 @ ket and PERIT unit and the effects of vaporiza-
0 / | : ! . o tion/condensation processes on the surface heat flux
400 410 420 430 440 450 460 are readily obtained. The steady state nuclear heat-

Radius (cm)

Fig. 3. Steady state nuclear heating distribution in
LIBRA-SP and reflector.

back. Both are made of vertically curved austenitic
stainless steel, low activation HT-9 tubing. Figure 2
shows the cooling unit placement. A detailed descrip-
tion of these two groups follows:

e First group: The front group consists of two rows
of solid metallic tubing. Only the first row of
tubes has perforated walls (PERITs). The sec-
ond row group after the PERITS is staggered to
close the gap between the PERIT tubes. The
perforated walls of this system of tubing allow the
internal coolant/breeder fluid to jet through the
perforated walls (equipped with special flat sheet
spray nozzles) and form flat thin vertical sheets
of liquid metal as previously described.!?3 Also,
it wets the outer surface of the tube. The lead-
lithium sheet jet and the wetted wall is designed
to protect the metallic material from x-rays,
charged particles and target/reaction debris.

e Second group: The secondary tubes consist of 8

ing distribution at the midplane is shown in Fig. 3.
For thermal hydraulics calculations consider the fol-
lowing thermal load assumptions of the first surface
(FS) of LIBRA-SP reactor:

e The first surface is the first two rows of coolant
tubes (the first 20 cm of the blanket).

e According to the spatial distribution of the neu-
tron heating, nearly 37% of the total neutron
heating is generated in the first 20 cm of the blan-
ket.

e All x-ray and debris power is consumed in heat-
ing, boiling, evaporating and superheating of
PbLi (6.62 kg per shot).!

e All PbLi vapor will eventually recondense on the
first surface only and cools down to 620°C. The
maximum surface temperature of the HT-9 is
chosen to not exceed 625°C to avoid drastic de-
terioration of the metal’s mechanical properties.
(This is a severe assumption and it is the worst
case scenario. Actually, part of the PbLi vapor
will condensate on other existing surfaces and
some will be vented outside the cavity.)
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Fig. 4. The temperature variation and variation of
coolant speed in the first row PERITs.

III. PROCEDURE

To fulfill the severe restriction on the maximum
surface temperature of HT-9, a parametric study is
performed to obtain the optimum design point. The
length of the coolant tube is already determined ac-
cording to the structural dynamics considerations!»?
(5.3 m). The volumetric heating generated in the first
two rows (first group) is about 37% of the total neu-
tron heating in the cavity (Fig. 3) and the surface
heating due to LiPb condensation is calculated. With
this information in hand, the thermal hydraulic design
calculations proceed to determine the required design
parameters. It is important to note that due to the jet
spray the average bulk coolant velocity is decreasing
as the coolant advances along the coolant tube; the
heat transfer coefficient changes from 1.8 W/cm?K at
a velocity of 3 m/s to 4 W/cm?2K at a velocity of 8 m/s
for a coolant tube of 7 cm diameter. Figure 4 shows
the variation of the bulk coolant velocity and the rise
of the bulk coolant temperature as a function of dis-
tance along the coolant tube for various inlet coolant
velocities. For a tube length of 5.3 m the design ther-
mal hydraulics parameters are narrowed down to a
few choices (Fig. 4).

The maximum difference between the inlet
coolant bulk temperature and the maximum coolant
tube surface temperature is obtained as a function

of distance along the coolant tube for various inlet
coolant velocities (Fig. 5). Keeping in mind the max-
imum surface temperature is 625°C and the minimum
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Fig. 5. Maximum temperature in the HT-9 of the first
row PERITs.
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TABLE II

Summary of Thermal Cavity Parameters

Number of coolant tubes in the FS

Total surface area (m?)

Weight of evaporated PbLi/shot (kg)

Repetition rate (1/s)

Thickness of PbLi recondensed per second (mm)
Heat flux due to recondensation at FS (W/cm?)
Max. value of volumetric heating at FS (W/cm3)

Temp. rise in the coolant tube wall (HT-9 wall thick =
1. Surface heat flux only (condensation) (°C)
2. Volumetric heating only (°C)
Total temp. rise in the F'S coolant tube wall (°C)
Max. FS coolant velocity (at inlet) (m/s)
Min. FS coolant velocity (at exit) (m/s)
Inlet FS coolant bulk temperature (°C)
Exit FS coolant bulk temperature (°C) (mass flow rate)
Average coolant bulk temp. of outside coolant (°C)
Exit blanket coolant bulk temp. (°C) (V = 17.4 cm/s)
Total mass flow rate (kg/s)
HX inlet coolant bulk temperature (°C)
Pumping power (inside cavity) (MW)

Average nuclear volumetric heating in front tube (W /cm?)

350
1910.6
6.62
3.88
1.35
107
38.6
35.03
3 mm) due to:
117.5
7.5
125
4.0
2.9
370
430 (32.32 x10* kg/s)
650 (12.26 x10* kg/s)
600 (5.23 x10* kg/s)
49.78 x 10*

502
47.61

inlet coolant temperature must be well above the

thickness is 43°C/cm which is acceptable for thermal

freezing point of LiPb, the choice of the design point stresses.
is now more focused. Figure 6 summarizes the change
in the bulk coolant temperature fixing the maximum ACKNOWLEDGEMENT

surface temperature at 625°C at the exit of a coolant
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