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1. Introduction

The purpose of this report is to provide a detailed description of theoretical and

computational work performed during the 1995 calendar year in support of KALIF beam-

plasma interaction experiments. This work has been concentrated primarily in two areas.

First, we have performed collisional-radiative equilibrium (CRE), atomic physics, and

radiation-hydrodynamics simulations to assist in the interpretation of measured x-ray

spectra obtained in laser and proton beam-heated target experiments at FZK. These spectra

were obtained in a preliminary set of experiments to test diagnostics and obtain initial

Kα satellite spectra from targets heated by the KALIF proton beam. Second, we have

calculated stopping powers and equation of state data using our unified self-consistent field

code, which is based on a muffin tin model. A procedure has been developed to tabulate

the results in a way which allows for efficient use by radiation-hydrodynamics codes.

Table 1.1 shows the list of tasks for our 1995 work with FZK. The first task

was to perform simulations to interpret Kα spectra obtained in beam-plasma interaction

experiments. This involved performing CRE and atomic physics calculations for

intermediate–Z targets (Z ≈ 9 − 13) to examine their Kα spectra, and in particular

the magnitude of the emission line fluxes for the various targets. Calculations were also

performed for laser-heated targets to examine their spectra and the absolute intensities

from various K-shell lines. One of the goals for this work was to try to understand why

x-ray line emission could be observed for laser-heated Na, but not for proton-heated Na

targets using the Bθ diode.

Simulations were also performed to predict the time-integrated Kα spectra for Al

using proton beam parameters for the Bθ diode. To do this, radiation-hydrodynamics

simulations were performed to predict the time- and space-dependent temperature and

density within the target. Kα spectra were then calculated at a number of simulation times,

using the plasma conditions predicted from the radiation-hydrodynamics simulations as

well at the time-dependent proton beam voltage and current density. The predicted time-

integrated Kα satellite spectrum was found to be in qualitative agreement with initial

spectral measurements for Al. It was also found that Kα emission line intensities at

relatively late times in the proton beam pulse drop significantly due to the decrease in

the beam voltage. This suggests that absorption spectroscopy may provide significantly

better constraints for determining the late-time target plasma conditions in KALIF proton

beam experiments.

The second task concerns the development and application of atomic physics models

for studying ion beam-heated plasmas. Improvements were made to our new stopping power
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algorithm, which is a self-consistent field model based on a muffin tin potential. In addition,

we have developed a procedure to fit the results from the stopping power calculations to

a simple analytic formula which can be efficiently used in radiation-hydrodynamics codes.

This procedure has been implemented and tested in our 1-D radiation-hydrodynamics code

BUCKY-1. Equation of state data are computed using a hybrid muffin tin/DCA (detailed

configuration accounting) model. This data is used by radiation-hydrodynamics codes using

a table lookup procedure. BUCKY-1 simulations utilizing these equations of state typically

conserve energy to within 1-2%.
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Table 1.1. Tasks for 1995

1. Perform analysis of Kα spectral data obtained in KALIF beam-plasma interaction

experiments.

(a) Perform collisional-radiative equilibrium (CRE) to predict x-ray line spectra for

KALIF experiments.

(b) Perform ATBASE calculations to set up atomic cross section tables for spectral
analysis.

(c) Post-process radiation-hydrodynamics simulations to predict time-integrated Kα

emission spectra.

(d) Predict plasma temperatures and densities from the intensity ratios of Kα

emission lines.

2. Compute ion stopping powers and equations of state data using self-consistent field
muffin tin model. Put in format which can be utilized by KATACO radiation-

hydrodynamics code.

3. Document results in Final Report to FZK. Supply FZK with updated CRE and

ATBASE codes.
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2. Calculations of X-ray Spectra for Laser and Proton Beam-

Heated Target Experiments

X-ray spectra were obtained in a preliminary set of target heating experiments during

the past year at FZK. Targets containing Al, Mg, Na, and F were irradiated in proton beam

experiments using the Bθ diode. Proton-induced Kα emission lines were observed for Al

and Mg, but were not observed for Na or F. However, when NaF targets were heated by a

laser beam, K-shell emission lines were observed. In some cases, dielectronic recombination

satellites to the K-shell resonance lines were also observed.

Below, we describe a series of calculations which were performed to assist in the

interpretation of these preliminary experimental results. A first question to address is

whether it should be expected that the Kα line intensities are lower for lower-Z species.

That is, is the lack of a detectable Kα spectrum for Na and F due to them having lower

emission intensities, or is it due to an instrumental effect? To examine this question, we

performed a series of collisional-radiative equilibrium (CRE) calculations to examine the

Kα satellite spectra of Na and Al as a function of proton beam voltage and target plasma

temperature. These results are presented in Section 2.1.

Second, since Na emission lines were observed in the laser experiments, but not in

the Bθ diode experiments, one can ask how much higher should we expect the emission

intensities to be in the laser experiments? To address this question, we performed radiation-

hydrodynamic simulations of laser-heated Na targets to estimate the temperatures and

densities in the high-temperature emission region. CRE calculations were then performed

to estimate the K-shell line intensities. These results are then compared with the Kα

satellite line fluxes computed for (Bθ diode) proton-irradiated targets. These results are

described in Section 2.2.

Finally, we performed simulations to predict the time-integrated spectrum for an

Al target heated with the Bθ diode proton beam. This is done by first performing 1-D

radiation-hydrodynamic simulations of the Al target heating and expansion. Then, a series

of CRE calculations were performed using the time- and space-dependent values of the

plasma temperature, plasma density, proton beam kinetic energy, and proton current

density predicted from the radiation-hydrodynamics calculation at selected simulation

times. In particular, we have examined the magnitude of the Kα line intensities as a

function of time. Results from these simulations are presented in Section 2.3.
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2.1. Comparison of Kα Line Intensities for Al and Na Targets

In this section, we describe results from CRE and atomic physics calculations

concerning the difference in magnitude of the Kα line intensities for Na and Al. In

initial KALIF Bθ diode experiments, the Kα intensities for Mg inferred from spectroscopic

measurements were approximately a factor of 5 lower than for Al. For Na, the flux levels

were too low to be observed. The purpose of the calculations is to determine whether this

is due to lower Kα fluxes for the lower-Z targets, or whether it might be caused by some

instrumental effect.

Figure 2.1 shows the total flux — integrated over the Kα spectral region for each

material — for Al and Na targets plotted as a function of the proton beam voltage. In each

case, the ion density was 6 × 1019 cm−3, the temperature was T = 10 eV, and the plasma

thickness corresponded to a foil pre-expansion thickness of 6 µm. At each voltage it is seen

that the Kα fluxes of the 2 materials are similar, with differences being less than a factor

of 2 in all cases (that is, much smaller than the Mg and Al flux differences inferred from

the experiments).

The reason the Kα intensities increase with increasing beam voltage can be seen in

Fig. 2.2, which shows the proton-impact ionization cross sections for K-shell electrons of

Na and Al. For both materials the cross section shows a strong monotonically increasing

dependence on voltage for EB
<∼ 2 MeV. Although the Na cross section is roughly a factor of

2 higher, Kα line intensities are proportional to the product of the proton-impact ionization

cross section and the fluorescence yield. Since the fluorescence yields for Al are substantially

higher than those for Na (∼ 5% vs. 3%), their Kα fluxes are of similar magnitude.

Figure 2.3 shows the dependence of the total Kα fluxes for Al and Na as a function of

temperature. The simulations were identical to those in Fig. 2.1; however, in this case the

temperature was varied while the beam voltage was held constant at 1.0 MeV. Again, it is

seen that the fluxes are of similar magnitude. For both materials the fluxes drop somewhat

with increasing temperatures. Recent simulations indicate that at low temperatures, both

opacity effects and multiple ionization effects due to the beam are unimportant. At higher

temperatures (T >∼ 5 eV for Na) resonant self-absorption effects become important because

states with 2p vacancies are heavily populated. However, the flux tends to remain relatively

high in the simulations due to multiple ionization effects. The role of multiple ionization

for these relatively thick targets will be investigated in more detail in future calculations.

To conclude, these results suggest it is unlikely that order of magnitude differences

exist in the Kα fluxes from Na and Al targets of similar dimensions.
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Figure 2.1. Beam voltage dependence of emergent flux from Na and Al targets frequency-
integrated over the Kα spectral region of each material. In each case,

T = 10 eV, n = 6 × 1019 ions/cm3 and ∆Lorig = 6 µm.
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Figure 2.2. Proton-impact ionization cross sections vs. beam voltage for K-shell electrons
of Na and Al.
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Figure 2.3. Temperature dependence of emergent flux from Na and Al targets frequency-
integrated over the Kα spectral region of each material. In each case,

n = 6 × 1019 ions/cm3, ∆Lorig = 6 µm, and Ebeam = 1.0 MeV.
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2.2. K-Shell Spectra Predicted for Laser-Heated Targets

To make a comparison of the x-ray line intensities for laser and ion beam-heated

targets, we have performed a series of radiation-hydrodynamics and CRE calculations for

parameters relevant to the FZK experiments. The purpose of these simulations is to help

explain why Na K-shell spectra were observed in diagnostic test experiments using a laser-

heated target, but were not observed in initial KALIF experiments using the Bθ diode.

BUCKY-1 radiation-hydrodynamics [1] simulations were performed for laser power

densities ranging from 1 TW/cm2 to 40 TW/cm2. For a laser energy of 6 J in a 7 ns

pulse, this corresponds to a spot size (diameter) of D ≈ 50 − 300 µm. The laser pulse was

assumed to be flat-topped, and incident on a planar Na target. The target thickness was

assumed to be large (∼ 150 µm). The actual thickness is unimportant, however, because

the x-ray spectra were observed from the side of the target irradiated by the laser. In these

simulations, radiation was transported using a multigroup, multiangle short characteristics

model. Equation of state and opacity data tables for Na were computed using EOSOPA

[2].

Figure 2.4 shows the temperature and density distributions predicted at simulation

times of 2, 4, and 6 ns in the PL = 1 TW/cm2 calculation. In the top figure the electron and

ion temperatures are indicated by the solid and dashed curves, respectively. Throughout

the majority of the laser pulse, the electron temperatures are in the range of 200 to 300 eV.

At the bottom, the densities in the high-temperature region — that is, the region emitting

the x-rays — is seen to be ∼ 10−3 g/cm3.

Figure 2.5 shows similar plots for the PL = 10 TW/cm2 case. Here, it is seen that

the electron temperatures are approximately 0.7 to 1.0 keV throughout much of the laser

pulse. The densities in the high-temperature blowoff region are again low (∼ 10−3 g/cm3).

However, in this case, we have plotted the density distributions on a linear scale to show

the strong shock that is generated and propagates into the cold region of the target. (Note

the mass scales in the top and bottom plots are different.)

From the radiation-hydrodynamics results we conclude that the plasma conditions

in laser-heated Na were roughly in the temperature range of 0.2–1.0 keV and density range

of 10−4 − 10−2 g/cm3.

K-shell spectra observed from laser-heated plasmas exhibit satellites on the long

wavelength side of resonance lines which arise due to dielectronic recombination [3,4]. An

example of this is the Li-like satellites next to the Heα line, which arise due to transitions

of the type (see Figure 2.6):
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Figure 2.4. Temperature and density distributions computed from radiation-
hydrodynamics simulations of a Na target heated by a PL = 1 TW/cm2, 7 ns

laser pulse.
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Figure 2.5. Same as Figure 2.4, but for a laser power of 10 TW/cm2.
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Figure 2.6. Energy level diagrams illustrating how satellites are produced in laser-produced

plasmas by dielectronic recombination (top), and in proton beam-heated
plasmas by ion-impact ionization (bottom).
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1s2 e−capture > 1s12s12p1 radiative
decay

> 1s22s1 .

These features have been observed in several of the spectra obtained in the FZK laser

experiments.

During the past year we have upgraded our CRE code (NLTERT [5]) to include

electron capture transitions in order to compute dielectronic recombination satellite spectra.

The electron capture transition rate is given by [6]:

neniβiu = neni
1

2

(
h2

2πmekTe

)3/2
gu

gi
e∆E/Te Aa

ui , (2.1)

where ne is the electron density, ni is the density of the initial state (1s2 in the above

example), h and k are the Planck and Boltzmann constants, me and Te are the electron

mass and temperature, gu and gi are the statistical weights of the upper (autoionization)

and initial states, ∆E is the transition energy, and Aa
ui is the autoionization rate. Note that

Eq. (2.1) represents a detailed balance relation between electron capture and autoionization.

Using predictions from the radiation-hydrodynamics simulations as a guide, spectra

were computed using NLTERT for Na plasmas of uniform temperature and density.

Figure 2.7 shows the K-shell spectra computed for temperatures of 200, 400, and 600 eV.

In each case the ion density was 1020 cm−3 (ρ = 4× 10−3 g/cm3) and the plasma thickness

was 100 µm. The spectrum at T = 600 eV shows strong emission from both the Lα and

Heα lines at 10.0 and 11.0 Å, respectively. Note that the satellites to the Lα line, which are

due to 2p12�1 → 1s12�1 transitions (� = s, p), are also present. The satellites to the Heα

line are fairly weak at 600 eV. As the temperature drops, the Lα intensity decreases. At

T = 200 eV, the H-like lines are very weak compared to the He-like lines.

The satellite structure for the Heα spectral region is shown in more detail in

Figure 2.8. The plasma conditions are the same as those in the previous figure. Note

that the intensities of the satellites increase relative to the Heα line as the temperature

drops. (Also note the change in scale.) At the higher temperatures, the satellites become

weaker because of the shift to higher ionization. That is, the population of the 1s2 level,

from which the dielectronic recombination satellites originate, decreases. This can also

be seen in the shape of the Heα line at 11.0 Å, which shows very pronounced opacity

broadening effects at the lower temperatures. The calculated mean charge states for these

conditions are Z̄ = 9.3, 10.1, and 10.5 for T = 200, 400, and 600 eV, respectively.

Figure 2.9 shows a time-integrated spectrum obtained in one of the FZK laser-

produced Na plasma experiments. Note the satellite structure is similar to those calculated

13



Figure 2.7. Calculated K-shell spectra for Na at T = 200, 400, and 600 eV. In each case,

the density was n = 1×1020 ions/cm3 and plasma thickness was ∆L = 100µm.
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Figure 2.8. Same as Figure 2.8, but showing the dielectronic recombination satellite

spectrum near the Na Heα line in more detail.
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in the T = 200 − 400 eV range. In fact, for T = 400 eV, the Heα intensity is ∼ 10 times

higher than the satellite line intensities, which is in rough agreement with the experimental

spectrum. Because of time- and space-integration effects in the measured spectrum, it is

difficult to determine precisely the temperature. However, since our primary goal here is

to estimate the magnitude of the line intensities, and compare them with those predicted

for the ion beam experiments, we note that the calculated intensities of the satellites at

T = 400 eV are ∼ 2 × 1016 erg/cm2/s/eV. The intensity of the Heα line is ∼ 2 × 1017

erg/cm2/s/eV.

To estimate the space- and time-integrated flux, we assume a characteristic time of

7 ns (i.e., the laser pulse duration). In the hydrodynamics calculations, we note that a

peak temperature of 300 eV was achieved using a laser power of PL = 1 TW/cm2. This

corresponds to a spot diameter of D = 330µm. It is of course possible that the diameter of

the emission region could be larger due to plasma expansion (multidimensional) effects. It,

however, seems unlikely that the size of the emission region was much less than D = 100 µm,

which corresponds to the PL = 10 TW/cm2 case. Using D = 200 µm, the flux in the Heα

line is:

∫ ∫
FνdA dt ∼= (2 × 1017 erg/cm2/s/eV)(7 ns)(π)

(
200 µm

2

)2

= 4.4 × 105 erg/eV .

The calculated satellite fluxes are roughly a factor of 10 lower.

These estimates of the laser-produced plasma K-shell time- and space-integrated

fluxes are a factor of ∼ 30–40 higher than the experimental values (see Fig. 2.9). The reason

for this discrepancy is not clear at this time. However, we note that these results, along

with those in Section 2.1, are consistent with a scenario in which the observed fluxes are

degraded due to an intervening absorber (e.g., a filter) or a lower than expected instrument

sensitivity. The optical depth required for a reduction of 30 – 40 in the flux is 3.4 – 3.7.
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Figure 2.9. Experimental time-integrated spectrum for a laser-produced Na plasma

obtained in FZK experiments.
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2.3. Calculated Kα Spectra for Bθ Diode Experiments

Radiation-hydrodynamics and collisional-radiative equilibrium calculations were

performed to predict the time-integrated Kα satellite spectrum from an Al target. The

hydrodynamics simulations utilized time-dependent beam voltages and power densities for

the Bθ diode (see Fig. 2.10). The calculations were performed for a 1 µm-thick Al foil

using a stopping power model based on the work of Mehlhorn [7]. It is worth noting that

calculations using the more recent stopping power model of Wang and Mehlhorn [8] gave

very similar results for Al.

Figure 2.11 shows the temperature and density distributions in the Al plasma at

simulation times of 40, 60, and 80 ns. Figure 2.12 shows the mass-weighted average

temperature as a function of time. For the first 40 ns of the beam pulse, the temperature of

the Al remains below 10 eV. Note that the peak power density of the proton beam occurs at

t = 40 ns. At later times the temperature continues to increase to a maximum of T = 28 eV.

The target continues to be heated at late times because: (1) the beam current used in the

simulation remains relatively flat at late times, and (2) the beam voltage drops, which leads

to a higher stopping power. This is shown in Fig. 2.13, which shows the beam voltage,

current density, and average stopping power (〈dE/dx〉) in the Al plasma as a function of

time. Note that the stopping power increases rapidly at late times. Thus, even though

the beam power density decreases significantly at late times there can still be substantial

heating. This suggests that accurate measurement of the beam current and voltage at late

times will be important in the analysis of target heating experiments.

Using space- and time-dependent predictions for temperature, density, beam current,

and beam voltage, CRE calculations were performed to predict the Kα satellite spectra at

every 10 ns of the beam pulse. Results for the Kα emission spectra are shown in Fig. 2.14.

Note the change in scale of the ordinate at each time. The spectra also include instrumental

broadening with λ/∆λ = 1000. For the first 40 ns of the beam pulse (i.e., when T <∼ 10 eV),

the “cold” (F-like) and O-like satellites exhibit the strongest emission. At t � 20 − 40 ns

the magnitude of the flux is Fν � 3 − 8 × 1011 erg/cm2/s/eV. At later times the target

becomes hotter and the emission originates from higher and higher ionization stages. At

t � 70−80 ns, B-like and C-like lines exhibit the strongest emission. However, the intensities

of the lines are substantially less than those at early times.

The decrease in intensity at late times in these simulations is primarily due to the

dependence of the proton-impact ionization cross sections on the beam voltage. This can

be seen by examining the K-shell ionization cross sections for protons on Al (see Fig. 2.2).

Recall from Fig. 2.13 that the proton voltage in the Al plasma drops from about 1.4 MeV

18



Figure 2.10. Time-dependent proton beam power density and voltage profiles used in

radiation-hydrodynamics simulations of KALIF Bθ diode experiments.
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Figure 2.11. Temperature and density distributions in Al target plasma at T = 40, 60, and

80 ns for the Bθ diode radiation-hydrodynamics simulation.
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Figure 2.12. Average temperature of Al target plasma vs. time for Bθ diode simulation.
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Figure 2.13. Time dependence of average stopping power, beam current density, and

proton beam kinetic energy within the Al target computed for the Bθ diode
simulation.
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Figure 2.14. Calculated Kα satellite emission spectra at 10 ns time intervals for the Bθ

biode simulation.
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at 30 ns to about 0.5 MeV at 65 ns. This corresponds to a decrease in the proton-impact

ionization cross section of roughly a factor of 5. This in turn leads to lower Kα satellite

line intensities because their flux is proportional to the K-shell cross sections.

The time-integrated Kα emission spectrum is shown in Fig. 2.15. The top and

bottom plots are the same spectra on different scales. Shown are curves integrated up to

simulation times of 20, 40, 60, and 80 ns. The spectra show that the F-like (λ = 8.34 Å)

and O-like (λ = 8.27 Å) features are the strongest, and that their emission occurs primarily

within the first 40 ns of the beam pulse. Emission from the higher ionization stages occurs

at later times and is substantially weaker. Because of the weaker emission at later times it

can be difficult to accurately determine the maximum temperature obtained in ion beam-

heated targets.

It should also be noted that in making a direct comparison with experimental spectra

the spatial profile of the beam on the target should be taken into account [9]. For instance,

if the beam power density profile in Fig. 2.10 corresponds to the center of the beam, the

wings of the beam will have a lower current density, resulting in a portion of the target

which is heated to lower temperatures. If this region is seen by the spectrometer, a space-

integration of the Kα spectra must be performed. This will result in greater emission from

the relatively low ionization stages than is shown in Fig. 2.15.

Absorption spectra for simulation times ranging from t = 10 ns to 80 ns are shown

in Fig. 2.16. In addition to Kα satellites, Kβ lines — which are due to 1s → 3p transitions

— are also observed. (Kβ lines are generally not seen in emission because of their much

weaker intensity.) At early times only Kβ absorption lines are seen. Kα absorption lines

require states with vacancies in the 2p subshell, which do not become populated until

T >∼ 10 eV. At late times a significant shift to higher ionization stages is seen. Note that to

observe these Kα lines in absorption at late time only required the presence of a backlighter.

The problems associated with determining the late-time plasma conditions from emission

spectra (i.e., weak intensities) do not occur. Thus, absorption spectroscopy may have very

significant advantages for determining plasma conditions after the peak of the beam pulse.

We also note that absorption spectroscopy may also prove very valuable because of potential

uncertainties associated with multiple ionization effects [10,11]. This is especially true for

Li beam experiments.
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Figure 2.15. Time-integrated Kα satellite emission spectrum for Bθ diode simulation. The

bottom plot shows the emission for the higher ionization stages on a finer
scale.
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Figure 2.16. Calculated Kα satellite absorption spectra at 10 ns time intervals for the Bθ

diode simulation.
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2.4. Summary of Radiation-Hydrodynamics and CRE Simulations

The above simulations have been performed to aid in the interpretation of x-ray

spectra obtained in initial target heating experiments at FZK. Calculations were performed

for both laser-produced plasmas and ion beam-heated plasmas to try to understand why

Kα satellites were observed for Al targets, but not Na targets, in Bθ diode experiments.

Our calculations suggest that the Kα line intensities from Na and Al targets should be

of similar magnitude. In addition, the flux levels predicted from our laser-produced

plasma simulations appear to be significantly higher than those deduced from spectroscopic

measurements. This suggests that the inferred intensities of Na K-shell lines may be

degraded due to some instrumental effect (e.g., a filter, sensitivity, etc.).

Calculations were performed to predict time-integrated Al Kα spectra from KALIF

Bθ diode experiments. The simulations predict that the cold Kα feature (λ = 8.34 Å)

should be the most intense, followed by the O-like feature at λ = 8.27 Å. These results are

in qualitative agreement with initial spectroscopic measurements. However, it was noted

that to make a direct comparison with experiment, the spatial profile of the proton beam

on the target must be considered because the spectrometer sees regions outside of the most

intense part of the beam. Our simulations show the difficulties associated with trying to

determine the target’s maximum temperature from emission spectroscopy. Because of the

low emission levels, absorption spectroscopy should provide much better constraints on the

target plasma conditions at late times.
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3. A Unified Self-Consistent Field Model for Calculating Ion

Stopping Powers in Plasmas

3.1. Introduction

For many years, the stopping of energetic ions in matter has been a subject of

great interest. In the context of ion driven inertial confinement fusion (ICF) experments,

the stopping power of ions in matter of both solid and plasma states is crucial for target

designs. For reliable diagnostics and evaluation of the ion beam and target parameters such

as beam intensity, temperature, and density, one must know the stopping power accurately.

Several comprehensive reviews of calculations and measurements of ion stopping power in

ICF targets have been given by Mehlhorn [7], Deutsch [12], and Peter [13].

For typical plasma conditions in ion beam-target interaction experiments, the target

plasmas are often only partially ionized. Both bound and free electrons make contributions

to the stopping power. A most commonly used method for calculating the ion stopping

power in partially ionized plasmas is to divide the stopping electrons into two groups: those

bound to the plasma ions and those which constitute the plasma free electrons. The number

of free electrons in the plasma is determined by solving the Saha equation. The contribution

of each group of electrons to the stopping power is calculated separately. For example, most

of the stopping power calculations [14] use the Bethe equation [15] for the bound electrons

and use a separate term for the plasma free electrons. Although this kind of combined

stopping power model has provided a reasonable description of the energy deposition of

both light and heavy ions in ICF plasmas, a weakness of it is that the assumption of

the definite separation of “bound” and “free” electrons may not be appropriate for high

density ICF plsamas. If we represent the effect of the plasma by a fluctuating microfield,

the pertubations of it can cause an orbital electron to have some nonzero probability of

becoming unbound from its original nucleus. However, an electron which is unbound in

a one-center system may still be bound in a two-center system consisting of the original

nucleus and a neighboring ion. Moreover, the electron may also be bound in a 3,4,...,

center system which includes additional neighboring ions. A relevant discussion of these

quasi-free electrons has been given by More [16], who makes use of the formal collision

theory to describe these electrons within the framework of the ion sphere atomic model.

Since the characteristic interaction velocities of ‘bound’ and ‘free’ electrons are different

in ion stopping, the ‘quasi-bound’ electrons play the role of bridging them. The effects of

‘quasi-bound’ electrons on stopping power have not been studied in detail before. Another

drawback of the combined stopping power model is that it uses different models for different
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energy regimes, and the separation boundary of ‘low’ and ‘high’ energy regimes is somewhat

ambiguous.

In 1963 the first unified approach to ion stopping and range theory was made by

Lindhard, Scharff and Schiott [17] and their approach is commonly called the LSS-model.

This work brought together Lindhard’s elegant dielectric formulation of stopping theory and

local density approximation, and bridging approximations were made so that calculations

of stopping power of cold material could, for the first time, be made within a single model.

However, since the LSS-model is based on Thomas-Fermi statistical atoms, it naturally

shows no shell effects and is only accurate for atoms with many electrons in the intermediate

range where they are neither fully stripped nor almost neutral. With the LSS-model it is

possible to predict the ion stopping power of solids within a factor of 2. Later on, significant

improvement [18] was made with the incorporation of more realistic Hartree-Fock atoms

into the LSS-model. Now, a natural question should be asked is how should we extend

the LSS-model to form a single unified model that is capable of accurately predicting the

ion range and energy deposition profile as a function of material composition, density,

temperature, and degree of material ionization for a variety of different ionic species and

beam energies?

In this work we develop a unified self-consistent-field model for ion energy deposition

in ion-driven inertial confinement fusion targets. As a starting point, we noticed while

looking through many calculations of cold material stopping power in the framework of

the LSS-model that the overall accuracy is much better when the solid state Hartree-Fock

electron density distribution is used instead of the isolated Hartree-Fock atomic model. On

the other hand, Lindhard’s stopping power formalism needed to be extended to include

finite temperature effects. Hence the present work is concerned with establishing two main

points.

The first main point is how to choose an atomic model which is appropriate for the

conditions revalant to the ion-driven inertial confinement fusion targets. The requirement

for the model is that it should recover the electron density distributions of both solid-state

and isolated atom Hartree-Fock models in the corresponding conditions. In 1979 Liberman

[19] developed a self-consistent-field “muffin-tin” atomic model for high density plasmas.

This model has much of the simplicity of an isolated atom but captures much of the physics

of the band-structure model. It provides a self-consistent treatment for both “bound” and

“free” electrons in a wide range of plasma conditions. We will use this atomic model to

determine the electron density distribution function. Since we are interested in both low-Z

and high-Z materials, the relativistic formulation is used. The second main point of this
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work concerns the stopping characteristics of the ICF relevant hot plasmas with an electron

temperature comparable or smaller than the Fermi one. In this aspect, we take advantage

of the full Random Phase Approximation (RPA) dielectric function developed by Maynard

and Deutsch [20].

In Section 3.2 we review the Lindhard stopping power formalism and the local

density approximation which form a framework of this work. In the Section 3.3 we

describe Liberman’s “muffin-tin” atomic model and electron distribution function. And in

Section 3.4 we discuss the full R.P.A. stopping interaction function. Numerical calculation

results and discussion are presented in Section 3.5. An analytic fitting procedure which

provides analytic expressions of stopping power for using in hydrodynamic simulations is

presented in Section 3.6. Finally, a summary of the work is given in Section 3.7.

3.2. Lindhard’s Formalism of Stopping Power and Local Density

Approximation

For an ion of charge Ze moving with velocity V in a medium of uniform density ρ,

the energy loss due to electron excitation can be conveniently written in the form

−dE

dx
=

4π

m

(
Ze2

V

)
ρL(ρ, v) (3.1)

where L is the stopping number and m is the mass of electron. In the dielectric formalism,

L is written as

L =
i

πω2
0

∫ ∞

0

dk

k

∫ kv

kv
ωdω[ε−1(k, ω) − 1] (3.2)

where ω0 is the plasma frequency, i.e.,

ω2
0 =

4πe2ρ

m
(3.3)

and ε(k, ω) is the wave number and frequency dependent longitudinal dielectric constant.

Lindhard’s formalism to the interaction of a charged particle with a free electron

gas makes the following assumptions:

• The free electron gas consists of electrons at zero temperature (single electrons are

described by plane wave) on a fixed uniform positive background with overall charge

neutrality.

• The initial electron gas is of constant density.

• The interaction of the charged particle is a perturbation on the electron gas.
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• All particles are non-relativistic.

With these assumptions, Lindhard obtained the stopping number, L, as

L =
6

π

∫ V/V F

0
udu

∫ ∞

0
dz

z3f2(u, z)

[z2 + χ2f1(u, z)]2 + [χ2F2(u, z)]2
(3.4)

where

f1(u, z) =
1

2
+

1

8z
[1 − (z − u)2]

∣∣∣∣ln z − u + 1

z − u − 1

∣∣∣∣

+
1

8z
[1 − (z + u)2]

∣∣∣∣ln z + u + 1

z + u − 1

∣∣∣∣ (3.5)

and

f2(u, z) =




1
2
πu for z + u < 1

( π
8z

)[1 − (z − u)2] for |z − u| < 1 < z + u

0 for |z − u| > 1 .

(3.6)

z and u are the reduced wave number and frequency:

z =
k

2kF
and u =

ω

kVF
(3.7)

with kF and VF denoting Fermi wave number and velocity

EF =
1

2
mV 2

F ≡ h2k2
F

2m
=

h2

2m
(3π2ρ)2/3 . (3.8)

The dimensionless quantity χ2 is defined by

χ2 =
V0

πVF
(3.9)

with V0 = e2/h̄ denoting the Bohr velocity. Some typical illustrations of the variation in

Lindhard’s stopping number with electron density and energy are presented in Fig. 3.1.

The Lindhard stopping power formalism is a many-body self-consistent treatment

of an electron gas responding to a perturbation by a charged particle. It naturally includes

the polarization of the electrons by the charged particle and the resultant charge-screening

and the plasma density fluctuations. It smoothly treats both individual electron excitation

and collective plasmon excitations without separate ‘distant’ and ‘close’ collision processes.

However, Eq. (3.1) is only vaild for an uniform free electron gas. For a partially ionized

plasma, the electron density distribution is no longer uniform because of the presence of
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Figure 3.1. Variation in Lindhard stopping number with electron density for selected

projectile energies.
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bound electrons. In such cases, the Lindhard stopping power formalism can still be directly

applied with the use of the local-density approximation [21].

In the local-density approximation, the nonuniform electron cloud is divided into

small independent volume elements, and the electron density distribution in each volume

element is assumed to be uniform. The stopping power is calculated for a charged particle

in a free electron gas of each volume element’s density, and the final stopping power is

computed by averaging over these values, weighted by their distribution in the nonuniform

electron cloud (
−dE

dx

)
=

4π

m

(
Ze2

V

)2 ∫ ∞

0
ρ(r)L(ρ, v)4πr2dr (3.10)

where ρ(r) is the spherically averaged electron density of the target atom.

It can be seen from Eq. (3.10) that the electronic stopping of an ion in a plasma

is determined by two key functions, the electron density distribution function ρ(r) and

stopping number L.

3.3. Atomic Model And Electron Density Distribution Function

The electron density distribution of an atom is affected by its surrounding

environment. This is particularly the case for the outer shell electrons. Figure 3.2

demonstrates the difference between the calculated electron distribution for an isolated

atom (denoted HFS for Hartree-Fock-Slater) and that of the same atom in a solid-state

lattice [22]. It can be seen that there is a pronounced difference in the spatial variation of the

solid-state and isolated atomic electron densities away from the interior of the target atom

due to solid-state bonding effects. It was found [23] that this spatial variation in electron

density gives rise to a marked change in density-averaged stopping number. Therefore, it is

necessary to use solid-state electron densities in the calculation of stopping power of solids.

What should be the appropriate electron density distribution function in stopping

power calculations for a plasma atom? To date, the isolated atom model has been most

commonly used in the calculations of ion stopping power of plasmas. However, just as

for solids, its applicability to hot dense ICF plasmas is questionable [24] because of the

marked perturbation of surrounding environment. In order to account for environmental

effects on electron distribution properly, we choose a self-consistent-field ‘muffin-tin’ atomic

model [19] in our stopping power calculations. One important feature of this model is that

it smoothly connects the solid-state self-consistent-field atomic model and the isolated

atom Hartree-Fock model. It naturally extends the solid-state Hartree-Fock model into

finite temperature high density plasams. On the other hand, at the low density regime
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Figure 3.2. Radial electron density profiles for neutral aluminum atoms. Results for
isolated atoms and atoms within a solid-state lattice are shown.
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it describes an isolated atom or an ion in equilibrium with an electron gas. Therefore,

problems of a wide range of temperatures and densities can be accommodated within an

unique atomic model.

Figure 3.3 illustrates the model [19]. At the center of a spherical cavity is a point

nucleus, outside the cavity there is a uniform distribuition of positive charge which takes

the place of the surrounding ions. There are sufficient electrons in the system to give

overall electrical neutrality, and the additional requirement of electrical neutrality inside

the sphere is imposed. A “muffin-tin” approximation is used for the electron density outside

the sphere. The electrons are governed by a set of self-consistent-field one-electron Dirac

equations,

[c	α · 	ρ + βc2 − c2 + V (r)] φi(	r) = εiφi(	r) (3.11)

where the potential function is

V (r) =




−Z
r

+
∫
r′<R

ρ(r′)
|�r−�r′| − [3π2ρ(r)]1/3

π
− ν for r < R

− (3π2 ρ̄)1/3

π
for r > R .

(3.12)

R is the radius of the cavity which is electrically neutral, and is determined by the conditions

of the plasma. The Lagrangian multiplier ν is given by

ν =

{[
4 − ρ̄

ρ(R)

]
(3π2ρ̄)1/3 − 3[3π2ρ(R)]1/3

}
/4π . (3.13)

The electron density itself is given in terms of normalized one electron orbital functions

and “muffin-tin” approximation

ρ(r) =




∫
ρ−(�r) sin θ dθ dϕ

4π
r < R

∫
x>R

ρ−(�x) d�x∫
x>R

d�x
= ρ̄ r > R

(3.14)

ρ−(	r) =
∑

i

ηi |ni(	r)|2

and the orbital occupation number is determined by the Fermi-Dirac distribution

ηi =
1

exp
[

(εi−u)
kT

]
+ 1

. (3.15)

The sum in Eq. (3.15) includes electrons in ground states, excited states, and an integral

over the continuum. The continuum states are treated on the same basis as the bound

states in this model, and as a result there is a smooth transition from bound state to
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Figure 3.3. A schematic charge distribution for the “muffin-tin” atomic model: (a) a point

nucleus at the center of a spherical cavity; (b) a constant positive charge
density outside the cavity which represents surrounding ions; (c) a spherically

symmetric electronic charge density inside the cavity; (d) a volume average
electronic charge density outside the cavity. R is the radius of the cavity.
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narrow resonance and then to broad resonance. The implication of this treatment is that

there is not a sharp cut in statistical distribution between “bound” and “free” electrons.

The electron density distributions generated by this atomic model are shown in

Fig. 3.4 and Fig. 3.5. Fig. 3.4 shows the calculated electron density distribution of a gold

atom at normal matter density along with that of the isolated atom Dirac-Fock calculation.

It is seen that while the ‘muffin-tin’ electron density distribution is almost identical to that

of an isolated atom for inner-shell electrons, there is a significant difference in the outer

shell regime. The temperature effect on electron density distributions is shown in Fig. 3.5.

As temperature increases, more and more electrons are excited and ionized. Therefore, we

see the electron density decreases in the inner regime and increases in the outer regime.

It is important to note that the ‘muffin-tin’ model provides a self-consistent picture for

electrons in all states.

3.4. The Random-Phase-Approximation Stopping Interaction Function

For ICF relavant hot dense plasmas, the standard Lindhard stopping number is no

longer valid. In order to extrapolate the zero temperature Lindhard stopping quantity to

plsamas at any temperature, Maynard and Deutsch [20] have developed a model which

makes use of the full R.P.A. dielectric function to give formulae for the temperature

dependent stopping number of electron stopping:

L =
6

nχ2

∫ V/VF

0
udu

∫ ∞

0
dz

z3χ2f2(u, z)

[z2 + χ2f1(u, z)]2 + [χ2f2(u, z)]2
(3.16)

where

f1(u, z) =
∫ ∞

0
dk n0(k) + πTe

∞∑
n=b

{
bn

γn

− 1

4z

[
tan−1

(
P+ + an

bn

)

+ tan−1
(

P+ − an

bn

)
− tan−1

(
P− + an

bn

)
− tan−1

(
P− − an

bn

)]}
(3.17)

f2 = −πTe

8z
ln




1 + exp
[

γ−P 2
+

Te

]

1 + exp
[

γ−P 2
−

Te

]

 (3.18)

with

n0(R) =

[
exp

(
k2 − γ

Te

)
+ 1

]−1

Te =
T

TF
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Figure 3.4. Comparison of isolated atom Dirac-Fock radial electron density with that from
the muffin-tin model.
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Figure 3.5. Radial electron density profiles for gold at selected temperatures. Results are
calculated with the muffin-tin atomic model.
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P± = u ± z

γ = αTe (3.19)

and α is determined from

F1/2(α) =
2

3
Te−3/2 . (3.20)

The coefficients an and bn are given by

an = ±1

2
{γ + [γ2 + (2n + 1)2π2Te2]1/2}1/2

and (3.21)

bn = ±1

2
{γ + [γ2 + (2n + 1)2π2Te2]1/2}1/2 .

It is important to note that with Eq. (3.17) and (3.18), one can recover the two well-known

results at low and high temperature limits [20].

Direct application of RPA stopping number to large scale stopping power

calculations is a formidable task since f1 is a very slowly convergent quantity. We

have chosen an interpolation formula of L(T, V ) which bridges the accurate asymptotic

expression of Eq. (3.16) in both the small and large projectile velocity limits [20]:

L(V1, Te) =




L1 =
(

V
VF

)3
C(χ2, α) 1

1+GV 2 V ≤ Vint

L2 = ln
(

2mV 2

tωp

)
− 〈V 2

e 〉
V 2 − 〈V 4

e 〉
2γ4 V ≥ Vint

(3.22)

where 〈
V 2n

V 2
F

〉
=

T n
e Fn+1/2(α)

F1/2(α)
(3.23)

C(χ2
1, α) =

∫
0
∞ dz z3

(z2 + χ2
∫
1 (z, 0))2

[
1 + exp

(
z2−α
Te

)] (3.24)

and G is fixed by L1(Vint) = L2(Vint). Detailed numerical calculations have shown that the

relative error of this interpolation formula is smaller than a few percent at any temperature.

In order to demonstrate the sensitivty of stopping number on temperature, we have

calculated RPA stopping numbers for ions of various energies stopped in a uniform electron

gas with density of 1023 cm−3. The calculated results are shown in Fig. 3.6. We see that

for slow ions, the stopping number is very sensitive to the temperature, while for fast ions

the temperature effect is negligible.
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Figure 3.6. Variation in RPA stopping number with temperature for selected projectile

energies.
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3.5. Numerical Results

The stopping of proton on cold aluminum has been well studied. We begin by

studying the case of a monoenergetic beam of proton ions incident on a planar aluminum

target so that we can check the validity of charge density distribution represented by the

‘muffin-tin’ atomic model. Figure 3.7 shows the related change in the calculated proton

stopping power in neutral aluminum as compared to experimental data using isolated atom

HFS electron distribution and ‘muffin-tin’ electron distribution discussed above. It can seen

that while in the high energy regime both atomic models give good agreement with the

experimental data, the low energy stopping power is over-predicted for isolated atoms.

It has been known that the low energy ion and high energy ion are mainly stopped by

two different parts of electrons of the target atom. Most of the energy of the low energy

ion is lost to outer shell electrons, while the inner shell electrons play a major role in

stopping high energy ions. As mentioned above, while outer shell electrons are strongly

affected by the surrounding environment, inner shell electron distribution is relatively

stable. Significant difference is seen in the spatial variation of the ‘muffin-tin’ electron

densities and isolated atom HFS electron densities away from the interior of the target atom

due to solid state bonding effects. For inner shell electrons, especially for K-shell electrons,

density distributions of two models are almost identical. The good overall agreement of

the calculated stopping power with the experimental data demonstrates that the electron

distribution of the ‘muffin-tin’ atomic model is quite accurate for both outer and inner shell

electrons.

In Figure 3.8 the calculated proton stopping power on a cold gold target with two

different atomic electron densities is shown together with the experimental data [25]. We

see that for this high Z target, the calculated stopping power with the ‘muffin-tin’ electron

density shows good overall agreement with the experimental data.

Figure 3.9 shows the stopping power of a monoenergetic beam of carbon ions incident

on a planar gold target. Our calculated result is compared with Northcliffe’s tabulated data

[26] and the results of two other different models [7]. It can be seen that the Bethe model

is only valid for the high energy range, while the LSS model is accurate in the low energy

range. Our result agree well with the tabulated data over the whole energy range.

Figures 3.10 and 3.11 show the stopping powers for protons in hot gold plasmas.

Figure 3.10 represents the case of a gold target having Te = 1 keV, ρ = 0.193 g/cm3,

and Figure 3.11 considers the case of a gold target having Te = 50 eV, ρ = 1.93 g/cm3.

In the first case, there are about 270 electrons/Debye sphere, while in the second case,

this number is only about 2.5. In both cases there is fairly good agreement between our
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Figure 3.7. Comparison of proton stopping power in neutral aluminum as a function of

energy.
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Figure 3.8. Comparison of proton stopping power in neutral gold as a function of energy.
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Figure 3.9. Stopping power of solid density room temperature gold for carbon ions. Shown

are the stopping powers predicted by several different models.
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Figure 3.10. Stopping power for protons in a gold plasma having Te = 1 keV, ρ =

0.193 g/cm3.
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Figure 3.11. Stopping power for protons in a gold plasma having Te = 50 eV, ρ =

1.93 g/cm3.
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result and that of three other commonly used models. These two cases correspond to two

completely different plasma conditions. The first case represents a weakly coupling plasma,

while the second case is a strongly coupling case. The good agreement of our results with

the results of other commonly used models indicates that our stopping model is valid for a

wide range of target conditions.

Finally, we come to the main point of this work: studying the ion stopping

characteristics of hot targets with the use of a self-consistent treatment for both bound

and free electrons. In this regard, we have calculated the proton range in a hot gold target

with the model discussed in previous sections and made comparisons with the results of

the Generalized Oscillator Strength (GOS) model [27] and that of the scaled-Bethe model

[24]. Figures 3.12 and 3.13 demostrate the variation of the range in gold with ionization

for protons of various energies. Results of this work, GOS results and those using the

scaled-Bethe model are shown. There are two points of interest in this comparison. First

of all, the range is predicted to decrease more slowly with ionization for GOS results. Our

results lie somewhere between GOS results and scaled-Bethe results. Secondly, our results

show a smooth decrease with ionization in all the cases, while the GOS model predicts that

the range for high energy projectiles can initially increase with ionization of the atom.

It has been argued [24] that such an initial range lengthening characteristic in high

Z targets can be interpreted in terms of the difference in the interaction velocities of

the target electrons when they are in their bound and free states. It should be noted

that the key point of this interpretation is that there is a sharp cut between the bound

and free electrons, the characteristic velocity of a bound electron is given by the local

Fermi velocity and the characteristic velocity of free electron is the thermal velocity.

However, this is not the case in reality. On the other hand, the GOS model neglects

the contributions from bound electrons in excited states. These excited electrons are less

bounded than those in the subshells of the ground configuration, and their characteristic

velocities should be somewhere between the local Fermi velocity and thermal velocity. If

the stopping effect from excited electrons is included in the GOS calculation, we expect

that the initial range lengthening features in the GOS results could be removed. This needs

to be verified in future investigations. In our calculations, contributions from electrons in

all states (ground, excited, and continuum states) are essentially taken into account in a

self-consistent manner. This characteristic of the model is reflected in Eq. (3.15). The

sum in Eq. (3.15) runs through the ground state and all excited states and continuum

states. The population of each state is determined by the Fermi-Dirac distribution. The

difference between our results and the GOS results demonstrates that the contributions
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Figure 3.12. Stopping range of 1 MeV and 2 MeV protons in gold as a function of ionization

state of the target. Results predicted by three different models are presented.
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Figure 3.13. Stopping range of 4 MeV and 10 MeV protons in gold as a function of
ionization state of the target. Results predicted by three different models

are presented.
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from electrons in excited states, which can be interpretated as ‘quasi-bound’ electrons in

high density plasmas, is important in stopping power calculations and should be treated

carefully.

3.6. Analytic Fits

In order to provide input data for hydrodynamic codes, the calculated stopping

power data are fitted to simple analytic functions. The value of the total ion stopping

power of a plasma target depends on the following parameters:

(1) charge of the projectile,

(2) energy (velocity) of the projectile,

(3) nuclear charge of the target,

(4) temperature of the target,

(5) particle density of the target.

Hence, an ideal data table for ion stopping powers would require 5 dimensions. In

practice, a 5-dimensional table lookup is too complicated to implement. To reduce the

complexity, the following points were considered:

A. A different data table is set up for each combination of projectile species and target

plasma.

B. For given projectile and target conditions, the stopping-power is a very smooth

function of projectile energy. A 10-parameter function is used for fitting the energy

dependence.

C. Our calculations show that stopping-power and target charge state (Z̄) is not in one-

to-one correspondence. Hence, instead of using Z̄, we do a curve fit for each (T, ρ)

point.

At low energies, the electron stopping power is proportional to projectile velocity,

while the high energy behavior of the stopping power is very well described by the Bethe

formula [15]. Based on these asymptotic functional forms, we used the following functions

to fit the energy dependence of stopping power, which is similar to that used by Ziegler,

et al. [25]
dE

dx
= A1 · EA2 0 < E ≤ 0.1 E0
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dE

dx
= S1 · S2/(S1 + S2)

S1 = A3 · EA4

S2 = (A5/E) · ln (1 + A6/E + A7E)




0.1 E0 < E ≤ 10 E0

dE

dx
= (A8/E) · ln (1 + A9/E + A10E) E > 10 E0 .

The fit is divided into three parts, one for the low energy regime (E ≤ 0.1 E0), one for

the high energy regime (E > 10 E0), and one for bridging the gap between low- and high-

energy regimes. The energy E0 corresponds to the maximum of the stopping power at

each temperature and density point. It has been found that this fitting procedure works

very well for all cases. Typical errors in the fit are only a few percent. Figure 3.14 shows

a typical comparison of calculated data and its fitting curve. It can be seen that the fit

well-represents the data over the entire energy range.

3.7. Summary

We have developed a model to study the energy deposition of an arbitrary ion

in a material of arbitrary composition, density, and temperature. This model includes

sophisticated treatments for electron density distribution of a atom in plasmas and a full

Random Phase Approximation stopping number which extrapolates the zero temperature

Lindhard stopping number to arbitrary temperatures. Therefore, it can accommodate a

wide range of temperatures and densities relavant to ICF plasmas. We have shown that

this model provides quite accurate ion stopping power in cold materials, including both

low-Z and high-Z targets. For finite temperature plasmas, the model accounts for the

stopping effects due to electrons in ground states, excited states and continuum states in a

self-consistent manner. We have compared our calculated results of proton range in a gold

plasma with those of the GOS model and scaled-Bethe model. Our results lie between the

results of these two different models. No initial range lengthening feature is seen in our

calculated results, which appears in GOS results. We concluded that this difference could

be caused by the different treatments of less bounded electrons in excited states.

It is worthwhile pointing out that this model is in the framework of first-Born

approximation for the projectile. For low energy heavy ions, the first-Born approximation

is no longer appropriate and higher-order Born corrections should be included [20]. This

can be done by directly including the Barkas term [28] and Bloch term [29] into our model.

Further development of the model in this direction is currently under way.

52



Figure 3.14. Stopping power for protons in an aluminum plasma having Te = 1 eV,

ρ = 0.027 g/cm3. Both calculated data points and best fit curve are shown.
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4. Equation of State (EOS) Tables for the KATACO Radiation-
Hydrodynamics Code Based on Hybrid DCA/Muffin Tin

Model

KALIF beam-target interaction experiments have been analyzed using KATACO,

a radiation-hydrodynamics code, which calculates space- and time-dependent density-

temperature profiles, ρ(r, t) and T (r, t). An essential input to KATACO is a knowledge

of the material equation of state (EOS) which usually takes the form of pressure, p, and

energy, E, as functions of ρ and T . The accurate simulation of experiments often requires

high quality EOS data. For typical applications, one desires EOS data having an accuracy

of 15% − 20% or better. Hydrodynamics codes can also encounter numerical difficulties

(e.g., not conserving energy) if the EOS data is not thermodynamically consistent.

We have developed a hybrid model for calculating equation of state data for materials

over a wide range of density and temperature conditions. In this hybrid EOS model,

a detailed configuration accounting (DCA) approach is used for the low-density, high-

temperature regime, while a “muffin-tin” model [19] is used for the high-density regime.

In the detailed configuration accounting approach, each isolated ion in the plasma

is in equilibrium with free electrons. Plasma effects on each atomic system are considered

as perturbations. Ionization distributions and level occupation numbers are obtained from

detailed ionization balance calculations. The following contributions are included in the

equations of state:

(1) the translational motions of ions and atoms,

(2) the effects of partially degenerate electrons,

(3) configuration effects from Coulomb interactions (Debye-Huckel corrections), and

(4) atomic internal contributions (excitations and ionizations).

The muffin-tin model is used to accurately compute the equation of state for high

density plasmas. It is applicable to electrons on the zero-temperature isotherm as well

as for any finite temperature. It has much of the simplicity of an isolated atom model

but captures much of the physics of the band-structure model. In particular, it provides

an accurate description of cohesion and the behavior of solids under compression. This

model also describes an isolated atom or an ion in equilibrium with an electron gas

in low density cases. Hence the muffin-tin model smoothly connects the high-density
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electron degenerate regime and the low density plasma regime. This smooth connection

provides thermodynamic consistency of calculated equations of state over a wide domain

of temperatures and densities.

The hybrid model is designed to provide reliable equations of state over a wide range

of plasma conditions. Figure 4.1 shows the results for energy and pressure isotherms for

aluminum calculated using our hybrid model. In the low density regime, the nonlinear

behavior due to atomic internal excitation/ionization is clearly seen. The cohesive,

degenerate, and pressure ionization effects are observed for high density regime. Figure

4.2 shows a comparison of calculated shock Hugoniots with experimental data for Al and

Au. It can be seen that the agreement is good.

The details of the physical basis for the equations used in the model have been

presented elsewhere [2,19]. Here, we summarize the main features of the EOSOPA code,

and the format of the EOS data tables.

EOSOPA is a program suite which consists of three computer codes:

(a) DCAOPA computes EOS data for low density plasmas using the DCA model;

(b) MFTEOS computes EOS data for intermediate- and high-density plasmas using the

muffin-tin model; and

(c) JOINEOS connects the EOS data of DCAOPA and MFTEOS, checks the

thermodynamic consistency of the EOS data, and generates the final EOS tables

for radiation-hydrodynamics code.

The inputs are simply the material composition and basic atomic structure data

(output from ATBASE). The outputs include pressure, energy, and their derivatives (e.g.,
∂p
∂ρ

, ∂p
∂T

, ∂E
∂T

, etc.). Electron and ion pressures and energies are calculated separately. This is

important for plasmas in which the two species have unequal temperatures. The calculated

pressures and energies are smooth functions of ρ and T and satisfy the condition of

thermodynamic consistency. A typical output file format is shown in Table 4.1.
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Figure 4.1. Energy and pressure isotherms calculated for aluminum using hybrid EOS
model.
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Figure 4.2. Comparison of calculated shock Hugoniots with experimental data for Al and
Au.
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Table 4.1. EOS And Opacity Data Table Format

Atomic number of species: A1, A2, ...
Relative fraction: f1, f2, ...

Number of temperature mesh points: nT

Temperature mesh (eV): (T (i), i = 1, nT )

Number of density mesh points: nD
Density mesh (g/cm3): (D(i), i = 1, nD)

Solid density of the material (g/cm3): ρ0

Number of photon energy groups: nG

Group structure (eV): (Eg(i), i = 1, nG)

Average charge state (Z̄): ((Z̄(it, id), it = 1, nT ), id = 1, nD)

Total internal energy (J/g): ((Eint(it, id), it = 1, nT ), id = 1, nD)
Heat capacity (J/g/eV): ((dEint/dT (it, id), it = 1, nT ), id = 1, nD)

dEint/dρ: ((dEint/dρ(it, id), it = 1, nT ), id = 1, nD)
Ion energy: ((Eion(it, id), it = 1, nT ), id = 1, nD)

Electron energy: ((Eele(it, id), it = 1, nT ), id = 1, nD)
dEion/dT (J/g/eV): ((dEion/dT (it, id), it = 1, nT ), id = 1, nD)

dEele/dT (J/g/eV): ((dEele/dT (it, id), it = 1, nT ), id = 1, nD)
Ion pressure (J/cm3): ((Pion(it, id), it = 1, nT ), id = 1, nD)

Electron pressure (J/cm3): ((Pele(it, id), it = 1, nT ), id = 1, nD)
dPion/dT (J/cm3/eV): ((dPion/dT (it, id), it = 1, nT ), id = 1, nD)

dPele/dT (J/cm3/eV): ((dPele/dT (it, id), it = 1, nT ), id = 1, nD)

Rosseland mean opacity (cm2/g): (((Kr(it, id, ig), it = 1, nT ), id = 1, nD), ig = 1, nG)
Planck emission mean opacity: (((Ke(it, id, ig), it = 1, nT ), id = 1, nD), ig = 1, nG)

Planck absorption mean opacity: (((Ka(it, id, ig), it = 1, nT ), id = 1, nD), ig = 1, nG)
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