# **Comments on the Mass of the Burst Mode Power Reactors**

- 1) **Open Gas Cooled Reactor System** 
  - . Lightest system
  - Hydrogen cooled (exits the weapon at 300 °K and 13.6 MPa)
  - H<sub>2</sub> first cools the power conditioning unit and the generator, then it enters the reactor where it is heated to 1200 °K.
  - The 1200 °K H<sub>2</sub> runs the turbine to make electricity, and then it is exhausted into space.
  - Although the H<sub>2</sub> was not included in the total mass, it was calculated and the tank, insulation, refrigeration, and meteorite protection was calculated and added.

### 2) **Open Hydrogen-Oxygen Combustion System**

- Similar to the reactor system except oxygen is used to obtain the energy to turn the turbine.
- Exhaust is a mixture of hydrogen and steam at 1200 °K
- Mass of combustion system (including  $O_2$  cryo system) is more than 10 times a fission reactor, but overall mass is only 15% more.
- Water is not expected to be significantly different than hydrogen for contamination.
- Main advantage of combustion is safety and environment as well as probably lowers development and fabrication costs.
- 3) <u>Closed Rankine and Brayton Cycles</u>
  - Prime advantage is no effluent (However, this may be moot if weapon has to exhaust coolant.)
  - Both systems operate at high temperatures requiring superalloys, and in the case of the Rankine cycle, an understanding of two-phase flow in microgravity.

- 4) <u>Energy Storage Systems</u>
  - Present batteries, fuel cells and flywheels have power densities of 50 Wh/kg, so to get to 500 Wh/kg will be difficult.
  - Need a 1000 °K radiator to dissipate 20% of the energy of the power supply.
  - Major advantage is that they have no effluent and they are relatively light when only a short-time operation is required.
- 5) <u>Thermionic with Energy Storage</u>
  - Uses LiH as a moderator and as a thermal energy storage medium
  - Advantage No moving parts and no effluent.
  - Disadvantage Heavy mass during long engagements.

# Comparison of 500 MW<sub>e</sub> Burst Mode Space Power Systems

### Metric Tonnes

| Component              | Open<br>Gas<br>Cooled<br>Reactor | Open<br>H2-O2<br>Comb. | 500<br>Wh<br>Energy<br>Store | Therm-<br>ionic<br>Energy<br>Store | 1350 °K<br>Rankine | 1500 °K<br>Brayton |
|------------------------|----------------------------------|------------------------|------------------------------|------------------------------------|--------------------|--------------------|
| Power<br>Source        | 3                                | 42                     | 166                          | 214                                | 21                 | 47                 |
| Turbine &<br>Generator | 63                               | 64                     | 0                            | 0                                  | 143                | 131                |
| Compressor             | 0                                | 0                      | 0                            | 0                                  | 0                  | 236                |
| Radiator               | 0                                | 0                      | 24                           | 0                                  | 585                | 2452               |
| Vapor Separ.           | 0                                | 0                      | 0                            | 0                                  | 115                | 0                  |
| Power<br>Conditioning  | 100                              | 100                    | 100                          | 100                                | 100                | 100                |
| PC & Gen<br>Radiator   | 0                                | 0                      | 53                           | 53                                 | 115                | 115                |
| Mise                   | 17                               | 21                     | 34                           | 37                                 | 108                | 308                |
| TOTAL                  | <br>183                          | 277                    | 377                          | 405                                | <br>1187           | <br>3309           |



# **Gas Cooled Reactor Mass Studies**

A.) Burst Mode Mass Estimates

- Pellet Bed Reactor (see explanation)

   Used 500 μ diameter UC<sub>2</sub> particles
   imbedded in 1.5 cm spheres. A 5.4 tonne mass
   was obtained with 900 kg U/m<sup>3</sup>
- **2.) Pluto Derivative (see explanation)** 
  - Used UO<sub>2</sub>-BeO hex fuel rods, 6.83 mm across.
    Found that minimum reactor mass occurs at only 19 kg U/m<sup>3</sup>
- **3.)** NERVA/Pluto Hybrid (see explanation)
- Pluto geometry with NERVA fuel (UC<sub>2</sub>)
- Minimum reactor mass occurs at 900 kg U/m<sup>3</sup>
- 4.) UB<sub>2</sub> Reactor (see explanation)
  - Minimum reactor mass of 34.9 tonnes occurred at 500 kg U/m $^3$

• Not as crucial to get rid of B-10 as originally thought  $(UB_2 \text{ in } B_4C)$ 

# **Pellet Bed Reactor**

• Uses fuel in the form of spherical pellets 0.5 to 2 cm in diameter

• Fuel contains 93 % enriched  $UC_2$  coated fuel, particles embedded in a graphite matrix

• Fuel pellets are loaded into a cylindrical, refractory metal containment cylinder with perforated end plates for coolant flow (figure)

• A BeO reflector surrounds the core

- Control is by rotatable BeO drums with  $B_4C$  strips attached

- See;
  - a.) Noncirculating fuel design
  - b.) Once through then out
  - c.) Circulating fuel
- Proposed by SAIC
- References



NON-CIRCULATING PELLET REACTOR (B) ONCE-THROUGH THEN OUT (C) CIRCULATING FUEL

Figure B-3. Particle-Bed Reactor

# **Pluto Derivative Reactor**

• Geometry (see figure)

• Fuel elements are hexagonal with a single coolant channel running down the center.

• Flat to flat dimension is 6.83 mm with a 4 mm diameter coolant channel running the length of the fuel rod, 10 cm

• the fuel rods are stacked lengthwise

• Fuel element is BeO moderator with 93% enriched  $UO_2$  mixed homogeneously throughout

- A 10 cm thick BeO reflector is used
- Reactivity is controlled in 2 ways;
  - a.) Variable leakage reflector
  - b.) Burnable poisons
- Flux profile is flattened by;
  - a.) Variations in the fuel concentration
  - b.) Internal absorber rods placed throughout the core
- Tory II-C reactor came from the PLUTO concept in the early 1960's for nuclear ramjets

- Tory II-C operated at 500 MWt with coolant outlet of 1450  $^\circ\mathrm{K}$ 

• Proposed by LLNL, see references

REFLECTOR 80 jui ATION REFLECTOR CORE INSULA бn REFLECTOR

### Figure B-4. PLUTO Reactor

### References for Pellet Bed Reactor

- 33. D. Buden, <u>Pellet Bed Reactor Concept</u>, Science Applications International Corporation, White Paper Submitted to the Air Force Space Technology Center for the SDI Multimegawatt Power Program, May 30, 1985.
- 34. D. Buden, et al., <u>Pellet Bed Reactor Concept</u>, Science Applications International Corporation and the University of New Mexico, March 1987.

### **References for Pluto Reactor**

- 35. H. L. Reynolds, <u>Tory II C Reactor Test Report</u>, UCRL-12069.
- 36. C. E. Walter, <u>SPR-9 Concept Definition Study</u>, FY 1986 <u>Summary</u>, Lawrence Livermore National Laboratory, UCID-20883, October 1986.
  - 37. C. E. Walter, <u>Technology Development Plan for Multi-Mega-watt Space Power Systems</u>, COMS84-8/Rev 2, Unclassified, May 1984.
  - 38. C. E. Walter, Privileged Information, April 1985.
  - 39. C. E. Walter, Privileged Information, October 28, 1985.
  - 40. Carl Walter, personal communication, October 1986.
  - 41. C. E. Walter, et al., <u>Gas-Cooled Reactor Power Systems</u> for Space--Concept Definition Study Final Report, Lawrence Livermore National Laboratory, March 27, 1987.

13 2 2

# **NERVA/PLUTO Hybrid Reactor**

- Uses PLUTO geometry
- NERVA fuel type (  $UC_2$  in graphite matrix)
- Proposed by LLNL and Westinghouse (see references)

# **UB<sub>2</sub> Reactor**

- Uses PLUTO geometry
- Uses  $UB_2$  fuel in  $B_4C$  matrix
- Fuel enriched in  $B^{11}$  to reduce parasitic  $B^{10}$  absorption

• If hard spectrum used, minimal enrichment required

### **References for Wire Core Reactor**

- 47. <u>Advanced High-Temperature Nuclear Reactor Power System</u>, Rockwell International, White Paper Submitted to the Air Force Space Technology Center for the SDI Multimegawatt Power Program, RI/RD85-227, July 11, 1985.
- 48. <u>Advanced High-Temperature Nuclear Reactor Power System</u> <u>Volume II</u>, Rockwell International, RI/RD85-189P, May 30, 1985.
- 49. D. J. Arnold, et al., <u>Metallic Annular Rocket Reactor</u> <u>System (MARRS) Design Study</u>, Atomics International, AI-65-34, May 1, 1965.
- 50. R. Hansen et al., Rockwell International, personal communication, October 1986.

# **References for Foam Fuel Reactor**

- 51. L. G. Weatherford, B&W Proposed R&D 86-048, "Ultra-High Temperature Gas-Cooled Reactor with Porous Refractory Foam Fuel," Babcock and Wilcox letter to US DOE, San Francisco Operations Office, April 1986.
- 52. B. J. Short, Babcock and Wilcox, personal communication, October 1986.
- 53. B. J. Short, <u>Ultra High Temperature Gas Cooled Reactor</u> with Porous Refractory Foam Fuel (Preliminary Feasibility <u>Assessment Report, Phase I)</u>, Babcock and Wilcox, February 1987.

### **Gas Cooled Reactor Mass Studies**

- A.) Burst Mode Mass Estimates (cont.)
  - 5.) Cermet Reactor (see explanation)
  - Uses no moderator
  - Used full loading of 2000 to 6000 kg U/m<sup>3</sup>
  - 6.) Nerva Derivative (see explanation)
  - Reactor mass of 3.3 metric tonnes at 900 kg/m<sup>3</sup>
  - 7.) Particle Bed Reactor (see explanation)• The small ( 500 Microns diameter)

UC2 particles contained between concentric circles gave a 4.07 tonne reactor

- May Substitute LiH for  $B_4 C$
- 8.) Wire core reactor (see explanation)
  - Spacer wires are 13 mm apart
  - makes a big difference whether the coolant flow is axially or radially

• we have the 2,200kg system mass for a simple design

- **9.)** Foam Fuel Reactor (see explanation)
  - Randomly oriented 0.55mm UC2 'wires' with a
  - 0.1 mm thick coating
  - Fuel density  $\approx 20\%$
  - Reactor mass ≈ 2.5 tonnes

### **Cermet Reactor**

• Based on the 710 High Temperature Gas Reactor system of the 1960's

• Uses a fast spectrum

• Refractory metal, hexagonal cermet fuel elements with multiple tubular flow channels (see figure)

BeO side and bottom reflectors

• Control by B strips embedded in radial BeO reflector

• Coolant are;

a.) Hydrogen for open cycle burst mode

b.) Ne for closed loop (Brayton cycle) MMWSS mode

• A UO2/W cermet fuel was chosen because of high strength and high thermal conductivity

- Proposed by GE
- See references

#### TID REACTOR ASSEMBLY



Longitudinal and cross-sectional views of 710 Reactor



#### MATLE MARLEMENT PHEL ELPHENT SECRETRY

| 2007                                    | E SAGANAL PRIME |
|-----------------------------------------|-----------------|
| MATRIX ACROSS-PLATS DIMENSION, IN.      | 9.8866          |
| OUTER CLADDING THECHESS, IN.            | 0.015           |
| ND. OF CODLART CHANNELS                 | 91              |
| COOLANT CHANNEL INTRAILIC DEAVETIN, IN. | 8.835           |
| COOLANT CHANNEL PITCH, SR.              | 9.0036          |
| COOLANT CHANNEL CLASOTHE THECHESS, SH.  | 0.886           |
| MATRIX LENSTH, 38.                      | 12              |

#### Cermet fuel element

#### Figure B-5. Cermet Reactor

### <u>References for NERVA/Pluto Hybrid</u> <u>Reactor</u>

### See references 29 and 36

## <u>**References for UB<sub>2</sub> Reactor</u>**</u>

### See References 35-40

### **References for Cermet Reactor**

- 42. <u>A Bimodal Cermet Fueled Refractory Metal Reactor for MMW</u> <u>Applications</u>, General Electric Corporation, October 15, 1986.
- 43. <u>710 High Temperature Gas Reactor Program Summary Report</u>, Volume I through V Summary, General Electric, GEMP-600.
- 44. J. A. Angelo Jr., and D. Buden, <u>Space Nuclear Power</u>, (Orbit Book Co, 1985).
- 45. W. Ranken, Los Alamos National Laboratories, personal communication, October 1986.
- 46. C. L. Cowan, et al., <u>A Bimodal, Cermet Fueled, Nuclear</u> <u>Power System for Strategic Defense Applications--Final</u> <u>Report; Vol. 1 - Executive Summary, Vol. 2 - Technical</u> <u>Presentation</u>, General Electric Company, GEFR-00803, March 1987.

# **NERVA Derivative Reactor**

• Based on ROVER nuclear rocket program in which 20 reactors were built and tested in the 1960's and early 70's

• Two types of fuel were considered; (figure)

• Each fuel module consists of 6 hexagonal graphite fuel rods surrounding a central support element (tie tube)

• Basic NERVA fuel is  $UC_2$  in a graphite matrix

• the ZrC coating replaces the graphite coating of HTGR's

• Typical fuel element is 1.91 cm across the flats with 19 (2.5 mm diameter) coolant holes

- Proposed by Westinghouse
- See references



\_ \_

NERVA FUEL MODULE



#### CUT-AWAY AND SCHEMATIC FLOW DESCRIPTION OF THE NERVA REACTOR

Figure B-2. NERVA Reactor (Used With Permission of Los Alamos National Laboratory) **References for NERVA Reactor** 

- 13. D. R. Koenig, Experience Gained from the Space Nuclear Rocket Program (Rover), LA-10062-H, UC-33, May 1986.
- 14. <u>Technical Summary Report of NERVA Program. Phase I. NRX & XE. Volume IV. Technology Utilization Survey</u>, Westinghouse Astronuclear Laboratory, TNR-230, July 31, 1972.
- 15. <u>Technical Summary Report of NERVA Program, Phase I, NRX & XE Volume III, Full Scale Program</u>, TNR-230, July 15, 1972.
- <u>Technical Summary Report of NERVA Program, Phase I,</u> <u>Volume V. Abstracts of Significant NERVA Documentation</u>, Westinghouse Astronuclear Laboratory, TNR-230, September 1972.
- 17. <u>Technical Summary Report of NERVA Program. Phase I. NRX & XE Addendum to Volume II. NERVA Fuel Development</u>, Westinghouse Astronuclear Laboratory, TNR-230, July 15, 1972.
- 18. <u>Rover Program Reactor Tests Performance Summary, NRX-A1</u> <u>Through NRX-AG</u>, Westinghouse Astronuclear Laboratory, WANL-TME-1788, July 1968.
- 19. <u>Technical Summary Report of NERVA Program. Phase I. NRX & XE. Volume II. NERVA Component Development and Testing</u>, Westinghouse Astronuclear Laboratory, TNR-230.
- 20. F. P. Durham, <u>Nuclear Engine Definition Study Preliminary</u> <u>Report Volume I - Engine Description</u>, LA5044-MS, Vol. I, September 1972.
- 21. F. P. Durham, <u>Nuclear Engine Definition Study Preliminary</u> <u>Report Volume II - Supporting Studies</u>, LA5044-MS, Vol. II, September 1972.
- 22. <u>Pewee I. Reactor Test Report</u>, Los Alamos Scientific Laboratory of the University of California, LA-4217-MS, August 1969.
- 23. <u>A Design of Low Power Light Weight Rover Reactors</u>, Los Alamos Scientific Laboratory of the University of California, LA-3642-MS, June 1968.
- 24. W. L. Kirk, <u>Nuclear Furnace-1 Test Report</u>, Los Alamos Scientific Laboratory, LA-5189-M3, March 1973.

### **References for NERVA Reactor**

- 25. Use of the NERVA Reactor as the Heat Source for a Space <u>Propulsion/Electrical Power System</u>, Westinghouse Astronuclear Laboratories, WANL-TME-2714, August 1970.
- 26. <u>Technology Development for the NERVA Derivative Gas</u> <u>Cooled Reactor</u>, Westinghouse Electric Corporation, White Paper Submitted to the Air Force Space Technology Center for the SDI Multimegawatt Power Program, July 1985.

- 27. F. A. Snipe, <u>Corrosion Rate of Pyrolytic Graphite</u>, Westinghouse Astronuclear Laboratories, WANL-TMI-1429, March 30, 1965.
- 28. <u>The NERVA Technology Reactor Integrated with NASA Lewis</u> <u>Brayton Cycle Space Power Systems</u>, Westinghouse Astronuclear Laboratories, Handout with TNR-LL5, May 1970.
- 29. B. Holman, G. Farbman, Westinghouse Electric Corporation, personal communication, November 1986.
- 30. I. Helms, Department of Energy, personal communication, December 1986.
- 31. R. Bohl, Los Alamos National Laboratory, personal communication, November 1986.
- 32. T. Carlson, et al., <u>NERVA Derivative Reactor Brayton</u> <u>Space Power System Concepts for Multimegawatt Applica-</u> <u>tions Final Report</u>, Westinghouse, March 1987.

)lute 1 brid > 29.

## Particle Bed Reactor

• Based on extensive experience from the High Temperature Gas Cooled Reactor (HTGR) program

• Figure

• Fuel is TRISO -like particles (see figure) contained between two porous cylinder frits (screens)

• Both moderated and unmoderated systems have been designed

• For moderated systems, the fuel elements are inserted into a monolithic solid moderator

• Coolant flow is axial in moderator, radially inward through the frit into the central fuel element channel and finally to exit

• The outer layers of the TRISO are different from the HTGR; SiC is replaced with ZrC.

• Typical reactor would consist of 37 fuel elements in a moderator of  $ZrH_2$  or  $Li^7H$ .

• Outer diameter would be 5.8 cm and inner diameter 2.7 cm.

- Outer frit -Stainless Steel, inner (exit) frit Re
- Proposed by BNL and B&W (references)



Figure B-1. Particle-Bed Reactor

### **References for Particle Bed Reactor**

- 1. B. J. Short et al., <u>Multi-Megawatt Space Power Reactor</u> for Providing 1 to 15 <u>MWe Power for the Strategic Defense</u> <u>Initiative</u>, Babcock and Wilcox Company, White Paper Submitted to the SDI Innovative Science and Technology Office, White Paper Number 85-141-B, July 1985.
- 2. J. Powell et al., <u>Multi-Megawatt Power Systems Based on</u> <u>the Particle Bed Reactor</u>, White Paper Submitted to the SDI Innovative Science and Technology Office, 1985.
- 3. J. A. Belisle, <u>Near Term Nuclear Space Power for SDI</u> <u>Applications</u>, Grumman Aerospace Corp., White Paper Submitted to the SDI Innovative Science and Technology Office, July 1985.
- 4. R. V. DeMars, Babcock and Wilcox, Sandia National Laboratories, "MMW PBR Fuel Element Radiation Test," letter to P. McDaniel, July 1986.
- 5. J. Powell and H. Ludwig, Brookhaven National Laboratories, personal communication, October 1986.
- 6. P. McDaniel, Sandia National Laboratories, personal communication, October 1986.
- 7. B. J. Short, et al., <u>Burst Space Power Reactor: An Inno-vative Nuclear Reactor for Providing 100 to 600 MWe Power</u> for the Strategic Defense Initiative, White Paper submitted to the SDI Innovative Science and Technology Office, White Paper No. 85-141-C, July 1985.
- 8. J. Powell, Privileged Information, April 17, 1984.
- 9. J. Powell, Privileged Information, April 30, 1985.
- 10. J. Powell, Privileged Information, May 22, 1985.
- 11. J. Powell, <u>Strategic Defense Applications of Particle Bed</u> <u>Reactors</u>, April 30, 1985.
- 12. J. R. Powell, et al., Privileged Information, March 1987.

Major Declassification after Jan 1992 Meeting.

# Wire Core Reactor

• Reactor core made up of annular fuel assemblies of continuous clad fuel wires

• Between layers of fuel wires , unfueled spacer wires maintain spacing and allows coolant flow throughout the void spaces( see figure)

• Reactor uses fast spectrum

• Coolant flows into the reactor axially and then radially through the fuel

• Central void region is occupied by single rod with 2 sections

- a.) Be
- b.) Poison

Axial motion controls the reactor power

• Fuel rods have UN core, clad with W -5Re and outer diameter of 0.5 to 2.5 mm

- Spacer wires are of W -5Re and thinner to keep the temperature down

• At lower temperatures (1400 °K) can use  $UO_2$  clad with Nichrome -V

• Proposed by Rockwell, see references



ASSEMBLY SEQUENCE



#### REACTOR WIRE FUEL ELEMENTS



REACTOR SIDE VIEW - SCHEMATIC

Figure B-6. Wire-Core Reactor (Used with permission of Rockwell International)

## **Foam Fuel Reactor**

- Not particularly well defined
- Fuel consists of  $UC_2$  in the form of porous foam coated with graphite and ZrC

• Assumes that the porous foam fuel element occupies the same position as the particle -bed concept

• The coolant passe from the outside of the fuel element into the central cavity (see Figure)

• Proposed by B&W, see references

#### CONCEPTUAL CORE CONFIGURATION

(NUMBER OF FUEL ELEMENTS VARIES WITH DESIGN REQUIREMENTS)



REFRACTORY FOAM FUEL ELEMENT CONCEPT



Figure B-7. Foam-Fuel Reactor Concept

