## <u>SP -100 Structural Alloy Selection</u>

Main Criterion For Alloy Selection - (1985)

Technology in place and fabrication for Ground Engineering System (GES) can commence without an extensive development program.

#### Specific Requirements

- **1.)** Strength and ductility adequate at operating temperatures as well as at launch temperatures.
- 2.) Strength and ductility should remain stable throughout the operating life of the reactor. If degradation does occur, the design must accommodate change. Special attention to:

a.) Aging and loss of strength during long times at high temperature.

**b.**) Leaching of interstitial elements such as C by liquid metal causing loss of strength.

c.) Radiation induced mechanical property changes as well as swelling of the material.

- **3.)** Alloy must be compatible with both the nuclear fuel and the liquid metal coolant.
- 4.) Alloy must have low parasitic capture crosssection for neutrons. (Core size)
- 5.) Strength to weight ratio should be high
- 6.) Technology for fabrication and joining sufficiently advanced to fabricate required parts now.
- 7.) Existing data base so extensive that one can have confidence in the predicted engineering properties.

No alloy has all the necessary properties , so must make

\_\_\_\_\_\_

\_\_\_\_\_

trade-offs.

Since the outlet coolant temperature is  $\approx 1350^{\circ}$ K, and the cladding temperature will be  $\approx 1400^{\circ}$ K, and it is a general rule of thumb that one should stay below 1/2 the absolute MP to avoid excessive creep, only refractory metals (Nb, Ta, Mo, Re, & W) are feasible to carry the coolant.

Re fails the fabrication test as well as the well-established industry test.

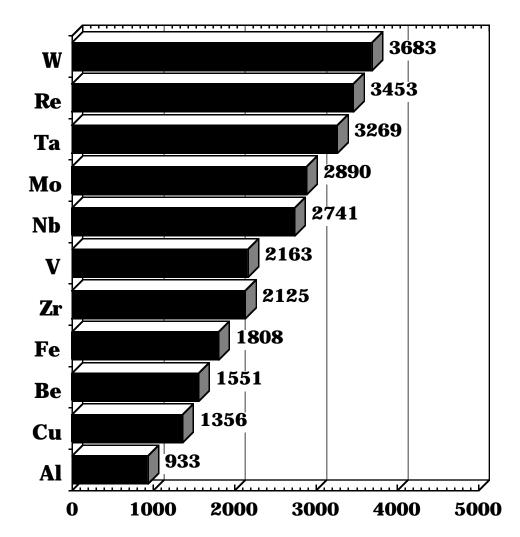
Note:

• Nb -1Zr -0.1C (PWC -11) was in production 25 years ago and chosen for the SNAP -50

• Best Ta alloy is ASTAR-811C which is (Ta -8W -1Hf -0.7Re - 0.025C). Re and C help to improve creep strength at high temperatures.

• Mo -14Re is an alloy which has shown good creep properties but still is being developed.

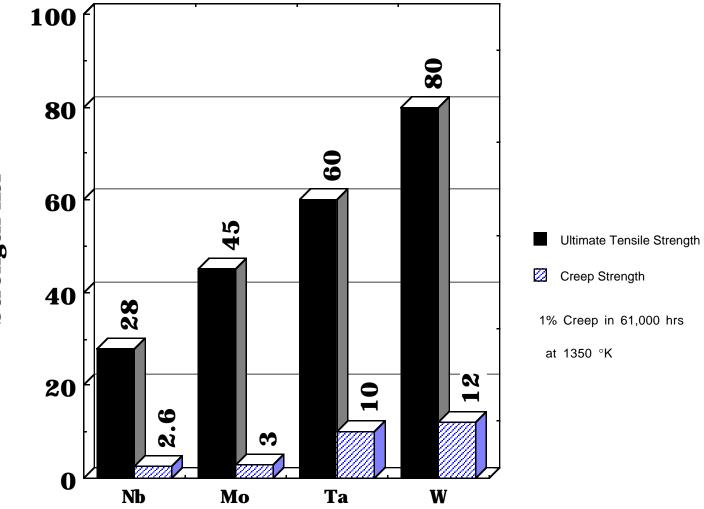
• W -26Re has good ductility and has been subjected to some irradiation's.


#### <u>General Observations About Refractory Alloys</u>

*Strength* - Even though the strength of Nb-Zr alloys is lower than others, its lower density and the addition of 0.1C to improve strength reduces this disadvantage.

All the alloys except W-26Re have reasonable DBTT's. (5 figures)

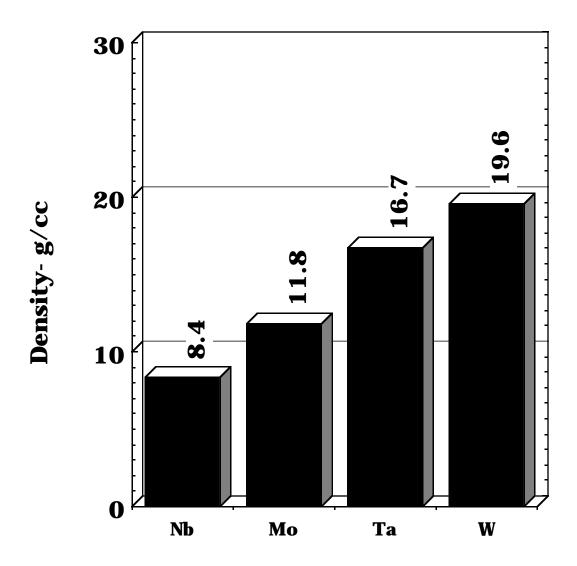
Stability of Properties - More data is required on long term strengthening of Nb-Zr alloys with C at temperatures of 1550°K.


Carbon is not leached from PWC-11 provided the entire loop is made from the same alloy and  $\Delta T$ 's are low.

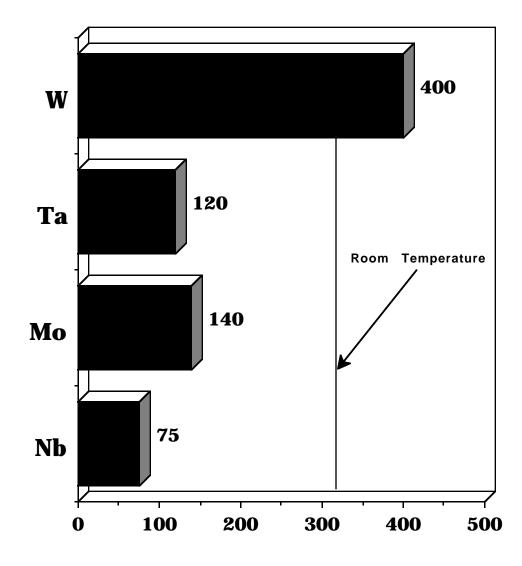


Metal

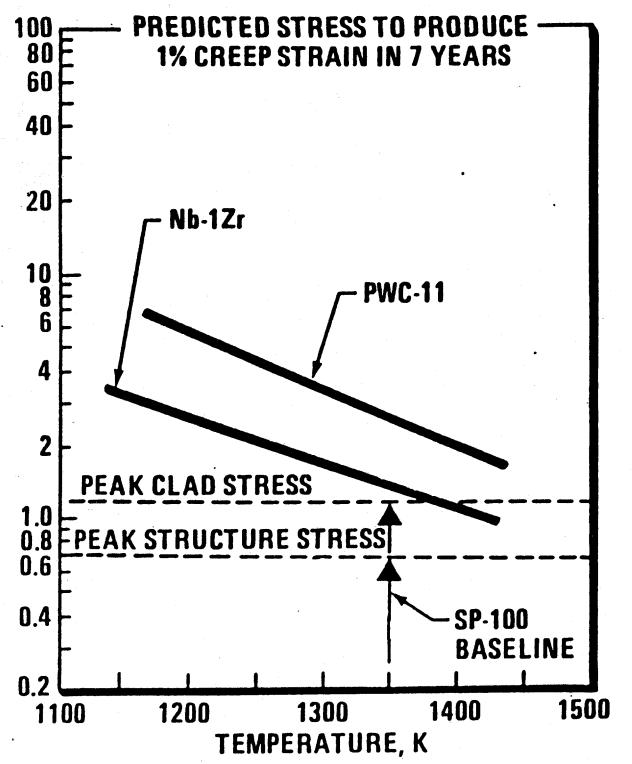
#### **Melting Points of Selected Metals**


° **K** 

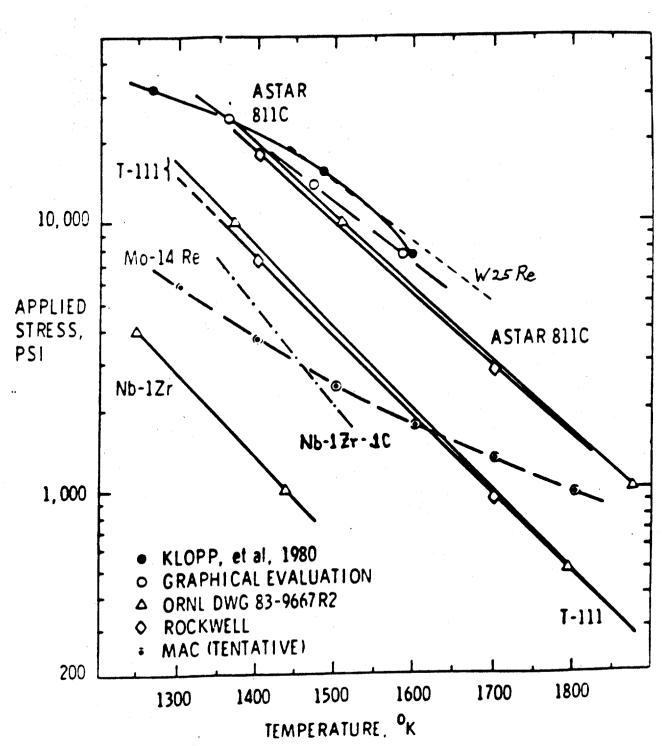



#### **Strength Comparison Between Refractory Alloys**

Strength-ksi


**Density Comparison of Refractory Alloys** 




Metal



DBTT ° K



# REFRACTORY METAL ALLOYS STRESS FOR 1% CREEP IN 10,000 HR



*Radiation Effects* - Because of the very high temperatures of operation, most of the radiation damage is annealed out and only minimal swelling (<1%) is expected in all of the alloys.

*Neutronic Considerations* - The cross sections of the Nb and Mo alloys are low compared to the W and Ta alloys. Since the reactor is criticality limited, a mass penalty would have to be paid if the W and Ta alloys were used.

*Compatibility with Lithium* - All the alloys are compatible with Li at the temperatures of interest. Be careful to keep oxygen below 200 ppm

*Compatibility With UN -* Experiments have shown that W and Mo alloys are compatible with UN at the SP -100 operating temperatures. However, Nb and Ta alloys require a W barrier between the fuel and the cladding.

*Fabrication/Joining* - Complete Li loops have been fabricated with from both Nb -1Zr and T -111 alloys. Because of the difficulty of welding W and Mo alloys, no loops have been fabricated. Availability - At present only Nb-Zr alloys are readily available in commercial quantities. Mo -Re alloys are in the developmental stage and W -26 Re is only available as a powder metallurgy product.

Summary of the Tradeoffs for SP -100 Structural Alloys

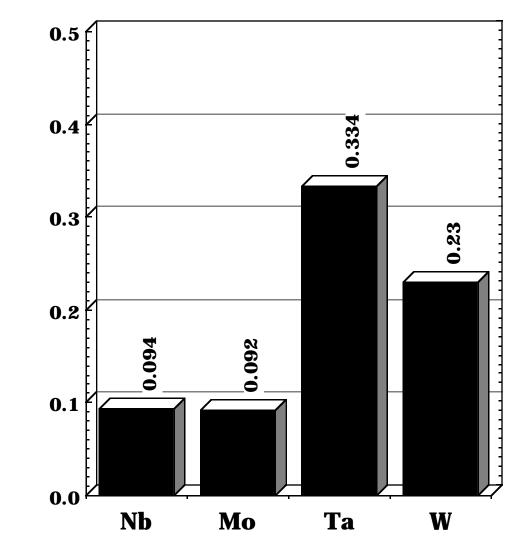
<u>W -26Re</u>

- Large neutron Penalty (vs. PWC -11)
- Large density Penalty (vs. PWC -11)
- Developmental needs
- Has unacceptable DBTT (>200 °K)

## **ASTAR 811C**

- Large neutron penalty (vs. PWC -11)
- Large density penalty (vs. PWC -11)
- Difficult to fabricate & weld (vs. PWC -11)
- Large number of pin failures (15 out of 49)

## <u>Mo -14Re</u>


- Developmental needs
- Small density penalty (vs. PWC -11)

## <u>Nb -1 Zr</u>

• Low strength (mitigated by adding 0.1% C and a low density design which induces low stresses)

## **Fuel Clad Interaction Data**

| <u>Fuel</u>    | Cladding         | Irradiated | Failed |
|----------------|------------------|------------|--------|
|                |                  |            |        |
| U02            | Nb -Zr           | 32         | 0      |
| U02            | <b>T-111</b>     | 1          | 0      |
| UN             | Nb -Zr           | 61         | 0      |
| UN             | <b>T-111</b>     | 43         | 15     |
| <u>Claddin</u> | <u>g Summary</u> |            |        |
|                | Nb -Zr           | 93         | 0      |
|                | T-111            | <b>44</b>  | 15     |



## **Parasitic Neutron Absorption Cross Section**

# **Summary of Selected Properties of Refractories**

|               | Easy   | Moderate  | Difficult | ???     |
|---------------|--------|-----------|-----------|---------|
| Fabricability | Nb-1Zr | Ta(Astar) | W-26Re    | Mo-14Re |
| Weldability   | Nb-1Zr | Ta(Astar) | W-26Re    | Mo-14Re |

|              | Nb-1Zr | Ta(Astar) | W-26Re | Mo-14Re |
|--------------|--------|-----------|--------|---------|
| Availibility | Yes    | No        | No     | No      |