

Nuclear Core Issues

Reactor Type	Mean Neutron Energy	Examples
Fast	0.30 MeV	SP-100, Cosmos-1900
Epithermal	1-10 eV	Rover (NERVA)
Thermal	0.05-0.1 eV	SNAP-10A, TOPAZ

Key Differences-Thermal vs Fast Reactors

- Low ²³⁵U Critical Mass for Thermal Reactor
 - Advantage where unit cost is paramount or many units are required
 - Unsuitable for long life time, very high power reactors Overly large burn-up fraction Loss of control capability Fuel degradation
- Hydrogen Moderated Reactors Temperature Limited (900 to 950 °K unless moderator is separately cooled)

- Beryllium Moderated reactors Similarly Limited in Temperature (Helium Formation)
- Graphite (Carbon) Moderated Reactors large and Relatively Heavy
- Fast Reactor Restart Not Limited by Fission Product Poisoning
- Compactness Favors High Fuel Density Fast Reactor Designs
 <u>Fissile Fuel Depletion</u>
- •_1 MWd (thermal) $\approx 1 \text{ g}^{235}\text{U}$ burned
- 7 years at 2.0 $MW_t \approx 5$ kg ^{235}U burned

This is:

50% of ²³⁵U loading of 2.0 MW_t Thermal Reactor 3% of ²³⁵U loading of 2.0 MW_t Fast Reactor

86-019-03

Reactor Core Design

FIGURE 3. SP-100 Fuel Pin (Truscello and Rutger 1992).

⁶⁻²¹⁻⁹⁰

Operating Temperature Range for SP-100 Power Conversion Schemes

Temperature ° **K**

Efficiency-%

Mass Distribution of SP-100 Power Source (1988)

Total Mass = 5422 kg

Mass Summary/History

	Mass by Subsystem (kg)			
Subsystem	SDR Baseline May 1988	Design Update Sept. 1990	<i>Current Status June 1992</i>	1994
Reactor	803.	703.	647.	650
Shield	1255.	975.	892.	890
Primary Heat Transport	632.	480.	543.	540
Reactor I&C	359.	310.	377.	×380
Power Conversion	409.	449.	543.	×530
Heat Rejection	1149.	1106.	933.	960
Power Conditioning, Control & Distribution	417.	393.	402.	400
Mechanical/Structural	425.	221.	238	250
Total	5449.	4637.	4575.	4600

ATM 92 - GFS Design

JPL 1971 R 3/90

SP-100 Scalability / Flexibility

SP-082 91-471-04

Comparison Of Specific Power In Space Nuclear Technologies

FIGURE 3. Effect of Technology Development on Mass Versus Power Relationship.

SP-100 TECHNOLOGY RAPID DEVELOPMENT APPROACH

1994 – NEAR-TERM TECHNOLOGY 10-40 kWe 5 YEAR LIFE/3 YEAR FULL POWER

200-80 Kg/kWe

1996 – INTERMEDIATE TECHNOLOGY

10-60 kWe

7 YEAR LIFE/5 YEAR FULL POWER

180-55 Kg/kWe

1998 – MATURE TECHNOLOGY

10-300 kWe

10 YEAR LIFE/7 YEAR FULL POWER 160-30 Kg/kWe

SP-100 REACTOR THERMOELECTRIC TECHNOLOGY

	NEAR-TERM	INTERMEDIATE	MATURE
SYSTEM			
Power	10-40 KWe	10-60 KWe	10-300 KWe
Lifetime	3/5 Years	5/7 Years	7/10Years
REACTOR			
Fuel	UN	UN	UN
Coolant	Lithium	Lithium	Lithium
Clad	Nb1Zr/Re	PWC-11/Re	PWC-11/Re
Structure	Nb1Zr	Nb1Zr	PWC-11
Outlet			
Temperature	1350 K	1375 K	1400 K
REACTOR I&C			
Mode	Dual	Dual	Seperate
Safety	In-Core	In-Reflector	In-Core
Control	In-Core	In-Reflector	Reflector
HEAT TRANSPORT			
Pump	TEM	TEM	TEM
Material	Nb1Zr/PWC-11	Nb1Zr/PWC-11	PWC-11
TE Material	SiGe-0.67X10-3/K	SiGe(GaP)-0.72X10-3/K	SiGe(GaP)-0.85X10-3/K
CONVERTER			
Туре	Multicell	Multicell	Multicell
Power	8.8We/Cell	10.8We/Cell	12.8We/Cell
TE Material	SiGe-0.67X10-3/K	SiGe(GaP)-0.72X10-3/K	SiGe(GaP)-0.85X10-3/K
RADIATOR			
Heatpipe	K-Ti\2.5cm Dia.	K-Nb1Zr\2.5cm Dia.	K-Ti\1.3cm Dia.
Fins	Ti	C-C	C-C
Armor	Ti	C-C	C-C
Duct	Ti	Nb1Zr	Ti

20-kWe SPACE REACTOR THERMOELECTRIC SYSTEM

Key System Parameters		
Net Power EOM 5 yr	20.6 kWe	
System Mass	2350 kg	
Reactor Outlet Temp.	1375 K	
Total Radiator Area	30.8 m ²	

20-kWe REACTOR AND SHIELD SUBSYSTEMS

- Keep The Reactor Free Of Radioactive Fission Products Until A Safe Operating Orbit Is Achieved.
 - Launch With A Non-Activated Core
 - Design To Prevent Criticality Under Launch and Ascent Accidents Conditions
 - Provide Secure Command and Control Communications To Prevent Unauthorized Startup And Operation
 - Start Operation Only After Successful Attainment Of Orbit
- Select Operating Orbits So That Radioactive Can Decay To Negligible Levels Before Reentry Or Provide Highly Reliable Boost Capability.
- Design To Assure Intact Reentry and Burial, Even Though This Is An Unplanned Event

POTENTIAL MISSION ACCIDENTS AND HAZARDS

يحجره الجاجدة حج

KEY SAFETY FEATURES

- CONTROL ELEMENTS
 AUTOMATICALLY SHUT REACTOR
 DOWN UPON LOSS OF POWER
- TWO INDEPENDENT SHUTDOWN
 SYSTEMS
- PROMPT NEGATIVE REACTIVITY
 COEFFICIENT ASSURES STABLE
 REACTOR CONTROL
- ONLY 4 OUT OF 12 REFLECTORS
 REQUIRED FOR SHUTDOWN
- NON-ACTIVATED CORE AT LAUNCH
- LARGE NEGATIVE VOID COEFFICIENT ENHANCES SHUTDOWN UPON LOSS OF COOLANT
- CONTROL ELEMENTS MOVED
 INDIVIDUALLY AND IN INCREMENTAL
 AMOUNTS TO PREVENT RAPID
 REACTIVITY ADDITION
- RHENIUM POISON PROVIDES
 THERMAL NEUTRON ABSORPTION
 FOR WATER FLOODING

J	L

SPACE ENVIRONMENT REQUIREMENTS AND ALLOCATIONS

