# Lunar Solar Power Station

Lecture 41 G. L. Kulcinski April 30, 2004

- Alah Lite Jacob

Why Are We Interested in a Lunar Based Solar Power System (LSPS)?

- General Features of Extraterrestrial Solar Power Systems
  - The Sun is a dependable energy source that supplies high quality energy
  - Concept utilizes passive and low mass equipment to collect and generate electricity
  - Can be operated while repairs are made

Why Are We Interested in a Lunar Based Solar Power System (LSPS)? (cont.)

- Why the Moon vs. GEO?
  - Stable and predicable platform (low gravity, no wind, few moonquakes)
  - The Moon contains all the materials needed for solar cells and structures (reduces transportation over SPS)
  - Less intrusive than GEO positioning
  - Improved worker safety

# Solar Energy From Space

## **Solar Power Satellites**

- Pioneered by Peter Glaser
- Originally proposed 1968
- Subjected to scrutiny by NASA, DOE, and National Academy of Sciences

## Lunar Power System

- Pioneered by David Criswell
- Originally proposed 1985
- Subjected to analysis by NASA and U. of Houston

# Selected Recent Lunar Solar Power References by David Criswell

- Criswell, D. R. (2002 Oct.) Lunar solar power (LSP) System-Driven human development of the Moon and the resource-rich exploration of the inner solar system, IAA-02-IAA 13.2.07, 6pp., International Astronautics Federation and World Space Congress, Houston, TX
- Criswell, D. R. (2002 Oct.) Accelerating 21st century economic growth by implementation of the Lunar Solar Power (LSP) System, IAF-02-R.3.04, 6pp., International Astronautics Federation and World Space Congress, Houston, TX
- Criswell, D. R. (2002 Oct.) Development and commercialization of the Lunar Solar Power (LSP) System, IAA-02-IAA 1.2.04, 6pp., International Astronautics Federation and World Space Congress, Houston, TX
- Martin Hoffert, Ken Calderia, Gregory Benford, David R. Criswell, Christopher Green, Howard Herzog, Atul K. Jain, Haroon S. Kheshgi, Klaus S. Lackner, John S. Lewis, H. Douglas Lightfoot, Wallace Manheimer, John C. Mankins, Michael E. Mauel, L. John Perkins, Michael E. Schlesinger, Tyler Volk, and Tom M. L. Wigley (2002 November 1) Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet, Science, Vol. 298, 981 987.
- Martin Hoffert, Ken Calderia, Gregory Benford, David R. Criswell, Christopher Green, Howard Herzog, Atul K. Jain, Haroon S. Kheshgi, Klaus S. Lackner, John S. Lewis, H. Douglas Lightfoot, Wallace Manheimer, John C. Mankins, Michael E. Mauel, L. John Perkins, Michael E. Schlesinger, Tyler Volk, and Tom M. L. Wigley (2003 April 25) Response Existing technologies can contribute, Science, Vol. 300, 582 583. Also see 581-582.
- Criswell, D. R. (2003 December, Invited), Lunar Solar Power System: A return to the Moon?, IEEE Potentials, 20 25, 4 photographs, 4 figures.
- Criswell, D. R. (2004 now on sale) Lunar Solar Power, in The Encyclopedia of Energy (editor in chief C. J. Cleveland, managing editor R. Matsumura), paper #226, manuscript 38pp, 3 tables, 5 figures, Academic Press, Elsiever.

### Lunar Power System Concept



After Woodcock, 1989

# DEMONSTRATION LSP BASE



### Harvesting the Moon

- EARTH IS FIXED IN SKY
- BASE IS COMPOSED OF POWER PLOTS
  - POWER PLOT BASIC UNIT
    - #1 Solar arrays, buried wiring
    - #2 Microwave transmitters
    - #3 Reflectors form a large lens as seen from Earth
  - #1, 2, & 3 ARE MADE FROMLUNAR MATERIALS BY #4, 5, &6 PRODUCTION EQUIPMENT

# Concerns About the LSPS

- Lunar base only receives solar energy 50% of the time (need multiple collection bases)
- Rotation of the Earth means multiple receiving stations are required
- Fixed collectors do not collect optimum solar flux
- Si cells are about 1/3 the efficiency of GaAs cells
- Larger transmitting distance requires bigger transmitting antenna





The Collection Area of a Lunar Power System Must be Much larger Than That for a SPS

- Factor of 2 because of day/night cycle
- Factor of 2 because of fixed oblique solar incidence angle
- Factor of 3 because Si converters are 1/3 the efficiency of GaAs.

## The total area of LSPS is $\approx 12$ times that of a SPS

## Transmitting Antenna Sizing Criteria

Coherent Microwaves  $D_1D_2 = 2k\lambda H$ 

 $\lambda = 12.24 \text{ cm} (2.45 \text{ GHz})$  k = 1.4 (typically) H = 36,000 km (GEO)= 380,000 km (Moon)

> $D_1D_2 = 12.3 (GEO)$  $D_1D_2 = 130 (Moon)$

> > $D_{2}$

For  $D_2 = 12$  km

 $D_1$ 

 $D_1 \approx 1 \text{ km (GEO)}$  $D_1 \approx 11 \text{ km (Moon)}$ 



# EARTH'S MOON & LSP POWER BASES



Harvested Moon

Ref: David Criswell

- MOON WITH BASES
  - Receives 13,000 TWs
  - Bases built using known lunar materials in known environment
- 10 POWER BASE PAIRS
  - Always face the Earth
  - Beam  $\sim 20 30$  TWe to Earth

### Lunar Solar Power Reference Design- 20,000 GW<sub>e</sub>-(Criswell 1996)

World Installed capacity -1999-3,180 Gwe

| Illumination of one cell (geometry)                                                        | 32%    |
|--------------------------------------------------------------------------------------------|--------|
| Fill factor (ground cell area/base area)                                                   | 20%    |
| Solar cell efficiency                                                                      | 10%    |
| Collection efficiency                                                                      | 90%    |
| Electricity to microwave                                                                   | 85%    |
| Transmission to Earth                                                                      | 73%    |
| Earth atmosphere transmission                                                              | 98%    |
| Rectenna collection efficiency                                                             | 89%    |
| Microwave power conditioning                                                               | 88%    |
| Electric grid conditioning                                                                 | 97%    |
| Overall efficiency for 1,368 W/m <sup>2</sup> (electricity to Earth grid/lunar solar watt) | 0.266% |

### Lunar Solar Power Reference Design- 20,000 GW<sub>e</sub>-(Criswell 1996)- Continued

- For a 0.266% overall efficiency and to produce 20,000  $\text{GW}_{e}$ , one would need to cover 15.3% of the lunar surface.
- Number of bases required would be 12 (pairs)

| Lunar Solar Power Reference Design- 20,000 GW <sub>e</sub> - |                  |  |  |
|--------------------------------------------------------------|------------------|--|--|
| (Criswell 1996)- Continued                                   |                  |  |  |
| Total regolith handled                                       | 2 billion tons/y |  |  |
| • Lunar equipment                                            |                  |  |  |
| mining                                                       | 12, 739 tons     |  |  |
| processing                                                   | 428,481 tons     |  |  |
| support                                                      | 48,171 tons      |  |  |
| Transport to Space                                           |                  |  |  |
| from Earth (ave. for 10y ramp-up)                            | 70,314 tons/y    |  |  |
| from Earth (parts, consumables, > 10 y)                      | 172,687 tons/y   |  |  |
| from the Moon (LO mirrors)                                   | 336,181 tons/y   |  |  |
| • People                                                     |                  |  |  |
| on the Moon                                                  | 5,000            |  |  |
| in LLO                                                       | 395              |  |  |
| in LEO                                                       | 486              |  |  |

# Lunar Solar Power Reference Design-20,000 GW<sub>e</sub>-(Criswell 1996)-Continued

| Costs (\$1995 billions)  |                          |
|--------------------------|--------------------------|
| Space                    | 4,926                    |
| Earth (mainly rectennas) | 17,040                   |
| Total                    | 21,966                   |
| Capital Costs            | 1,098 \$/kW <sub>e</sub> |

It is Claimed That the Total Mass Investment for Electricity from Lunar Solar Energy is Less Than for Terrestrial Solar Energy Systems

|                                      | Tons/GW <sub>e</sub> |
|--------------------------------------|----------------------|
| Terrestrial Thermal<br>Power Systems | 310,000              |
| Terrestrial Photovoltaic             | 430,000              |
| Lunar Solar power<br>System          | 52,000               |

After Criswell and Thompson, 1996

# MASS & COST PROJECTIONS

- 20 TWe BY 2050 & 1,000 TWe-y BY 2070
  - 90% local manufacturing & tele-operation from Earth
  - $1 \cdot 10^5 \text{ km}^2$  of reflective rectennas on Earth (0.8 T\$)\*

| TOTAL MASS TO MOON(tonnes)        |         |
|-----------------------------------|---------|
| Micro-manufacturing               | 24,361  |
| HotForming                        | 10,313  |
| Beneficiation                     | 3,212   |
| Habitats, shops, mobile units     | 22,085  |
| Chemical Refining                 | 2,469   |
| Gather & eject to orbit           | 438     |
| Excavation                        | 80      |
| Cold Assembly                     | 28      |
| TOTAL                             | 62,915  |
| <b>PEOPLE (6 month tours)</b>     |         |
| Moon                              | 436     |
| Lunar Orbit                       | 59      |
| Earth Orbit                       | 63      |
| LUNAR & SPACE COST (2000\$)       | 0.8 T\$ |
| *ENGINE <b>R</b> ING COST(¢/kWeh) | 0.1     |

- COST DISTRIBUTION
  - -~75% first 30 years
  - -~12 years breakeven
- TOTAL REVENUE ~80 T\$ @ 1 ¢/kWe-h
- REVENUE NOT INCLUDED
  - Clean energy premium
  - Rectenna area dual-use

Ref: David Criswell, 2001

How Would You Fabricate Solar Cells On the Moon?

## Utilize Lunar Resources to Fabricate Solar Cells on the Moon

- Moon's Surface is an Ultra-High Vacuum
  - ~ 10<sup>-10</sup> Torr (day)
  - Use vacuum deposition to make thin film solar cells
- Elements Required for Silicon-based Thin Film Solar Cells are Present on the Moon
  - Silicon
  - Iron
  - Titanium Oxide
  - Calcium
  - Aluminum

# Utilization of Lunar Resources -ISRU

• Past Interest in Lunar Resource Utilization was the Extraction

of Oxygen

- Waste Products were:
  - . Silicon
  - . Iron
  - . TiO<sub>2</sub>
  - . Etc
- These Waste Products can be used as Raw Materials

for Solar Cell Fabrication....

## **Carbothermal Reduction of Anorthite**

1400°C 4 CH<sub>4</sub> -----> 4 C + 8 H<sub>2</sub> Step 1. 1650°C + 4 C -----> CaO +  $Al_2O_3$  + 2 Si + 4 CO Step 2. CaAl<sub>2</sub>Si<sub>2</sub>O<sub>8</sub> (anorthite) m.p. 1521°C Ni Catalyst 250°C  $4 \text{ CO} + 12 \text{ H}_2$  ----->  $4 \text{ CH}_4 + 4 \text{ H}_2\text{O}$ Step 3. 75°C  $4 H_2O + electrolysis -----> 4 H_2 + 2 O_2$ Step 4.

□ Closed cyclic process yielding both OXYGEN and SILICON:

 $CaAl_2Si_2O_8$  ----->  $CaO + Al_2O_3 + 2Si + 2O_2$ 

## Carbon Compounds Can Also be Used to Extract Oxygen, Fe, & TiO<sub>2</sub> from Lunar Illmenite

- <u>Carbon Monoxide Cycle</u>
  - FeTiO<sub>3</sub> + CO <--> Fe + TiO<sub>2</sub> +CO<sub>2</sub>
  - $2 CO_2 < --> 2 CO + O_2$
- Methane Cycle
  - FeTiO<sub>3</sub> + CH<sub>4</sub> <--> Fe + TiO<sub>2</sub> + CO + 2H<sub>2</sub>
  - $2 \text{ CO} + 6\text{H}_2 < --> 2 \text{ CH}_4 + 2 \text{ H}_2\text{O}$ 
    - $2 H_2 O < --> 2 H_2 + O_2$

 $\Rightarrow$  Yields iron for interconnect and TiO<sub>2</sub> for antireflect

# Fabrication of Thin Film Silicon Solar Cells on the Moon

### Needs

- Substrate
- Bottom electrode
- p-n junction
- Top patterned electrode
- Antireflection layer
- Interconnection of individual cells



### **Substrate**

- Use Lunar Regolith Simulant
  - Fine powder (<100 μm)
  - softens around 1300°C
  - highly viscous state
  - some gas evolution
  - Melts around 1500°C
  - less viscous
  - surface smoothes to be very flat
  - high resistivity > 2MΩ-cm

### • Excellent solar cell substrate



## **Solar Cell Fabrication Tool**

- Mechanized Solar Cell Growth Facility Crawler
  - ~ 150 200 kg
  - Multiple parabolic concentrator collectors slow tracking
  - Solar panels for power
  - Continuous lay-out of cells on lunar surface
  - Remotely controlled



### Lunar Solar Cell Fabricator/Crawler

### **Distributed Energy on the Moon**



### **Lunar Solar Cell Fabrication**



#### Lunar Power Beaming

### Cell Fabrication Facility with Parabolic Concentrators in Conjunction with Fiber Optics



### **Mechanized Solar Cell Fab Facility**



Solar Concentrator (Nakamura)

### **Solar Thermal Lunar Regolith Melting**



## Fabrication of Solar Cells on the Surface of the Moon from Lunar Regolith

- 1 m²/hr
- Fabricate ~ 65 W per hr @ 5%
- Assume 35% uptime (total ~3060 hrs/yr)
- Fabricate ~200 kW/yr capacity
- Require ~ 180 kg of raw materials/yr
- Continuous Cell Replacement Self Replicating System
  - Assume limited cell lifetime
    - . Radiation damage
    - . Particle damage



## Regolith Materials Extraction for Production of Solar Cells on the Surface of the Moon

- Mechanized Regolith Processing Rover/Crawler
  - ~ 200 300 kg
  - Regolith scoop
  - Solar thermal and electric heat (connect to solar cell field)
  - Recycle volatiles
  - Transfer oxygen
  - Feed solar cell production rover(s)
    - . ~ 10 kg reactor  $\Rightarrow$  ~180kg product/yr
    - . Small support rover to feed cell fabricators
  - Possible secondary purification required
    - . Vacuum purify

### Lunar Regolith Processing Rover



### Production of Solar Cells on the Surface of the Moon from Lunar Regolith

- Ultra-high Vacuum on Lunar Surface Allows for Direct Thin Film Solar Cell Production
  - Less Mass to the Moon
  - Lunar Resources can be Utilized for Cell Production
  - Trade-off Cell Efficiency with Quantity
  - Multiple Facilities can be Utilized
  - Industrial Scale Power Generation and Power Grid on the Moon
    - . 10 Rovers  $\Rightarrow$  from 2 to 4 MW/year
    - . 100 Rovers  $\Rightarrow$  Up to 40 MW/year



# Conclusions-LSPS

- The Lunar Solar Power Satellite would require a return to the Moon on a significant scale.
- The LSPS would make sense if it produced most of the projected electricity use in the World (i. e., small systems would not be favored).
- A major factor in the ultimate COE from the LSPS will be the launch costs from Earth and these have to drop significantly.