
LUNAR / MARS ACTIVATION - 1 NEEP 533 LECTURE 30

Harrison H. Schmitt

- Objectives
 - Implement a sustained and affordable human and robotic program
 - Extend human presence across the solar system and beyond
 - Develop supporting innovative technologies, knowledge, and infrastructures
 - Promote international and commercial participation in exploration

Major Milestones

- 2008: Initial flight test of CEV
- 2008: Launch first lunar robotic orbiter
- 2011 First Unmanned CEV flight
- 2014: First crewed CEV flight
- 2015: Jupiter Icy Moon Orbiter (JIMO)/Prometheus
- 2015-2020: First human mission to the Moon

NASA APPROACH TO LUNAR "BASE" ACTIVATION

- 2004-2010: SPACE BIOMEDICAL RESEARCH AT ISS
- 2010? : SPACE SHUTTLE RETIREMENT
- 2004-2014: CEV "CONSTELLATION" & LUNAR ACCESS DEVELOPMENT
- 2008-2020: ROBOTIC MISSIONS TO EXPAND ON CURRENT KNOWLEDGE
- 2015-2020: DEMONSTRATE PERMANENT LUNAR INFRASTRUCTURE / PERMANENT HUMAN PRESENCE?
- 2015-202?: DEMONSTRATE EXTRACTION OF LUNAR RESOURCES
 - SPACE CONSUMABLES ONLY
- 202?-----: USE LUNAR RESOURCES FOR MORE COST-EFFECTIVE ACCESS TO SPACE

DETAILS IN-WORK

NASA 2004 PLAN / MARBURGER, 2/12/04

NASA APPROACH TO MARS "BASE" ACTIVATION

- 2004-202?: USE ROBOTIC MISSIONS TO EXPAND ON CURRENT KNOWLEDGE
- 2015-202?: DEMONSTRATE AVAILABILITY OF LUNAR RESOURCES – SPACE CONSUMABLES ONLY
- 201?-202?: MARS ACCESS & EXPLORATION INFRASTRUCTURE DEVELOPMENT
- 202?-----: USE LUNAR RESOURCES FOR MORE COST-EFFECTIVE ACCESS TO SPACE INCLUDING MARS
- 202?-----: INITIATE HUMAN EXPLORATION

DETAILS IN-WORK

NASA 2004 PLAN / MARBURGER, 2/12/04

OR, THE PRIVATE SECTOR MIGHT DO SOMETHING A LITTLE MORE FOCUSED

FUSION POWER TECHNOLOGY

OPERATIONS MANAGEMENT

INVESTORS

BUSINESS MANAGEMENT

FIRST HUMAN MISSION TO THE MOON: 10-18 YEARS AFTER REACHING INITIAL INVESTMENT MILESTONE OF \$15 M.

INITIAL "BUSINESS" APPROACH TO LUNAR BASE ACTIVATION

- "BUSINESS" PLAN DEVELOPMENT
 - FINANCIAL COMMITMENTS**

** APPLIES TO NASA OR PRIVATE INITIATIVE

- COORDINATION WITH AND MARKETING TO RESOURCE USERS**
- DETAILED EVALUATION AND CHARACTERIZATION OF THE RESOURCE BASE
 - GRADE (CONCENTRATION)**
 - GEOTECHNICAL PARAMETERS**
- DEFINITION OF ENGINEERING DESIGN PARAMETERS FOR BASE AND MINING AND PROCESSING FACILITIES
 - MINE PLANNING**
 - DEVELOPMENT OF ARCHITECTURE AND ACTIVATION SEQUENCE**
 - LUNAR SURFACE EQUIPMENT REQUIREMENTS**
 - LAUNCH VEHICLE & SPACECRAFT REQUIREMENTS**
- FINAL DEFINITION OF LAUNCH AND SUPPORT ECONOMICS**
- COMMITMENT TO DETAIL DESIGN, MANUFACTURE, AND
 IMPLEMENTATION**
 FOR PRIVATE INITIATIVE, PROGRESS

LIMITED UNTIL COMMERCIAL HE-3 FUSION DEMONSTRATED <\$1000/KG TO THE MOON VS. \$57,000/KG ~100 TONNES TO THE MOON VS. 48 TONNES PARTIALLY RE-USABLE? VS. EXPENDABLE COMPARABLE RELIABILITY (~100%) LONG TERM PRODUCTION VS. FIXED NUMBER NO LONG TERM STAND DOWNS VS. APOLLO 13 & SHUTTLE

NEW SATURN VS. SATURN V:

NOTE: NASA'S INITIAL PLAN IS TO USE COMBINATIONS OF AVAILABLE ELVs WITH EARTH-ORBIT ASSEMBLY

RISK, PRODUCTIVITY, AND COST MANAGEMENT -1: EQUIPMENT

** SHOULD APPLY TO NASA OR PRIVATE INITIATIVE

- NO LONG TERM STAND-DOWNS IN LAUNCHES TO MOON
 - FIRM BOOSTER DESIGN CRITERION
- LUNAR EQUIPMENT DESIGN
 - FAIL TO OPERATE (REDUNDANCY) >FAIL TO MANUAL>FAIL TO SAFE
- DESIGN LUNAR EQUIPMENT & FACILITIES WITH IMBEDDED DIAGNOSTICS
 - RAPID INSPECTION, REPAIR, AND UPGRADE

NASA'S PLANS ON THESE ISSUES NOT KNOWN AT THIS TIME

RISK, PRODUCTIVITY, AND COST MANAGEMENT -2: OPERATIONS

****SHOULD APPLY TO NASA OR PRIVATE INITIATIVE**

- MAINTENANCE
 - DESIGN AND OPERATE FOR PREDICTIVE AND PREVENTIVE MAINTENANCE
 - PART SELECTION, TESTING, AND INSPECTION
 - PRE-FAILURE PART REPLACEMENT
 - DUST MANAGEMENT EMPHASIS IN DESIGN AND OPERATIONS**
- INVENTORY ALL DISCARDED OR UNUSED MATERIALS FOR FUTURE USE
 - TOO VALUABLE TO THROW AWAY**

NASA'S PLANS THESE ISSUES NOT KNOWN AT THIS TIME

RISK, PRODUCTIVITY, AND COST MANAGEMENT -3: PERSONNEL

- LUNAR STAY-TIME
 - PRIVATE INITIATIVE WOULD WANT SETTLERS AS LUNAR EMPLOYEES
 - RETURN COSTS ELIMINATED
- LUNAR WORK CYCLE
 - 12 HOUR SHIFTS, 2 HOUR OVERLAPS
 - 6 DAY WORK WEEKS
 - STAGGERED AFTER 2 MINER-PROCESSORS IN OPERATION
 - 24 DAY LUNAR WORK MONTH
 - 13 LUNAR WORK MONTHS
 - ONE LUNAR MONTH R&R / YEAR AS SOON AS SETTLEMENT PRODUCTION RATES PERMIT
- TERRESTRIAL OPERATIONAL WORK CYCLE
 - DESIGNED TO SUPPORT LUNAR REQUIREMENTS

RISK, PRODUCTIVITY, AND COST MANAGEMENT -4: HEALTH

- PHYSICIAN PRESENT ANYTIME EIGHT OR MORE PERSONS PRESENT
 - EARLY DEVELOPMENT OF LUNAR OCCUPATIONAL MEDICINE CRITERIA
 - ON-SITE RESEARCH PROGRAM
- INJURY OR ILLNESS TREATED AT THE BASE
 - REPLACEMENT OF CRITICAL FUNCTIONS BY TEMPORARY INCREASE IN WORK HOURS OF OTHER INDIVIDUALS
 - EARTH-BASED TELE-MEDICAL ASSISTANCE
- SOLAR FLARE RISK MANAGEMENT BY DESIGN, DAILY PLANNING, AND FORECASTING (?)

- NOT JUST AN ACTIVE SUN (11 YEAR CYCLE) PROBLEM

RISK, PRODUCTIVITY, AND COST MANAGEMENT -5: STAFFING

- CORE STAFFING CONSTRAINTS (EACH 100 KG HELIUM-3/YEAR)
 - 4 OPERATOR-ENGINEERS PER MINER-PROCESSOR
 - 4 OPERATOR-ENGINEERS PER VOLATILE REFINERY
 - 2 GEOLOGIST-MINE PLANNERS
 - 2 OPERATIONS SUPPORT / PHYSICIANS
 - 2 OPERATOR-ENGINEERS FOR MAIN BASE PLANNING
 - 1 OPERATIONS DIRECTOR (SETTLEMENT MANAGER)
 - -<u>1 EXPLORATION GEOLOGIST / DEP. OPERATIONS DIRECTOR</u>
 - 16 TOTAL OR TWO SATURN VI LAUNCHES
- ADDITIONAL SKILLS WITHIN GROUP
 - POWER SYSTEMS
 - ENVIRONMENTAL CONTROL
 - EMERGENCY MEDICAL TREATMENT
 - ELECTRONIC SYSTEMS
 - RISK MANAGEMENT

RISK, PRODUCTIVITY, AND COST MANAGEMENT -6: STAFFING

- CORE STAFFING CONSTRAINTS (5+ MINER-PROCESSORS)
 - 4 OPERATIONS SUPPORT PERSONNEL
 - OPERATOR-ENGINEERS AND OPERATIONS SUPPORT PERSONNEL CROSS-TRAINED
 - PERIODIC ROTATION
 - 2 SETTLEMENT OPERATIONS SUPPORT ENGINEERS
 - 2 LONG TERM PLANNING COORDINATORS
 - ANCILLARY BUSINESS MANAGERS AS REQUIRED
- CORE STAFFING CONSTRAINTS (15+ MINER-PROCESSORS)
 - 1 DEDICATED SETTLEMENT MANAGER
 - 2 ADVANCED TRAINING / CAREER TRANSITION MANAGERS

FUTURE SUIT DESIGN GOALS:

>1/2 THE MASS >4 TIMES THE MOBILITY HAND DEXTERITY = NORMAL ASSISTED GRIP GLOVES >100 CYCLES BEFORE REFURBISHMENT VACUUM CONNECT / DISCONNECT

FUTURE ROVER DESIGN GOALS:

CREW DRIVING CONSUMABLES CONVERSION TO RADIATION SHELTER INDEFINITE LIFE DESIGN RESOURCE MAPPING CAPABILITY

NASA PHOTO

RISK, PRODUCTIVITY, AND COST MANAGEMENT -7: SETTLER SELECTION

- CRITERIA TO CONSIDER
 - SKILL MIX AND CROSS-TRAINING
 - YOUTH AND TRAINING <u>VS</u>. AGE AND EXPERIENCE
 - PHYSICAL CAPABILITY
 - MEDICAL RISK ANALYSIS
 - PSYCHOLOGICAL RISK ANALYSIS
 - PHYSIOLOGICAL AND PSYCHOLOGICAL TOLERANCE TO SPACE ENVIRONMENT
 - SPACE STATION TOUR TO WEED OUT 2%WHO DON'T ADAPT ??
 - COMMITMENT TO SETTLEMENT
 - COMMITMENT TO ON-SITE HEALTHCARE VS. RETURN TO EARTH

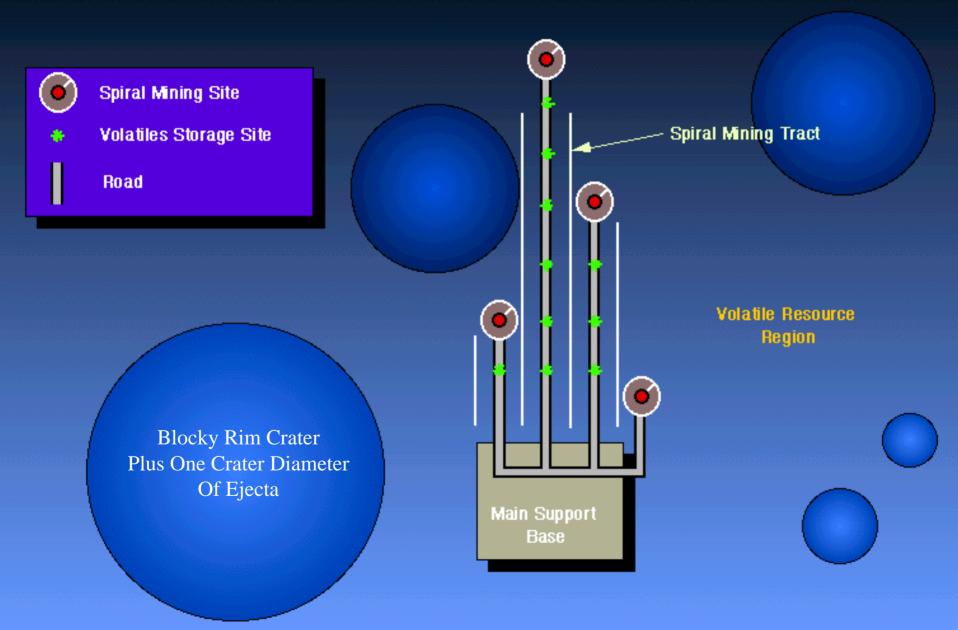
BASE ARCHITECTURE -1 PRE-ACTIVATION REQUIREMENTS

- SET LUNAR BASE DESIGN GOALS
 - INDEFINITE SUPPORT OF HUMAN ACTIVITIES
 - NEAR-TERM OXYGEN AND HYDROGEN PRODUCTION
 - MID-TERM HE-3 PRODUCTION
 - LONG-TERM PRODUCTION OF NEEDED MATERIALS AND FOOD
 - ANCILLARY USES OF THE MOON (SCIENCE, TOURISM, ETC.)
- INITIAL FREQUENCY OF LAUNCHES TO THE MOON
 - ONE PER TWO LUNAR CYCLES (ASSUMES NEW SATURN VI BOOSTER)
 - ON-SITE CONSUMABLES SUFFICIENT TO MISS AT LEAST TWO RE-SUPPLY OPPORTUNITIES

BASE ARCHITECTURE -2 PRE-ACTIVATION REQUIREMENTS

- EQUIPMENT AND FACILITY DESIGNS
 - INDEFINITE LIFE THROUGH ANTICIPATORY MAINTENANCE
 - FINALIZED PRIOR TO BASE ACTIVATION
- SITE OF FIRST BASE
 - ACCESS TO HIGHEST GRADE HE-3 PROVEN RESOURCE
 - H₂ CONCENTRATION SECONDARY CRITERION
 - H_2 AND $H_2O \ (O_{2)}$ PRODUCTION CAN OCCUR AT ANY LOCATION

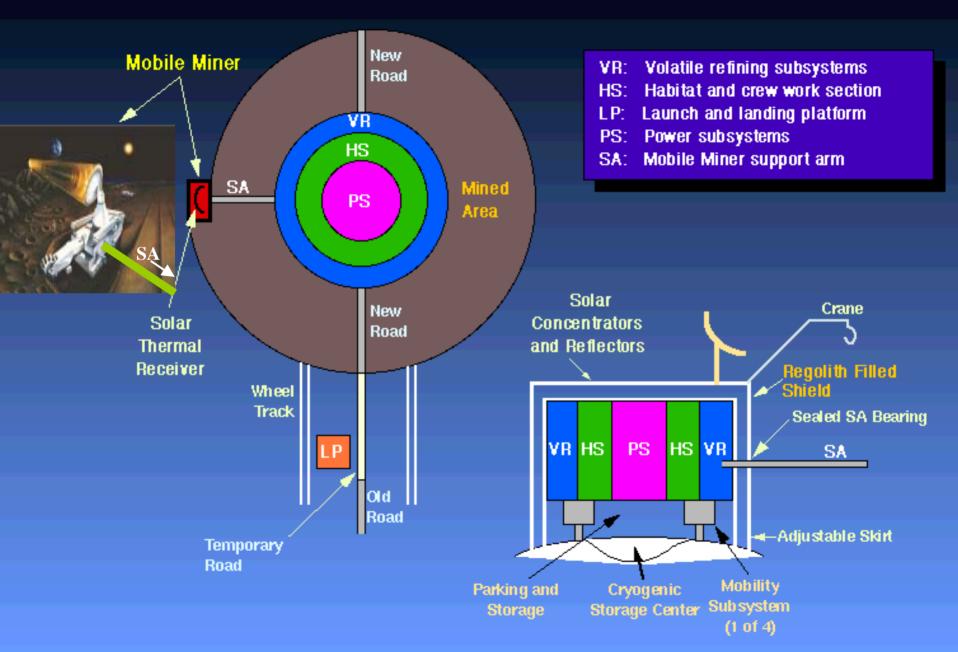
BASE ARCHITECTURE -3


- GENERAL ARCHITECTURAL LAYOUT OF THE BASE CORE FINAL BEFORE THE FIRST LANDING
 - SUPPORT INITIAL MINING AND PROCESSING ACTIVITIES
 - PROVIDE LONG TERM SUPPORT FOR REGIONAL MINING AND ANCILLARY BUSINESSES
- LANDING AND LAUNCH OPERATIONS WILL BE LOCATED AND DESIGNED SO AS TO NOT DISRUPT OTHER ACTIVITIES OR OTHER ACTIVITIES

 DUST CONTROL
- ROADS AND WALKWAYS WILL BE STABILIZED – DUST CONTROL

BASE ARCHITECTURE -4

- LANDER PROPULSION MODULES AND RESOURCE TRANSFER MODULES WILL BE ACCESSIBLE TO REFUELING AND LOADING FACILITIES
 - LAND TO BEACON OFFSET
 - RESOURCE TRANSFER MODULES TRADE STUDY
 - LAUNCH MODE
 - MASS PER LAUNCH: VALUE VS. RISK VS. PRODUCTION RATE VS. CONSUMPTION RATE
- APPROPRIATE CRATERS RESERVED FOR CRYOGENIC STORAGE OF LUNAR CONSUMABLES
 - BURIED, INFLATABLE "BALLOONS"
 - PASSIVE, REGOLITH INSULATION
 - PASSIVE, RADIATIVE COOLING TO DEEP SPACE ??


Regional Mining Plan Utilizing Spiral Mining Systems

WISCONSIN MARK 2 MINER CONCEPT (RECTILINEAR MINING MODE)

DEVELOP LOOK-AHEAD RADAR FOR BURIED BOULDER DETECTION

Spiral Mining System for Lunar Volatiles

1. SPIRAL VS. LINEAR VS. ?

- COST / KG
- OPERATIONAL RISK
- PAYLOAD MASS TO MOON
- 2. ELECTRICAL POWER SYSTEM
 - H₂-0₂-SOLAR CLOSED CYCLE FUEL CELL
 - **PHOTOVOLTAIC**
 - SOLAR THERMAL
 - FISSION REACTOR
- **3. REGOLITH HEATING SYSTEM (IMPACTS #2 ABOVE)**
 - SOLAR THERMAL
 - MICROWAVE-ELECTRIC
 - FISSION THERMAL

- CONSIDERATIONS OF REGOLITH GEOTECHNICAL PARAMETERS
 - SPECIFIC GRAVITY
 - CONCENTRATION OF FINES (<100 MICR0NS)
 - **"ROCK"** DISTRIBUTION**
 - CONCENTRATION OF INDURATED REGOLITH FRAGMENTS
 - CONCENTRATION OF FeS (VERY LOW BUT PRESENT)
 - COHESIVENESS / INTERNAL FRICTION
 - ABRASIVENESS
 - HYDROGEN EFFECTS (IF ANY)
 - WATER EFFECTS (IF ANY) IN PROCESSOR
 - DUST EFFECTS IN PROCESSOR

****ROCK FRAGMENTS TO LARGE TO BE PROCESSED IN MINER-PROCESSOR**

1. PRE-PROCESSING AGITATION LOSSES

- ~37% He LOST BETWEEN MOON AND LAB
- 2. **PROCESSING SYSTEM**
 - CRUSHING OF INDURATED FINES YES OR NO
 - SEPARATION OF FINE FRACTION
 - **RECOVERY OF AGITATION VOLATILE RELEASES**
 - WASTE HEAT RECOVERY YES OR NO
- 3. LARGE ROCK OR ROCK FIELD AVOIDANCE
 - LOOK-AHEAD RADAR
 - SINGLE ROCK REMOVAL MINER VS. "BULLDOZER"

- 1. MAINTENANCE IMPACT ON DESIGN
 - IMBEDDED DIAGNOSTICS
 - ANTICIPATORY COMPONENT REPLACEMENT
 - FAIL TO OPERATE, FAIL TO MANUAL, FAIL TO SAFE
 - **REFURBISHMENT SCHEDULE**
- 2. DUTY CYCLE
 - MAINTENANCE REQUIREMENTS
 - PERSONNEL WORK / REST / R&R CYCLE
- **3. TERRESTRIAL MINING-PROCESSING BENCHMARKS ??**
 - CONCEPTUAL APPROACHES TO TERRESTRIAL MINING
 - ALTERNATIVE, LOW MASS STRUCTURAL MATERIALS
 - CONTROLS AND AUTOMATION POTENTIAL
 - LONG-TERM MINING RATES
 - MAINTENANCE ISSUES

OPERATIONAL SUPPORT -1

- POWER PRODUCTION / CONVERSION TRADES STUDIES
 - ACTIVATION PHASE:
 - SOLAR ENERGY + BATTERIES + RHUs
 - SOLAR ENERGY + BATTERIES + RTGs
 - $H_2 + O_2$ FUEL CELL WITH SOLAR RECYCLING OF H_2O
 - INITIAL He-3 PRODUCTION PHASE (O₂ AND H₂ BY-PRODUCT):
 - SOLAR ENERGY
 - $H_2 + O_2$ FUEL CELL WITH SOLAR RECYCLING OF H_2O
 - FISSION REACTOR
 - NORMAL PRODUCTION PHASES AND SELF-SUFFICIENT SETTLEMENT:
 - FISSION REACTOR
 - He-3 FUSION
 - SOLAR ENERGY AND FUEL CELLS FOR SPECIAL PURPOSES

OPERATIONAL SUPPORT -2

- HUMAN CONSUMABLES FROM LUNAR SOURCES
 - AS EARLY AS FEASIBLE:
 - PHASE-IN LUNAR PRODUCTION UNTIL INDEFINITE SUPPORT ACHIEVED
- **REAL-TIME OPERATIONAL / BUSINESS SUPPORT**
 - BUSINESS MANAGEMENT: INITIALLY EARTH-BASED WITH TRANSITION TO MOON
 - MARKETING AND SALES: EARTH-BASED WITH EARTH-MOON COORDINATION
 - PRODUCT RECOVERY AND DISTRIBUTION: EARTH-BASED
 - RESEARCH AND DEVELOPMENT: EARTH-BASED WITH LONG-TERM TRANSITION TO MOON
 - EARTH LAUNCH: EARTH-BASED
 - TRANS-LUNAR, MOON LAUNCH AND TRANS-EARTH: MOON-BASED
 - BASE AND MINING ACTIVITIES: MOON-BASED
 - HEALTHCARE: MOON-BASED

SATURN VI BOOSTER PAYLOAD MANIFEST -1 SVI-1U* SVI-2U

- MOBILE STATION 1
 - POWER MODULE
 - HABITATION FOR 16
 - **OPERATIONS SUPPORT**
 - VOLATILE REFINERY
 - RAD-SHIELD ENVELOPE
 - CRYOGENIC STORAGE
 - MOBILITY SYSTEM
- OFF LOADING SYSTEM
- CONSUMABLES
 - POWER START-UP
 - HYDROGEN
 - OXYGEN

* SVI-1U<u>:</u> SATURN VI UNMANNED LAUNCH

- MINER-PROCESSOR 1
- CONTROL-TRANSFER ARM
- MULTIPURPOSE ROVER 1
 - AGGREGATE SEPARATOR
 - REGOLITH IMPELLER
 - EARTH MOVER
 - EVA CONSUMABLES
 - **RESOURCE MAPPING**
 - REMOTE RAD-SHIELD
- OFF LOADING SYSTEM
- CONSUMABLES
 - FOOD
 - OXYGEN

SATURN VI BOOSTER PAYLOAD MANIFEST -2 SVI-1M** SVI-2M

- SETTLER LANDING MODULE*
 - 2 ENGR / OP FOR M-P
 - 2 ENGR / OP FOR VR
 - 1 GEO / MINE PLANNER
 - 1 OP SUP / PHYSICIAN
 - 1 EXPL GEO / DEP OPS DIR
 - 1 OPS DIRECTOR
- CONSUMABLES MODULE

- SETTLER LANDING MODULE*
 - 2 ENGR / OP FOR M-P
 - 2 ENGR / OP FOR VR
 - 1 GEO / MINE PLANNER
 - 1 OP SUP / PHYSICIAN
 - 2 ENGR / OP FOR MAIN BASE PLANNING
- CONSUMABLES MODULE

* DESIGNED AS MODULAR COMPONENT FOR MAIN BASE OR FOR RE-USE ** SATURN VI MANNED LAUNCH

FIRST TWO MANNED MISSIONS OBJECTIVES

SVI-1M

- ACTIVATE ROVER
- FILL RAD-SHIELD ENVELOPE
- ACTIVATIONS
 - POWER MODULE
 - HABITATION MODULE
 - **OPERATIONS SUPPORT**
 - VOLATILES REFINERY
 - CRYOGENIC STORAGE
 - MOBILITY SYSTEM
- VERIFY RESOURCE GRADE AT MINE SITE 1
- MOVE STATION TO MINE SITE 1

<u>SVI-2M</u>

- MOVE MINER-PROCESSOR & CONTROL-TRANSFER ARM TO MINE SITE 1
- IMBED MINER-PROCESSOR
- CONNECT CONTROL-TRANSFER ARM
- TEST & CALIBRATE MINER-PROCESSOR
 - TEST & CALIBRATE VOLATILES REFINERY
- INITIATE VOLATILES PRODUCTION
- LAY-OUT MAIN SETTLEMENT SITE

SATURN VI BOOSTER PAYLOAD MANIFEST -3

<u>SVI-3U</u>

- MOBILE CRANE / CARRIER
- MAIN BASE INFRASTRUCTURE COMPONENTS
- AGRICULTURAL
 PRODUCTION COMPONENTS
- MULTIPURPOSE ROVER 2
- REGOLITH WATER STORAGE SYSTEM
- REGOLITH OXYGEN
 PRODUCTION SYSTEM
- OFF LOADING SYSTEM

SVI-3M

- SETTLER LANDING MODULE
 - 2 ENGR / OP FOR MAIN BASE
 - 2 ENGR / OP FOR FARM
 - 1 GEO / EXPLORATION
 - 1 BASE OPERATIONS SUPERVISOR
 - 1 SCI / AGRI ENGR
 - 1 BASE MGR
- CONSUMABLES MODULE
 - FOOD
 - HYDROGEN
 - OXYGEN

THIRD MANNED MISSION OBJECTIVES

- MOVE MAIN BASE COMPONENTS TO PLANNED LOCATIONS
 - CONSTRUCT REGOLITH RAD-SHIELDS
- INTEGRATE 3 MANNED LANDER CABINS WITH MAIN BASE INFRASTRUCTURE
 - CONSTRUCT REGOLITH RAD-SHIELDS
- MOTHBALL 6 LANDER PROPULSION MODULES
 - ENABLE USE OF TANKS FOR INITIAL HYDROGEN & OXYGEN STORAGE
- ACTIVATE AGRICULTURAL PRODUCTION SITE
 - FILL REGOLITH RAD-SHIELD ENVELOPE
- INSTITUTE DISPUTE / CRIME RESOLUTION SYSTEM (POSSIBLE APPROACH)
 - SETTLEMENT MANAGER FINAL ADMINISTRATIVE AUTHORITY AFTER PEER RECOMMENDATION
 - APPEAL THROUGH CIVIL COURTS ON EARTH IF APPROVED BY MAJORITY OF SETTLERS

COST-TRADE STUDIES

- MINE PLANNING AND FACILITY DESIGNS WITH EXISTING DATA BASE VS. OBTAINING MORE DATA
- LAUNCH RATES VS. CREW OBJECTIVES VS. CREW SIZE DURING ACTIVATION
- ESTIMATED COST / TONNE COMPARING MINING STRATEGIES
- PERCENTAGE MINABLE REGOLITH LEFT UNMINED VS. MARGINAL COSTS TO MINE
- USE OF SUPPLEMENTAL EQUIPMENT, E.G., BULLDOZERS TO CLEAR BOULDER FIELDS VS. MINE AROUND
- BALANCE BETWEEN EXTRACTION AND REFINING AND SHIPMENT MASS AND STORAGE
- CHEMICAL VS. ELECTROMAGNETIC LAUNCH TO EARTH
- ROBOTIC VS. TELE-ROBOTIC VS. CREW ASSISTED OPERATIONS
- STORAGE VS. THROW-AWAY WITH RESPECT TO BY-PRODUCTS
- LOGISTICAL SUPPORT COSTS: IMPORTS VS. RAPID DEVELOPMENT OF LUNAR RESOURCES

AGRICULTURAL RESEARCH -1

- HIGH PRIORITY ACTIVITY
 - REDUCE COST OF BASE SUPPORT
 - DEMONSTRATE SELF-SUFFICIENCY
- LIGHTING DESIGN
 - PROTECT CROPS FROM RADIATION
 - MAXIMIZE USE OF SOLAR ENERGY
- HYDROPONICS VERSUS "TRADITIONAL" TECHNIQUES
- **REQUIRED NUTRIENTS**
 - LUNAR SOURCES
- PLANT / ATMOSPHERE / HABITAT SYSTEM
 - MINIMIZE REQUIRED CONSUMABLE AUGMENTATION

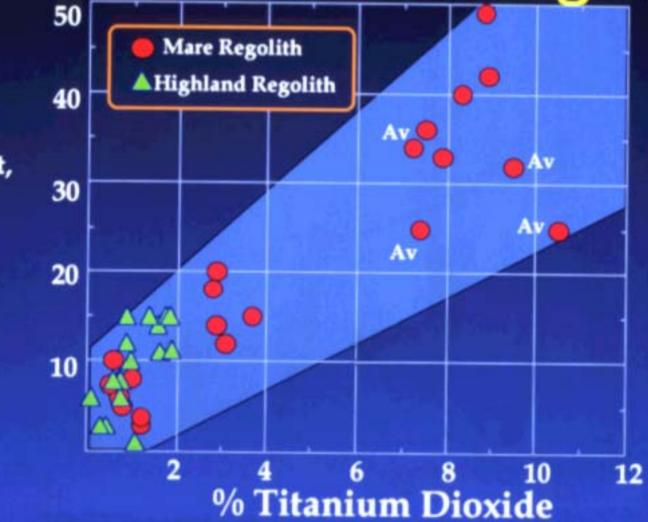
AGRICULTURAL RESEARCH -2

• SOIL AND WATER ADDITIVES AS FUNCTION OF TIME

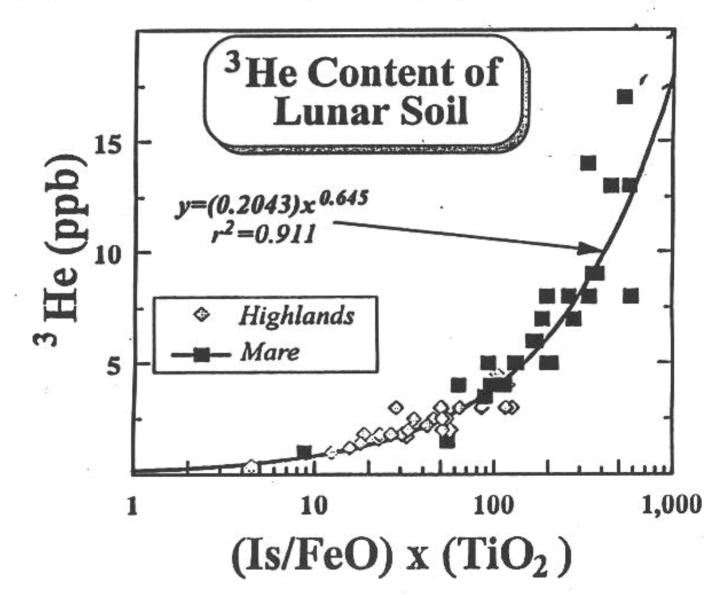
- ORGANIC WASTE, WATER AND CARBON DIOXIDE RECYCLED
- LUNAR NUTRIENTS SOURCES
 - **REGOLITH**
 - **PYROCLASTICS**
 - KREEP
- EVALUATE EXPORT ECONOMICS
 - SPACE STATIONS
 - DEEP SPACE MISSIONS
 - ANCILLARY SUPPORT ACTIVITES

ANCILLARY SUPPORT ACTIVITIES

- LUNAR AND PLANETARY SCIENCE STATION
- SOLAR SYSTEM OBSERVATORY
- BASIC PHYSICS RESEARCH CENTER
- FAR-SIDE RADIO AND OPTICAL OBSERVATORY
- TERRESTRIAL METEORLOLGY CENTER
- DEEP SPACE MISSION OPERATIONS CENTER
- ONE-SIXTH GRAVITY SPACE PHYSIOLOGY RESEARCH CENTER
- ONE/SIXTH GRAVITY MATERIALS RESEARCH CENTER
- TOURIST FACILITY
- ARCHIVAL FACILITY

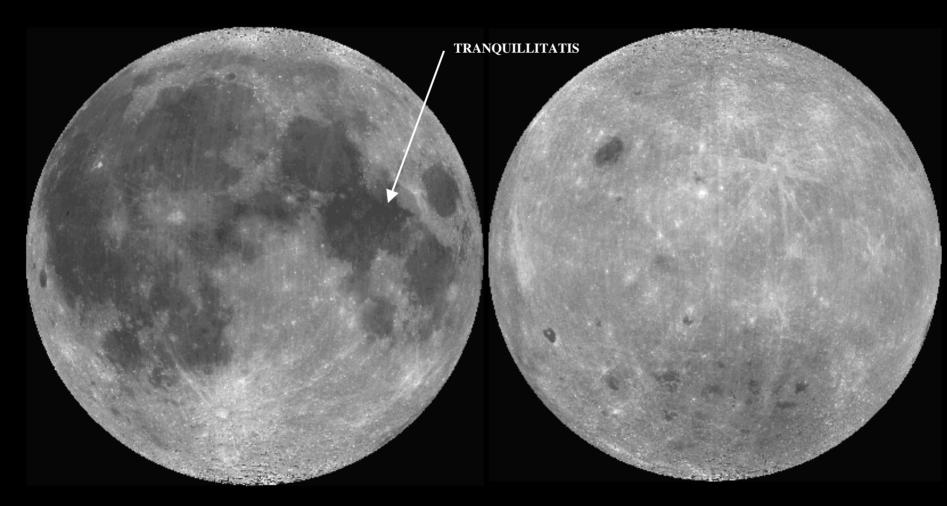

"CULTURAL" DESIGN CONSIDERATIONS -1

- HABITAT AND INDOOR WORKING FACILITIES PERSONNEL FRIENDLY
 - ELECTRONIC, REALTIME WINDOWS
 - PIPED IN NATURAL LIGHT
 - PRIVACY AREAS
 - PERSONAL GARDEN PLOTS
 - INDIVIDUAL AND PRIVATE VOICE AND ELECTRONIC COMMUNICATIONS BACK TO EARTH
 - INTERNAL RECREATION FACILITY
- PLAN FOR EXTERIOR RECREATION
 - ADDITIONAL DEMAND ON SPACE SUIT LONGEVITY AND RELIABILITY

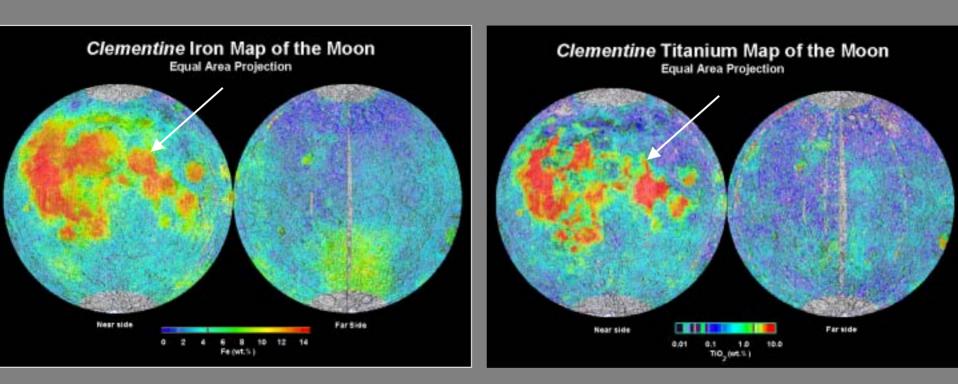

"CULTURAL" DESIGN CONSIDERATIONS -2

- DETERMINE LONG TERM SUITABILITY OF 1/6 GRAVITY FOR INDIVIDUALS AND FAMILIES
 - BIOMEDICAL RESEARCH IN LONG TERM EFFECTS
 - BIOMEDICAL RESEARCH IN CHILD PHYSICAL DEVELOPMENT
 - BIOMEDICAL RESEARCH IN OCCUPATIONAL MEDICAL PRACTICE
 - RE-ADAPTATION PROTOCOL FOR RETURN TO EARTH
- FINANCIAL / POLITICAL INCENTIVES FOR ENTERPRISE OWNERSHIP
 - STOCK AND STOCK OPTIONS
 - GOVERNANCE REPRESENTATION
 - LONG TERM PLAN FOR SELF-GOVERNANCE OF SETTLEMENT
 - SETTLER-FUNDED "RETURN TO EARTH" INSURANCE ?

Correlation of Helium Content With TiO2 in Lunar Regolith



He Content, wppm The Concentration of Helium-3 Correlates Quite Well With the Product of Maturity and Ti Content



Source: L. A. Taylor, p. 49 in 2nd Wisconsin Symposium on Helium-3 and Fusion Power, 1993

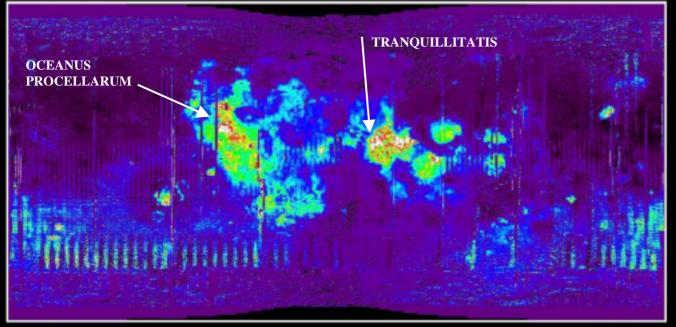
Clementine Global Albedo Images (750 nm filter)

Far Side

ARROW POINTS TO SERENITATIS BASIN. NOTE THAT CENTER IS IRON-RICH BUT TITANIUM-POOR

PLANETARY IMAGE RESEARCH LABORATORY

UNIVERSITY OF ARIZONA JOHNSON ET AL., 1991

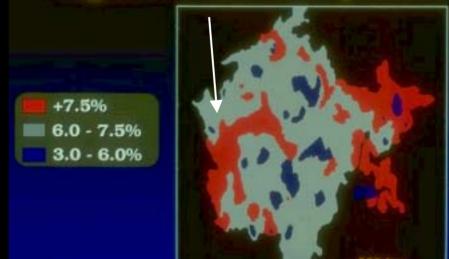

TITANIUM DISTRIBUTION BASED ON REMOTE SENSING FROM EARTH

TRANQUILLITATIS

H <3	4	5	6	7	8	91	0-

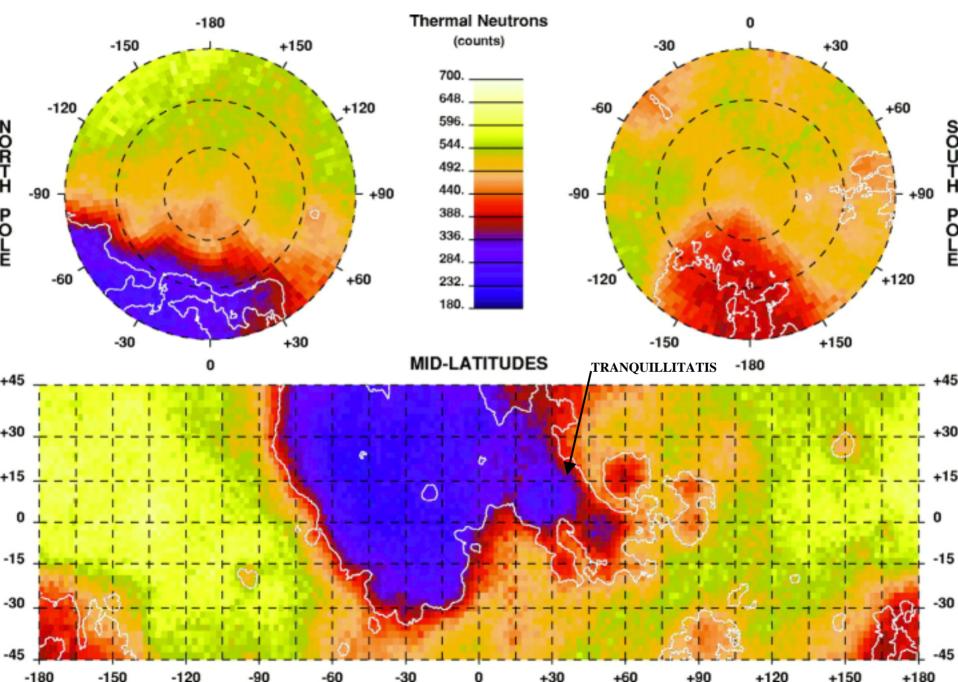
Add at the second second

.

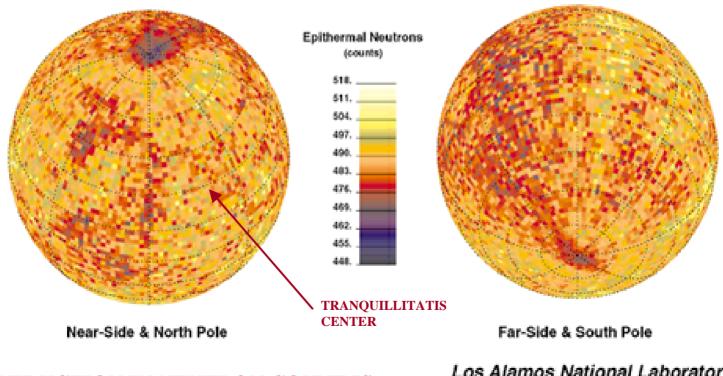


ARROWS INDICATE MAIN AREA OF AGREEMENT

Estimated Helium-3 Abundance

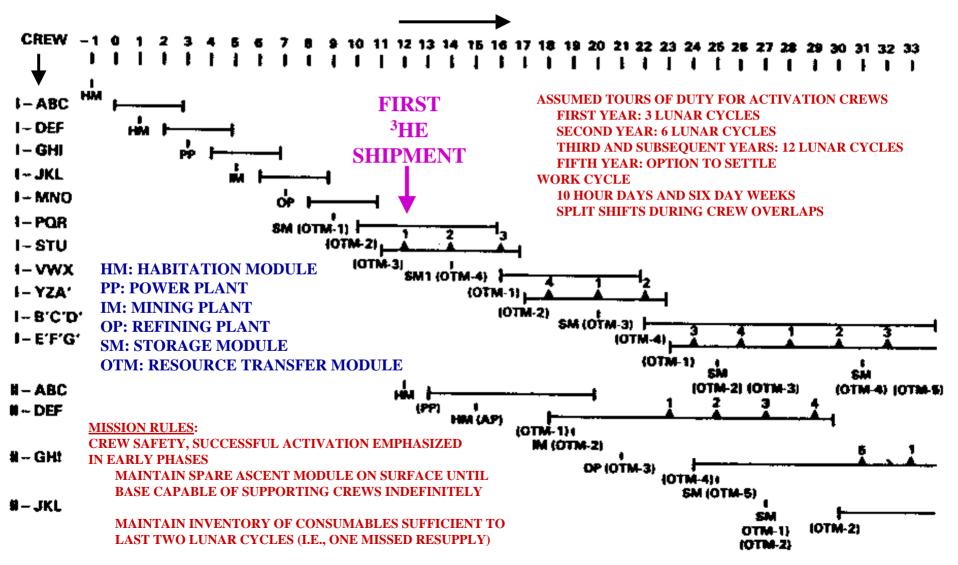

JOHNSON, J.R., SWINDEL, T.D., AND LUCEY, P.G., 1999, GEOPHYSICAL RESEARCH LETTER, 26, 3, 385-388.

Inferred Titanium Content of Regolith of Mare Tranquillitatis



CAMERON, E.N., 1992, TECHNICAL REPORT, WCSAR-TR-AR3-9207-1.

LUNAR PROSPECTOR


Medium Energy Neutron Distribution Lunar Prospector

NOTE: REDUCTION IN NEUTRON COUNT IS MEASURE OF HYDROGEN DISTRIBUTION

Los Alamos National Laboratory

SUMMARY TIMELINE (LUNAR CYCLES FROM FIRST CREW LANDING)

