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Use the Semi-Major Axis of the Ellipse to 
Calculate Hohmann Trajectory Parameters
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Use Earth as reference:

T2 = 1  year; a2 = 1 AU

Earth-Jupiter:
a = (1 AU + 5.2 AU)/2

= 3.1 AU
T = 0.5 (a / 1 AU)3/2

years = ~2.7 years
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Characteristics of Hohmann Transfers
from Earth into the Solar System
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Hohmann Transfer ∆v Values
Drop Slightly for Outermost Planets 
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Nuclear Thermal Rocket 
Trajectories and

Payload Fractions
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Rocket Payload Fraction Increases Exponentially
with the Inverse of the Exhaust Velocity

mf ≡ final mass
mi ≡ initial mass
∆v ≡ velocity increment
vex ≡ exhaust velocity
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Rocket equation

• Chemical rocket
vex ≈ 4.5 km/s (Isp=450 s).

• Nuclear thermal rocket
vex ≈ 9.0 km/s (Isp=900 s).

• Nuclear electric rocket
vex~100 km/s (Isp=10,000 s).
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Nuclear Thermal Rockets Enable Larger Payloads 
than Chemical Rockets Can Provide

Earth-Mars one-way trip: ∆v~5.6 km/s (Hohmann)
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Considering a Round Trip Improves the Advantage 
of Nuclear Thermal Rockets Over Chemical Rockets

Earth-Asteroids round trip: ∆v~11.7 km/s (Hohmann, each way)

Outbound: Earth to Asteroids ml ≡ payload (+structure) 
mass

mpi≡ stage i propellant 
mass

∆vi ≡ stage i velocity 
increment

vex ≡ exhaust velocity
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• Solve these simultaneously to find payload ratio:
Chemical rocket: 0.0055
Nuclear thermal rocket: 0.074
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Nuclear Thermal Rockets Follow Partial 
Conic-Section Trajectories

• Potential NTR trajectory
a=1.27, e=0.231
Total ∆v = 8.3 km/s
Total time ~ 6 months

• For this trajectory, the 
rocket travels only part 
of an ellipse.

• This trajectory is faster 
than a Hohmann 
trajectory, but it requires 
more energy (∆v).
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Accessing the Moons
of the Solar System
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Launching from Moons Is Relatively Easy, but 
Planetary Gravitational Fields Can Be Large
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Escape from Planetary “Surfaces”
Can Be Difficult
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Jupiter’s Satellites Exist in an
Extreme Radiation Environment

• 1 Mrad environment at Europa

Io
Europa
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Travel to the Asteroids

Painting by Denise Watt 
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How Can Main-Belt Asteroids Best Be Moved to Earth?
Aim at Jupiter and Get a Gravity Assist!

• Jovian fly-by’s can give a 
very large ∆v (~10 km/s) to 
the spacecraft.

• Earth-main asteroid belt
∆v ~ 11.7 km/s
Many asteroids require much 
higher ∆v, because of 
inclination or eccentricity.

• Asteroid-Jupiter
∆v ~ 4.0 km/s
Hohmann travel time =
4.1 years
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Many Asteroids Exist
Outside of the Main Belt

• Selected asteroid trajectories
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Asteroid 2004FH Recently Approached
Very Near the Earth

• Point of closest approach was 49,000 km
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a=0.818 AU, e=0.289, i=0.021 2004 FH

Orbital period:
a ≈ 0.82 AU
T = (a / 1 AU)3/2 years

= ~0.74 years
= ~8.8 months

Perihelion:
r = a(1-e) = 0.58 AU
v = 44.3 km/s

Aphelion
r = a(1+e) = 1.05 AU
v = 24.5 km/s
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An Impact of Asteroid 2004FH with Earth 
Would Not Have Caused Significant Damage

• Point of closest approach was 49,000 km
Velocity of 2004 FH at aphelion was 
24.5 km/s
Earth’s orbital velocity is 30 km/s
Velocity difference is
vimpact~5.5 km/s

• Energy of 2004 FH impact would have 
been modest

This energy equals ~0.05 megatons 
of high explosive.
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Large Asteroids Create Significant Damage

• Asteroids and comets ~ 10 m diameter:
Hit Earth approximately once a year.
Break up in the atmosphere and do little damage.

• Objects of ~100 m diameter:
Hit Earth at ~300 year intervals.
Do significant, localized damage.

The 1908 Tunguska object was of this class.

• Objects of ~1 km diameter can produce 
catastrophic global effects.
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Deflecting Asteroids Poses Difficulties

• A ∆v perpendicular to the asteroid’s orbital plane 
cause it to oscillate about it original orbit.

Why? The asteroid’s energy increases, but farther orbits 
have slower orbital speeds, so the equilibrium orbit 
becomes more elliptical.

• The most effective deflection technique is to give 
the asteroid a parallel ∆v.

Adds or subtracts velocity magnitudes, as opposed to 
vector addition in perpendicular case.
Changes semi-major axis and period of orbit.
1 Earth-radius deflection requires ∆v ~ 0.1 m s-1 / τ years 
for an initially circular orbit.
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Large Eccentricities Lead to Large ∆v’s for
Single-Impulse Deflection of Asteroid Orbits

• Toutatis: a=2.51 AU, e=0.63, i=0.5°
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• Speed on an elliptic orbit is
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• Speed of Toutatis as it 
crosses Earth’s orbit is
v1 = 37.7 km/s.

• Earth’s velocity is v2=29.4 
km/s (e=0.017 included).

• Angle between velocity 
vectors is 38°.

• Adding vectors gives
∆v=10.8 km/s.

v1

v2



JFS   2004 Fusion Technology Institute 22

Large Inclinations Substantially Increase ∆v’s for 
Single-Impulse Deflection of Asteroid Orbits
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• Velocity of Icarus as it 
crosses Earth’s orbit is
v1 = 30.5 km/s.

• Earth’s velocity is v2=29.4 
km/s (e=0.017 included).

• Angle between velocity 
vectors is 60°.

• Adding vectors in plane
gives ∆v=27.9 km/s.

• Inclination of orbits adds 
another 23.2 km/s

• Total ∆v=51 km/s.
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• Icarus: a=1.08 AU, e=0.83, i=22.9°
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Hohmann Trajectories Can Give Low ∆v’s 
for Some Asteroids

• For asteroids with nearly circular orbits of low 
eccentricity and inclination, ∆v’s can be < 2 km/s.

For example, 1999 FA (~330 m diameter) has
a=1.078, e=0.133, i=12.

The corresponding Hohmann trajectory to Earth has
∆v=1.8 km/s.

Some asteroid resource literature quotes ∆v’s of 100’s of 
m/s, but I have not personally verified these values.

• Note: the Moon can gravity assist with ~1 km/s.
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Taking Full Advantage of High Exhaust Velocity 
Requires Optimizing Trajectories

• Power limitations typically 
mean that high exhaust 
velocity leads to low thrust.

• Low-thrust trajectories have 
the rockets powered on for 
much of the trip.

Such operation leads to 
high efficiency and 
relatively easy plane 
changes.

Low-thrust trajectory
(variable acceleration)

Earth

Mars
Sun

Note: Trajectory is schematic, not 
calculated.
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