Plasma Thrusters

John F Sagarius

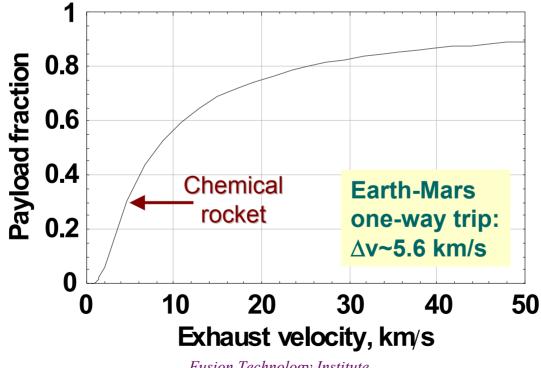
Charge

Lecture 27

Resources from Space NEEP 533/ Geology 533 / Astronomy 533 / EMA 601

University of Wisconsin

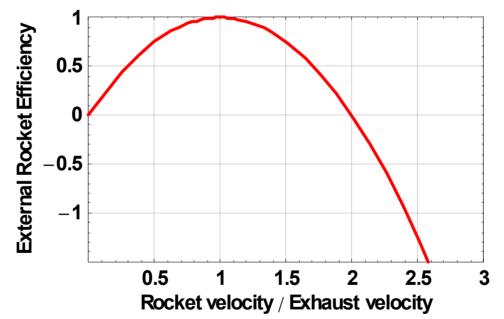
March 29, 2004


- Low-thrust rockets:
 - > Provide good efficiency for high-energy missions and
 - > Give flexible options for mission trajectories.
- Several useful plasma-thruster options exist, with a wide range of exhaust velocity capabilities.

Why Do We Care about Plasma Thrusters? High Exhaust Velocity Gives Large Payloads

This plot of the rocket equation shows why high exhaust velocity historically drives rocket design: payload fractions depend strongly upon the exhaust velocity.

$$\frac{M_f}{M_i} = \exp\left(\frac{-\Delta v}{v_{ex}}\right)$$

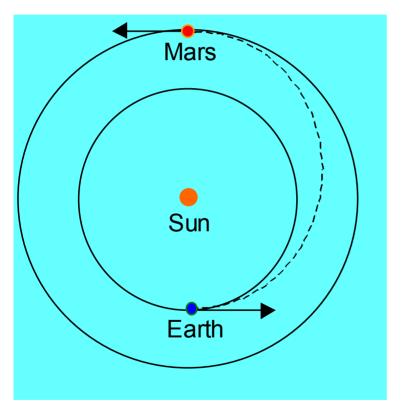

Plasma Propulsion Has a Long History

Year	People	Event	
1906	Robert H. Goddard	Brief notebook entry on possibility of electric propulsion	
1929	Hermann Oberth	Wege zur Raumschiffahrt chapter devoted to electric propulsion	
1950	Forbes and Lawden	First papers on low-thrust trajectories	
1952	Lyman Spitzer, Jr	Important ion-engine plasma physics papers	
1954	Ernst Stuhlinger	Important analysis. Introduces specific power.	
1958	Rocketdyne Corp.	First ion-engine model operates on Earth	
1960	NASA Lewis (Glenn) & JPL	Establish NASA's electric propulsion research program	
1964	USSR	Operates first plasma thruster in space (Zond-2)	
1998	US	Deep Space 1 electrostatic ion thruster used in space	

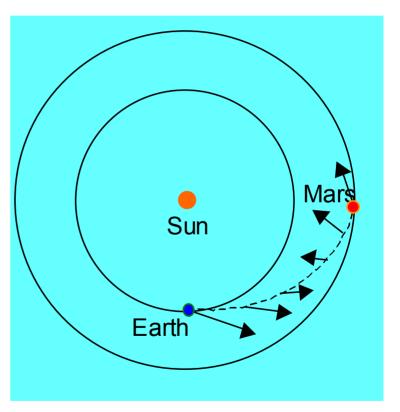
For example: External Rocket Efficiency

 increment in rocket kinetic energy divided by kinetic energy change generated by rocket engine.

• *Negative efficiency!* Exhausted propellant carries more kinetic energy than it had as part of the rocket.

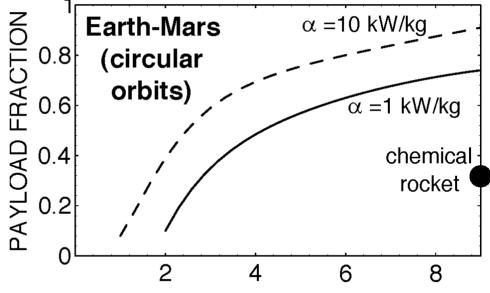


- Propellant not the power source.
- High exhaust velocity ($\geq 10^5$ m/s).
- Low thrust (≤10⁻² m/s}≡10⁻³ Earth gravity) in most cases.
- Thrusters typically operate for a large fraction of the mission duration.
- High-exhaust-velocity trajectories *differ fundamentally* from chemical-rocket trajectories.



Taking Full Advantage of High Exhaust Velocity Requires Optimizing Trajectories

Chemical rocket trajectory (minimum energy)

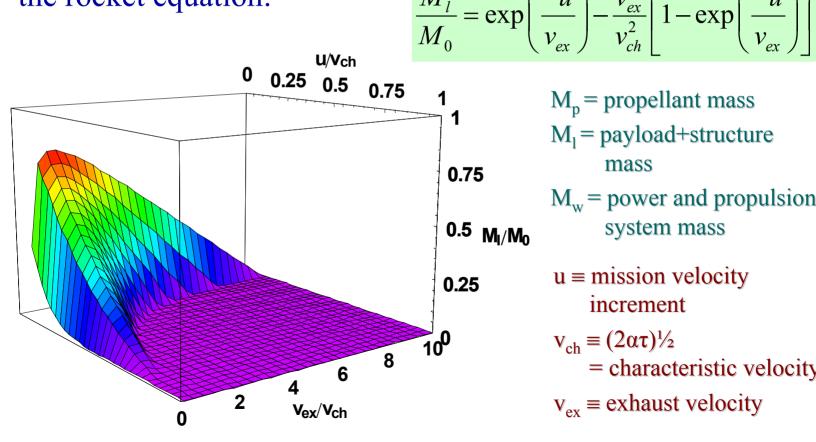

Fusion rocket trajectory (variable acceleration)

Note: Trajectories are schematic, not calculated.

- Electric power can be used to drive high-exhaust-velocity plasma or ion thrusters, or fusion plasmas can be directly exhausted. **Fusion rocket**
- Allows fast trip times or large payload fractions for longrange missions.
- Uses relatively small amounts of propellant, reducing total mass.

ONE-WAY TRIP TIME (months)

$$\alpha [kW/kg] \equiv specific power = P_w / M_w$$



Rocket Equation for Separately Powered Systems

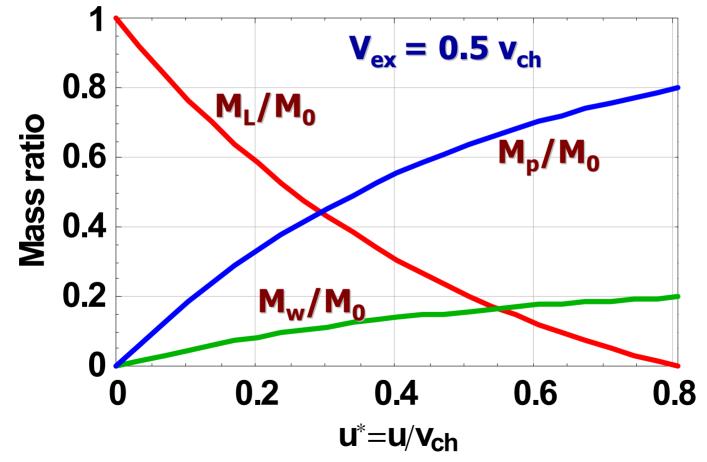
Explicitly including the power-plant mass modifies the rocket equation:

$$\frac{M_{l} + M_{w}}{M_{l} + M_{w} + M_{p}} = \exp\left(\frac{-\Delta v}{v_{ex}}\right) \Rightarrow$$

$$M_{ex} = \left(-u\right) + \left(\frac{-u}{v}\right) + \left(\frac{-u}{v}\right)$$

 $M_p = propellant mass$ $M_1 = payload + structure$ mass M_w = power and propulsion system mass

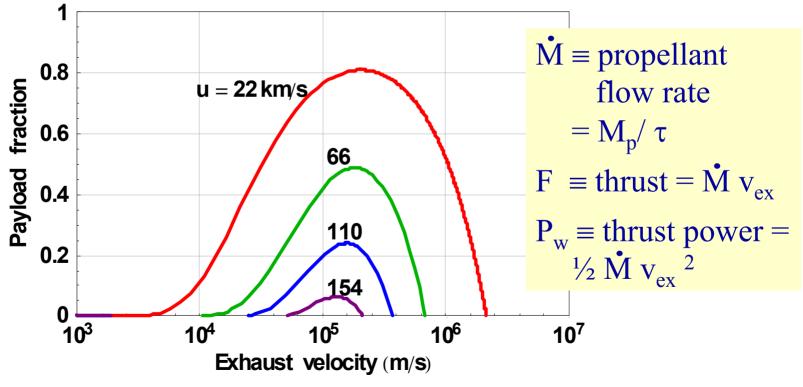
 $u \equiv mission velocity$ increment


$$v_{ch} \equiv (2\alpha\tau)^{1/2}$$

= characteristic velocity
 $v_{ch} \equiv exhaust velocity$

- $M_w \equiv$ power plant mass
- $M_L \equiv payload mass$

 $M_p \equiv propellant mass$


 $M_0 \equiv \text{total mass}$

Earth-Mars Mission Characteristic Velocity Example:

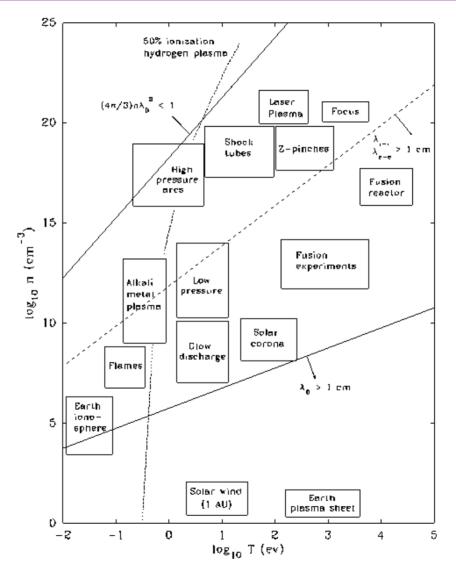
- $\alpha = 1 \text{ kW/kg}; \tau = 9 \text{ months (one-way)}$
- Characteristic velocity $\equiv v_{ch} \equiv (2\alpha\tau)^{1/2} = (2 \times 1000 \times \frac{3}{4} \times 3.15 \times 10^7)^{1/2} \text{ m/s}$ = 220 km/s
 - > Note: remember to use *W/kg not kW/kg* for α when calculating v_{ch}!
- $v_{ch} \approx 40$ times Hohmann Δv (5.6 km/s for Earth-Mars missions)

Earth-Mars Mission Example

Summary Parameters

Parameter	Low-Thrust	Chemical
One-way travel time	258 days	258 days
Specific power	1 kW/kg	∞
Characteristic velocity	150 km/s	
Exhaust velocity	119 km/s	4.5 km/s
Total velocity increment	24 km/s	5.6 km/s
Distance traveled	5.5 AU	5.5 AU
Propellant flow rate	~1.5 g/s	?
Thrust force	0.17 kN	?
Initial thrust-to-weight	0.00012	?
Payload ratio	0.7	0.29

Earth-Mars Mission Example


Summary of Masses

	Low-Thrust	Chemical
Payload	100 Mg [†]	100 Mg [†]
Power and propulsion	10 Mg	0 Mg
Propellant (acceleration phase)	17 Mg	
Propellant (deceleration phase)	16 Mg	
Propellant total	33 Mg	244 Mg
Total initial mass	143 Mg	344 Mg

† Note: 1 Mg \equiv 1 tonne

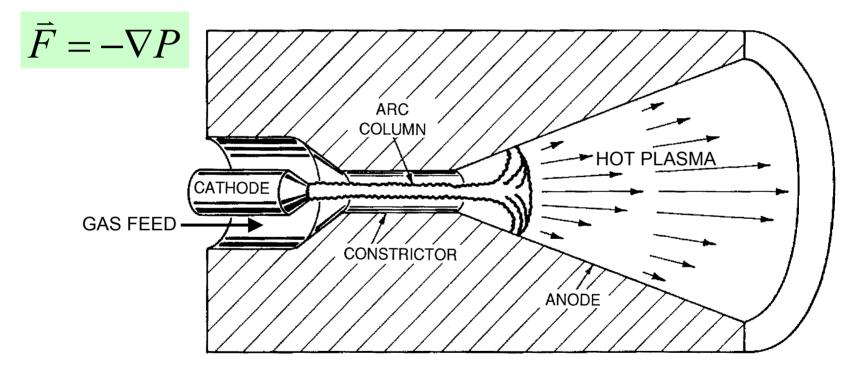
Plasmas (Hot, Ionized Gases) Exist in Many Different Regimes

Governing Principles for Analyzing Plasma Thrusters

- Maxwell's equations $\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$ $\nabla \cdot \vec{B} = 0$ $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\nabla \times \vec{B} = \mu_0 \vec{J} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$
- Force equation

$$\overrightarrow{F} = q\overrightarrow{E} + q\overrightarrow{v} \times \overrightarrow{B} - \nabla P$$

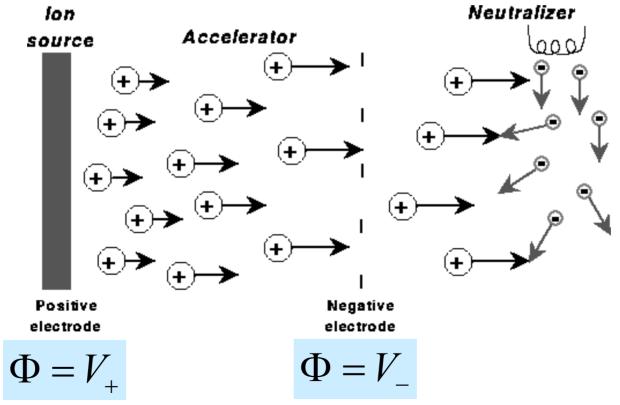
- Atomic physics
- Plasma-surface interactions
- Sheath physics
- Statistical mechanics
- Magnetohydrodynamics



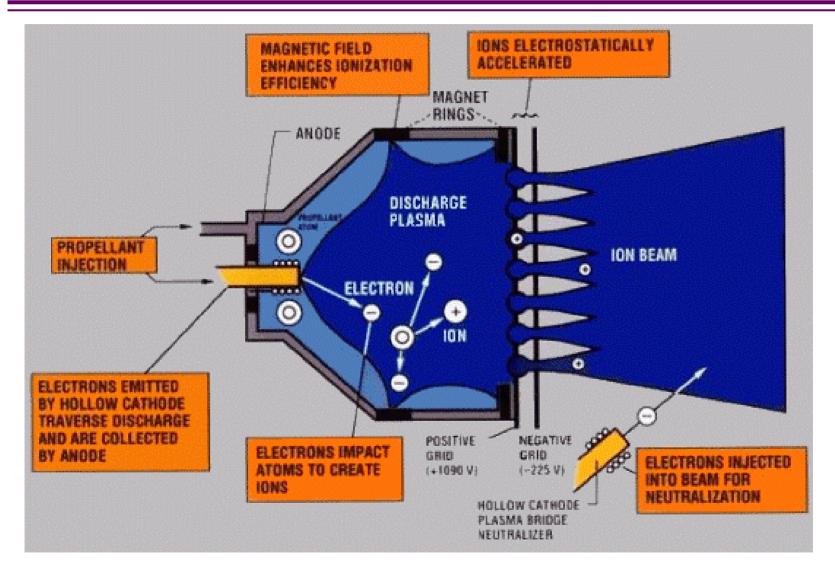
Plasma (Electric) Thrusters Come in Three Basic Varieties

- Electrothermal
 - > Plasma pressure driven
 - > Modest thrust, relatively low exhaust velocity
- Electrostatic
 - > Voltage-gradient driven
 - Low thrust, high exhaust velocity
- Electromagnetic
 - Complicated electromagnetic driving forces
 - > Modest thrust, modest exhaust velocity

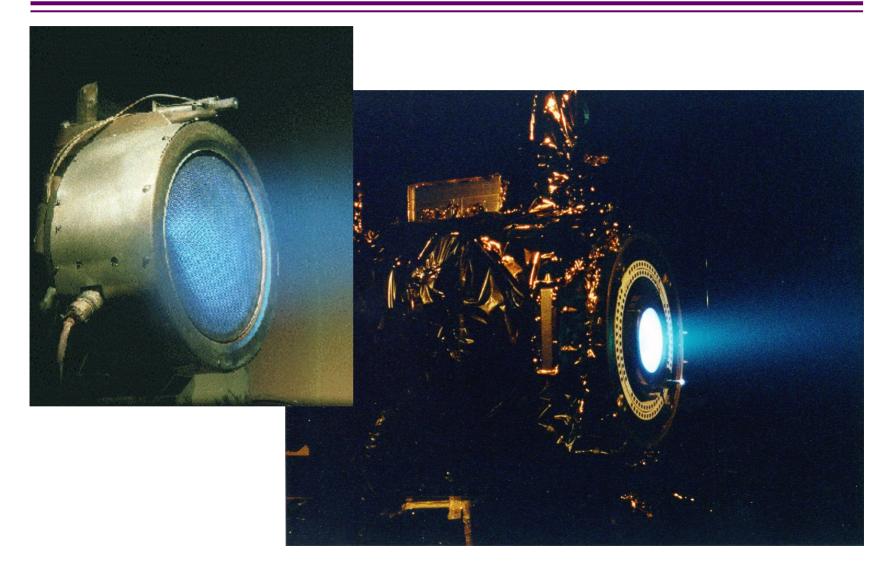
• Basic principle of electrothermal thrusters is to create a hot plasma that expands because of internal pressure.



From Robert Jahn, Physics of Electric Propulsion (1968)

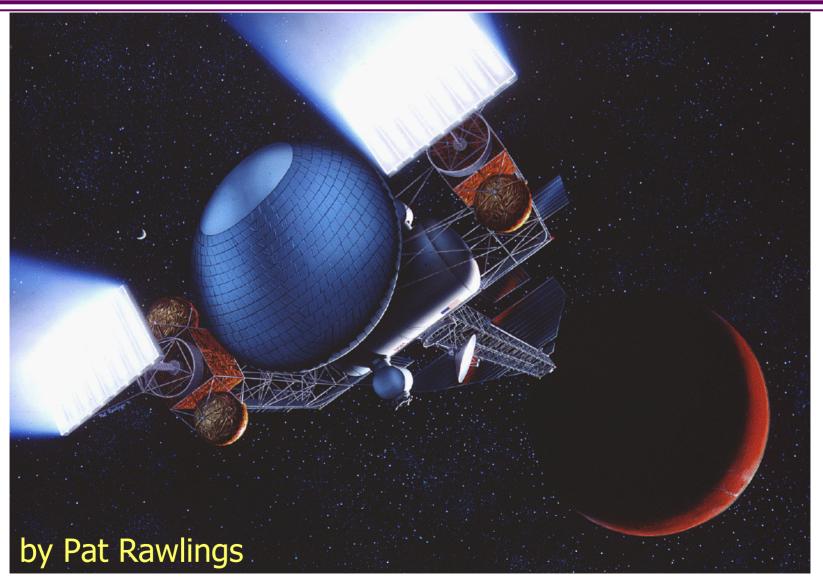

• Basic principle of electrostatic thrusters is to cause ions to pick up energy by falling down a potential hill.

$$\vec{F} = q\vec{E} = -q\nabla\Phi$$



Exploded View of Electrostatic Ion Thruster

Xe Ion Thruster on Deep Space I (1998) Substantially Exceeded its Design Lifetime



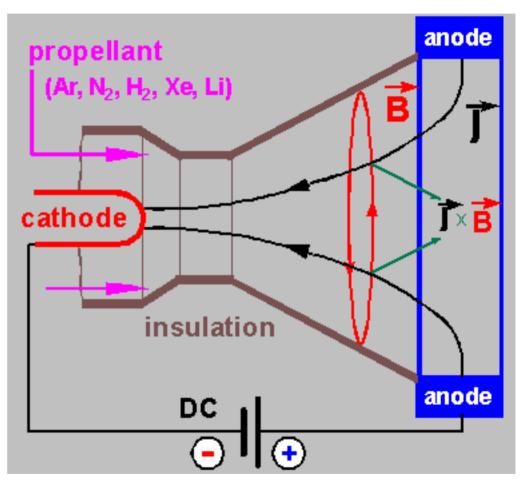
Deep Space 1 Ion Thruster Parameters

Parameter	Value	
Exhaust velocity	31 km/s	
Grid voltage difference	1.28 kV	
Power	2.3 kW	
Thrust	93 mN	
Mass flow rate	2.3 mg/s	
Mass	8.3 kg	
Propellant mass	88 kg	
Thruster efficiency	0.62	
Lifetime	8,192+ hours	
Δv to spacecraft (486 kg)	4.5 km/s	

Nuclear-Electric Propulsion (NEP) Conceptual Design Using Ion Thrusters

- Electromagnetic thrusters depend on both electric and magnetic fields for their operation.
 - > Can be steady-state or pulsed.
 - > The presently most important varieties appear below.

Thruster Type	Key Operating Principle	
MPD (magnetoplasmadynamic)	J x B force on plasma	
Hall (SPT or button)	Hall effect (E x B drift)	
Pulsed-plasma	J x B force moving current	
Pulsed-inductive	Radio-frequency wave induced current	

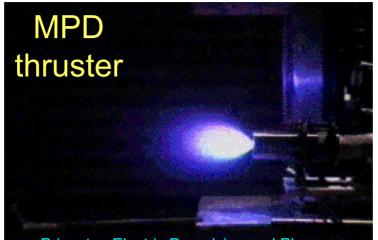

Magnetoplasmadynamic (MPD) or

Lithium Lorentz Force Thruster

• Basic principle of MPD thrusters is to utilize the force perpendicular to a current crossing a magnetic field.

$$\vec{F} = \vec{j} \times \vec{B}$$

$$\vec{j} = nq\vec{v}$$



From University of Stuttgart's web page:

 $www.irs.uni-stuttgart.de/RESEARCH/EL_PROP/e_el_prop.html$

Electrodynamic Thruster Hardware Examples

Princeton Electric Propulsion and Plasma Dynamics Laboratory

Parameter	MPD	Hall
Exhaust velocity	4 km/s	24.5 km/s
Mass flow rate	3.1 g/s	20 mg/s
Power	>100 kW	10 kW
Thrust	12.5 N	500 mN
Thruster efficiency	0.4	0.59
Lifetime	500+ hours	1000 hours

Carrying a Separate Power Source Gives Flexibility

Propulsion Power in flight and at destination • Beamed power Electrically powered processes Materials processing and other plasma applications Extractive metallurgy ➢ Waste disposal

- Low-Thrust trajectories
 - Ernst Stuhlinger, Ion Propulsion for Space Flight (McGraw-Hill, New York, 1964).
 - Krafft A. Ehricke, Space Flight: II. Dynamics (Van Nostrand, Princeton, 1962).
- Plasma thrusters
 - > Robert G. Jahn, *Physics of Electric Propulsion* (McGraw-Hill, New York, 1968).