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Key Points

• Low-thrust rockets:

Provide good efficiency for high-energy missions and

Give flexible options for mission trajectories.

• Several useful plasma-thruster options exist, with a wide 
range of exhaust velocity capabilities.
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Why Do We Care about Plasma Thrusters?
High Exhaust Velocity Gives Large Payloads
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• This plot of the rocket equation shows 
why high exhaust velocity historically 
drives rocket design: payload fractions 
depend strongly upon the exhaust 
velocity.
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Plasma Propulsion Has a Long History

US

USSR

NASA Lewis 
(Glenn) & JPL

Rocketdyne Corp.

Ernst Stuhlinger

Lyman Spitzer, Jr

Forbes and Lawden

Hermann Oberth

Robert H. Goddard

People

First papers on low-thrust trajectories1950

Important ion-engine plasma physics papers1952

First ion-engine model operates on Earth1958

Wege zur Raumschiffahrt chapter devoted to electric 
propulsion

1929

Deep Space 1 electrostatic ion thruster used in space1998

Operates first plasma thruster in space (Zond-2)1964

Establish NASA’s electric propulsion research program1960

Important analysis.  Introduces specific power.1954

Brief notebook entry on possibility of electric propulsion1906
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Defining Rocket Efficiency Can Be Tricky
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• For example: External Rocket Efficiency
≡ increment in rocket kinetic energy divided by kinetic

energy change generated by rocket engine.

• Negative efficiency! Exhausted propellant carries more 
kinetic energy than it had as part of the rocket.
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How Do Separately Powered Systems
Differ from Chemical Rockets?

• Propellant not the power source.
• High exhaust velocity (t105 m/s).
• Low thrust (d10-2 m/s}ª10-3 Earth gravity) in 

most cases.
• Thrusters typically operate for a large fraction 

of the mission duration.
• High-exhaust-velocity trajectories differ

fundamentally from chemical-rocket 
trajectories.
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Taking Full Advantage of High Exhaust 
Velocity Requires Optimizing Trajectories

Chemical rocket trajectory
(minimum energy)

Fusion rocket trajectory
(variable acceleration)

Earth

Mars
Sun

Earth

Mars

Sun

Note: Trajectories are schematic, not calculated.
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Efficient Solar-System Travel Requires
High-Exhaust-Velocity Propulsion

• Electric power can be used to drive high-exhaust-velocity 
plasma or ion thrusters, or fusion plasmas can be directly 
exhausted.

• Allows fast trip times 
or large payload 
fractions for long-
range missions.

• Uses relatively small 
amounts of propellant, 
reducing total mass.

α [kW/kg] ≡ specific power = Pw / Mw

Fusion rocket
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Rocket Equation for
Separately Powered Systems
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• Explicitly including the 
power-plant mass modifies 
the rocket equation:
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MMp p = propellant mass= propellant mass
MMl l = payload+structure = payload+structure 

massmass
MMw w = power and propulsion  = power and propulsion  

system masssystem mass

u u ≡≡ mission velocity mission velocity 
incrementincrement

vvchch ≡≡ (2(2ατατ))½½
= characteristic velocity= characteristic velocity

vvexex ≡≡ exhaust velocityexhaust velocity
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Mass Ratios Vary Simply with u/vch and vex/vch

MMpp ≡≡ propellant masspropellant mass

MM00 ≡≡ total mass

Mw ≡ power plant mass

ML ≡ payload mass total mass

0 0.2 0.4 0.6 0.8
u*=u vch

0

0.2

0.4

0.6

0.8

1

ssa
M

oitar

MMLL/M/M00

MMww/M/M00

MMpp/M/M00

VVex ex = 0.5= 0.5 vvchch



JFS   2004 Fusion Technology Institute 11

Earth-Mars Mission Characteristic Velocity Example:
α=1 kW/kg; τ=9 months (one-way)

• Characteristic velocity ≡ vch ≡ (2ατ)1/2 = (2×1000×¾ ×3.15×107)1/2 m/s
= 220 km/s

Note: remember to use W/kg not kW/kg for α when calculating vch!
• vch ≈ 40 times Hohmann ∆v (5.6 km/s for Earth-Mars missions)
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Earth-Mars Mission Example
Summary Parameters

0.7

0.00012

0.17 kN

~1.5 g/s

5.5 AU

24 km/s

119 km/s

150 km/s

1 kW/kg

258 days

Low-Thrust

--Characteristic velocity

4.5 km/sExhaust velocity

?Propellant flow rate

∞Specific power

0.29Payload ratio

?Initial thrust-to-weight

?Thrust force

5.6 km/sTotal velocity increment

5.5 AUDistance traveled

258 daysOne-way travel time

ChemicalParameter
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Earth-Mars Mission Example
Summary of Masses

143 Mg

33 Mg

16 Mg

17 Mg

10 Mg

100 Mg†

Low-Thrust

344 Mg

244 Mg

--

--

0 Mg

100 Mg†

Chemical

Power and propulsion

Total initial mass

Propellant (deceleration phase)

Propellant total

Payload

Propellant (acceleration phase)

†† Note: 1 Mg Note: 1 Mg ≡≡ 1 tonne1 tonne
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Plasmas (Hot, Ionized Gases)
Exist in Many Different Regimes
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Governing Principles
for Analyzing Plasma Thrusters

• Force equation
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• Maxwell’s equations
F qE qv B P= + × −∇
uv v vv

• Atomic physics

• Plasma-surface 
interactions

• Sheath physics

• Statistical mechanics

• Magnetohydrodynamics
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Plasma (Electric) Thrusters Come in 
Three Basic Varieties

• Electrothermal
Plasma pressure driven
Modest thrust, relatively low exhaust velocity

• Electrostatic
Voltage-gradient driven
Low thrust, high exhaust velocity

• Electromagnetic
Complicated electromagnetic driving forces
Modest thrust, modest exhaust velocity
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Electrothermal Thruster

• Basic principle of electrothermal thrusters is to create 
a hot plasma that expands because of internal pressure.

GAS FEED

HOT PLASMA

F P= −∇
v

From Robert From Robert JahnJahn, Physics of Electric Propulsion (1968), Physics of Electric Propulsion (1968)
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Electrostatic Thruster

F qE q= = − ∇Φ
v v

• Basic principle of electrostatic thrusters is to cause 
ions to pick up energy by falling down a potential hill.

V+Φ = V−Φ =
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Exploded View of Electrostatic Ion Thruster
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Xe Ion Thruster on Deep Space I (1998) 
Substantially Exceeded its Design Lifetime
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Deep Space 1 Ion Thruster Parameters

4.5 km/s∆v to spacecraft (486 kg)

8,192+ hoursLifetime

0.62Thruster efficiency

93 mNThrust

2.3 mg/sMass flow rate

8.3 kgMass

88 kgPropellant mass

2.3 kWPower

1.28 kVGrid voltage difference

31 km/sExhaust velocity

ValueParameter



JFS   2004 Fusion Technology Institute 22

Nuclear-Electric Propulsion (NEP)
Conceptual Design Using Ion Thrusters

by Pat Rawlings
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Electromagnetic Thrusters

• Electromagnetic thrusters depend on both electric 
and magnetic fields for their operation.

Can be steady-state or pulsed.
The presently most important varieties appear below.

J x B force moving currentPulsed-plasma

Radio-frequency wave induced currentPulsed-inductive

J x B force on plasmaMPD (magnetoplasmadynamic)

Hall effect (E x B drift)Hall (SPT or button)

Key Operating PrincipleThruster Type
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Magnetoplasmadynamic (MPD) or 
Lithium Lorentz Force Thruster

From University of Stuttgart’s web page:
www.irs.uni-stuttgart.de/RESEARCH/EL_PROP/e_el_prop.html

• Basic principle of 
MPD thrusters is 
to utilize the force 
perpendicular to a 
current crossing a 
magnetic field.

F j B= ×
v vv

j nqv=
v v
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Electrodynamic Thruster Hardware Examples

MPD 
thruster

Princeton Electric Propulsion and Plasma 
Dynamics Laboratory 

helicon

UW Center for Plasma-Aided 
Manufacturing

SPT “button” 
Hall thruster
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Typical Electromagnetic Thruster Parameters

20 mg/s3.1 g/sMass flow rate

1000 hours500+ hoursLifetime

0.590.4Thruster efficiency

12.5 N

>100 kW

4 km/s

MPD

500 mNThrust

10 kWPower

24.5 km/sExhaust velocity

HallParameter
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Carrying a Separate Power Source
Gives Flexibility

• Propulsion

• Power in flight and at destination
Beamed power

Electrically powered processes

• Materials processing and other plasma applications
Extractive metallurgy

Waste disposal
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Useful References

• Low-Thrust trajectories
Ernst Stuhlinger, Ion Propulsion for Space Flight
(McGraw-Hill, New York, 1964).
Krafft A. Ehricke, Space Flight: II. Dynamics (Van 
Nostrand, Princeton, 1962).

• Plasma thrusters
Robert G. Jahn, Physics of Electric Propulsion (McGraw-
Hill, New York, 1968).
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