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Where Are We Now With Respect to
Future Energy Supplies?

e Sometime 1n the mid-21st century the World will
need a new source of safe, clean, and economical
energy to replace fossil fuels

* The question now 1s will that energy be mainly
fission or fusion?



The Binding Energy Per Nucleon Increases When
Heavy Elements are Fissioned and When Light
Elements are Fused
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Nuclear Structure of Important Light Isotopes
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How do We Make Atoms Fuse?

* Placing them under very high pressures at high
temperature.

— Gravity
— Inertial confinement

* Heating them to very high temperatures (1. e., high
velocities) and running them into each other.

— Containment with high magnetic fields

* Acceleration into each other at high velocities.
— Electrostatic confinement



The Sun is a Very Efficient Fusion Reactor
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Maxwellian Fusion Reaction Rates
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Maxwellian Fusion Reactivities (ZE¢, . 0V)
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Fusion Power Plant
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MAGNETIC FIELDS
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Where Do We Get Deuterium and Tritium From?

e Deuterium:
— Stable 1sotope

— 0.015 mole % in hydrogen bearing compounds
(1 atom 1n every 6670 hydrogen atoms)

— Estimated inventory on Earth-5,000 billion tonnes

e Tritium:
— Radioactive 1sotope-12.3 year half life
e 3H,--->3He, + ¢ + 28 keV
— Made from Li bombarded by neutrons
e In, +Li, -->%He, + °H, + 4.8 MeV
 In,+’Liy -->“%He, + *H, + 'n’, - 2.5 MeV



The Tokamak is the Leading Magnetic
Fusion Concept for the DT Fuel Cycle

*D + *T = n (14 MeV) + ** *He (3.5 MeV)
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UNITED STATES TOKAMAK
FUSION TEST REACTOR
(TFTR)
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There Are Many Experimental Fusion Devices on the
University of Wisconsin Campus
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Confinement Quality, nT(m-3s)
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World Magnetic Fusion Effort

Major programs with fraction of total funding (S)
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Major Components of ITER,_, ..
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Progressin Magnetic Fusion Power
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THE ARIES-I11 TUKA.BEIAK FUbION REACTOR
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INERTIAL CONFINEMENT FUSION CONCEPT i

//
L

Lasar enérgy e

Inwerd transported ey
thermal enargy

W

Atmosphers Formation Compression Ignition Burn
Laser or particle beams Fuel is compressed by . With the fina! driver pulse, the Tharmaonuclesr
rapidly heat the surface roclkat-like blowoff of fuel core reaches 1000 — 10,000 times burn spreads
of the fusion target the surface material. biquid density and ignites at rapidly through tha
forming & surrounding 100,000,000 C. compressad fuel, yialding
plasma envalopa. many times the driver

INput ANergy.



There Are Four Different ICF Target Designs
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Code calculations and analytic scaling predict
z-pinch driver requirements for IFE DEMO

Double-Pinch D .
ynamic Hohlraum  current /x-rays
current /x-rays .
{-Iohlraurrj Eabs/yielgll Eabs/ yiel
2% 62-68 MA g = 54 — 95 MA
2 x (16-19) MJ i 12-37 MJ
1.3-2.6 MJ k - 24-7.2MJ
400 — 4000 MJ 530 - 4400 MJ

Based on these results, an IFE target for DEMO will require:
double-pinch hohlraum dynamic hohlraum
36 MJ of x-rays (2x66MA) 30 MJ of x-rays (86 MA)
3000 MJ yield 3000 MJ yield
(G =83) (G =100)

J. Hammer, M. Tabak, R. Vesey, S. Slutz, J. De Groot



There is worldwide interest in fast ignition which
potentially gives more gain and lower threshold

energy than indirect or direct drive Ej
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There Are Two Methods of Achieving
Inertial Confinement Fusion
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The National Ignition Facility




The Laser Bay 1s for NIF 1s
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NIF Target Chamber upper hemisphere







The indirect drive Ignition Plan makes use of
existing facilities, and early NIF, to optimize the

final ignition design
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A FUNCTIONAL DIAGRAM OF A LASER FUSION POWER PLANT [
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There are 4 Current ICF Drivers
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LIBRA-LITE

Side View Reactor
Chamber Cutaway
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The long-range goal of Z-Pinch IFE is to produce an
economically-attractive power plant using high-yield
z-pinch-driven targets (~3 GJ) at low rep-rate (~0.1 Hz)

Z-Pinch IFE DEMO (ZP-3, the first study) used 12 chambers,
each with 3 GJ at 0.1 Hz, to produce 1000 MWe



NIF and ITER Drivethe Urgency of the Plan
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L T

-\\\&

A strong parallel effort in the science and
technology of fusion energy is required to guide
research on these experimental facilities and to
take advantage of their outcome.



Conclusions

There 1s a substantial world research program
(= 2 $B/y) to harness Fusion as a major energy source
in the 21st Century

While most of the world program is concentrated on
magnetically confined plasmas, the inertial fusion
program will probably reach ignition and breakeven
first.

Both 1nertial and magnetic confinement approaches are
concentrating on the DT fuel cycle

Advanced fusion fuel cycles will require a different
approach
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