EVOLUTION OF MARS LECTURE 18 NEEP 533

HARRISON H. SCHMITT

MARS MADE BY MICHAEL CAPUNCER AND MICHAEL MALIN. MISSIS GATA FROM NASAUPL MARS CLOBAL SURVEYOR MERSON, MICHAEL CAPUNCER TEAMS, 50TH SPACEDRAFT BY NASAUPL

TES Geologic Map of Mars

B

THEMIS THERMAL IMAGING OF SPIRIT LANDING AREA IN GUSEV CRATER

A. SPIRIT LANDING ELLIPSE

B. CLOSER VIEW OF SPIRIT LANDING ELLIPSE

C. NIGHT IR IMAGE: BRIGHT AREAS ARE MORE ROCKY. ARROW POINTS TO ROCKY SLOPE

SPIRIT MOVED TO GUSEV CRATER POSSIBLE LAKE BED IN LARGE BASIN

B

THEMIS THERMAL IMAGING OF OPPORTUNITYLANDING AREA IN MERIDIANI PLANUM

A. LANDING ELLIPSE ~120 KM LONG)

B. CLOSER VIEW OF LANDING ELLIPSE

C. NIGHT IR IMAGE: BRIGHT AREAS ARE MORE ROCKY. ARROW POINTS TO ROCKY SLOPE

ITALICS = SNC DATES

RED = MAJOR UNCERTAINTY

THARSIS REGION SHADED RELIEF DETAIL

MARS GLOBAL SURVEYOR MOLA

GRAVITY ANOMALY IMAGE DRAPED OVER A THREE-DIMENSIONAL (3D) VIEW OF TOPOGRAPHY

PHIILLIPS, R.J., AND CO-WORKERS, 2001, SCIENCE, 291, 2587-2591

MOLA DATA APPLIED TO VIKING IMAGES

MOLA PROFILES ACROSS OLYMPUS MONS ALBAPATERA ARSIA MONS MOLA SCIENCE TEAM

WESTWARD VIEW DOWN VALLES MARINERIS (MOLA SCIENCE TEAM)

VALLES MARINARIS LOOKING NORTH

ESA MARS EXPRESS ORBITER

1700 KM

65 KM

MARS GLOBAL SURVEYOR

OUTFLOW CHANNEL, KASEI VALLES NASA VIKING MOSAIC

MOC2-154 Malin Space Science Systems/NASA

OUTFLOW CHANNEL FEATURES

GANGES CHASMA OUTFLOW 3D

NASA/JPL/MALIN SCIENCE SYSTEMS

KASEI VALLI ESA MARS EXPRESS ORBITER

REULL VALLIS, EAST OF HELLAS ESA MARS EXPRESS

MOLA SLOPE MAP (OVER 30 KM)

MOLA ROUGHNESS MAP (OVER 35 KM WINDOW

NASA MARS GOLBAL SURVEYOR/MOLA

MOLA ROUGHNESS

BRIGHT IS ROUGH

MARS GLOBAL SURVEYOR

THARSIS / ELYSIUM VOLCANISM UPLIFT CONSEQUENCES - 1

- THARSIS / ELYSIUM VOLCANISM
 - PARTIAL MELTING OF MANTLE
 - » CONCENTRATION OF RADIOISOTOPES IN HIGH PRESSURE MANTLE (?)
 - 3 X 10³ KM³ MAGMA IN SURFACE EXPRESSION OF THARSIS RISE
 - DENSE C0₂ AND H₂0 ATMOSPHERE
 - ACTIVATION OF HYDROSPHERE, CRYOSPHERE AND CARBONATE DEPOSITS
 - PRIMARY WATER FROM HYDROUS MINERALS IN LOWER MANTLE (?)
 - ANDESITIC RESURFACING OF NORTHERN LOWLANDS

THARSIS / ELYSIUM VOLCANISM UPLIFT CONSEQUENCES -2

- THARSIS RISE BEGAT ARABIA TERRA RISE
 - EXTENTIONAL FRACTURING TO GIVE GIANT RIFT VALLEYS
 - BECAME OUTFLOW CHANNELS
 - HEAT TO ACTIVATE THE HYDROSPHERE/CRYOSPHERE
 - SOURCE FOR OUTFLOW FLOODS
 - TROUGH SURROUNDING THARSIS
 - NORTHWARD FLOW FROM MAJOR OUTFLOW CHANNELS
 - ERODED MATERIALS DEPOSITED ON NORTHERN OCEAN BED
 - UPWARD DEFORMATION OF THE EARLY NORTHERN OCEAN SHORELINE
 - LATE, LOCAL DEFORMATION OF LATE NORTHERN OCEAN SHORELINE

NORTHERN LOWLANDS/OCEANS

- LARGE, IRREGULAR BASIN
 - SEVERAL VERY LARGE IMPACTS(?)
 - DICHOTOMY SIMILAR TO MOON
 - INTERNAL PROCESS THAT THINNED CRUST(?)
- EVIDENCE FOR NORTHERN OCEAN(S)
 - DRAINAGE FROM VALLEY NETWORKS (EARLY VOLCANISM)
 - ABUNDANCE OF OLD LAYERED ROCKS
 - DRAINAGE FROM OUTFLOW CHANNELS (THARSIS VOLCANISM)
 - SHORELINE / STANDSTILL TERRACES(?)
 - SMOOTH TOPOGRAPHY RELATIVE TO SOUTHERN UPLANDS
 - VOLUME ENCLOSED PLAUSIBLE RELATIVE TO POTENTIAL WATER VOLUME
 - EVIDENCE FOR RECENT OR CURRENT GROUND ICE OR GROUND WATER
 - POLYGONAL GROUND
 - RAMPART CRATER EJECTA
 - NEUTRON SPECTOMETRIC DATA FROM MARS ODYSSEY

Late Southern Summer

NORTH POLE TOPOGRAPHY MOLA SCIENCE TEAM

3D VIEW OF NORTH POLAR CAP

MOLA SCIENCE TEAM/ NASA/GFSC SVS

SOUTH POLE TOPOGRAPHY

MOLA SCIENCE TEAM

SOUTH POLAR CAP NASA/JPL/MALIN SCIENCE SYSTEMS

MARS ORBITER

ESA-OMEGA VISIBLE / IR MARS EXPRESS JANUARY 2004

EVIDENCE OF RECENT WATER FLOW MALIN, M.C., AND K.S. EDGETT, 2000, SCIENCE, 288, 2330-2335

EAST GORGONUM CRATER NASA/JPL/MALIN SPACE SCIENCE SYSTEMS

DIGITATE APRON

ANASTOMOSING GULLIES

500 m

PRIMARY CHANNELS

MALIN, M.C., AND K.S. EDGETT, 2000, SCIENCE, 288, 2330-2335

250 m

GULLIES AT 70 S. IN POLAR PIT WALL

NASA/JPL/MALIN SPACE SCIENCE SYSTEMS

VIKING CONTEXT

GULLIES IN CRATER IN NEWTON CRATER

Ficor of Newton Crater

NASA/JPL/MALIN SPACE SCIENCE SYSTEMS

YOUNG RELATIVE AGE FOR EROSION

MALIN, M.C., AND K.S. EDGETT, 2000, SCIENCE, 288, 2330-2335

APRON COVERING DUNES

APRON COVERING POLYGONS

FRESH, DUST FREE SURFACES

GLOBAL DISTRIBUTION OF OBSERVED GULLY LANDFORMS

MALIN, M.C., AND K.S. EDGETT, 2000, SCIENCE, 288, 2330-2335

SOUTH POLE

NOTE: SLOPES FACE POLE-WARD 2.5 X MORE OFTEN THAN OTHERWISE

SNOW PACK ON MARS

A

ARROWS POINT TO AREAS INTERPRETED TO BE REMNANT SNOW PACK.

MELT WATER FROM THESE POLE FACING SNOW COVERED AREAS APPARENTLY CAUSE GULLY FORMATION. B

D

C

NORTH POLAR CAP LAYERS

North Polar Layers in Same Trough

100 KM BETWEEN LEFT AND RIGHT IMAGES

SOUTH POLAR CAP LAYERING AND EROSION

1 KM

NASA/JPL/MALIN SCIENCE SYSTEMS PIA02392

VIKING 1 LANDER VIEWS, CHRYSE, 7500 KM SW OF VIKING 2 SITE NASA/JPL (IN OUTFLOW REGION, ~1200 KM FROM PATHFINDER SITE)_

VIKING 2 LANDER VIEWS UTOPIA, NORTHERN LOWLANDS 7500 KM NE OF VIKING 1 SITE NASA/JPL

PATHFINDER/SOUJOURNER

SPRITE'S RIPPLES

"TRUE COLOR OF MARS" PATHFINDER LANDER VIEW NASA/JPL

"TRUE COLOR OF MARS" "SPIRIT" AND "OPPORTUNITY" VIEW NASA/JPL

TERM PAPER TOPICS

- COMPARISON OF EVIDENCE FOR OLD AND YOUNG MARTIAN OCEANS
- SIGNIFICANCE OF VARIATIONS IN MARS OBLIQUITY