Extraction Techniques-Solar Wind Volatiles Professor G. L. Kulcinski Feb. 16, 2004

The Solar Wind has been "blowing" on the planets (and Moons) of our solar system for some 4.5 billion years.

The Solar wind is ionized and therefore is deflected by the Earth's magnetic field

• The Solar Wind Volatiles fall into two general classes:

Biogenic elements (H, C, and N)
 Noble gases (He, Ne, Ar, Kr, & Xe)

http://sec.gsfc.nasa.gov/sec_resources_imagegallery.htm

The Solar Wind Has Been an Important Source of Resources for the Moon

Composition of Solar Wind: -96% H, 4% He, traces (≈ 0.1%) of C, N, and O

• Energy per particle -0.5-3 keV/amu (ave. \approx 1 keV/amu) The Solar Wind Has Been an Important Source of Resources for the Moon

- Particle flux:
 - $\approx 1-8 \ge 10^8 \text{ cm}^{-2} \text{s}^{-1}$

- ave. $\approx 3 \times 10^8 \text{ cm}^{-2}\text{s}^{-1}$

• Number of solar wind particles that have hit the lunar surface in 4.5 billion years

 -4×10^{25} particles/cm²

• This number of atoms is equal to the number of atoms in the first 2 meters of lunar regolith.

The Solar Wind Has Been an Important Source of Resources for the Moon

The ³He/⁴He ratio in the solar wind is: -4 x 10⁻⁴ atomic
-3 x 10⁻⁴ by weight

- This ratio is much different than on the Earth
 - -(see Figure)
 - Source Wittenberg, 1989

The ³He/⁴He ratio on the Earth can vary by orders of magnitude from the solar wind concentration

The Concentration of Lunar Volatiles in the Apollo Soil Samples Covers a Wide Range of Values

The Inventory of Volatiles in the First 3 Meters of the Lunar Regolith Can be Substantial

Note: at the present SW flux, over 500 million tonnes of ³He hit the Moon over 4.5 billion years

What is Needed for Plants and Humans to Survive?

Plants			Humans		
Gaseous Component	Pressure- mbar	Explanation	Gaseous Component	Pressure- mbar	Explanation
CO ₂	>0.15	Lower limit set by photosynthesis, no upper limit	CO ₂	<10	Set by Toxicity
N_2	>1-10	Nitrogen Fixation	N_2	>300	Buffer Gas
O ₂	>1	Plant Respiration	O_2	>130	Lower limit set by hypoxia
				<300	Upper limit set by flammability
Total	>10	Water + O_2 + N_2 + CO_2	Total	500-5,000	Lower limit based on high elevations and upper limit based on buffer gas narcosis

After E. P. McKay, <u>Nature</u>, <u>252</u>, p. 489 (1991)

It is Important to Minimize the Per Capita Loss Rate of Solar Wind Volatiles

Compound	Use	Loss/Makeup Conditions	Loss Rate, kg/y
Nitrogen	Food Production	10%/y of waste not recoverable	<3
	Atmospheric Component	Earth-like atmosphere, 1% leakage/d	344
Oxygen	Food Production, Processing & Waste Recycling	10%/y loss of food waste	55
	Atmospheric Component	Earth-like atmosphere, 1% leakage/d	95
CO ₂	Food processing and waste recycling	10%/y loss in processed food	77
Water	Drinking, Food Production, Processing and Waste Recycling	10% loss of potable water/y	142
		Total	716

The Total Amount of Volatiles Required to Support 1 Person-Year on the Lunar Surface Exceeds 700 kg/year

It is Important to Minimize the Per Capita Loss Rate of Solar Wind Volatiles

Element	Use	Loss Rate kg/y
N ₂	Food, Atmosphere	347
O ₂	Food, Water, Atmosphere	332
С	Food	21
H ₂	Water, Food	16
	Total	716

The Cost to Supply All the Volatiles Needed by a Base Camp of 10 People on the Moon is \approx \$1 Billion/y

- Present cost to LEO is \approx 10-20,000 \$/kg
- Sherwood and Woodcock, Boeing--1993, calculate that it will cost 7-10X as much to place cargo on the Moon
- The minimum life support mass (volatiles) is \approx 700 kg/person-y
- The total cost to supply volatiles ranges from 50 to 150 \$M per person year (today)
- A reasonable average cost is ≈ 100 \$M /person-y times 10 persons is ≈ 1 \$B/y

Products That Could Be Derived from 1 m³ of Lunar Regolith

MOON

COLA

Global Average Annual Electricity Consumed per Capita-1995

350 liters ⁴He

@ STP

200

MOON

COLA

modified from Jeff Taylor and Larry Haskin

There are at Least 3 Areas That Could Benefit from Lunar Volatiles in the Near Term Life Support L2Transportation O₂, H₂ Propellant to Mars LEO

Many Factors go into the Calculation of the Amount of Solar Wind Volatiles That Can Be Recovered from the Moon

• Flux of $(SWV)_i$ to the lunar surface

– f(latitude, longitude, t)

- Geographic location of (host material)_j on the Moon
 f(latitude, longitude, depth, t)
- Fraction of (SWV)_i retained by (host material)_j - f(t, T)
- Fraction of (host material)_j that can be readily mined
 f(depth, location, obstacles, grain size)
- Fraction of $(SWV)_i$ released from (host material)_j after mining

 $-f(T, t_{anneal})$

As the Moon passes in and out of the Solar Wind, and as a consequence of having one side always facing the Earth, the Solar Wind is distributed preferentially on the "far side" of the Moon. The "near side" collects only ~ 1/3 that of the "far side" (Swindle, 1992).

The Relative Solar Wind Exposure Depends on the Lunar

Latitude and Longitude

Source: T. D. Swindle et. al., Lunar & Plantary Science, XXIII:1395, 1992.

Measured Helium Content in Lunar Samples

Correlation of Helium Content With TiO2 in Lunar Regolith

Clementine Titanium Map of the Moon Equal Area Projection

J. Johnson et al. (1999) show that the Ti and maturity index can help identify potential locations of He-3.

Lunar Prospector data shows the distribution of H on the surface of the Moon.

Hydrogen

The regolith in those regions is made up of very fine grains which has been gardened by meteorites over billions of years (NASA Photo).

<u>The Median Survival Time of Most Rocks on</u> the Lunar Surface is From 2-20 Million Years

The Average Grain Size of Lunar Samples from the Apollo Missions Ranges from 40-130 Microns

The Solar Wind Ions are Initially Depositied Within the First 320 Å of the Ilmenite Grains

Ave. Energy 1 keV/amu, 500 Histories-TRIM Code (Kim Kuhlman-1996)

<u>The Solar Wind ions Do Not Penetrate Very</u> <u>Deep Into the Lunar Regolith</u>

The Concentration of Helium-3 in Apollo-11 Sample 10084 is Definitely Higher in Smaller Grains

◆Eberhardt et. al., 1970 □Kirsten et. al., 1970 ▲Hintenberger et. al., 1970

Most of the Helium in the Apollo-11 Sample 10084 is Contained in Particles Below 50 Microns

After E. N. Cameron-1987

How Do We Calculate the Efficiency of Solar Wind Volatiles Evolution?

• One way is to maximize the amount of SWV's evolved divided by the energy used to release the SWV's

The Amount of Solar Wind Volatiles Available Depends on the Grain Size of the Host Material

- Define
 - C_{SWV} = conc. of SWV's in implanted zone of the host material
 - f_i = fraction of particles with radii between r_i and r_{i+1}
 - $-\Delta x = depth of implanted zone$
 - r_i = ave. radius of the particles with radii from r_i to r_{i+1}

Then the maximum amount of SWV's is:

$$= C_{SWV} \cdot \Delta x \cdot \sum_{i=1}^{N} f_i \cdot 4\pi r_i^2$$

The Energy Required for Solar Wind Volatiles Evolution Also Depends on the Grain Size of the Host Material

- Define
 - C_p = Heat capacity of host material ΔT = Temperature increase needed to evolve the SWV's

The energy needed to heat the SWV containing material to temperature T is:

$$= C_p \cdot \Delta T \cdot \sum_{i=1}^{N} f_i \cdot \frac{4 \pi r_i^3}{3}$$

The Maximum SWV Return for a Given Energy Investment is Inversely Proportional to the Grain Size

The Depth of the Regolith Varies Considerably from Site to Site

The Concentration of ³He in Apollo-15 Drill Core Samples Remains Reasonably Constant With Depth

<u>The Original Gas Release Pattern for the</u> <u>Apollo-11 Sample 10086,16 Was Very Complex</u>

Source: Gibson and Johnson, Proc. 2nd Lunar Science Conf., 2, p. 1351(1971)

The Release of Lunar Volatiles (i.e. > 90%) Occurs Over a Wide Range of Temperatures

Source of Data: Gibson and Johnson, Proc. 2nd Lunar Sci. Conf. (1971)

Noble Gases Can be Removed from Lunar Regolith by Heating to 800-1,200 °C

The Peak Release Rate of Helium Isotopes from Apollo-11 Regolith Occurs at 500 °C

Observations

- The solar wind could be a major source of life supporting elements such as H, C, N, and O on the Moon.
- Heating the regolith to high enough temperatures could cause the H to react with the oxygen in the lunar regolith to supply the water needed for early settlers on the Moon.
- Other SWV's such as ³He and ⁴He could play important roles in the future of the Moon.
- Extraction of SWV's will require significant thermal energy sources (solar? nuclear?).