Lunar Soil for a Myriad of Purposes and Products: Science, Engineering, and Applications

Lawrence A. Taylor

Planetary Geosciences Institute

University of Tennessee

MICROWAVE PROCESSING OF LUNAR SOIL

PRODUCTS FOR "THE BUSH LUNAR BASE"

Newly Recovered Planetary Materials

Meteorites from Antarctica Japan and USA

Meteorites from Hot Deserts

French Entrepreneurs in the Sahara Russian Entrepreneurs in Oman

Meteorites as samples of :

as well as Mars & Asteroidal Matter

SEARCHING FOR METEORITES IN THE OMAN DESERT

When viewed with binoculars, the Black Spot in the sand is:

- a) a 'coke can' [alcohol is verboten!];
- b) evidence that a camel has stopped there recently; or
- c) a dark-colored rock [fusion crust on a meteorite].

Lunar Meteorites from Oman

New Lunar Rocks and Minerals: Farside Samples of the Moon

Our Unhappy Moon

Micrometeorite Impacts on Lunar Glass Bead

Impact Craters

Lunar Soil Formation

Comminution, Agglutination, & Vapor Deposition

The only Weathering and Erosional agent on the Moon is Meteorite and Micrometeorite Impact.

BASIC PROCESSES IN LUNAR SOIL FORMATION

- COMMINUTION: breaking of rocks, minerals, and glasses into smaller particles;
- AGGLUTINATION: welding of rock, mineral, and glass fragments together by micrometeorite-produced, impactgenerated melt (quenched to glass);
- SOLAR-WIND SPALLATION AND PARTICLE IMPLANTATI ON: Erosion and vaporization caused by sputtering from impacting high-energy particles;
- IMPACT-MELT VAPORIZATION AND DEPOSITION: Vaporization of volatile components in the micrometeoriteproduced, impact- generated melt.

Pieces of minerals, rocklets, and glass cemented together by shock-melt glass

Mare-Soil Agglutinates

SEM BSE-Image of Mare Agglutinitic Glass

TEM-measured Size Distribution of Fe Metal Spheres in Agglutinitic Glass of Apollo 11 Soil 10084

FERROMAGNETIC RESONANCE (FMR):

- Measurement of Single-Domain, Nanophase Fe⁰ (I_s)
- Normalized I_s for Iron Content: I_s / FeO
 - I_s / FeO = amount of total iron that is present as Fe^o
 - I_s / FeO is a Function of Agglutinate Abundance
 - Agglutinate Abundance is a Function of Maturity
 - Is / FeO = Soil Maturity

Mare Soil Maturation

What are the differences between Lunar Soils and the Rocks from which they were derived ??

Major Difference = ~ 10 X more native Fe^o in the soil

FORMATION OF NANOPHASE Fe^o in AGGLUTINITIC GLASS:

Auto-Reduction Reaction in Impact-Soil Melt "FeO_{melt}" + H₂ = Fe⁰ + H₂O[†]

Solar-Wind Implanted H⁺ in Lunar Soil Causes Reduction of Fe²⁺ to Fe^o in Micrometeorite-Produced Impact Melt

Is/FeO Values Versus Agglutinitic Glass Contents

Distribution of Nanophase Fe^o

Vapor-Deposited Nanophase Fe^o on Plagioclase

THE PRESENCE of NANOPHASE Fe° in VAPORand SPUTTER-DEPOSITED PATINAS (RIMS) on VIRTUALLY ALL GRAINS of a MATURE MARE SOIL PROVIDES an ADDITIONAL and ABUNDANT SOURCE for the GREATLY INCREASED I_s / FeO VALUES.

Lunar Soil Cycle

Course (>100 μ m) \leftarrow Grain size \rightarrow Fine (<10 μ m)

New Lunar Minerals

MAGNETIC PROPERTIES OF LUNAR SOLLS

Magnetic Susceptibility of Soil Particles Increases as Grain Size Decreases;

Effects of Vapor-Deposited Nanophase Fe^o are a Direct Function of Surface Area and Most Pronounced in the Finest Grain Sizes;

Virtually All <10 μm Particles are Easily Attracted by a Simple Hand-held Magnet, Plg, Pyx, Ol, and Agglutinitic Glass alike. Adverse Lunar Dust Properties must be Addressed before any Commercial Presence on the Moon can be Fully Evaluated.

- ✓ Abrasiveness, with regards to friction-bearing surfaces;
- Potential for coatings, on seals, gaskets, optical lens, windows, electrical components, et cetera;
- Potential for settling on all thermal and optical surfaces, such as Solar cells and mirrors; and
- Physiological effects on humans, especially with respect to the lungs, the lymph system, and potentially the cardiovascular system, in the case of extremely fine particles.

SOLUTION: Magnetic brushes ??

MICROWAVE RADIATION

- There is an entire subculture of people who derive pleasure from putting strange things in microwave ovens
- Things that microwave oven manufacturers would strenuously suggest should not be put there.

In the hands of these people :

- Table grapes produce glowing plasmas;
- Soap bars mutate into abominable soap monsters;
- Compact discs incandesce;
- Even 'Wet Poodles' have been known to "explode."

PRINICPLES OF MICROWAVE RADIATION

- Electromagnetic Field Induces Motion in Free & Bound Charges (e.g., Electrons & Ions) and in Dipoles (e.g., Water);
- Induced Motion is Resisted because it Causes a Departure from the Natural Equilibrium of the System;
- This Resistance, due to Frictional, Elastic, and Inertial Forces, leads to the Dissipation of Energy;
 - Result: The Electric Field Associated with the Microwave Radiation is Attenuated and Heating of the Material Occurs.

Microwave Principles

Power Density Half-Power Depth Heating Rate

- Power Density
- Half-Power Depth
- Heating Rate

Power Density

$$\mathbf{P} = \mathbf{K} \mathbf{f} \mathbf{E}^2 \mathbf{k}^2 \tan \delta$$

- P Power / cc
- K Constant
- f Frequency
- E Electric-Field Intensity
- k' Relative Dielectric Constant
- $\tan \delta$ Material Loss Tangent

- Power Density
 Half-Power Depth
- Heating Rate

Half-Power Depth of Penetration

- D_s = Depth of penetration in centimeters
- D_H = Half-Power of penetration in centimeters
- µ = Magnetic permeability
- c = Electrical conductivity
- f = Frequency
- λο = Wavelength of incident radiation
- k' = Relative dielectric constant
- tan δ = Material loss tangent

- Power Density
- Half-Power Depth
- ➤Heating Rate

Heating Rate

$$\Delta \mathbf{T} \approx \frac{8 \times 10^{-12} f \, \mathbf{E}^2 \mathbf{k' tan} \, \delta}{\rho \mathbf{C} \mathbf{p}}$$

ΔT is a function of local dielectric properties

- ΔT Temperature change in °C / min
- f Frequency
- E Electric-Field Intensity
- k' Relative Dielectric Constant
- tan δ Material Loss Tangent
- ρ Soil Density (g/cm³)
- Cp Heat Capacity of Soil (cal/ °C)

MICROWAVE HEATING:

IMPORTANT PARAMETERS FOR MATERIAL RESPONSE DIELECTRIC CONSTANT, ε_r , AND LOSS TANGENT, TAN δ

TAN δ = Sum of All Losses from All Mechanisms during Microwave Heating

Microwave Heating: Experimental System Variables

Frequency: 2.45 GHz (λ = 12 cm) Magnetron 60.0 GHz (λ = 0.5 cm) Gyrotron

Power: 700 Watts to 6,000 Watts

Two Phases with Different Microwave Coupling Characteristics

Microwave Heating of Lunar Soil: System Conditions

NanoPhase Fe⁰ in Silicate Glass

Fe⁰ grain size is so small as to be below the

effective "skin depth" of microwave penetration;

System is basically one of :

Small <u>conductors</u> of **Fe**⁰ insulated by

Intervening <u>dielectric glass</u>

= GREAT MICROWAVE COUPLING!

Sintering Progress of Powder Particles By Microwave Energy

Melt

Initial heating of particles Introduction of liquid phase, plus solid-state diffusion Combination of Solid-State and Liquid-Phase Sintering

Microwave Melting Along Grain Boundaries of Mare Soil

BENEFITS OF MICROWAVE OVER CONVENTIONAL HEATING

- RAPID HEATING RATES [>1000 °C/min]
- HIGH TEMPERATURES [2000 °C]
- ENHANCED REACTION RATES [Faster Diffusion Rates]
- FASTER SINTERING KINETICS [Shorter Sintering Times]
- LOWER SINTERING TEMPERATURE [Energy Savings]
- FINE MICROSTRUCTURES [Improved Mechanical Properties]
- **CONSIDERABLY REDUCED PROCESSING TIME**
- PROCESS SIMPLICITY
- LESS LABOR COSTS

Bottom Line : LOWER ENERGY REQUIREMENTS

LUNAR SOIL PROCESSING & PRODUCTS

SINTERING and MELTING

Creating Smooth-Sintered to Glassy Surfaces on the Moon

LUNAR SOIL PROCESSING & PRODUCTS

SINTERING and MELTING

- Glass Fiber Production
- Solar Cells (Ilmenite)

SUGGESTIONS ??

NASA's Next Moon Mission

2010 Winter Olympics At South Pole Aitken Basin, Moon