Heavy Lift Launch for Lunar Exploration

Michael D. Griffin

Guest Lecturer University of Wisconsin NEEP 533

9 Nov 2001

Lunar Transportation Requirements

- > 50 tonnes on lunar transfer trajectory
 - Apollo: 40 tonnes @ TLI for 2 men, 3 days on lunar surface.
 - Unlikely to be reduced significantly; can miniaturize components but not crew.
 - Maybe less if lunar oxygen is used for return propellant.
 - Note: 50 tonnes @ TLI implies 100 tonnes in LEO for 450 sec I_{sp} LOX/LH₂ upper stage.
 - 70 tonnes if 850 sec nuclear thermal upper stage, but not likely in foreseeable political environment.
- Land anywhere on the Moon.
- Go any time of the month.
- Abort to Earth at any time.

Lunar Transportation System Architectures

- Lunar Orbit Rendezvous (LOR)
 - Heritage from Apollo; "mother ship" waits in orbit while specialized lunar lander makes trip to surface. Avoids "cost" of fuel to carry robust Earth-return vehicle on entire round trip.
 - Probably minimum LEO mass for basic lunar round trip, but still many tens of tonnes for mission "critical mass".
 - Can go twice every day.
 - Limited to low lunar latitudes w/o sacrificing abort-to-Earth.
 - Return vehicle left in lunar orbit represents inefficient use of mass in a developed transportation system.
 - Potentially lengthy storage times for return vehicle in lunar orbit will require low-efficiency space storable propellants, or new technology for long-term cryo storage.
 - Possible basis of future system if/when extensive lunar orbit infrastructure is ultimately developed.

Transportation Architectures (cont.)

- Earth Orbit Rendezvous (EOR)
 - Required LEO mass is built up with multiple launches to rendezvous in Earth orbit.
 - Minimum launch can be a few tonnes to LEO, but many launches!
 - Perceived as a good match to space station infrastructure, but subtle issues result in significant operational problems.
 - Cryogenic fuel storage during build-up is challenging, particularly in event of missed launch window.
 - Limited launch windows; Earth-centered plane of "station" (or rendezvous) orbit *must* point to lunar targeting position at TLI.
 - Happens only once every 9 days for due-East 28.5° maximum performance orbit from Canaveral; less for 51.6° ISS orbit.
 - Less frequent windows if particular landing times must be selected (e.g., dawn) or avoided (e.g., midnight) at the Moon.
 - Similar constraints limit aborts if must also *return* to ISS.
 - Will become a "must" if multiple RLV payload modules are ultimately used to construct a lunar mission.

Transportation Architectures (cont.)

- Lunar Surface Rendezvous (LSR)
 - Required lunar mass attained with one or more launches to desired point(s) on lunar surface. Single mission must carry all essentials. ("Direct Ascent" in Apollo days.)
 - Ultimately necessary to build any sort of lunar base.
 - Can go twice per day, land anwhere, come home any time.
 - Minimum manned mission requires many tens of tonnes to maintain robust abort (propellant, heat shield), even assuming pre-deployment of surface assets.
 - Less if lunar-derived propellants available for return trip.
 - Cargo missions can be much smaller if economically favored.
 - Unavoidable penalties for carrying heat shield to lunar surface.
 - Obviously usable in concert with other methods, at cost of additional constraints.

Transportation Architectures (cont.)

- Lagrange Point Rendezvous (LPR)
 - Build space infrastructure at stable Lagrange Points (L4, L5) instead of/in addition to LEO; deploy to/from Earth/Moon.
 - 3 days from Earth, 2(?) days from Moon.
 - "Small" ΔV penalty for use of staging point.
 - Plenty of sunlight for power, plenty of shade for fuel storage.
 - Possibly best spot in cislunar space for "marshalling yard".
 - Can come and go at any time to any place on either planetary surface.
 - Abort may not always be to Earth.
 - Potential problem in solar flare seasons.
 - Minimum manned mission from Earth still several tens of tonnes.
 - Probably more suitable for use as part of a well-developed cislunar infrastructure, rather than as an initial lunar return.

Lunar Transportation Costs

• Benchmarks

Vehicle	<u>Cost(\$97)</u>	LEO Payload (kg)	Cost/kg
Saturn V	\$600 M*	140,000	4,300
Shuttle	\$500 M**	23,000	22,000
Titan IV	\$300 M	16,000	18,000
Atlas II-AS	\$130 M	8,600	15,000
Delta 7920	\$50 M	5,000	10,000
 Goals 			
RLV	\$20 M	10,000	2,000
Magnum	\$160 M	80,000	2,000

* ≅ \$100 M FY70\$ for launch vehicle (\$300 M for full Apollo mission).
 ** Very difficult to determine accurately; minimum \$3 B to support a nominal 6 launches/year.

Transportation Architecture Summary

- All modes except EOR require a minimum manned mission of several tens of tonnes to TLI.
- EOR imposes numerous scheduling and operational constraints, and eliminates the economies of scale which are possible with larger payload envelopes.
- Robust lunar base development will require LSR no matter what else is done.
- History indicates that economies of scale produce significant cost/kg advantages for a heavy lifter.
- Conclusion: A heavy-lift launch vehicle is, if not strictly mandatory, highly desirable for lunar operations.

Heavy-Lift Launch Vehicle Concepts

• Numerous HLLV concept designs have been studied by NASA/DoD/Contractor teams for application to Lunar Return, Mars Exploration, and Ballistic Missile Defense applications.

Vehicle/Heritage	LEO Payload
Rebuilt/Uprated Saturn V:	140+ tonnes
Saturn V derived:	240 tonnes
Shuttle-derived inline:	85 tonnes
Shuttle-derived sidemount:	80 tonnes

Apollo 17/Saturn V Rollout

Saturn V-Derived HLLV and ISS-Derived Habitat Module

Shuttle-Derived Sidemount Heavy Lift Launch Vehicle

Mugnum Luunch Vehicle - Potential Vehicle Paths

Mugnum Luunch Vehicle - Inhouse Concept Compurison

SDV and LFBB Pathway Concepts (Note: Cost and Performance Data are Very Preliminary)							
	MLV - SDV-1a	MLV - SDV-1b	MLV - SDV-2	MLV - SDV-3	MLV - SDV-4	MLV w/ LFBB	Program Metric
Concept Description	2 RSRB's ET Dia. Core w/ 5 ft. Stretch Low Press / Low Cost Eng. - 650 Klb Thrust - 4165 lsp Kickstage for Circ. Shroud w/ 25' x 92' Capacity	4 RSRB's ET Dia. Core w/ 5 ft. Stretch 3 Low Press / Low Cost Eng. - 650 Klb Thrust - 416s lsp • Core Airstatt @ T+100 see • Kickstage for Cire. • Shroud w/ 25' x 92' Capacity	 2 RSRB's ET Dia. Core w/ 5 ft. Stretch 2 P/A Modules 2 SSME per P/A Module Kickstage for Circ. Shroud w/ 25' x 92' Capacity 	2 Pump Fed LRB's ET Dia. Core w/ 5 ft. Stretch Low Press / Low Cost Eng. 650 Klb Thrust 416s lsp LOX / RP 3 - RD180 per LRB Kickstage for Cire. Shroud w/ 25' x 92' Capacity	2 Pressure Fed LRB's ET Dia. Core w/ 5 ft. Stretch 2 Low Press / Low Cost Eng. - 650 Klb Thrust - 416 slp - LOX / RP - 4 - 800K Pr-Fed Eng/LRB Kickstage for Circ. Shroud w/ 25' x 92' Capacity	2 Liq. Flyback Boosters ET Dia. Core, no Stretch 2 Low Press / Low Cost Eng. - 650 Klb Thrust - 416s lsp - LOX / RP, 1.5Mlb each - RD180 type engs, 338 ISP Kickstage for Circ. Shroud w/ 25' x 92' Capacity	
Preliminary Performance (220 x 220 nmi @28°)	120 K	207 K	176 K	201 K	141 K	205 K	175 K
DDT&E Cost	\$1.46B	\$1.46B	\$2.26B	\$2.00B	\$2.41B	\$1.46B No LFBB DDTE	\$1.9B
TFU	\$279M	\$359M	\$294M	\$494M	\$669M	\$225M	N/A
Average Unit Cost (over 25 flights)	\$1917 / lb (\$230M)	\$1488 / lb (\$308M)	\$1347 / lb (\$237M)	\$1761 / lb (\$354M)	\$3553 / lb (\$501M)	\$849 / lb (\$174M)	\$995 / lb LEO (\$176M / Flt.)
GLOW	4.62 Mlb	7.34 Mlb	4.70 Mlb	5.22 Mlb	7.11 Mlb	5.72 Mlb	N/A

What Does All This Cost, and What Might it Cost?

- It takes a lot of rocket to put a payload in low Earth orbit.
 - Typically 4-6 pounds of rocket hardware for each pound of satellite.
- Things tend to cost in proportion to what they weigh.
- Things tend to cost inversely according to the number made.
 We build at most a few dozen rockets per year, at about \$1000/lb.
- For an expendable vehicle, all of this expensive hardware gets thrown away after each use!
- A reusable system seems intuitively more economical, but an RLV requires even more rocket to put a payload in orbit.
 - Deorbit, TPS, and landing systems inevitably add mass.
 - While it doesn't get "thrown away", lifetime is still finite, and recurring costs are much higher; e.g. \$16,000/lb for shuttle.
 - Initial development costs, hence amortization of these costs, will also be higher for an RLV.

What Does it Cost? (continued)

- It takes a long time and many people to prepare and launch a rocket.
 - The cost of reliability is very high; that of *unreliability* is even higher.
 - The "airline" approach to rocketry remains an elusive goal.
- Amortization of development costs is crucial for new vehicles.
 - X-15, STS non-recurring costs approximately FY99\$100 K/lb.
 - Global flight rates for medium-class payloads (8-25 klbm) estimated to be no more than several dozen/year through 2020.
 - Optimistic assumption: ~20 flights/year captured by new vehicle.
 - "Cost of Money" mandates that commercial investments for development of a new vehicle must be returned within ~8 years.
 - An aggressive four-year development program implies ~4 years of flights to amortize any initial investment.
 - 30-40% minimum ROI required for "risky" investments.
- The price goes up when facility development, insurance, and profit are included.

Mathematical Model for Cost Analysis

• Assume the cost of the k-th launch to be composed of expended hardware, propellant, operations, and a share of development costs (Griffin & Claybaugh, 1996):

$$\mathbf{C}_{\mathbf{k}} = \mathbf{C}_{\mathbf{h}} + \mathbf{C}_{\mathbf{p}} + \mathbf{C}_{\mathbf{o}} + \mathbf{C}_{\mathbf{dk}}$$

where

C_h = cost of expended hardware C_p = cost of propellant C_o = cost of launch operations, recovery, refurbishment C_{dk} = k-th launch share of vehicle development cost

- Assume costs scale *linearly* with, and depend *only* upon, dry mass M_s.
 - Dependence only upon M_s ignores complexity differences between vehicles (level of technology, stage integration, volume effects).
 - Linear assumption ignores potentially favorable returns-to-scale.
- Insurance and facility development costs neglected, but can be added.

Nomenclature

- M_p = propellant mass
- $M_s = structural mass$
- $\mathbf{R} \equiv \mathbf{M}_{s} / \mathbf{M}_{PL} \equiv \text{structural ratio}$
- $\eta = M_p/(M_p+M_s) = \text{propellant mass fraction}$
- c_h = specific cost of expended hardware (e.g., \$/lbm)
- c_p = specific cost of propellant
- c_L = hourly cost of labor (fully burdened)
- c_d = specific launch vehicle development cost
- f = mass fraction of expended hardware (1 for expendable)
- L = labor intensity (man-hours/flight/vehicle-dry-mass)
- g_k = development cost amortization fraction for k-th launch

Linear Launch Cost Model

• Given linear dependence on launch vehicle dry mass M_s , we find:

$$C_{h} = c_{h} f M_{s}$$

$$C_{p} = c_{p} M_{p} = c_{p} (M_{p}/M_{s}) M_{s} = c_{p} [\eta/(1-\eta)] M_{s}$$

$$C_{o} = c_{L} L M_{s}$$

$$C_{d} = c_{d} g_{k} M_{s}$$

• Total cost of k-th launch becomes

$$C_k = c_h f M_s + c_p [\eta/(1-\eta)] M_s + c_L L M_s + c_d g_k M_s$$

• Payload specific cost (e.g., cost per pound of payload) for k-th launch becomes

$$c_k \equiv C_k / M_{PL} = R [c_h f + c_p \eta / (1-\eta) + c_L L + c_d g_k]$$

Structural Ratio

• Key performance parameter linking structural and propulsion technology with mission requirements (e.g., reference payload and orbit). For a single stage rocket, or an aggregated multistage vehicle with all burns to propellant depletion:

$$R = M_s / M_{PL} = (R^* - 1) / [1 / (1 - \eta) - R^*] = R(\eta, I_{sp}, \Delta V)$$

where:

- I_{sp} = specific impulse $R^* = M_i/M_f = e^{\Delta V/gIsp}$ = mass ratio ΔV = ideal velocity-to-be-gained M_i = initial mass M_f = final mass
- For the j-th stage of an N-stage rocket, $R_j \equiv M_{sj} / M_{PL}$, and

$$\mathbf{R} = \mathbf{1} + \mathbf{R}_1 \dots + \mathbf{R}_j + \dots + \mathbf{R}_N$$

 $\mathbf{R}_{j} = [1 + \mathbf{R}_{j+1}/(1 - \eta_{j+1}) + \dots + \mathbf{R}_{N}/(1 - \eta_{N})] (\mathbf{R}_{j}^{*} - 1)/[1/(1 - \eta_{j}) - \mathbf{R}_{j}^{*}]$

Parameter Ranges for Existing Vehicles*

- R = 2-6 for expendables,
- $\bullet = 14 \text{ for STS},$
- \cong 10-12 for future single-stage-to-orbit (SSTO) RLV,
- \cong 5 for future two-stage-to-orbit (TSTO) RLV.
- $R\eta/(1-\eta) = 30-80$ for Atlas to STS
- L = 4-20 for Atlas, Delta, Titan-4, STS
- $c_p =$ \$0.5 \$3/lb for lox RP to hypergols; \cong \$0.25/lb for lox/hydrogen
- $c_h \cong$ \$1000/lb for expendables, \$16,000 for STS orbiter (FY95\$)
- $c_L \cong$ \$100 K/MY = \$50/hr
- f = 1 for expendables, 0.2-0.3 for STS, $\cong 0.005(?)$ for future RLVs

*Transportation Systems Data Book, NASA-MSFC, DR-8, 2/15/93

ELV Marginal Launch Cost Example

• As a sanity check, let's assume we have an existing fully-amortized vehicle (no development cost payback) with the following characteristics:

 $R \cong 5$ (typical two-stage expendable)

- $L \cong 4$ (industry best practice)
- $c_p \cong$ \$0.50/lbm (lox/RP)
- $c_h \cong$ \$1000/lb (hardware cost for typical expendable launcher)
- $c_L \cong$ \$50/hr
- $\eta \cong 0.9$
- f = 1 (fully expendable)

Then the *marginal* cost of a launch is:

 $C_h/M_{PL} = Rc_h f = 5000/lb-payload$ $C_p/M_{PL} = Rc_p\eta/(1-\eta) = 20/lb-payload$ $C_o/M_{PL} = Rc_L L = 1000/lb-payload$ $C/M_{PL} = c \cong $6000/lb-payload$

The Cost of Rocket Hardware - What Might it Be?

- Expendable rockets cost about \$1000/lb and are made by the dozens.
- Airplanes cost \$500-\$1000/lb and are made by the 100s. (About 1300 B-747s exist.)
- Boats cost \$50-\$100/lb and are made by the thousands.
- Cars cost \$5-\$10/lb and are made by the hundreds of thousands.
- Conclusion:
 - Volume effects are more important than vehicle type.
 - Factor-of-two reduction in c_h for rockets would be a major victory.
 - Factor-of ten-cost reduction is needed to retain expendability as an option for deep cuts in launch cost -- how likely is this?
 - "Big Dumb Booster" concept is probably named appropriately.

Operations Costs

- Currently, $L \cong 10$ MH/flight/lb => industry average
- Assume for the sake of argument:
 - c = \$1000/lb-payload (desired launch cost)

 $c_h = 0 \implies$ We're assuming the vehicle is free!

 $R \cong 5$ (typical expendable; also, reasonable TSTO RLV goal) $c_L =$ \$50/hr

 $R\eta/(1-\eta)c_p =$ \$20/lb-payload => propellant cost is negligible

• Then the launch cost is $RLc_L = \frac{1000}{lb}-payload$, hence we require:

L < 4 MH/flight/lb = Current best domestic practice!

- A factor-of-ten improvement in c to \$100/lb would require L < 0.4!
 - Still assumes a free vehicle.
 - \$20/lb propellant cost not negligible at this level.
- Question: Can we work much more efficiently than we do now?
- Answer: Maybe.

Summary of X-15 Operations

- 10 years (1959-1968)
- 350 people
- 3 vehicles (plus care and feeding of two B-52s)
- 199 flights
- 15,000 lbs (dry)
- 1 fatality
- Thus, $L \cong 0.8$ for the X-15 reusable vehicle program.
 - Factor of five better than current U.S. best practice, and on a government program, no less!
- Recent data (Claybaugh, 2000) indicate $L \cong 0.8$ also for Ariane
- Contrast with L < 0.001 for airlines, attained over thousands of flights using vehicles that last for decades.

RLV Launch Cost Example

- Assume TSTO RLV design with 40 klbm payload to due East 100 nmi orbit:
 - R = 5 (Orbital STAS RLV goal; range is 2-6 for TSTO expendables.) $\eta = 0.9$ (Orbital STAS RLV goal)
 - f = 0.005 (200 flights before replacement)
 - L = 1 mh/flight/lbm (~ 0.8 for X-15, Ariane; Claybaugh, 2000)
 - c_d = \$15,000/lbm (average of X-33, X-34; Claybaugh, 2000)
 - c_h = \$2,000/lbm (average of X-33, X-34; Claybaugh, 2000)

$$c_p =$$
\$0.25/lbm (LOX/LH₂)

- c_L = \$50/hr (burdened labor)
- g_k = 0.0125 (straight-line amortization, 20 flights/year, 4 years) (Unreasonably optimistic?)

RLV Launch Cost Example (cont.)

• Obtain

C_d/M_{PL}	$= \mathbf{R}\mathbf{g}_{\mathbf{k}}\mathbf{c}_{\mathbf{d}}$	= \$940/lb-payload
C_h/M_{PL}	$= \mathbf{R}\mathbf{c}_{\mathbf{h}}\mathbf{f}$	= 50/lb-payload
C_p/M_{PL}	$= \mathbf{R}\mathbf{c}_{\mathbf{p}}\boldsymbol{\eta}/(1-\boldsymbol{\eta})$	= 10/lb-payload
C_o/M_{PL}	$= \mathbf{R}\mathbf{c}_{\mathrm{L}}\mathbf{L}$	= <u>250/lb-payload</u>
C/ M _{PL}	= c	= \$1250/lb-payload (\$310 marginal cost)

- Even with best-case assumptions, operations cost dominates marginal launch cost. L = 4 (industry average) gives \$1000/lb-payload marginal cost for processing labor alone.
- Hardware replacement costs relatively unimportant *if* X-33/X-34 trends are representative; 100 flight lifetime still gives \$360/lb-payload *marginal* cost.

- STS recurring cost (~\$16,000/lb) yields \$660/lb-payload marginal cost.

• Development cost amortization dominates early usage. If shuttle processes $(c_d = \$105 \text{ K/lbm})$ are used, c = \$7000/lb-payload for first 80 flights. Even B777 track record $(c_d = \$25 \text{ K/lbm})$ is prohibitive, with c = \$1900/lb-payload for first 80 flights.

RLV Cost Example (cont.)

- Fewer flights or delayed returns over payback period will yield even higher development cost contribution on initial flights.
 - But, a sustained program of lunar activity is one of the few things that might generate the requisite number of flights.
- Insurance and facility development costs have been omitted.
- The above results reflect *cost* only. *Pricing* to allow characteristic ROI for risky ventures (> 30%) can make new RLVs non-competitive against existing expendables, hence commercially unfungible.
- Conclusions:
 - X-33/X-34 development costs, while favorable compared to earlier systems such as X-15 or shuttle, are probably the acceptable *ceiling* if space launch cost is to be lowered via development of new commercial RLVs. Conventional development paradigms are not an option.
 - Government sponsorship is probably required.
 - Can we really expect man-rated RLV development at X-33/X-34 prices?
 - Even industry best-case operational efficiency is woefully poor.

HLLV Launch Cost Example

• Let's now assume an expendable HLLV TSTO design with 200 klbm payload to due East 100 nmi orbit, and consider the marginal cost:

R=1.8~ (Saturn V: R=1.83 for Stages 1 & 2, with 100 ton Skylab.) $\eta=0.93~$ (Saturn V: $\eta_1=0.94,~\eta_2=0.93$) f=1

L = 1 mh/flight/lbm (same goal as for RLV example)

 $\label{eq:c_d} \begin{array}{l} c_d = 0 \hspace{0.1cm} (\text{Government sponsored development, no amortization.}) \\ c_h = \$500 / \text{lbm} \hspace{0.1cm} (\text{Factor of two improvement over present practice.}) \\ c_p = \$0.25 / \text{lbm} \hspace{0.1cm} (\text{LOX/LH}_2; \text{LOX/RP-1 is even cheaper.}) \\ c_L = \$50 / \text{hr} \hspace{0.1cm} (\text{burdened labor}) \\ g_k = 0 \end{array}$

HLLV Launch Cost Example (cont.)

• Obtain

C_h/M_{PL}	$= \mathbf{Rc}_{\mathbf{h}}\mathbf{f}$	=	\$900/lb-payload
C_p/M_{PL}	$= \mathbf{R}\mathbf{c}_{\mathbf{p}}\boldsymbol{\eta}/(1-\boldsymbol{\eta})$	=	6/lb-payload
C_0/M_{PL}	$= \mathbf{R}\mathbf{c}_{\mathrm{L}}\mathbf{L}$	=	250/lb-payload
C/ M _{PL}	= c	=	\$1156/lb-payload

- Better than Saturn V mostly because of hardware production assumptions.
- Comparable to commercially-developed RLV with optimistic amortization model.
 - But not nearly as good as a fully-amortized RLV, such as might be assumed for a high-traffic lunar enterprise model.
- Even with favorable assumptions on production cost, and ignoring development cost, the cost of expended hardware dominates.
 - But only if we can get operations efficiency on par with X-15, Ariane.
- Conclusion: Expendable HLLV best for early, low-traffic lunar return.
 - RLV favored in the context of a high-traffic (e.g., 20+ launches/year) model.