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Lunar Transportation Requirements

• > 50 tonnes on lunar transfer trajectory
– Apollo:  40 tonnes @ TLI for 2 men, 3 days on lunar surface.
– Unlikely to be reduced significantly; can miniaturize 

components but not crew.
– Maybe less if lunar oxygen is used for return propellant.
– Note: 50 tonnes @ TLI implies 100 tonnes in LEO for 450 sec

Isp LOX/LH2 upper stage.
• 70 tonnes if 850 sec nuclear thermal upper stage, but not likely in 

foreseeable political environment.

• Land anywhere on the Moon.
• Go any time of the month.
• Abort to Earth at any time.



Lunar Transportation System Architectures

• Lunar Orbit Rendezvous (LOR)
– Heritage from Apollo; “mother ship” waits in orbit while 

specialized lunar lander makes trip to surface.  Avoids “cost” of 
fuel to carry robust Earth-return vehicle on entire round trip. 

– Probably minimum LEO mass for basic lunar round trip, but 
still many tens of tonnes for mission “critical mass”.

– Can go twice every day.
– Limited to low lunar latitudes w/o sacrificing abort-to-Earth.
– Return vehicle left in lunar orbit represents inefficient use of

mass in a developed transportation system.
– Potentially lengthy storage times for return vehicle in lunar 

orbit will require low-efficiency space storable propellants, or 
new technology for long-term cryo storage.

– Possible basis of future system if/when extensive lunar orbit 
infrastructure is ultimately developed.



Transportation Architectures (cont.)

• Earth Orbit Rendezvous (EOR)
– Required LEO mass is built up with multiple launches to 

rendezvous in Earth orbit.
– Minimum launch can be a few tonnes to LEO, but many launches! 
– Perceived as a good match to space station infrastructure, but 

subtle issues result in significant operational problems.
• Cryogenic fuel storage during build-up is challenging, particularly in 

event of missed launch window.
• Limited launch windows; Earth-centered plane of “station” (or 

rendezvous) orbit must point to lunar targeting position at TLI.
– Happens only once every 9 days for due-East 28.5� maximum 

performance orbit from Canaveral; less for 51.6� ISS orbit.
– Less frequent windows if particular landing times must be 

selected (e.g., dawn) or avoided (e.g., midnight) at the Moon.
– Similar constraints limit aborts if must also return to ISS.

– Will become a “must” if multiple RLV payload modules are 
ultimately used to construct a lunar mission.



Transportation Architectures (cont.)

• Lunar Surface Rendezvous (LSR)
– Required lunar mass attained with one or more launches to 

desired point(s) on lunar surface.  Single mission must carry all 
essentials.  (“Direct Ascent” in Apollo days.)

– Ultimately necessary to build any sort of lunar base.
– Can go twice per day, land anwhere , come home any time.
– Minimum manned mission requires many tens of tonnes to 

maintain robust abort (propellant, heat shield), even assuming 
pre-deployment of surface assets.

• Less if lunar-derived propellants available for return trip.
• Cargo missions can be much smaller if economically favored.
• Unavoidable penalties for carrying heat shield to lunar surface.

– Obviously usable in concert with other methods, at cost of 
additional constraints.



Transportation Architectures (cont.)

• Lagrange Point Rendezvous (LPR)
– Build space infrastructure at stable Lagrange Points (L4, L5) 

instead of/in addition to LEO; deploy to/from Earth/Moon.
• 3 days from Earth, 2(?) days from Moon.
• “Small” �V penalty for use of staging point.
• Plenty of sunlight for power, plenty of shade for fuel storage.
• Possibly best spot in cislunar space for “marshalling yard”.

– Can come and go at any time to any place on either planetary 
surface.

– Abort may not always be to Earth.
• Potential problem in solar flare seasons.

– Minimum manned mission from Earth still several tens of
tonnes.

– Probably more suitable for use as part of a well-developed
cislunar infrastructure, rather than as an initial lunar return.



Lunar Transportation Costs

• Benchmarks
Vehicle Cost($97) LEO Payload (kg) Cost/kg
Saturn V $600 M* 140,000 4,300
Shuttle $500 M** 23,000 22,000
Titan IV $300 M 16,000 18,000
Atlas II-AS $130 M 8,600 15,000
Delta 7920 $50 M 5,000 10,000

• Goals
RLV $20 M 10,000 2,000
Magnum $160 M 80,000 2,000

__________
*   ��$100 M FY70$ for launch vehicle ($300 M for full Apollo mission).
** Very difficult to determine accurately; minimum $3 B to support a 

nominal 6 launches/year.



Transportation Architecture Summary

• All modes except EOR require a minimum manned mission of 
several tens of tonnes to TLI.

• EOR imposes numerous scheduling and operational constraints, and
eliminates the economies of scale which are possible with larger
payload envelopes.

• Robust lunar base development will require LSR no matter what 
else is done.

• History indicates that economies of scale produce significant cost/kg 
advantages for a heavy lifter.

• Conclusion:  A heavy-lift launch vehicle is, if not strictly mandatory, 
highly desirable for lunar operations.



Heavy-Lift Launch Vehicle Concepts

• Numerous HLLV concept designs have been studied by 
NASA/DoD/Contractor teams for application to Lunar Return, 
Mars Exploration, and Ballistic Missile Defense applications.

Vehicle/Heritage LEO Payload
Rebuilt/Uprated Saturn V: 140+ tonnes
Saturn V derived: 240 tonnes
Shuttle-derived inline: 85 tonnes
Shuttle-derived sidemount: 80 tonnes



Apollo 17/Saturn V Rollout



Saturn V-Derived HLLV and ISS-Derived Habitat Module 



Shuttle-Derived Sidemount Heavy Lift Launch Vehicle



Magnum Launch Vehicle Magnum Launch Vehicle Magnum Launch Vehicle --- Potential Vehicle PathsPotential Vehicle PathsPotential Vehicle Paths

SDV Path

US Options
• Solid 
• Liquid 

- Storable 
- LOX/RP 
- LOX/LH2 
- Other? 

• Hybrid

Engine Options
• RS-68 
• SSME w/ PA Mod 
• TRW Eng. 
• RD-170 
• RD-171 
• RD-180

Booster Options
• RSRB's 
• LRB's 

- Propellant Type 
- Engine Options 
- Pressure Fed 

• Hybrids 
• Titan IV Solids

ET Diameter Tankage
• Standard ET Fabrication 
• Non-performance Driven ET Fab 
• Extended Tank 
• Composites

Flyback Booster Path

Flyback Booster Options
• FBB Concept from Perkinson / Eudy Study

Engine Options
• RS-68 
• SSME w/ PA Mod 
• TRW Eng. 
• RD-170 
• RD-171 
• RD-180

US Options
• Solid 
• Liquid 

- Storable 
- LOX/RP 
- LOX/LH2 
- Other? 

• Hybrid

Clean Sheet Path

Configuration
Selection

• Parallel or Series 
• Propellant Selection 
• Engine Size and Number

Other Contractor Path
• Lockheed Martin - Stellaris
• Microcosm - Heavy Lift BMDO
• Truax Engineering - Excalibur 
• Thiokol - EELV, Atlas, Delta Core w/ Solids

1 2

3 4



Magnum Launch Vehicle Magnum Launch Vehicle Magnum Launch Vehicle --- InhouseInhouseInhouse Concept ComparisonConcept ComparisonConcept Comparison

SDV and LFBB Pathway ConceptsSDV and LFBB Pathway ConceptsSDV and LFBB Pathway Concepts
(Note:  Cost and Performance Data are Very Preliminary)(Note:  Cost and Performance Data are Very Preliminary)(Note:  Cost and Performance Data are Very Preliminary)

Concept Description

Preliminary 
Performance 

(220 x 220 nmi @28°)

DDT&E Cost

Average Unit Cost 
(over 25 flights)

• 2 RSRB's 
• ET Dia. Core w/ 5 ft. Stretch 
• 2 Low Press / Low Cost Eng. 
   - 650 Klb Thrust 
   - 416s Isp 
• Kickstage for Circ. 
• Shroud w/ 25' x 92' Capacity

• 2 RSRB's 
• ET Dia. Core w/ 5 ft. Stretch 
• 2 P/A Modules 
  - 2 SSME per P/A Module 
• Kickstage for Circ. 
• Shroud w/ 25' x 92' Capacity

• 2 Pump Fed LRB's 
• ET Dia. Core w/ 5 ft. Stretch 
• 2 Low Press / Low Cost Eng. 
   - 650 Klb Thrust 
   - 416s Isp 
   - LOX / RP 
   - 3 - RD180 per LRB 
• Kickstage for Circ. 
• Shroud w/ 25' x 92' Capacity

• 2 Pressure Fed LRB's 
• ET Dia. Core w/ 5 ft. Stretch 
• 2 Low Press / Low Cost Eng. 
   - 650 Klb Thrust 
   - 416s Isp 
   - LOX / RP 
   - 4 -  800K Pr-Fed Eng/LRB 
• Kickstage for Circ. 
• Shroud w/ 25' x 92' Capacity

• 2 Liq. Flyback Boosters 
• ET Dia. Core, no Stretch 
• 2 Low Press / Low Cost Eng. 
   - 650 Klb Thrust 
   - 416s Isp 
   - LOX / RP, 1.5Mlb each 
   - RD180 type engs, 338s ISP 
• Kickstage for Circ. 
• Shroud w/ 25' x 92' Capacity

120 K 176 K 201 K 141 K 205 K

Program 
Metric

175 K

$995 / lb LEO 
($176M / Flt.)

MLV - SDV-1a MLV w/ LFBBMLV - SDV-2 MLV - SDV-3 MLV - SDV-4

$1.9B

MLV - SDV-1b

• 4 RSRB's 
• ET Dia. Core w/ 5 ft. Stretch 
• 3 Low Press / Low Cost Eng. 
   - 650 Klb Thrust 
   - 416s Isp 
• Core Airstart @ T+100 sec 
• Kickstage for Circ. 
• Shroud w/ 25' x 92' Capacity

207 K

$1.46B 
No LFBB DDTE

TFU

$1.46B $1.46B $2.26B $2.00B $2.41B

$279M $359M $494M $669M $225M

$1917 / lb 
($230M)

$1488 / lb 
($308M)

$3553 / lb 
($501M)

$1761 / lb 
($354M)

$849 / lb 
($174M)

GLOW 4.70 Mlb 5.22 Mlb 7.11 Mlb7.34 Mlb4.62 Mlb 5.72 Mlb

N/A

N/A

$294M

$1347 / lb 
($237M)



What Does All This Cost, and What Might it Cost?

• It takes a lot of rocket to put a payload in low Earth orbit.
– Typically 4-6 pounds of rocket hardware for each pound of satellite.

• Things tend to cost in proportion to what they weigh.
• Things tend to cost inversely according to the number made.

– We build at most a few dozen rockets per year, at about $1000/lb.

• For an expendable vehicle, all of this expensive hardware gets 
thrown away after each use!

• A reusable system seems intuitively more economical, but an 
RLV requires even more rocket to put a payload in orbit.
– Deorbit, TPS, and landing systems inevitably add mass.
– While it doesn’t get “thrown away”, lifetime is still finite, and 

recurring costs are much higher; e.g. $16,000/lb for shuttle.
– Initial development costs, hence amortization of these costs, will also 

be higher for an RLV.



What Does it Cost? (continued)

• It takes a long time and many people to prepare and launch a 
rocket.
– The cost of reliability is very high; that of unreliability is even higher.
– The “airline” approach to rocketry remains an elusive goal.

• Amortization of development costs is crucial for new vehicles.
– X-15, STS non-recurring costs approximately FY99$100 K/lb.
– Global flight rates for medium-class payloads (8-25 klbm) estimated to 

be no more than several dozen/year through 2020.
• Optimistic assumption: �20 flights/year captured by new vehicle.

– “Cost of Money” mandates that commercial investments for 
development of a new vehicle must be returned within �8 years.

• An aggressive four-year development program implies �4 years of flights to 
amortize any initial investment.

• 30-40% minimum ROI required for “risky” investments.

• The price goes up when facility development, insurance, and 
profit are included.



Mathematical Model for Cost Analysis

• Assume the cost of the k-th launch to be composed of expended hardware, 
propellant, operations, and a share of development costs (Griffin &
Claybaugh, 1996):

Ck =  Ch +  Cp +  Co  + Cdk

where
Ch =  cost of expended hardware
Cp =  cost of propellant
Co =  cost of launch operations, recovery, refurbishment
Cdk =  k-th launch share of vehicle development cost

• Assume costs scale linearly with, and depend only upon, dry mass Ms.
– Dependence only upon Ms ignores complexity differences between 

vehicles (level of technology, stage integration, volume effects).
– Linear assumption ignores potentially favorable returns-to-scale.

• Insurance and facility development costs neglected, but can be added.



Nomenclature

Mp =  propellant mass
Ms =  structural mass
R    � Ms / MPL  � structural ratio
� =  Mp/(Mp+Ms)  =  propellant mass fraction 
ch =  specific cost of expended hardware (e.g., $/lbm)
cp =  specific cost of propellant
cL =  hourly cost of labor (fully burdened)
cd =  specific launch vehicle development cost
f      =  mass fraction of expended hardware (1 for expendable)
L     =  labor intensity (man-hours/flight/vehicle-dry-mass)
gk =  development cost amortization fraction for k-th launch                    



Linear Launch Cost Model

• Given linear dependence on launch vehicle dry mass Ms, we find:

Ch = ch f Ms

Cp = cpMp =  cp (Mp/Ms ) Ms =  cp [�/(1-�)] Ms

Co = cLLMs

Cd =  cdgkMs

• Total cost of k-th launch becomes

Ck = chfMs +  cp[�/(1-�)] Ms + cLLMs   +  cdgkMs

• Payload specific cost (e.g., cost per pound of payload) for k-th launch 
becomes

ck � Ck / MPL = R [chf  +  cp�/(1-�)  + cLL +  cdgk]



Structural Ratio

• Key performance parameter linking structural and propulsion technology 
with mission requirements (e.g., reference payload and orbit).  For a single 
stage rocket, or an aggregated multistage vehicle with all burns to 
propellant depletion:

R � Ms / MPL =  (R* - 1)/[1/(1-�) - R*]  =  R(�, Isp, �V) 

where: Isp =  specific impulse
R* =  Mi/Mf =  e�V/gIsp  =  mass ratio
�V =  ideal velocity-to-be-gained
Mi =  initial mass
Mf =  final mass

• For the j-th stage of an N-stage rocket, Rj � Msj / MPL, and

R  =  1 + R1 … + Rj +  …  + RN

Rj =  [1 + Rj+1/(1-�j+1) +  …  +  RN/(1-�N)] (Rj* - 1)/[1/(1-�j) - Rj*]



Parameter Ranges for Existing Vehicles*

• R  =  2-6 for expendables, 
• =  14 for STS, 
• � 10-12 for future single-stage-to-orbit (SSTO) RLV,
• � 5 for future two-stage-to-orbit (TSTO) RLV.
• R�/(1-�)  =  30-80 for Atlas to STS
• L  =  4-20 for Atlas, Delta, Titan-4, STS
• cp =  $0.5 - $3/lb for lox RP to hypergols; � $0.25/lb for lox/hydrogen
• ch � $1000/lb for expendables, $16,000 for STS orbiter (FY95$)
• cL � $100 K/MY  =  $50/hr
• f  =  1 for expendables, 0.2-0.3 for STS, � 0.005(?) for future RLVs

*Transportation Systems Data Book, NASA-MSFC, DR-8, 2/15/93



ELV Marginal Launch Cost Example

• As a sanity check, let’s assume we have an existing fully-amortized vehicle 
(no development cost payback) with the following characteristics:

R � 5 (typical two-stage expendable)
L � 4 (industry best practice)
cp � $0.50/lbm (lox/RP)
ch � $1000/lb (hardware cost for typical expendable launcher)
cL � $50/hr
� �� 0.9
f  =  1 (fully expendable)

Then the marginal cost of a launch is:

Ch/MPL =  Rchf =       5000/lb-payload
Cp/MPL = Rcp�/(1-�) =           20/lb-payload
Co/MPL = RcLL =       1000/lb-payload
C/ MPL =  c � $6000/lb-payload



The Cost of Rocket Hardware - What Might it Be?

• Expendable rockets cost about $1000/lb and are made by the dozens.
• Airplanes cost $500-$1000/lb and are made by the 100s.  (About 1300 B-

747s exist.)
• Boats cost $50-$100/lb and are made by the thousands.
• Cars cost $5-$10/lb and are made by the hundreds of thousands.
• Conclusion:  

– Volume effects are more important than vehicle type.
– Factor-of-two reduction in ch for rockets would be a major victory. 
– Factor-of ten-cost reduction is needed to retain expendability as an 

option for deep cuts in launch cost -- how likely is this?
• “Big Dumb Booster” concept is probably named appropriately.



Operations Costs

• Currently, L � 10 MH/flight/lb  =>  industry average
• Assume for the sake of argument:  

c  =  $1000/lb-payload (desired launch cost)
ch =  0  =>  We’re assuming the vehicle is free!
R � 5 (typical expendable; also, reasonable TSTO RLV goal)
cL =  $50/hr
R�/(1-�)cp =  $20/lb-payload  =>  propellant cost is negligible

• Then the launch cost is RLcL =  $1000/lb-payload, hence we require:

L  <  4 MH/flight/lb  =  Current best domestic practice! 

• A factor-of-ten improvement in c to $100/lb would require L < 0.4!
– Still assumes a free vehicle.
– $20/lb propellant cost not negligible at this level.

• Question:  Can we work much more efficiently than we do now?
• Answer:  Maybe.



Summary of X-15 Operations

• 10 years (1959-1968)
• 350 people
• 3 vehicles (plus care and feeding of two B-52s)
• 199 flights
• 15,000 lbs (dry)
• 1 fatality

• Thus, L � 0.8 for the X-15 reusable vehicle program.  
– Factor of five better than current U.S. best practice, and on a 

government program, no less!

• Recent data (Claybaugh, 2000) indicate L � 0.8 also for Ariane
• Contrast with L < 0.001 for airlines, attained over thousands of flights 

using vehicles that last for decades.



RLV Launch Cost Example

• Assume TSTO RLV design with 40 klbm payload to due East 100 nmi
orbit:

R = 5  (Orbital STAS RLV goal; range is 2-6 for TSTO expendables.)
� = 0.9 (Orbital STAS RLV goal)
f  = 0.005  (200 flights before replacement)
L = 1 mh/flight/lbm (� 0.8 for X-15, Ariane; Claybaugh, 2000)
cd = $15,000/lbm (average of X-33, X-34; Claybaugh, 2000)
ch = $2,000/lbm (average of X-33, X-34; Claybaugh, 2000)
cp = $0.25/lbm (LOX/LH2)
cL = $50/hr (burdened labor)
gk =  0.0125  (straight-line amortization, 20 flights/year, 4 years)

(Unreasonably optimistic?)



RLV Launch Cost Example (cont.)

• Obtain
Cd/MPL = Rgkcd =   $940/lb-payload
Ch/MPL = Rchf =  50/lb-payload
Cp/MPL = Rcp�/(1-�) =       10/lb-payload
Co/MPL = RcLL =   250/lb-payload
C/ MPL = c =  $1250/lb-payload  ($310 marginal cost)

• Even with best-case assumptions, operations cost dominates marginal 
launch cost.  L = 4 (industry average) gives $1000/lb-payload marginal cost 
for processing labor alone.

• Hardware replacement costs relatively unimportant if X-33/X-34 trends are 
representative; 100 flight lifetime still gives $360/lb-payload marginal cost.
– STS recurring cost (�$16,000/lb) yields $660/lb-payload marginal cost.

• Development cost amortization dominates early usage.  If shuttle processes 
(cd = $105 K/lbm) are used, c = $7000/lb-payload for first 80 flights.  Even 
B777 track record (cd = $25 K/lbm) is prohibitive, with c = $1900/lb-payload 
for first 80 flights.



RLV Cost Example (cont.)

• Fewer flights or delayed returns over payback period will yield even 
higher development cost contribution on initial flights.
– But, a sustained program of lunar activity is one of the few things that might 

generate the requisite number of flights.
• Insurance and facility development costs have been omitted.
• The above results reflect cost only.  Pricing to allow characteristic ROI 

for risky ventures (> 30%) can make new RLVs non-competitive against 
existing expendables, hence commercially unfungible. 

• Conclusions:  
– X-33/X-34 development costs, while favorable compared to earlier systems 

such as X-15 or shuttle, are probably the acceptable ceiling if space launch 
cost is to be lowered via development of new commercial RLVs.  
Conventional development paradigms are not an option.

– Government sponsorship is probably required.
• Can we really expect man-rated RLV development at X-33/X-34 prices?

– Even industry best-case operational efficiency is woefully poor.



HLLV Launch Cost Example

• Let’s now assume an expendable HLLV TSTO design with 200 klbm
payload to due East 100 nmi orbit, and consider the marginal cost:

R = 1.8   (Saturn V:  R=1.83 for Stages 1 & 2, with 100 ton Skylab.)
� = 0.93  (Saturn V: �1 = 0.94, �2 = 0.93 )
f  = 1
L = 1 mh/flight/lbm (same goal as for RLV example)
cd = 0  (Government sponsored development, no amortization.)
ch = $500/lbm (Factor of two improvement over present practice.)
cp = $0.25/lbm  (LOX/LH2; LOX/RP-1 is even cheaper.)
cL = $50/hr (burdened labor)
gk =  0



HLLV Launch Cost Example (cont.)

• Obtain
Ch/MPL = Rchf =   $900/lb-payload
Cp/MPL = Rcp�/(1-�) =         6/lb-payload
Co/MPL = RcLL =     250/lb-payload
C/ MPL = c =  $1156/lb-payload

• Better than Saturn V mostly because of hardware production assumptions.
• Comparable to commercially-developed RLV with optimistic amortization 

model.
– But not nearly as good as a fully-amortized RLV, such as might be assumed for 

a high-traffic lunar enterprise model.
• Even with favorable assumptions on production cost, and ignoring

development cost, the cost of expended hardware dominates.
– But only if we can get operations efficiency on par with X-15, Ariane.

• Conclusion:  Expendable HLLV best for early, low-traffic lunar return.
– RLV favored in the context of a high-traffic (e.g., 20+ launches/year) model.
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