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D-3He Fusion Will Provide Capabilities Not
Available from Other Propulsion Options
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W At the Predicted a=1-10 kW/kg, Fusion Propulsion
Would Enable Attractive Solar-System Travel

* Comparison of trip times and payload fractions for chemical and
fusion rockets

Fast human transport Efficient cargo transport
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W Key Fusion Fuel Cycles
for Space Applications

D + 3He —> p (14.68 MeV) + “He (3.67 MeV)

D + T — n (14.07 MeV) + “He (3.52 MeV)

D + D —> n (2.45 MeV) + 3He (0.82 MeV){50%)}
> p (3.02 MeV) + T (1.01 MeV) {50%}
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Physics Viewpoint:
SHe Fuel Requires High " nt, and T
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Engineering Viewpoint:
He Fuel and High B Relax Constraints

Many configurations can
increase fusion core B fields,
gaining power density due to
the 3?B* scaling.

Reduced neutron flux allows

» Smaller radiation shields

» Smaller magnets

Increased charged-particle
flux allows direct energy
conversion to thrust or
electricity

Fraction of fusion energy released

as neutrons from plasma
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Predicted Specific Power of D-*He Magnetic
Fusion Rockets 1s 1-10 kW/kg

® Prediction based on reasonably detailed magnetic fusion
rocket studies performed during the past fifteen years.

® Rationale for this performance supported by J.F. Santarius
and B.G. Logan, “Generic Magnetic Fusion Rocket,”

Journal of Propulsion and Power 14, 519 (1998).
® Development of high-temperature superconductors should
reduce the power-plant mass.
» Reduced refrigerator mass for magnet coolant.

» Reduced shielding, because more magnet heating can
potentially be tolerated before quenching.
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w Key Features of the
Generic Fusion Rocket Model

® Cylindrical geometry

® Main contributors to mass: radiation shield, magnets,
refrigerators, and radiators

® Heat flux limit of 5-10 MW/m?

® Neutron wall load limit of 20 MW/m?

® Radiators reject 5 kW/kg

® Magnet He refrigerators require 1000 kg/kW

rejected

® Low-mass radiation shield (LiH with 10% Al structure)

» Ten-fold magnet nuclear heating reduction=0.31 m of shield

® Magnet mass calculated by virial theorem and by winding-
pack current density limit (50 MA/m?); larger value used
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w ent Conceptual Designs of Magnetic Fusion Reactors for Space
Propulsion Calc J ate Very Attractive Specific Powers

Specific Power
First Author Year Configuration (kW/kg)

Borowski 1987 Spheromak 10.5
Borowski 1987 Spherical torus 5.8
Santarius 1988 Tandem mirror 1.2
Bussard 1990 Riggatron 3.9
Teller 1991 Dipole 1.0
Nakashima 1994 | Field-reversed configuration 1.0
Williams 1999 Spherical torus 49
Thio 1999 Magnetized-target fusion 600
Emrich 2000 Gasdynamic mirror 130
Wessel 2000 Colliding-beam FRC 23
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Earliest D-*He Reactor Design
w Was a Fusion Rocket

G.W. Englert, PROPELLANT

NASA Glenn Research Center
New Scientist (1962) CRYQPLANT —

“If controlled thermonuclear
fusion can be used to power
spacecraft for interplanetary
flight 1t will give important
advantages over chemical or
nuclear fission rockets.

The application of
superconducting magnets and
a mixture of deuterium and
helium-3 as fuel appears to be
the most promising
arrangement.”
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w Conventional Tokamaks Have Large Mass

Cutaway of the ARIES-RS Power Core
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EFBT Toroidal Fusion Rocket
J. Reece Roth, NASA Lewis, 1972
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w Spherical Torus Space Propulsion

» ST’s give high [, implying high power density.

* Crucial problems are recirculating power and providing thrust.

» Martin Peng has suggested hehclty ejection, and the concept
will be tried on NSTX.

Princeton Plasma Physics
Lab NSTX experiment
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w Plasma Power Flows in Linear Devices Differ
Significantly from Flows in Toroidal Devices

* Power density can be very high due to B?B* scaling, but first-wall heat
fluxes would remain manageable.

» Charged-particle power transports from internal plasmoid to edge
region and then out ends of fusion core.

» Magnetic flux tube would be expanded in end chamber to reduce
heat and particle fluxes, so charged-particle transport power only
slightly impacts the first wall.

Expanded
Not to scale flux tube to

Neutrgns Breémsstrahlung
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Linear Geometry

W Greatly Facilitates Engineering

JES

Steady-state heat flux 1s broadly spread and due almost
exclusively to bremsstrahlung radiation power.

Relatively small peaking factor along axis for
bremsstrahlung and neutrons.

Maintenance of single-unit modules containing blanket,
shield, and magnet should be relatively easy, improving
reliability and availability.

Considerable flexibility and space exist for placement of
pipes, manifolds, etc.

Direct conversion of transport power to thrust by a magnetic
nozzle would increase efficiency.
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w Radioactivity Will Most Likely Lead to a
Requirement for Remote Maintenance

Maintenance Scheme for a Terrestrial-Electric
FRC Using a Telescopic Vacuum Vessel
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JES Fusion Technology Institute, University of Wisconsin 2001



Several Concepts with Linear External Magnetic Fields

Have Been Investigated for Space Propulsion

Tandem mirror
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w D-’He Space-Propulsion Tandem Mirror
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Field-Reversed Configurations (FRC) Would
Be Attractive for Space Applications
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FRC as Power Source and lon Engine for High Energy Space Missions

From Univ. of Washington web page for the Star Thrust Experiment (STX):
www.aa.washington.edu/AERP/RPPL/STX.html
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‘" ARTEMIS Field-Reversed Configuration
(D-3He, Momota, et al., NIFS, 1992)
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The Dipole Configuration Offers a Relatively Simple
Design That an MIT/Columbia Team Is Testing

lo plasma torus
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Inertial-Electrostatic Confinement (IEC)
May Be Attractive for Space Propulsion

* Key principle: spherical or
cylindrical electrostatic focussing.

REACTION |
PRODUCTS

D
1aee N aofe
DT .
K .o
e @ e N.
. -
%
W
.

i 100 kv
Outer grid RF
bias feedthru ﬂ feedthru

S N Y o2 e
] t
l¢— R __>t.<_ R —>
| _— ELECTRIC 2 \ S
1z
POTENTIAL e I
= roduct
A / WELL j[ _— isgtope out
§ 0 Proton :] Obse7r:/ation
Detector | | 65 cm Window
4 (2) @ "ainods rid H
o . -25t0 -70 kV br
= target
7 = isotope in
ION VOLTAGE lon source Ionzjszé rce N
o o ul
DENSITY Neutron Detector 91?:]"‘6"'8 Filaments
N SN AN N\
N—‘ [ = NN =Y gate
[>3=  valve
~200 keV (TYPICAL) . &
To 550 L/s
turbo pump

JES Fusion Technology Institute, University of Wisconsin 2001



L~ ~
- ~
pe ~
N
O
T3 ¢
o o
T = 3 =
0N S 9 1
7)) d s
= P 2 LSRRI
o SN QSRR
etele %0 0% 0% ]
0020 2020 2% %
ZORLSRERILRILREKS /
RIHIRRARIRLK .
- E CEISIREELEIIKR /'
S RS :
o .. 7
s e TN
3 —
Q
@
w

Vacuum Vessel

NEUTRAL

B FIELD
GAS SOURCE
7

ELECTRON
COLLECTOR

Inertial-Electrostatic Confinement (IEC)
May Be Attractive for Space Propulsion

Penning Trap

Barnes-Nebel,

ELECTRON
SOURCE

BEAM ELECTRON
PLASMA
DENSE CORE
PLASMA

2001

SYMMETRY AXIS
Fusion Technology Institute, University of Wisconsin

JES



VISTA: Fusion Propulsion Using
w Inertial-Confinement Fusion (ICF)

Propellant tanks
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Charles Orth, et al., “The VISTA Spacecraft--Advantages of ICF for
Interplanetary Fusion Propulsion Applications,” IEEE 12th SOFE (1987).
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D-3He Fusion Propulsion
w Could Provide Flexible Thrust Modes
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Direct Conversion to Electricity Could Take

Advantage of the Natural Vacuum in Spaée

Barr-Moir experiment, LLNL
(Fusion Technology, 1973)

Direct converter
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Plasmas Provide
Many Materials Processing Capabilities
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* B.J. Eastlund and W.C. Gough, “The Fusion Torch--Closing
the Cycle from Use to Reuse,” WASH-1132 (US AEC, 1969).
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% Summary

* D-3He fusion requires continued physics progress.
* D-3He engineering appears manageable.

* Successful development of D-3He fusion would
provide attractive propulsion, power, and materials
processing capabilities.

* Several configurations appear promising for space
propulsion, particularly the field-reversed
configuration (FRC), spheromak, and spherical torus.
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