Fusion Propulsion

Opening the Solar System Frontier

John F Santarius

Lecture 27

Resources from Space NEEP 533/ Geology 533 / Astronomy 533 / EMA 601 University of Wisconsin

November 5, 2001

D-³He Fusion Will Provide Capabilities Not Available from Other Propulsion Options

Comparison of trip times and payload fractions for chemical and fusion rockets

 $\begin{array}{l} \mathsf{D} + {}^{3}\mathsf{He} \to \mathsf{p} \ (\mathsf{14.68 \ MeV}) + {}^{4}\mathsf{He} \ (\mathsf{3.67 \ MeV}) \\ \mathsf{D} + \mathsf{T} \to \mathsf{n} \ (\mathsf{14.07 \ MeV}) + {}^{4}\mathsf{He} \ (\mathsf{3.52 \ MeV}) \\ \mathsf{D} + \mathsf{D} \to \mathsf{n} \ (\mathsf{2.45 \ MeV}) + {}^{3}\mathsf{He} \ (\mathsf{0.82 \ MeV}) \{\mathsf{50\%}\} \\ \to \mathsf{p} \ (\mathsf{3.02 \ MeV}) + \mathsf{T} \ (\mathsf{1.01 \ MeV}) \ \ \{\mathsf{50\%}\} \end{array}$

Fusion Technology Institute, University of Wisconsin

Physics Viewpoint:D-³He Fuel Requires High $β^{\dagger}$, nτ, and T

Power density

Confinement

† β = plasma pressure/magnetic field pressure.

2001

D-³He Fuel and High β Relax Constraints

- Many configurations can increase fusion core B fields, gaining power density due to the $\beta^2 B^4$ scaling.
- Reduced neutron flux allows
 Smaller radiation shields
 Smaller records
 - Smaller magnets
- Increased charged-particle flux allows direct energy conversion to thrust or electricity

- Prediction based on reasonably detailed magnetic fusion rocket studies performed during the past fifteen years.
- Rationale for this performance supported by J.F. Santarius and B.G. Logan, "Generic Magnetic Fusion Rocket," *Journal of Propulsion and Power* 14, 519 (1998).
- Development of high-temperature superconductors should reduce the power-plant mass.
 - > Reduced refrigerator mass for magnet coolant.
 - Reduced shielding, because more magnet heating can potentially be tolerated before quenching.

Key Features of the Generic Fusion Rocket Model

- Cylindrical geometry
- Main contributors to mass: radiation shield, magnets, refrigerators, and radiators
- Heat flux limit of 5-10 MW/m²
- Neutron wall load limit of 20 MW/m^2
- Radiators reject 5 kW/kg
- Magnet He refrigerators require 1000 kg/kW_{rejected}
- Low-mass radiation shield (LiH with 10% Al structure)
 - > Ten-fold magnet nuclear heating reduction=0.31 m of shield
- Magnet mass calculated by virial theorem and by windingpack current density limit (50 MA/m²); larger value used

Recent Conceptual Designs of Magnetic Fusion Reactors for Space

Propulsion Calculate Very Attractive Specific Powers

First Author	Year	Configuration	Specific Power (kW/kg)
Borowski	1987	Spheromak	10.5
Borowski	1987	Spherical torus	5.8
Santarius	1988	Tandem mirror	1.2
Bussard	1990	Riggatron	3.9
Teller	1991	Dipole	1.0
Nakashima	1994	Field-reversed configuration	1.0
Williams	1999	Spherical torus	4.9
Thio	1999	Magnetized-target fusion	600
Emrich	2000	Gasdynamic mirror	130
Wessel	2000	Colliding-beam FRC	2.3

Earliest D-³He Reactor Design Was a Fusion Rocket

G.W. Englert, NASA Glenn Research Center *New Scientist* (1962)

"If controlled thermonuclear fusion can be used to power spacecraft for interplanetary flight it will give important advantages over chemical or nuclear fission rockets. The application of superconducting magnets and a mixture of deuterium and helium-3 as fuel appears to be the most promising arrangement."

Conventional Tokamaks Have Large Mass

EFBT Toroidal Fusion Rocket J. Reece Roth, NASA Lewis, 1972

Spherical Torus Space Propulsion

- ST's give high β , implying high power density.
- Crucial problems are recirculating power and providing thrust.
- Martin Peng has suggested helicity *ejection*, and the concept will be tried on NSTX.

Princeton Plasma Physics Lab NSTX experiment

- Power density can be very high due to $\beta^2 B^4$ scaling, but first-wall heat fluxes would remain manageable.
 - Charged-particle power transports from internal plasmoid to edge region and then out ends of fusion core.
 - Magnetic flux tube would be expanded in end chamber to reduce heat and particle fluxes, so charged-particle transport power only slightly impacts the first wall.

- Steady-state heat flux is broadly spread and due almost exclusively to bremsstrahlung radiation power.
- Relatively small peaking factor along axis for bremsstrahlung and neutrons.
- Maintenance of single-unit modules containing blanket, shield, and magnet should be relatively easy, improving reliability and availability.
- Considerable flexibility and space exist for placement of pipes, manifolds, etc.
- Direct conversion of transport power to thrust by a magnetic nozzle would increase efficiency.

Radioactivity Will Most Likely Lead to a Requirement for Remote Maintenance

Maintenance Scheme for a Terrestrial-Electric FRC Using a Telescopic Vacuum Vessel

Fusion Technology Institute, University of Wisconsin

D-³He Space-Propulsion Tandem Mirror

JFS

Field-Reversed Configurations (FRC) Would Be Attractive for Space Applications

FRC as Power Source and Ion Engine for High Energy Space Missions

From Univ. of Washington web page for the Star Thrust Experiment (STX): www.aa.washington.edu/AERP/RPPL/STX.html

ARTEMIS Field-Reversed Configuration (D-³He, Momota, et al., NIFS, 1992)

The Dipole Configuration Offers a Relatively Simple Design That an MIT/Columbia Team Is Testing

Io plasma torus around Jupiter

LDX experiment (under construction at MIT)

JFS

Fusion Technology Institute, University of Wisconsin

2001

Inertial-Electrostatic Confinement (IEC) May Be Attractive for Space Propulsion

VISTA: Fusion Propulsion Using Inertial-Confinement Fusion (ICF)

Charles Orth, et al., "The VISTA Spacecraft--Advantages of ICF for Interplanetary Fusion Propulsion Applications," IEEE 12th SOFE (1987).

D-³He Fusion Propulsion Could Provide Flexible Thrust Modes

Fusion Technology Institute, University of Wisconsin

Direct Conversion to Electricity Could Take Advantage of the Natural Vacuum in Space

Fusion Technology Institute, University of Wisconsin

Plasmas Provide Many Materials Processing Capabilities

 B.J. Eastlund and W.C. Gough, "The Fusion Torch--Closing the Cycle from Use to Reuse," WASH-1132 (US AEC, 1969).

- D-³He fusion requires continued physics progress.
- D-³He engineering appears manageable.
- Successful development of D-³He fusion would provide attractive propulsion, power, and materials processing capabilities.
- Several configurations appear promising for space propulsion, particularly the field-reversed configuration (FRC), spheromak, and spherical torus.