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% Outline

® Low-thrust trajectories

® Plasma thrusters
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w High Exhaust Velocity Gives Large Payloads

® This plot of the rocket equation M
shows why high exhaust velocity f exp __AV
historically drives rocket design: M. Vv
payload fractions depend strongly : “
upon the exhaust velocity.

1
§ 08
0 : :
© ,
::-, 06 Earth-Mars
3 04 Chemical one-way trip:
E 0.2 rocket Av~5.6 km/s
ol

0 - 10 B 20 B 30 B 40 - 50
Exhaust velocity, kmys
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Taking Full Advantage of High Exhaust
Velocity Requires Optimizing Trajectories

Chemical rocket trajectory Fusion rocket trajectory
(minimum energy) (variable acceleration)

Note: Trajectories are schematic, not calculated.
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w Useful Propulsion Definitions

M,, = power and propulsion M = propellant flow rate =
M/t

F =thrust=M v,

P, = thrust power =% M v__ 2

system mass
M, = payload mass

M, = propellant mass a. [kW/kg] = specific power =

M, = total mass = P,/ M,
v, = characteristic velocity =
M, + M, + M, (20t)

T = mission power-on

time
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W Rocket Efficiency Can Be Tricky

® For example: External Rocket Efficiency
= increment 1n rocket kinetic energy divided by kinetic
energy change generated by rocket engine.

05 1 15 2 25 3
Rocket velocity / Exhaust velocity

o
(3)]

o

|
o
)

I
-
T

External Rocket Efficiency

® Negative efficiency! At some point, exhausted propellant
carries more kinetic energy than 1t had as part of the rocket.
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w How Do Separately Powered Systems
Differ from Chemical Rockets?

® Propellant not the power source.
® High exhaust velocity (x10° m/s).
® Low thrust (102 m/s}=10-3 Earth gravity) in most cases.

® Thrusters typically operate for a large fraction of the
mission duration.

® High-exhaust-velocity trajectories differ fundamentally from
chemical-rocket trajectories.

M=payload mass

M | T M W = exp —Av M, =power and propulsion
o tem mass
M, +M +M S
! W p Vex M =propellant mass

JES 2001 Fusion Technology Institute, University of Wisconsin 7



w Rocket Equation for
Separately Powered Systems
® Explicitly including the M,+ M —Av N
power-plant mass using p7 4 A7+ M, - ©AP y
v, the characteristic ) _
velocity, modifies the M, —u) v 1 —u
. —L=exp| — |- exXp| —
rocket equation: M, v |V v
1 M=payload mass
-g 08 U/NV,=0.1 M, =power and propulsion
£ 06 0.3 system mass
©
S 0.4 M =propellant mass
> 0.5 . :
& 0.2 0.7 u = mission energy requirement
0 . v, = characteristic velocity = (2at)’2
-2 15 -1 -05 0O 0.5 1

10g10(Vex/Veh) v, = exhaust velocity
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Rocket Equation for
Separately Powered Systems

My exp| =% _ - exp| —%
M 0 Vex chh Vex

0 U/Nch
025 o5 075

1 .
1 u = mission energy
requirement
0.75
0.5 MM,
0.25
< £ v, = characteristic velocity
= (201)”
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w Mass Ratios Vary Simply with u/v and v /v,

M,, = power plant mass M, = propellant mass
M, = payload mass M, = total mass
1

V,=05v,

M /M,

Mass ratio

0 02 04 06 08
U'=U/Vch
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w Earth-Mars Mission Characteristic Velocity Example:
o=1 kW/kg; =9 months (one-way)

® Characteristic velocity = v, = 2ot = 220 km/s

> Note: remember to use W/kg not kW/kg for a when calculating v, !

* v, =40 times Hohmann Av (5.6 km/s for Earth-Mars missions)
1

© o
(o] (o0]

Payload fraction
o
il

0.2

103 104 10° 106 107
Exhaust velocity (m/s)
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w Earth-Mars Mission Characteristic Velocity Example:
o=1 kW/kg; =9 months (one-way)

® Guidance from the plot on the previous viewgraph plus an
educated guess for the turnaround terminal velocity allows
self-consistent (that 1s, meeting boundary conditions)
solutions for low-thrust trajectories to be found.

® For example, choosing a turnaround velocity of
Ve T70.26 v, leads to the acceleration program shown.

0.0015
0.001
0.0005
0
—-0.0005
—0.001
—-0.0015

Acceleration(mys?)

0 50 100 150 200 250
Time (days)
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w Earth-Mars Mission Example

® The corresponding velocity and distance values are shown,
as 1s the approximate trajectory.

/\

Velocity (knys)
N W A O
o o o o

N

-
o

o

50 100 150 200 250

Time (days) 0.5 115

N W A~ O

Distance (AU)

-
|
N

o

0 50 100 150 200 250
Time (days)
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w Earth-Mars Mission Example

Summary Parameters
Parameter Low-Thrust Chemical
One-way travel time 258 days 258 days
Specific power 1 kW/kg 0
Characteristic velocity 150 km/s -
Exhaust velocity 119 km/s 4.5 km/s
Total velocity increment 24 km/s 5.6 km/s
Distance traveled 5.5 AU 55 AU
Propellant flow rate ~1.5 g/s ?
Thrust force 0.17 kN ?
Initial thrust-to-weight 0.00012 ?
Payload ratio 0.7 0.29
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w Earth-Mars Mission Example
Summary of Masses

Low-Thrust | Chemical
Payload 100 Mg’ 100 Mg’
Power and propulsion 10 Mg 0 Mg
Propellant (acceleration phase) 17 Mg -
Propellant (deceleration phase) 16 Mg --
Propellant total 33 Mg 244 Mg
Total initial mass 143 Mg 344 Mg

T Note: 1 Mg = 1 tonne
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w Efficient Solar-System Travel Requires
High-Exhaust-Velocity Propulsion

® Electric power can be used to drive high-exhaust-velocity
plasma or 10n thrusters, or fusion plasmas can be directly

exhausted. Fusion rocket

® Allows fast trip times (o = specific power)
or large payload 1 . . . .
. Z - =10 kW/kg_ _ -
fractions for long- O Earth-Mars =
. 5 0.8; (circular - -
range missions. : .-
% 0g| Orbits) - & =1 KW/kg |
® Uses relatively small o | g hermical
< .
amounts of propellant, O )/ rocket @
reducing total mass. - 0.21 ! '
D_ s N N L
0 2 4 6 8

ONE-WAY TRIP TIME (months)
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Plasmas (Hot, Ionized Gases)
Exist in Many Different Regimes

25 T T T T T T
50% jomzation
hydrogen plasme &
a .
(4r/Shan < 1 Laser
2 - \ i
,/-}‘
.
- = lem
- l'r—lr
High —
pressure Fushon
ares e reaglor
15 | ; .
- il -
ra '
1 I.l =
E : -7 Fusizn
— - PHEBCIMEenLs
= T Lew
&) PrEssLrE
=
)
=
10+
- Solar
. T Glow corona
- : discharge
: Flames|
.i =1 cm
!
b i .
|
!
i
i
! Solar wind
i {1 au Emrith
! } plesma sheet
L‘} 1 : 1 1 | | 1
-2 -1 Q 1 & 3 4 )
log,, T (&v)

JES 2001 Fusion Technology Institute, University of Wisconsin



w Governing Principles
for Analyzing Plasma Thrusters
® Maxwell’s equations ® Force equation
V-Ezﬁ F=gFE+qvxB—-VP
- %0 ® Atomic physics
V-B=0
B ® Plasma-surface
_ 0B interacti
Vxf=_22 1nteractions
ot ~ ®Sheath physics
_ - 1 0oF o .
VXxB = uJ+— > ® Statistical mechanics
C

® Magnetohydrodynamics
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w Plasma (Electric) Thrusters Come in
Three Basic Varieties

® Electrothermal
» Plasma pressure driven

» Modest thrust, relatively low exhaust velocity
® Electrostatic

» Voltage-gradient driven

» Low thrust, high exhaust velocity
® Electrodynamics

» Complicated electromagnetic driving forces

» Modest thrust, modest exhaust velocity
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w Electrothermal Thruster

® Basic principle of electrothermal thrusters 1s to create
a hot plasma that expands because of internal pressure.

—

F=-VP /// /// g

ARC

COLUMN
------ = g e
N /) ——=HOTPLASMA __,.
-~ ——— —_—— ; T
CATHODE N el
& .

GAS FEED :

CONSTRICTOR

///// v

From Robert Jahn, Physics of Electric Propulsion (1968)
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w Electrostatic Thruster

® Basic principle of electrostatic thrusters 1s to cause
1ons to pick up energy by falling down a potential hill.

F=qFE=—qVO
fon Meutralizer
source Accelerator ', ]
—_ N I
> > i
T B> o 3
= [+ —»
F> N 2
F P @\
- E+}—> ¥ ¢
Positive Hegatwe
electrode electrode
b=V, O=V
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w Electrostatic Thruster Hardware Example

® The xenon-1on thruster
shown at right was
launched 1n 1998 on the
Deep Space I spacecraft.

® After mitial shakeout
problems, it
substantially exceeded §
its design lifetime. s =
Propulsion

Upgrading jet technology
Customer-drivan designs
Shape memary alloys
Dasigning with plastics
Engineering in tomarrow's world
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Nuclear-Electric Propulsion (NEP)
Conceptual Design Using Ion Thrusters

by Pat Rawlings.
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w Electromagnetic Thrusters

® Electromagnetic thrusters depend on both electric
and magnetic fields for their operation.

» Can be steady-state or pulsed.

» The presently most important varieties appear below.

Thruster Type Key Operating Principle
MPD J x B force on plasma
SPT (button) Hall effect (E x B drift)
Pulsed-plasma J x B force moving current
Pulsed-inductive Radio-frequency wave induced current
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w Magnetoplasmadynamic (MPD) or
Lithium Lorentz Force Thruster

® Basic principle of
MPD thrusters 1s
to utilize the force
perpendicular to a
current crossing a  cathode
magnetic field.

propellant
(Ar, N,, H,, Xe, Li)

insulation

DC I ‘
From University of Stuttgart’s web page:

www.irs.uni-stuttgart.de/RESEARCH/EL PROP/e el prop.html
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w Electrodynamic Thruster Hardware Examples

MPD
thruster

i

o
Pt SR -

Princeton Electric Propulsion and Plasma
Dynamics Laboratory

. SPT == Y Ak
“button’” =

th ru Ste - UW Centerfor Plasma-Aided
Manwufacturing
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w Carrying a Separate Power Source
Gives Flexibility

* Propulsion

* Power 1n flight and at destination
»Beamed power

» Electrically powered processes

* Materials processing and other plasma
applications

» Extractive. metallurgy

>WaSte diSpOsal *Figure from talk by AliGlobug
NASA Ames Research Center "+
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w Low-Thrust Trajectory Analysis References

® Ernst Stuhlinger, lon Propulsion for Space Flight
(McGraw-Hill, New York, 1964).

® Krafft A. Ehricke, Space Flight: II. Dynamics (Van
Nostrand, Princeton, 1962).

® Howard S. Seifert, ed., Space Technology (Wiley,
New York, 1959).

* http://fti.neep.wisc.edu/~jfs/neep533.lecture9.trajectories.99.html
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