Plasma Thrusters

Charge!

John F Samarius

Lecture 26

Resources from Space NEEP 533/ Geology 533 / Astronomy 533 / EMA 601

University of Wisconsin

November 2, 2001

• Low-thrust trajectories

• Plasma thrusters

High Exhaust Velocity Gives Large Payloads

 This plot of the rocket equation shows why high exhaust velocity historically drives rocket design: payload fractions depend strongly upon the exhaust velocity.

$$\frac{M_f}{M_i} = \exp\left(\frac{-\Delta v}{v_{ex}}\right)$$

Chemical rocket trajectory (minimum energy)

Fusion rocket trajectory (variable acceleration)

Note: Trajectories are schematic, not calculated.

JFS 2001

- M_w ≡ power and propulsion system mass
- $M_l \equiv payload mass$
- $M_p \equiv$ propellant mass
- $M_0 \equiv total mass =$
- $M_{w} + M_{l} + M_{p}$ $\tau \equiv \text{mission power-on}$ time

 $\mathbf{\hat{M}} \equiv \text{propellant flow rate} = M_p / \tau$ $\mathbf{F} \equiv \text{thrust} = \mathbf{\hat{M}} v_{ex}$ $\mathbf{P}_w \equiv \text{thrust power} = \frac{1}{2} \mathbf{\hat{M}} v_{ex}^2$ $\alpha [kW/kg] \equiv \text{specific power} = P_w / M_w$ $v_{ch} \equiv \text{characteristic velocity} = (2\alpha\tau)\frac{1}{2}$

For example: External Rocket Efficiency
 = increment in rocket kinetic energy divided by kinetic energy change generated by rocket engine.

• *Negative efficiency!* At some point, exhausted propellant carries more kinetic energy than it had as part of the rocket.

- Propellant not the power source.
- High exhaust velocity ($\geq 10^5$ m/s).
- Low thrust ($\leq 10^{-2}$ m/s} $\equiv 10^{-3}$ Earth gravity) in most cases.
- Thrusters typically operate for a large fraction of the mission duration.
- High-exhaust-velocity trajectories *differ fundamentally* from chemical-rocket trajectories.

$$\frac{M_l + M_w}{M_l + M_w + M_p} = \exp\left(\frac{-\Delta v}{v_{ex}}\right)$$

M_l=payload mass M_w=power and propulsion system mass M_p=propellant mass

Rocket Equation for Separately Powered Systems

• Explicitly including the power-plant mass using v_{ch} , the *characteristic velocity*, modifies the rocket equation:

$$\frac{M_{l} + M_{w}}{M_{l} + M_{w} + M_{p}} = \exp\left(\frac{-\Delta v}{v_{ex}}\right) \Rightarrow$$

$$\frac{M_l}{M_0} = \exp\left(\frac{-u}{v_{ex}}\right) - \frac{v_{ex}^2}{v_{ch}^2} \left[1 - \exp\left(\frac{-u}{v_{ex}}\right)\right]$$

 $M_{l}=payload mass$ $M_{w}=power and propulsion$ system mass $M_{p}=propellant mass$ $u \equiv mission energy requirement$ $v_{ch} \equiv characteristic velocity = (2\alpha\tau)^{1}/_{2}$ $v_{ex} \equiv exhaust velocity$

Rocket Equation for Separately Powered Systems

$$\frac{M_l}{M_0} = \exp\left(\frac{-u}{v_{ex}}\right) - \frac{v_{ex}^2}{v_{ch}^2} \left[1 - \exp\left(\frac{-u}{v_{ex}}\right)\right]$$

Mass Ratios Vary Simply with u/v_{ch} and v_{ex}/v_{ch}

 $M_w \equiv power plant mass$ $M_p \equiv propellant mass$ $M_L \equiv payload mass$ $M_0 \equiv total mass$

- Characteristic velocity $\equiv v_{ch} \equiv \sqrt{2\alpha\tau} = 220$ km/s
 - > Note: remember to use *W/kg not kW/kg* for α when calculating v_{ch} !
- $v_{ch} \approx 40$ times Hohmann Δv (5.6 km/s for Earth-Mars missions)

Fusion Technology Institute, University of Wisconsin

- Guidance from the plot on the previous viewgraph plus an educated guess for the turnaround terminal velocity allows self-consistent (that is, meeting boundary conditions) solutions for low-thrust trajectories to be found.
- For example, choosing a turnaround velocity of v_{Earth} +0.26 v_{ch} leads to the acceleration program shown.

Fusion Technology Institute, University of Wisconsin

• The corresponding velocity and distance values are shown, as is the approximate trajectory.

Fusion Technology Institute, University of Wisconsin

Earth-Mars Mission Example Summary Parameters

Parameter	Low-Thrust	Chemical
One-way travel time	258 days	258 days
Specific power	1 kW/kg	Ø
Characteristic velocity	150 km/s	
Exhaust velocity	119 km/s	4.5 km/s
Total velocity increment	24 km/s	5.6 km/s
Distance traveled	5.5 AU	5.5 AU
Propellant flow rate	~1.5 g/s	?
Thrust force	0.17 kN	?
Initial thrust-to-weight	0.00012	?
Payload ratio	0.7	0.29

Earth-Mars Mission Example Summary of Masses

	Low-Thrust	Chemical
Payload	$100 \mathrm{~Mg^{\dagger}}$	$100 \mathrm{Mg}^{\dagger}$
Power and propulsion	10 Mg	0 Mg
Propellant (acceleration phase)	17 Mg	
Propellant (deceleration phase)	16 Mg	
Propellant total	33 Mg	244 Mg
Total initial mass	143 Mg	344 Mg

† Note: $1 \text{ Mg} \equiv 1 \text{ tonne}$

- Electric power can be used to drive high-exhaust-velocity plasma or ion thrusters, or fusion plasmas can be directly exhausted.
- Allows fast trip times or large payload fractions for longrange missions.
- Uses relatively small amounts of propellant, reducing total mass.

Fusion rocket (α ≡ *specific power*)

Plasmas (Hot, Ionized Gases) Exist in Many Different Regimes

JFS 2001

Maxwell's equations

$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$	
$\nabla \cdot \vec{B} = 0$	
$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$	
$\nabla \times \vec{B} = \mu_0 \vec{J} + \frac{1}{c^2} \vec{a}$	$\partial \vec{E}$ ∂t

• Force equation

$$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B} - \nabla P$$

- Atomic physics
- Plasma-surface interactions
- Sheath physics
- Statistical mechanics
- Magnetohydrodynamics

- Electrothermal
 - > Plasma pressure driven
 - > Modest thrust, relatively low exhaust velocity
- Electrostatic
 - > Voltage-gradient driven
 - > Low thrust, high exhaust velocity
- Electrodynamics
 - > Complicated electromagnetic driving forces
 - > Modest thrust, modest exhaust velocity

JFS 2001

• Basic principle of electrothermal thrusters is to create a hot plasma that expands because of internal pressure.

From Robert Jahn, Physics of Electric Propulsion (1968)

JFS 2001

• Basic principle of electrostatic thrusters is to cause ions to pick up energy by falling down a potential hill.

$$\vec{F} = q\vec{E} = -q\nabla\Phi$$

Electrostatic Thruster Hardware Example

- The xenon-ion thruster shown at right was launched in 1998 on the Deep Space I spacecraft.
- After initial shakeout problems, it substantially exceeded its design lifetime.

Nuclear-Electric Propulsion (NEP) Conceptual Design Using Ion Thrusters

JFS 2001

- Electromagnetic thrusters depend on both electric and magnetic fields for their operation.
 - > Can be steady-state or pulsed.
 - > The presently most important varieties appear below.

Thruster Type	Key Operating Principle	
MPD	J x B force on plasma	
SPT (button)	Hall effect (E x B drift)	
Pulsed-plasma	J x B force moving current	
Pulsed-inductive	Radio-frequency wave induced current	

W

Magnetoplasmadynamic (MPD) or Lithium Lorentz Force Thruster

• Basic principle of MPD thrusters is to utilize the force perpendicular to a current crossing a magnetic field.

$$\vec{F} = \vec{j} \times \vec{B}$$

$$\vec{j} = nq\vec{v}$$

From University of Stuttgart's web page: www.irs.uni-stuttgart.de/RESEARCH/EL_PROP/e_el_prop.html

Electrodynamic Thruster Hardware Examples

Princeton Electric Propulsion and Plasma Dynamics Laboratory

JFS 2001

Carrying a Separate Power Source Gives Flexibility

- Ernst Stuhlinger, *Ion Propulsion for Space Flight* (McGraw-Hill, New York, 1964).
- Krafft A. Ehricke, *Space Flight: II. Dynamics* (Van Nostrand, Princeton, 1962).
- Howard S. Seifert, ed., *Space Technology* (Wiley, New York, 1959).
- http://fti.neep.wisc.edu/~jfs/neep533.lecture9.trajectories.99.html