The Significance of Helium-3 Fusion

Professor G. L. Kulcinski

Lecture 25 October 31, 2001

How do We Make Atoms Fuse?

- Placing them under very high pressures at high temperature.
 - Gravity
 - Inertial confinement
- Heating them to very high temperatures (i. e., high velocities) and running them into each other.
 Containment with high magnetic fields
- Acceleration into each other at high velocities.
 Electrostatic confinement

Reactivities ($\Sigma E_{fus}\sigma v$) versus IEF Well Depth

There Are 2 Basic Approaches to IEF

Fusion Power from a Maxwellian Plasma Comes Mainly from the High-Energy Tail in the Distribution

10⁻¹ D-T • The reaction cross-section Cross section is high only at tempera- (10^{-26} m^2) 10-2 tures above the peak in ٥r Contribution to Maxwellian the distribution function. Reactivity T=15 keV 10-3 100 200 300 ION CENTER-OF-MASS ENERGY (keV) • Considerable energy is D-T invested in filling -the Cumulative Maxwellian Contribution to Maxwellian with ions T=15 keV Total 0.5which do not contribute Reaction Rate to the fusion rate. 0 100 200 300 Û ION CENTER-OF-MASS ENERGY (keV)

- When containing a collection of plasma particles at high temperatures with a magnetic field, the particles equilibrate in a Maxwellian distribution.
- Considerable energy is invested in filling the Maxwellian with ions which do not contribute much to the fusion rate.

Why is IEF Different from Fusion in a Tokamak?

• In IEF, energy can be invested in only those ions which have a high chance of fusion.

Spherically Convergent Ion Focus Experiment

Δr

Steady State D³He Reaction Rate Achieved in Wisconsin IEC Device

Why Are We Interested in ³He Fusion if DT Fusion is Easier?

The Public Developed a Resistance to Nuclear Power in the Late 20th Century

The resistance seems to be largely based on:

Fear of radioactivity releases
 Uneasiness with long-term nuclear waste storage
 Fear of proliferation of nuclear weapons grade material

All of the above problems stem from the nuclear reaction:

1) Radioactive fuel

2) Radioactive reaction products

3) Neutrons

Can the Use of Fusion Fuels Alleviate the Public's Fear About Radioactivity? 1st Generation $D + T \rightarrow n (14.07 \text{ MeV}) + {}^{4}\text{He} (3.52 \text{ MeV})$

 $D + D \rightarrow n (2.45 \text{ MeV}) + {}^{3}\text{He} (0.82 \text{ MeV}) \{50\%\}$

→ p (3.02 MeV) + T (1.01 MeV) {50%}

2nd Generation $D + {}^{3}\text{He} \rightarrow p (14.68 \text{ MeV}) + {}^{4}\text{He} (3.67 \text{ MeV})$

3rd Generation ${}^{3}\text{He} + {}^{3}\text{He} \rightarrow 2p + {}^{4}\text{He}$ (12.9 MeV)

The Form of Energy Released Depends on the Fuel Cycle

Some Fusion Fuels Have More Radioactivity Associated With Them Than Others

Fuel Cycle	Radioactive Fuel	Direc	t Radioad	etivity	Indirec	t Radio	activity
DD		n	Т		n		
DT	Т	n			n	Т	
D ³ He					n	Т	
³ He ³ He							
p ⁶ Li					n	Т	⁷ Be ¹¹ C
p ¹¹ B					n Small		¹⁴ C
					Sillall		sman

Half Life: T = 12.3 y, ⁷Be = 52 d, ¹¹C = 0.33 h, ¹⁴C = 5,600 y

The Number of Neutrons Generated by Helium-3 Fusion Fuels is Very Small

The Amount and Form of Energy Release Depends on the Fusion Fuel Cycle Used

The Low Radiation Damage in D³He Reactors Allows Permanent First Walls to be Designed

Maximum dpa per 30 Full Power Years

The Use of 2nd and 3rd Generation Fusion Fuels Can Greatly Reduce or Even Eliminate Radioactive Waste Storage Problems

Class of Waste	Relative Cost of Disposal	LWR Fission (Once Through)	DT (SiC)	D³He (SiC)	³ He ³ He (any material)
			6.0	• **7	
		Relative Volur	ne of Operat	lion wa	ste/GWe-y
Class A	1	several times Class C amount	several times Class C amount	0	
Class C	≈10				
Deep Geological (Yucca Mtn.)	≈1000				

Nuclear Energy Conversion Efficiencies

Direct Conversion of Plasma Energy to Electricity at High Efficiency Has Been Demonstrated

• Experiment and theory agreed to within 2% for the LLNL direct converter experiments.

The 20th Century Approach to Fusion Only Partly Alleviates Public Concerns About Nuclear Power

Public Concern	How DT Fusion Addresses Concern
Radioactive Releases	Avoid runaway reactions and "meltdown" scenarios
	However, still have gigacuries in reactor in the event of an accident
Long Term Radioactive Waste Storage	Choice of fuel and structural material can reduce effective half life to < 100's years
	However, radiation damage and replacement of components can produce large volumes of radioactive waste
Proliferation	Reactor does not require fissile or fertile material However, excess neutrons can be used to breed fissile fuel

Characteristics of D ³**He Fusion Power Plants**

- No Greenhouse or Acid Gas Emissions During Operation
- Very High Efficiencies (>70%)
- Greatly Reduced Radiological Hazard Potential Compared to Fission Reactors (<1/10,000)
- Low Level Waste Disposal After 30 y
- No Possible Offsite Nuclear Fatalities in the Event of Worst Possible Accident

Characteristics of He³He Fusion Power Plants

• No Greenhouse or Acid Gas Emissions During Operation

• Very High Efficiencies Possible (>70%)

• No Residual Radioactivity After 30 Years of Operation (No Radioactive Waste or Nuclear Safety Hazard).

Nuclear Energy Without Nuclear Waste !!

Major Societal and Technical Concerns of Nuclear Energy Options

Hardest		Easiest	
Major Problen	า	Minor Problem	

Why Consider the Advanced Fuels for Power Production?

Major Advantages

- Significant Reduction in Radiation Damage
 - (permanent 1st wall)
- Greatly reduced (or no) radioactivity
- Potential for Direct Conversion
 - (higher efficiency & lower waste heat)

Major Disadvantages

- Higher operating temperature
 - (higher $n\tau$ values)
- Lower plasma power density or yield
 - (requires higher beta or ρr)
- Fuel source-³He
 - (requires NASA collaboration)

The Steady State D-³He Fusion Rate in the UW IEC Device is Now 1.5 x 10⁸ p/s (115 kV, 60 mA)

Significant Progress Has Been Made in Producing High Energy Protons from the D³He Reaction

Significance of Lunar Helium-3 I tonne of He-3 can produce 10,000 MWe-y of electrical energy. L L Columbia wish, Marine 1 -United States 40 tonnes of He-3 will provide for the entire U.S. electricity consumption in 2000.

There is 10 Times More Energy in the

Helium-3 on the Moon Than in All the Economically Recoverable Coal, Oil and Natural Gas on the Earth

The Development of the 2nd and 3rd Generation Fusion Fuels in the 21st Century Could Lead to Near Term, as Well as Long-Term Benefits to Society

Long Range Benefits of a Q>10 IEC Device

- All of Phase 1
- All of Phase 2
- Small, Safe, Clean and Economical Electrical Power Plants

Phase 2

Intermediate Term Spinoff from a Q = 1–5 Device

- All of Phase 1
- Destruction of Toxic Materials
- Space Power
- Propulsion Technologies
- Remote Electricity Stations

Phase 1

Near Term Spinoff from a Q < 1 Device

- Medical Treatment
- Civilian Commercial Markets
- Environmental Restoration
- Defense

Applications

Near Term

- Medical Isotope Production
- Cancer Therapy
- Detection of Explosives
- Detection of Chemical Wastes

Mid-Term

- Destruction of Fissile Material
- Destruction of Radioactive Wastes

Long Range

- Small (50-100 MWe) Electrical Power Plants
 - Use of Advanced Fuels (Helium-3)
 - Space Propulsion
 - Base Load Electrical Power Plants
- Hydrogen Production
- Synthetic Fuel Production

Conclusions

The use of second and third generation fusion fuels could revolutionize the Public's view of fusion power by:

1) eliminating one of the greatest barriers to public acceptance of nuclear power – the concern over radioactive waste, radioactivity releases, and proliferation of weapons grade

2) allowing off-the-shelf structural materials to be used, thus eliminating expensive neutron test facilities & long development times.

3) allowing high efficiency operation and in-city siting of electrical power plants

They Said It Couldn't Be Done

"Man will not fly for fifty years." –Wilbur Wright, 1901 "Heavier-than-air flying machines are

impossible." –Lord Kelvin, president, Royal Society, 1895

"Airplanes are interesting toys but of no military value." –Marshall Foch, future WWI French commander-in-chief, 1911 "There is not the slightest indication that [nuclear energy] will ever be obtainable. It would mean that the atom would have to be shattered at will." –Albert Einstein, 1932

"Anyone who looks for a source of power in the transformation of the [nucleus of the] atom is talking moonshine." –Ernest Rutherford, 1933

> "Space travel is utter bilge." –Dr. Richard Wooley, Astronomer Royal, space advisor to the British government, 1956

